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Understanding diversity has been a pursuit in evolutionary biology since its inception. A challenge arises when sexual 
selection has played a role in diversification. Questions of what constitutes a ‘species’, homoplasy vs. synapomorphy, 
and whether sexually selected traits show phylogenetic signal have hampered work on many systems. Peacock 
spiders are famous for sexually selected male courtship dances and peacock-like abdominal ornamentation. This 
lineage of jumping spiders currently includes over 90 species classified into two genera, Maratus and Saratus. Most 
Maratus species have been placed into groups based on secondary sexual characters, but evolutionary relationships 
remain unresolved. Here we assess relationships in peacock spiders using phylogenomic data (ultraconserved 
elements and RAD-sequencing). Analyses reveal that Maratus and the related genus Saitis are paraphyletic. Many, 
but not all, morphological groups within a ‘core Maratus’ clade are recovered as genetic clades but we find evidence 
for undocumented speciation. Based on original observations of male courtship, our comparative analyses suggest 
that courtship behaviour and peacock-like abdominal ornamentation have evolved sequentially, with some traits 
inherited from ancestors and others evolving repeatedly and independently from ‘simple’ forms. Our results have 
important implications for the taxonomy of these spiders, and provide a much-needed evolutionary framework for 
comparative studies of the evolution of sexual signal characters.

ADDITIONAL KEYWORDS:   Australia – character evolution – multimodal signals – rapid evolution – sexual 
selection – taxonomy – ultraconserved elements.

INTRODUCTION

Sexual selection has driven the evolution of a 
spectacular diversity of colours, sounds, smells, shapes 
and forms across the animal kingdom, from darters 
(Hulse et al., 2020) to bower birds (Frith & Frith, 2004) 
to mantis shrimps (Porter et al., 2010) to treehoppers 
(Rodriguez et al., 2004). One common theme that has 

emerged from many of these studies is that sexually 
selected traits sometimes show low phylogenetic signal 
(Kusmierski et al., 1997; Gleason & Ritchie, 1998; 
Ohmer et al., 2009; Puniamoorthy et al., 2009; Hosner 
& Moyle, 2012; Hebets et al., 2013; Owens et al., 2020), 
often in the traits that are the most obvious to human 
observers (i.e. bower bird plumage and bowers, hind 
wings in swallowtails, tyrant flycatcher plumage, 
frog calls, etc.). It thus follows that for comparative 
studies, particularly those focused on the evolution 
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of potentially homoplastic sexually selected traits, 
species hypotheses and phylogenetic relationships 
should be based on independent evidence (e.g. 
phylogenomic data).

Peacock spiders of the genus Maratus Karsch 
1878 comprise a diverse clade of jumping spiders 
(Fig. 1; Supporting Information, Fig. S1) distributed 
predominately in eastern and western Australia, with 
over 90 described species (Otto & Hill, 2019a; World 
Spider Catalog, 2020) and active on-going species 
discovery (e.g. Schubert & Whyte, 2019; Schubert, 

2020). Sexual dimorphism is profound in this group, 
with cryptic adult females contrasting with highly 
decorated adult males. Male Maratus are now famous 
for their elaborate visual and vibrational courtship 
displays (Girard et al., 2011; Otto & Hill, 2011; Girard 
& Endler, 2014; Girard et al., 2018; Otto & Hill, 2019a; 
Wilts et al., 2020), facilitated by conspicuous behaviour 
in which they raise their often colourful abdomens 
vertically and along with elongated, brush-adorned, 
third legs perform a vigorous courtship display. Some 
male peacock spiders have cuticular flaps that wrap 

Figure 1.  Peacock spiders in courtship posture and variation in fan morphology. A, Maratus sarahae – elliptical fan. B, 
M. calcitrans – no fan. C, M. mungaich – elliptical fan. D, M. pardus – elliptical fan. E, M. amabilis – elliptical fan. F, 
M. vespa –posterior lobed fan. G, Saratus hesperus – no fan. H, M. flavus – no fan. I, M. rainbowi – round fan. J, M. plumosus 
– posterior lobed fan. K, M. harrisi – lobed fan. L, M. anomalus – no fan. M, M. jactatus – round fan. N, M. volans – elliptical 
fan. O, M. linnaei – no fan. P, M. clupeatus – elliptical fan. Q, M. cinerus – no fan. R, M. personatus – no fan. S, M. elephans 
– elliptical fan. T, M. madelineae – elliptical fan. U, M. proszynskii – no fan. V, M. australis – lobed fan. W, M. spicatus – no 
fan. X, M. vespertilio – lobed fan. Y, M. pavonis – round fan. Z, M. speciosus – no fan. Latitude and longitude data for all 
specimens can be found in Supporting Information, Table S1.
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beneath the abdomen (Dunn, 1947; Waldock, 1993; 
Hill, 2009), unfurled during the male courtship display, 
revealing remarkable patterns of scale pigmentation 
and structural colours (Stavenga et al., 2016; Hsiung 
et al., 2017, 2019; Wilts et al., 2020; Fig. 1; Fig. S1; Table 
S1). The extensive radiation of peacock spider courtship 
ornaments and displays is perhaps comparable to 
that of the better-known birds of paradise (Cooper & 
Forshaw, 1977; Nunn & Cracraft, 1996; Ligon et al., 
2018), but these spiders have remained obscure 
until recently because of their small size. Despite 
tremendous sexual signal diversity seen in this group, 
the evolutionary patterns and processes of ornament 
evolution remain mostly unstudied due to a lack of 
formal phylogenetic study and resolution.

Previous molecular systematics research has placed 
Maratus within a clade of mostly Australasian salticids 
in the Saitis Clade (Fig. 2A; Zhang & Maddison, 2013), 
within the tribe Euophryini (Maddison, 2015; Zhang & 
Maddison, 2015). Zhang & Maddison (2015) considered 
the multiple genera in the Saitis Clade (Maratus, 
Saratus Otto & Hill 2017a, Hypoblemum Peckham & 
Peckham 1885, Jotus Koch 1881, Saitis Simon 1876, 
etc.) as so closely related as to be possibly congeneric. 
Conversely, other authors have maintained the above 
taxa as separate genera (Otto & Hill, 2012a, 2019a; 
Otto & Hill, 2017a; Prószyński et al., 2018; Baehr 
et al., 2019). A hypothesized sub-lineage in this clade 
includes the ‘Maratus group’ (Otto & Hill, 2012a, 
2019a; Otto et al., 2019), including Maratus, Saratus, 
‘Lycidas’ (now mostly synonymized with Maratus) and 
Hypoblemum. Otto et al. (2019) suggested that the two 
species of Hypoblemum are sister to peacock spiders, 
including Maratus and Saratus (Fig. 2B). Saratus is 
monotypic, with male and female genitalia that differ 
from Maratus, but with somatic morphology, male 
coloration and male display behaviours otherwise 
similar to the latter (Otto & Hill, 2017a).

Except for the Sanger-sequencing-based studies 
of Zhang & Maddison (2013, 2015), relationships 
within the Saitis Clade have never been tested via 
phylogenetic analysis, although authors have inferred 
relationships based on character argumentation 
(Fig. 2B). A unique aspect of generic-level diagnoses 
in this clade is that many are based mostly or entirely 
on male courtship morphology and behaviour (Otto & 
Hill, 2012a, 2017a; Prószyński et al., 2018; Baehr et al., 
2019; Otto et al., 2019), rather than the traditional 
(for salticid systematics) male and/or female genitalic 
morphology (see Zhang & Maddison, 2015). It 
remains to be seen whether independent evidence 
(e.g. molecular evidence) supports taxa based on male 
courtship characters, or rather, if such characters 
might be subject to higher levels of homoplasy, calling 
into question current generic-level diagnostic traits 
(see also Zhang & Maddison, 2015).

The genus Maratus included fewer than ten 
described species in 2008 (Waldock, 2008). The 
description of new Maratus species has exploded over 
recent years, as interest in these spiders has increased, 
and macrophotography and video of live specimens 
has facilitated the discovery of complex male courtship 
ornaments and behaviours (Otto & Hill, 2019a; 
Schubert, 2020). Most peacock spider species have 
been placed into complexes of related species (species 
groups) based on male morphology and/or display 
characters (Otto & Hill, 2019a). As of early 2020, 
16 species groups have been recognized (Table 1). 
Relationships within and among groups have not been 
independently tested using other types of evidence, 
and resolution within these groups is mostly lacking. 
Some species are not currently placed into species 
groups (Table 1) and it remains unclear whether these 
taxa are truly phylogenetically isolated, or are nested 
cryptically within described groups. Also, some species 
appear to share morphological features of multiple 
groups (Schubert, 2020), blurring species group limits. 
Similar to arguments above for generic-level diagnoses 
and because species groups are defined mostly on male 
courtship morphologies and behaviours (but see Baehr 
& Whyte, 2016), current phylogenetic hypotheses do 
not present an independent framework to understand 
potential homoplasy in these same character systems 
(Maddison & Hedin, 2003).

Of the now more than 90 accepted species in Maratus, 
no species hypotheses have been independently tested 
using molecular evidence. There are many species 
known only from single (type) locations, and these could 
represent divergent populations of otherwise known 
species (i.e. geographical variation). Some ‘varieties’ 
have been described within wide-ranging species [e.g. 
M. pavonis (Dunn 1947); Hill & Otto, 2011; Otto & 
Hill, 2012a; Baehr & Whyte, 2016], possibly indicating 
undetected speciation. Some of these wide-ranging 
species have conspicuously disjunct distributions 
with populations along the eastern seaboard and in 
south-western Australia, but populations are absent 
from the more xeric temperate arid zone [e.g. eastern 
vs. western M. pavonis, M. vespertilio (Simon 1901)]. 
Finally, researchers have discussed possible evidence 
for gene flow across species boundaries (Otto & Hill, 
2014b, 2016a; Schubert, 2020), again blurring species 
limits, and testable using genetic data.

We collected ultraconserved element (UCE) and 
RAD-sequencing (RAD-seq) phylogenomic data to 
address relationships in the Saitis Clade, emphasizing 
Maratus relationships. Our sample includes type 
species for core genera [Jotus auripes L. Koch 1881, 
Saitis barbipes (Simon 1868), Hypoblemum griseum 
(Keyserling 1882), ‘Lycidas’ anomalus (=Maratus 
anomalus) (Karsch 1878), Saratus hesperus Otto & 
Hill 2017a, and Maratus amabilis (Karsch 1878)]. For 
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B) Compilation - multiple sources, see legend

A) Sanger sequence data - 
Zhang & Maddison 2013, fig 1

Lycidas cf. karschi (NSW)_JXZ157
Hypoblemum cf. albovittatum (soAU)_JXZ164
Hypoblemmum sp. (NSW)_JXZ085
Lycidas cf. griseus (NSW)_JXZ092

Saitis barbipes (SPAIN)_JXZ147
cf Saitis sp. (WA)_JXZ091

Maileus cf. fuscus (Malaysia)_JXZ098

Lycidas cf. vittatus (QL)_JXZ146
cf. Jotus sp. (QL)_JXZ155
Prostheclina sp. (NSW)__JXZ095 
Jotus auripes (QL)_JXZ090
Servaea vestita

Maratus rainbowi  (WA)_JXZ160
Maratus sp. (soAU)_JXZ159

Hypoblemum griseum

Saratus hesperus 

Saitis
(5 species, S. barbipes type)

Maileus
(monotypic, M. fuscus type)

Prostheclina
(7 species, P. pallida type)

Jotus
(8 species, 
J. auripes type)

Maratus

Hypoblemum scutulatum

“Maratus 
   group”

carapace with lateral stripes
abdomen with lateral bands
male leg I setal brush

Saitis mutans

XZ1

flexibile pedicel
MF elevation of abdomen

Barraina
(monotypic, B. anfracta type)

Hypoblemmum scutulatum

uncertain

Hypoblemmum scutulatum

Hypoblemmum griseum?

Hypoblemmum scutulatum?

combined conductor + 
embolus of male palp
metatarsus leg I fringe in males

??

heavy outer embolar ring

male leg III long, w/ “bottle brush”
slender unmodifed leg I

M abdomen with 
dorsal plate or scute

M palp, 
F epigynum unique

Saitis

Maratus

Jotus

Hypoblemum

Figure 2.  Overview of the phylogenetic structure of the Saitis clade. A, results of Zhang & Maddison (2013: fig. 1), based 
on maximum-likelihood analysis of four concatenated genes. Annotation of uncertain taxon names reflects UCE by-catch 
phylogenetic results (see Supporting Information, Fig. S3). B, hypothesized phylogenetic structure of the Saitis Clade from 
multiple sources (Richardson & Żabka, 2007; Otto & Hill, 2012a, 2016a, 2017a; Prószyński et al., 2018; Otto et al., 2019; 
Baehr et al., 2019), with partial list of supporting characters for genera and generic groupings.
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peacock spiders (Maratus and Saratus), we generated 
data for a representative sample of species, including 
species from all 16 currently recognized species 
groups (Table 1). Our phylogenomic results reveal 
that both Saitis and Maratus, as currently recognized, 
are paraphyletic taxa. Most described species are 
recovered as exclusive genetic groupings, but we find 
evidence for undetected speciation and we present 
data for three probable new species. Phylogenetic 
comparative analysis of male visual and vibratory 
signals reveals a combination of synapomorphic and 
homoplastic signal. Overall, our research establishes a 
phylogenetic framework for future studies of peacock 
spider morphology, behaviour and evolution.

MATERIALS AND METHODS

For a majority of specimens, genomic DNA was 
extracted from legs or whole spiders using a QIAamp 
DNA mini kit (Qiagen, Valencia, CA, USA). Saitis 
barbipes samples used in UCE experiments were 
extracted using a Qiagen DNeasy blood and tissue kit.

Taxonomic correction

The name Maratus rainbowi (Roewer, 1951) is used 
in this study, in accordance with the World Spider 
Catalogue (2020), replacing the use of Maratus 
splendens common in other catalogues (Otto & Hill, 
2019a). The name Attus splendens was assigned 
to a North American salticid species by Peckham 
& Peckham (1883), which is now considered to be a 
junior synonym of Habronattus decorus (Blackwall, 
1846). Rainbow (1896) also established a species 
that he called Attus splendens for a new species from 
Australia, overlooking the prior usage by Peckham & 
Peckham (1883). Attus splendens Rainbow, 1896 was 
transferred to Saitis by Simon (1901) and to Maratus 
by Żabka (1991). In the meantime, Roewer (1951) 
recognized that Attus splendens Peckham & Peckham, 
1883 and Attus splendens Rainbow, 1896 were primary 
homonyms, and provided the replacement name 
Saitis rainbowi Roewer, 1951. With the transfer of all 
Australian species of Saitis to Maratus, this species is 
correctly known as Maratus rainbowi (Roewer, 1951). 
This usage is in accordance with the International 
Code of Zoological Nomenclature (1999).

UCE data

Specimens of Jotus auripes, Saitis barbipes, Saitis 
mutans Otto & Hill 2012a, Saitis virgatus Otto & Hill 
2012a, Hypoblemum griseum, H. scutulatum L. Koch 
1881, Saratus hesperus, and a subsample of seven 
Maratus species were included in UCE experiments 

(Supporting Information, Table S1). We also included 
the more divergent genus Servaea Simon 1888 to root 
phylogenies (data shared by W. Maddison), following 
the results of Zhang & Maddison (2013, 2015). 
We lacked samples of Barraina Richardson 2013, 
Maileus Peckham & Peckham 1907 and Prostheclina 
Keyserling 1882, all hypothesized members of the 
Saitis Clade (Zhang & Maddison (2013, 2015). We used 
the MYbaits Spider v.1 kit (Arbor Biosciences, Ann 
Arbor, MI, USA; Kulkarni et al., 2020) to capture UCE 
loci, using methods of library preparation as in recent 
publications (Starrett et al., 2017; Hedin et al., 2019). 
Sequencing was conducted on an Illumina HiSeq400 at 
the U.C. Davis Genome Center with 150-bp paired-end 
reads. Sequence reads were trimmed and assembled 
using TRINITY v.2.1.1. (Grabherr et  al., 2011) 
using default settings (trimmomatic = full_cleanup, 
kmer = 25), then processed using Phyluce (Faircloth, 
2016). Assembled contigs were matched to probes 
using standard minimum coverage and minimum 
identity values (80_80). UCE loci were aligned with 
MAFFT (Katoh & Standley, 2013) and trimmed with 
Gblocks (Castresana, 2000; Talavera & Castresana, 
2007) using strict settings (--b1 0.5 --b2 0.85 --b3 4 
--b4 8). Resulting Phyluce alignments with at least 
70% sample occupancy were imported into Geneious 
11.0.4 (Biomatters, Auckland, New Zealand), where all 
individual alignments were visually inspected.

Maximum-likelihood (ML) phylogenetic analyses 
were conducted using IQ-TREE v.2.0-rc2 (Nguyen 
et  al., 2015). Initial partitions corresponded to 
individual loci, and ModelFinder (Kalyaanamoorthy 
et al., 2017) was then used to find best-fit models 
and merge partitions (-s -p -m TESTMERGE 
-rcluster 10); the relaxed hierarchical clustering 
algorithm (Lanfear et al., 2014) was used to reduce 
computational burden. Support was assessed via 1000 
ultrafast bootstrap replicates (Hoang et al., 2018). 
An SVDQuartets analysis (Chifman & Kubatko, 
2014; Chifman & Kubatko, 2015) was conducted on 
a concatenated matrix using PAUP* 4.0a (Swofford, 
1988), implementing the multispecies coalescent tree 
model with exhaustive quartets sampling and 1000 
bootstrap replicates.

Using IQ-TREE 2 we calculated gene (gCF) and 
site concordance (sCF) factors. For every branch of a 
reference tree, gCF can be defined as the percentage of 
‘decisive’ gene trees containing that branch, while sCF 
can be defined as the percentage of decisive sites (in 
an alignment) supporting a branch (Minh et al., 2020). 
The latter support metric is particularly useful when 
individual gene trees are uncertain. Because ML and 
SVDQuartets UCE tree topologies agreed (see below), 
we used the partitioned ML tree as a reference for CF 
calculations, with individual gene trees calculated as 
default in IQ-TREE 2 (-S command).
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UCE by-catch

We assembled ribosomal 28S and mitochondrial 
16S_ND1 ‘by-catch’ using standard BLAST searches 
in Geneious 11.0.4 (Biomatters). Specifically, we 
used published sequences to query UCE TRINITY 
assemblies using blastn (maximum e-value of 1e-5). 
We then stitched together UCE by-catch data with 
published sequences from Zhang & Maddison (2013, 
2015), aligned matrices manually, and conducted 
ML analyses using IQ-TREE 2 (-s, -B 1000, -bnni). 
Our primary interest here was to potentially resolve 
uncertain taxon identities from Zhang & Maddison 
(2013) (e.g. see Fig. 2A), while also including Maileus 
and Prostheclina, not sampled in other matrices.

RAD data collection

Specimens of Jotus auripes, Saitis mutans, S. 
virgatus, Hypoblemum griseum, H. scutulatum and 
Saratus hesperus were included as ‘outgroup taxa’ 
(Supporting Information, Table S1). Lacking Servaea 
RAD data, we used UCE topology results to root RAD 
trees. Specimens representing 48 described Maratus 
species were included, based on 2013–2015 collections 
from eastern and western Australia (ACT, NSW, QLD, 
SA, TAS, VIC, WA; Table 1; Appendix S1). One to three 
individuals per species were sampled per location, and 
for more broadly distributed species we attempted to 
sample populations spanning known geographical 
ranges. Our taxon sample included five novel forms 
(Maratus cf. neptunus, M. ‘carmel’, M. ‘flame’, M. cf. 
leo, M. cf. plumosus), representing potentially new 
species.

We generated RAD libraries using the protocol of 
Ali et al. (2016) without completing the targeted bait 
capture step and using Pippin Prep (Sage Science, 
Beverley, MA, USA) instead of beads to size-select 
fragments between 250 and 600 bp. Each of two 
96-sample libraries was sequenced on an Illumina 
HiSeq 4000 lane at the U.C. Davis Genome Center 
with 150-bp paired-end reads. Raw fastq reads were 
de-multiplexed allowing one barcode mismatch. 
De-multiplexed reads were removed if the expected 
cut site (also one mismatch allowed) was not found at 
the beginning of the 5′-end of sequences.

Two separate sets of analytical pipelines and 
downstream analyses were conducted on RAD data: 
(1) a custom pipeline was used to extract a set of loci 
conserved across all taxa – this locus set was used to 
reconstruct a phylogeny for Maratus and ‘outgroups’; 
(2) based on the ‘all taxa’ RAD results, the ipyrad 
pipeline (Eaton et al., 2017) was used to assemble 
locus sets for well-supported species groups (or clades 
comprising multiple species groups). Because ipyrad 
analyses were focused on more closely related sets of 

taxa (rather than all taxa), this enabled us to extract 
more loci per clade.

RAD analysis – all taxa

A custom script was used to process RAD data (available 
at https://github.com/CGRL-QB3-UCBerkeley/RAD), 
calling various external programs. This pipeline has 
been used in several other recent publications (Krohn 
et al., 2018; Maas et al., 2018; Klonoski et al., 2019). 
Exact duplicates were removed using Super Deduper 
(https://github.com/dstreett/Super-Deduper). Raw 
reads were filtered using Cutadapt (Martin 2011) 
and Trimmomatic (Bolger et al., 2014) to trim adapter 
contaminations and low-quality reads. The resulting 
cleaned forward reads of each individual were first 
clustered using Cd-hit (Li & Godzik, 2006; Fu et al., 
2012), and only clusters with at least two reads 
supported were kept. To remove potential paralogues, 
Blastn (Altschul et al., 1990) was used to compare 
clustered loci against themselves, and remove any 
locus that matched to a locus other than itself. The 
resulting RAD loci from each individual were then 
combined for all individuals and the resulting marker 
sets served as a master reference. We then used Blastn 
(Altschul et al., 1990) to compare markers from each 
individual to the master reference and only kept 
those that had unique hits. These uniquely matched 
markers from each individual served as a reference 
for that individual. Cleaned sequence reads from each 
individual were aligned to its own reference using 
Novoalign (http://www.novocraft.com) and reads that 
mapped uniquely to the reference were kept. Picard 
(http://picard.sourceforge.net) was used to add read 
groups and GATK (McKenna et al., 2010) to perform 
realignment around indels. SAMtools/BCFtools and 
‘vcfutils.pl vcf2fq’ implemented in SAMTools (Li et al., 
2009) were used to generate individual consensus 
sequences by calling genotypes and incorporating 
ambiguous sites. We kept a consensus base only when 
its depth was at least 3× or above and retained loci 
that contained no more than 80% missing data. We 
also masked sites within 5-bp windows around indels. 
We converted the resulting consensus fastq sequence 
file to fasta format using Seqtk (https://github.com/
lh3/seqtk). Using MAFFT (Katoh & Standley, 2013), 
final filtered loci from each individual were aligned by 
comparing against the master reference. Ambiguously 
aligned regions were then trimmed using Trimal 
(Capella-Gutierrez et  al., 2009). To avoid excess 
missing data, we removed alignments if more than 
90% missing data were present in at least 30% of 
samples.

Using a subsample of the entire available sample 
(152 specimens), we performed several all-taxa 
phylogenomic analyses. Species trees were inferred 
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using the multispecies coalescent model implemented 
in SVDQuartets. Originally developed for unlinked 
single nucleotide polymorphism (SNP) data, where 
each site has an independent genealogy drawn from 
a coalescent model, the method has also been shown 
to perform well for linked SNP data (Chifman & 
Kubatko, 2014), as used here. SVDQuartets was 
used to construct a ‘lineage’ tree, relating individual 
sequences. We also used a taxon partition to assign 
individual samples to species (partition = species); for 
M. pavonis, which includes multiple well-supported 
sub-lineages (see Results below), each sub-lineage 
here was treated as a ‘species’. For both lineage and 
partitioned analyses we evaluated all possible quartets 
(evalq = all, quartet assembly algorithm = QFM), 
and conducted a non-parametric bootstrap analysis, 
resampling with replacement both loci and sites 
within loci (bootstrap = multilocus, loci = combined, 
nreps = 100). IQ-TREE was also used to reconstruct 
an ML tree from a concatenated matrix, with a single 
best-fit model automatically chosen by ModelFinder, 
and support assessed via 1000 ultrafast bootstrap 
replicates (-s, -B 1000, -bnni).

RAD analysis – species groups

Based on RAD phylogenomic results from all-
taxa analyses (see below), additional analyses 
were  conducted  for  members  o f  four  wel l -
supported clades (FC =  fimbriatus + chrysomelas, 
p a v o n i s ,  a n o m a l u s ,  M T V C   =   e x p a n d e d 
mungaich + tasmanicus + volans + calcitrans). Here, 
forward read (R1) RAD data were de novo assembled 
using ipyrad v.0.7.30 (Eaton & Overcast, 2016), with 
the following settings adjusted from default: max_
Indels_locus = 4, clust_threshold = 0.85 (within and 
across), min_samples_locus = 5; see Eaton et al., 2017). 
We used a phylogenetic invariants analysis (Lake, 
1987; Chifman & Kubatko, 2015) on linked SNPs to 
infer quartet trees and a species tree using tetrad 
v.0.7.30, part of the ipyrad.analysis toolkit, sampling 
all quartets with 100 bootstrap replicates.

Courtship characters

Adult male visual and vibrational courtship signals 
were characterized using video and laser vibrometer 
recordings (see Girard et al., 2011 for a detailed 
description of methods). From these recordings we 
scored nine characters for all taxa, based on original 
observations: (1) lateral fan flaps, (2) overall fan shape, 
(3) raises fan, (4) third leg use, (5) white brushes, (6) 
elongated spinneret display, (7) vibratory display, (8) 
vigorous tapping and (9) pre-mount display. Detailed 
character descriptions and scorings can be found 
in Supporting Information, Appendix S1 and Table 

S2. Character scorings for Saitis barbipes were 
extracted from other sources (Hill, 2009; https://
www.youtube.com/watch?v=wQT2bHTOdwo); some 
scorings for Hypoblemum scutulatum were taken from 
the courtship description of Otto et al. (2019). The 
characters presented here are not intended to capture 
the full diversity or complexity of courtship characters 
seen within Maratus, but rather represent a set of 
scoreable traits with hypothesized deeper homology 
across all genera included.

Character evolution

For tree-based character evolution analyses we used 
pruned UCE and all-taxa RAD matrices, removing 
duplicate specimens/populations for individual 
species, while retaining the most data-rich samples 
(summarized using AMAS; Borowiec, 2016). We then 
conducted partitioned and unpartitioned ML analyses 
of these matrices, as outlined above. Mesquite v.3.6 
(build 917) (Maddison & Maddison, 2018) was used to 
reconstruct ancestral states for courtship phenotypes, 
scored as alternative discrete states (Supporting 
Information, Table S3). ML character reconstructions 
were conducted using the one-parameter Markov 
k-state model (Lewis, 2001).

RESULTS

Voucher specimen data and relevant summary values 
are presented in Supporting Information, Table S1. 
Raw UCE and RAD data have been submitted to the 
Short Read Archive (BioProjects PRJNA667490 and 
PRJNA665271), and all data matrices and resulting 
tree files referenced below are available at Dryad 
(https://doi.org/10.5061/dryad.9p8cz8wdp).

UCE data

The final primary 70% occupancy UCE matrix 
included 472 loci, with a combined alignment length 
of 282 674 bp and 39 224 parsimony-informative sites. 
ML and SVDquartets tree topologies were identical, 
and both were well supported, with almost all nodes 
receiving maximum support (Fig.  3; Supporting 
Information, Fig. S2). Both gene (gCF) and site 
concordance (sCF) factors were relatively high, except 
for a node uniting Saitis mutans with ‘Maratus 
group’ genera.

The genus Saitis is not recovered as monophyletic 
(Fig. 3). Saitis virgatus is sister to Jotus auripes, 
possibly misplaced in Saitis. Saitis mutans and Saitis 
barbipes are also not recovered together; instead they 
are found to be successive sister species to ‘Maratus 
group’ taxa (Hypoblemum, Maratus, Saratus; Fig. 2B). 

D
ow

nloaded from
 https://academ

ic.oup.com
/biolinnean/article/132/3/471/6126965 by U

niversity of C
alifornia, Berkeley user on 22 February 2021

http://academic.oup.com/biolinnean/article-lookup/doi/10.1093/biolinnean/blaa165#supplementary-data
http://academic.oup.com/biolinnean/article-lookup/doi/10.1093/biolinnean/blaa165#supplementary-data
https://www.youtube.com/watch?v=wQT2bHTOdwo
https://www.youtube.com/watch?v=wQT2bHTOdwo
http://academic.oup.com/biolinnean/article-lookup/doi/10.1093/biolinnean/blaa165#supplementary-data
http://academic.oup.com/biolinnean/article-lookup/doi/10.1093/biolinnean/blaa165#supplementary-data
http://academic.oup.com/biolinnean/article-lookup/doi/10.1093/biolinnean/blaa165#supplementary-data
https://doi.org/10.5061/dryad.9p8cz8wdp
http://academic.oup.com/biolinnean/article-lookup/doi/10.1093/biolinnean/blaa165#supplementary-data
http://academic.oup.com/biolinnean/article-lookup/doi/10.1093/biolinnean/blaa165#supplementary-data


480  M. B. GIRARD ET AL.

© 2021 The Linnean Society of London, Biological Journal of the Linnean Society, 2021, 132, 471–494

Maratus is not recovered as monophyletic. One 
primary branch includes species representing the 
fimbriatus and chrysomelas morphological species 
groups (Table 1), with a conspicuously long branch 
leading to this clade (Fig. 3). These Maratus species are 
recovered as sister to Hypoblemum. We hereafter refer 
to this entire clade, also recovered in RAD analyses 
(see below), as the Hypoblemum clade. A  second 
primary branch includes other Maratus species, with 
Saratus nested within this larger clade. We hereafter 
refer to this clade as ‘core Maratus’ (also recovered in 
RAD analyses, see below).

UCE by-catch

Custom Blastn searches returned ND1_16S data 
from about half of the UCE TRINITY assemblies, 
and 28S data from almost all assemblies. Most taxa 
returned approximately full-length 28S sequences 
(> 7000 bp); these were trimmed to match the Sanger 
data. Based on phylogenetic placement in gene trees, 
we tentatively resolve the identity of five samples 
from Zhang & Maddison (2013, 2015) (see Fig. 2A; 
Supporting Information, Fig. S2). Two Hypoblemum 
samples have discordant 28S vs. 16S_ND1 placements; 
we leave these identified to genus only. Prostheclina 
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Figure 3.  UCE maximum-likelihood phylogeny, with concordance factor (CF) values. All bootstrap values = 100, unless 
otherwise indicated. Bootstrap values from SVDQuartets analysis are also shown for nodes with values <100.
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appears allied to Jotus (e.g. Fig. 2B), with Maileus 
surprisingly nested, although some nodes are poorly 
supported for these individual gene trees (Supporting 
Information, Fig. S3).

RAD analysis – all taxa 

Thirty-four samples were removed from downstream 
analysis because of low raw read counts. Of retained 
samples, 152 were included in all-taxa phylogenomic 
analysis. Using the custom pipeline, the number of 
filtered reads for these samples ranged from 101 077 
to 3623 248, with an average coverage of individual 
RAD loci of 12× (range from 3.0 to 61.1; Supporting 
Information, Table S1). We recovered between 9400 
and 27 893 loci per sample, but the number of shared 
loci across the entire taxon sample was lower, probably 
due to the deep divergences among genera. In total 

we recovered 513 loci (alignment length = 59 997 bp, 
11 290 SNPs, 7196 parsimony-informative sites) for 
the sample including Jotus, Saitis, Hypoblemum, 
Saratus and Maratus.

Following UCE results (see above), we rooted 
phylogenies using Jotus auripes + Saitis virgatus. With 
this root placement, neither Saitis nor Maratus were 
recovered as monophyletic in unpartitioned ML (Fig. 4; 
Supporting Information, Fig. S3) or SVDQuartets 
(Supporting Information, Figs S4, S5) analyses. One 
primary branch includes members of the fimbriatus, 
chrysomelas and spicatus morphological species groups 
as defined by Otto & Hill (2019a; Table 1). As for UCE 
data, members of this lineage occur on a conspicuously 
long branch. Members of the chrysomelas group are 
intermixed with species of the spicatus group; because 
the former species were described first, we hereafter 
refer to this entire larger clade as the chrysomelas 
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group (redefined). Many species in the above three 
groups were previously placed in the genus ‘Lycidas’ 
(but not including the type species of ‘Lycidas’). 
Consistent with UCE data, fimbriatus + chrysomelas 
(FC) clades are recovered as sister to Hypoblemum, 
and together comprise the Hypoblemum clade. We 
discuss below possible morphological and behavioural 
synapomorphies that unite members of this clade.

A second primary Maratus branch includes all other 
Maratus taxa (‘core Maratus’), with Saratus samples 
nested within this larger clade (Fig. 4; Supporting 
Information, Figs S4, S5). The ‘core Maratus’ clade 
includes the anomalus species group, including both 
the type species of  ‘Lycidas’, and M. amabilis, the type 
species of the genus Maratus. Many clades within 
‘core Maratus’ are mostly concordant with the species 
group divisions of Otto & Hill (2019a), as based on 
morphological/behavioural similarities. Exceptions 
include a monophyletic anomalus group, with the 
inclusion of M. sceletus Otto & Hill 2015a (from the 
calcitrans group). Maratus plumosus Otto & Hill 
2013b, a hypothesized (but divergent) member of the 
calcitrans group, also falls outside of this group. The 
tasmanicus group is not recovered as monophyletic, 
but instead represents a grade sister to the ‘expanded 
mungaich’ (EM) clade. The large, poorly resolved EM 
clade includes species from several groups as follows: 
M. clupeatus Otto & Hill 2014d (not a straggler), 
M. pardus Otto & Hill 2014c (from the volans group), 
M. australis Otto & Hill 2016b (from the tasmanicus 
group), and single sampled species from the flavus, 
linnaei, personatus and vespa groups. The EM clade 
is further discussed below, but this grouping is 
biogeographically compelling, as all included taxa are 
endemic to south-west Australia.

RAD analysis – species groups

Tetrad results and locus statistics for the FC, pavonis, 
anomalus and MTVC clades are shown in Figure 5. 
Interspecific relationships in tetrad analyses are 
generally better supported than in ML or SVDQuartets 
analysis, perhaps reflecting the greater number of 
loci recovered for each group. An exception is the EM 
clade – although tetrad analyses included more SNPs 
and parsimony-informative sites than in all-taxa 
ML analyses, relationships are conspicuously poorly 
supported in both (Figs 4, 5).

Almost all a priori species are supported as 
monophyletic on tetrad trees (Fig. 5). One caveat of 
this claim is that several species with multiple samples 
only include specimens from the same geographical 
location. Five species not recovered as monophyletic 
on ML trees are recovered as exclusive groupings on 
tetrad trees [M. chrysomelas (Simon 1909), M. leo 
Otto & Hill 2014b + M. cf. leo, M. literatus Otto & Hill 

2014b, M. neptunus Otto & Hill 2017a, M. aurantius 
Otto & Hill 2017a]. The only clear case of strongly 
supported non-monophyly involves the geographically 
widespread M. pavonis. In both tetrad and ML results, 
M. pavonis specimens from Western Australia are more 
closely related to Western Australia M. maritimus Otto 
& Hill 2014b, with eastern M. pavonis populations 
phylogenetically closer to geographically adjacent 
M. literatus and M. leo (Figs 4, 5). This result supports 
the contention that M. pavonis currently includes 
several distinct species, as supported by both genitalic 
(Baehr & Whyte, 2016) and male ornamentation 
characters (Hill & Otto, 2011; Otto & Hill, 2019a). 
Introgression with geographical neighbours might also 
be driving this pattern, but if this were true we might 
expect more lineage non-monophyly (e.g. Western 
Australia M.  pavonis intermixed with Western 
Australia M. maritimus, etc.).

Multiple analyses support the hypothesis that three 
novel forms included here represent undescribed 
species (M. ‘carmel’, M. ‘flame’, M. cf. plumosus). 
Two forms (M. cf. neptunus, M. cf. leo) might best be 
interpreted as geographical variants (Figs 4, 5), but 
larger sample sizes and formal integrative species 
delimitation analyses are needed to rigorously test 
these species hypotheses.

Character evolution

We lacked some character data for Saitis barbipes 
and Hypoblemum (Supporting Information, Table 
S2), causing ambiguity in certain ancestral character 
reconstructions. For the sparse UCE taxon sample that 
importantly includes Saitis barbipes, we reconstruct 
the common ancestor of the entire Saitis Clade as 
males using third legs during courtship (character 4, 
Fig. S6), and with vibrations produced during a pre-
mount display (character 8, Fig. S7; see Girard et al., 
2011), with reversals observed for both characters. 
The common ancestor of the Maratus group is 
unambiguously reconstructed as with males raising 
their abdomen during courtship (character 1, Fig. S6), 
consistent with the hypothesis of Otto & Hill (2012a; 
Fig. 2B). Ancestral state reconstructions for other 
characters are shown in Figures S6 and S7.

Ancestral state reconstructions for the denser RAD 
taxon sample that included the full Maratus sample 
(but lacked Saitis barbipes) are shown in Supporting 
Information, Figures S8–S15. These reconstructions 
suggest the evolution of a strong white brush on the 
male third leg evolving at the base of ‘core Maratus’ 
(character 5, Fig. S11). Two characters suggest that 
the pre-mount display and pre-mount vibrations may 
be unique in the Hypoblemum clade (characters 8 and 
9, Figs S14, S15), predicting that missing data for 
Hypoblemum species will conform to the FC clade. The 
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evolution of fan shape diversity across Maratus group 
members is illustrated in Figure 6.

DISCUSSION

Our phylogenomic results reveal that both Saitis and 
Maratus, as currently recognized, are paraphyletic 
taxa. In Maratus, some species are more closely 
related to Hypoblemum taxa. A  ‘core Maratus ’ 
clade includes several well-supported sub-clades 
that mostly correspond to morphological species 
groups, although some hypothesized groupings were 
not supported. Saratus is nested within the ‘core 
Maratus’ clade. Based on this phylogenomic tree 
topology, some traits such as using third legs and 

the abdomen during courtship are ancestral to the 
‘core Maratus’ clade. Other traits, particularly fan 
shape, show evidence of multiple independent gains 
and losses throughout what is currently recognized 
as Maratus.

Saitis Clade 

Zhang & Maddison (2015) define the Saitis Clade as 
including multiple genera (Saitis, Maratus, Saratus, 
Jotus, Hypoblemum, Prostheclina, Maileus, Barraina 
and possibly Margaromma), united in sharing several 
male genitalic features, including a lamella on the 
tegular shoulder distinctive for euophryine spiders. 
Zhang & Maddison (2015) recognized the striking 
variation in male courtship ornamentation in the 
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clade (Fig. 2B), but viewed genitalia and overall 
body form as conservative, and suggested that all 
genera in the clade might represent junior synonyms 
of Saitis. As they suggest, ‘the clade is compact 
enough morphologically that separating … genera 
is unnecessary and gives rise to possible paraphyly 
and uncertain placement of poorly studied species’ 
(30). This perspective was voiced from a comparative 
vantage that included detailed knowledge of all 
euophryine spiders, a clade including over 100 genera 
(Zhang & Maddison, 2015).

A phylogenomic framework for formal revision 
of the Saitis Clade will require the inclusion of 
missing genera (Prostheclina, Maileus, Barraina, 
Margaromma), additional Jotus species and additional 
Mediterranean Saitis species. The UCE data presented 
here provide a starting point for such a larger study. 
While we do not take formal taxonomic action, our 
results are consistent with the proposal of Zhang & 
Maddison (2015) that the Saitis Clade is over-split at 
the generic level. For example, to retain Maratus and 
Saratus as monophyletic taxa (a criterion we view as 
fundamental for genera) would require fragmenting 
Maratus into three additional genera (FC clade, 
pavonis group, Maratus clade sister to Saratus), with 
the anomalus clade retaining the name Maratus. 
Saitis would suffer the same fate. We propose that a 
more stable and conservative taxonomy would include 
FC clade members as Hypoblemum, with Saratus as 
a junior synonym of Maratus. Saratus was placed in 
its own genus because its genitalia differ from other 
described Maratus (Otto & Hill, 2017a), a situation 
similar to Mediterranean Saitis that are similar in 
courtship ornamentation but show divergent male 
pedipalps (Hill, 2009: fig. 3). Both of these examples 
illustrate that evolution is heterogeneous in the 
Saitis Clade, with most taxa showing rapid evolution 
of courtship ornaments with conservative genitalia, 
but with small clades sometimes reversing this trend 
(diverging more quickly in genitalia than in courtship 
ornamentation).

Although again we lack all constituent genera, our 
phylogenomic results indicate that the Saitis Clade 
has primary biogeographical roots in Australia. 
Multiple genera have radiated exclusively or mostly in 
Australia (Jotus, Maratus, Hypoblemum, Prostheclina, 
Barraina). The obvious exception is the Mediterranean 
Saitis barbipes, which we agree probably forms a clade 
with two other described Mediterranean Saitis (Saitis 
graecus, Saitis tauricus; Prószyński et al., 2018). 
This Mediterranean lineage is nested well within 
the Australian radiation, and phylogenomic depth 
(Fig. 3) indicates that this biogeographical disjunction 
is natural, not the result of recent human-mediated 
dispersal (contra Otto & Hill, 2012a).

Species groups

Many phylogenomic clades within Maratus are 
mostly congruent with the species group divisions 
of Otto & Hill (2019a), as defined by morphological 
and/or behavioural characters. In this sense, our 
results reveal congruence. Baehr & Whyte (2016) 
propose that details of the male palp, as examined 
using scanning electron microscopy (SEM), could 
reveal additional morphological synapomorphies 
for groups defined mostly by male ornamentation 
– SEM study of the phylogenomic groups defined 
herein will be an important next step. We highlight 
below areas of incongruence between morphology 
and phylogenomics, particularly as this relates to 
patterns of morphological and behavioural homoplasy. 
This includes interrelationships of the species groups 
themselves, essentially unresolved prior to this study, 
which reveal further homoplasy.

Although details differ, phylogenomic recovery of the 
fimbriatus clade, together with the chrysomelas clade 
(redefined), coincides with the hypotheses of Otto & 
Hill (2019a, and references therein). Most members 
of these groups lack typical Maratus features, such as 
tufted legs and a traditional pre-mount display. The 
pre-mount display (described by Girard et al., 2011) 
is different in that third legs are not extended at 90° 
angles from the body, but instead remain touching the 
substrate. Also, vibrations are not used prior to the 
modified pre-mount display. Lastly, the use of third 
legs in male displays is either severely reduced or non-
existent and instead first legs are primarily employed. 
Exceptions to the above include the nested species 
M. chrysomelas and M. nigromaculatus (Keyserling, 
1883), with standard pre-mount displays, strong white 
brushes, third leg use, etc. Based on ancestral character 
reconstructions, these would be independently 
evolved character states in these taxa (Supporting 
Information, Figs S10, S11, S15). Further study of the 
pre-mount display in the two Hypoblemum species will 
be important to understand whether these behaviours 
unite a larger Hypoblemum clade (FC + Hypoblemum); 
features of the outer embolus ring might also unite 
these taxa (Baehr & Whyte, 2016; Otto & Hill, 2019a).

Phylogenomics recovers a monophyletic anomalus 
clade, but with the inclusion of M. sceletus from the 
calcitrans group. The latter group is defined by 
courtship traits, including an asymmetric display 
in which males also display inflated and extended 
spinnerets (Otto & Hill, 2019a, and references 
therein). Our results instead show that M. sceletus is 
allied with a group of grassland species (M. cinereus 
Otto & Hill 2017a, M. neptunus Otto & Hill 2017a + 
M. cf. neptunus, M. aurantius) that display spinnerets 
during courtship, but to a lesser extent (Supporting 
Information, Fig. S12). The novel phylogenomic 
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placement of M. sceletus thus reveals morphological/
behavioural homoplasy at the level of ‘core Maratus’, 
and a perhaps novel synapomorphy within the 
anomalus clade (Fig. S12).

The poorly resolved EM clade includes species from 
several groups as follows: M. clupeatus (not a straggler), 
M. pardus (from the volans group), M. australis (from 
the tasmanicus group), and single sampled species 
from the flavus, linnaei, personatus and vespa groups. 
Most of these latter groups have been suspected as 
relatives (Otto & Hill, 2019a, and references therein). 
Because we only sampled a single species for the latter 
four groups, we cannot address group monophyly, 
but all of these groups comprise species restricted to 
south-west Australia. Moreover, although short-range 
endemic species with naturally small ranges (Harvey, 
2002) are known for several Maratus species groups, 
all 30 described species in the mungaich, flavus, 
linnaei, personatus and vespa groups are short-range 
endemics (Table 1). Distribution records indicate that 
all species are found in strict allopatry, with very rare 
and possibly non-existent syntopy (Otto & Hill, 2019a, 
and references therein; Schubert, 2020). This striking 
biogeographical pattern also applies to M. clupeatus, 
M. pardus and M. australis, recovered as part of the 
EM clade (Supporting Information, Fig. S16). Based 
on the observation that unplaced M. tessellatus Otto 
& Hill 2016b and M. trigonus Otto & Hill 2017c are 
single-site endemics from south-western Australia 
(Table 1), we predict their ultimate placement in the 
EM clade.

We thus propose that a clade of at least 35 
(described) species exists in the Western Australia 
global biodiversity hotspot (Rix et al., 2015), all short-
range endemics where allopatry prevails. Despite 
gathering phylogenomic data with numbers of overall 
sites and parsimony-informative sites comparable to 
other species groups, internal relationships within 
the EM clade are conspicuously unresolved (Figs 4, 
5). We hypothesize that an extremely rapid radiation 
has occurred, and that future phylogenomic studies 
will confirm and confront this lack of resolution. 
Otto & Hill (2014a) have discussed rapid evolution 
for certain members of this complex. Schubert (2020) 
also suggested that morphological homoplasy between 
some members of constituent groups [e.g. M. laurenae 
Schubert 2020 (linneae group) with homoplasy 
to mungaich group] might indicate introgression, 
again consistent with a rapid radiation (Seehausen, 
2004; Meier et al., 2017), and further challenging 
phylogenetic resolution.

Although members of different subgroups are not 
recovered within the more inclusive EM clade (e.g. 
mungaich vs. vespa), species in these subgroups are 
clearly different in many respects, and we are not 
arguing against subgroup monophyly. Instead, it 

seems that the rate of morphological and behavioural 
evolution in these subgroups (and the larger EM 
clade) has out-paced that of the nuclear RAD dataset. 
A similar dynamic of extremely rapid morphological 
evolution out-pacing nuclear RAD divergence was 
found in oasis-dwelling populations of jumping 
spiders in western North America (Hedin et al., 2020). 
Regarding the observation of strict allopatry, we 
hypothesize that this might indicate that described 
species within distinct subgroups are all part of a single 
reproductive community, akin to different populations 
of a single species, with sympatry precluded because of 
reproductive interference.

Another possibility is that some taxa in the EM clade 
are misplaced because of nuclear introgression from 
geographical neighbours, in what are actually more 
distant phylogenetic relatives [e.g. M. pardus (from 
the volans group), M. australis (from the tasmanicus 
group)]. If this is the case, introgression has been 
differential, because not all species sampled from 
Western Australia fall into the EM clade [M. specious 
(O. Pickard-Cambridge 1874), western M. pavonis, 
M. maritimus, etc.].

Patterns of character evolution

In previous behavioural work on M.  volans (O. 
Pickard-Cambridge 1874), it was demonstrated that 
visual signals (in particular fan dancing and third leg 
movements) strongly predicted mate choice (mating 
success, mating latency, copulation duration) while 
vibratory signals weakly predicted mate choice (Girard 
et al., 2015). It follows that some aspects of sexually 
dimorphic abdominal morphology, third leg morphology 
and vibratory song play a role in sexual selection 
and the evolution of the group. In our investigation 
of courtship character evolution, we focused on the 
evolution of visual traits (abdominal raising, flaps, 
fan morphology, third leg tufts) and the presence 
of vibratory song. The broader pattern of character 
evolution suggests that some of these key courtship 
characters are more ancient (use of vibratory songs, 
third leg use), others evolved in the common ancestor 
of the Hypoblemum clade and ‘core Maratus’ (raising of 
the abdomen), others evolved in the common ancestor 
of the ‘core Maratus’ group (third leg tufts), and others 
evolved recently through multiple evolutionary events 
(lateral fan flaps, fan shape variation).

Abdominal raising allows the presentation of a body 
part that would otherwise be hidden from view, to be 
available for assessment in mate choice. The use of 
the abdomen as a signal is probably important not 
only because it allows the presentation of patterns 
important for species recognition (Girard et al., 2018) 
but also because it can be moved and shaken which 
could indicate ‘quality’ (Shamble et al., 2009; Girard 
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et al., 2015). Character reconstruction suggests that 
the use of the abdomen in courtship evolved twice, 
possibly independently in the Hypoblemum and 
Maratus clades, with three losses in Maratus spread 
amongst the pavonis (M.  watagansi Otto & Hill 
2013b), anomolus (M. albus Otto & Hill 2016b) and EM 
clades (M. personatus Otto & Hill 2015c) (Supporting 
Information, Fig. S8). Losses in abdomen-raising 
are also associated with losses of abdominal 
ornamentation. The species involved tend to occupy 
open sandy habitats (M. albus and M. watagansi), 
suggesting that this loss may be associated with 
predator avoidance, although this remains to be tested. 
The use of the abdomen in signalling has interestingly 
been demonstrated to be an anti-receptivity signal in 
female M. volans (Girard et al., 2015) and observations 
suggest that this type of behaviour may be present 
in other Maratus (e.g. M. rainbowi, M. plumosus; 
M. digitatus Otto & Hill, 2012b; M. B. Girard, personal 
observation; M. digitatus Otto & Hill, 2012b) as well 
as Maratus ancestors (e.g. Saitis barbipes). These 
female signals may thus precede the use of abdominal 
courtship signalling in males.

The use of the abdomen in male courtship has led 
to the evolution of multiple characters including, 
but not limited to, flaps and varying shapes, colours 
and patterns on the abdomen (Figs 1, 6; Supporting 
Information, Table S2). Our preliminary analyses 
suggest that abdominal flaps are evolutionarily 
labile, showing multiple gains and losses (11 and five, 
respectively) across the phylogeny whether flaps are 
minimal (e.g. M. pavonis), large (e.g. M. madelineae 
Waldock 2014) or consisting of elongated bristles 
(e.g. M. speciosus, M. nigromaculatus; Fig. 6). The 
overall shape of the fan results from the presence/
extent of modifications to the abdomen. Assumed 
synapomorphies in fan morphology/shape have been 
used as characters to distinguish species and species 
groups and, although mostly concordant, molecular 
evidence suggests that some fan morphologies 
have arisen multiple times (see above). Our data 
support the hypothesis that most fan shapes evolved 
independently from a common ancestor that did not 
have a fan. For example, the round fan in several 
members of the pavonis clade, M. vultus Otto & Hill 
2016a from the anomalus clade and M. jactatus Otto 
& Hill 2015a from the calcitrans clade each evolved 
independently from a ‘non-fanned’ ancestor. Similar 
patterns are observed for elliptical (e.g. M. amabilis, 
volans clade, EM clade), lobed (e.g. M. vespertilio, 
M. harrisi Otto & Hill 2011, M. digitatus, M. australis, 
M. tasmanicus Otto & Hill 2013b) and posterior-lobed 
(tasmanicus clade, M. vespa Otto & Hill 2016b) fans. 
The evolution of complex male morphologies associated 
with courtship from more simple morphologies is thus 
common and appears to have arisen through multiple 

singular evolutionary events. Finally, our analyses 
suggest that the EM clade has a wide diversity in fan 
shapes, suggesting that fan shapes can evolve rapidly 
(Fig. 6). Alternatively, the diversity of fans in the 
EM clade may result from adaptive introgression, as 
some studies have suggested that introgression may 
be a source of novel morphological traits (reviewed by 
Abbott et al., 2013; Leduc-Robert & Maddison, 2018).

Our results suggest that displays using the third 
legs, unlike many of the abdominal traits, are shared 
with the common ancestor of Saitus, Hypoblemum and 
Maratus, with some losses in the Hypoblemum clade 
and in Saratus. Ornamentation on the third legs (tufts) 
also appears to have evolved independently in the 
Hypoblemum and ‘core Maratus’ groups. The ancestor 
to the ‘core Maratus’ group probably had third leg 
tufts with losses in Saratus and the velutinus group 
(M. velutinus Otto & Hill 2012a and M. proszynskii 
Waldock 2015). Where examined, vibratory songs 
have been observed in most of the jumping spider 
genera that have been studied (e.g. Habronattus, 
Phidippus, Maevia, Cosmophasis; Gwynne & Dadour, 
1985; Maddison & Stratton, 1988; Elias et al., 2005, 
2008, 2012, 2014; Uhl & Elias, 2011; Zeng et al., 2019) 
including Maratus (Girard et al., 2011, 2015, 2018). 
Our analyses suggest that the common ancestor to 
all Maratus produced vibratory songs with losses in 
the FC clade (i.e. M. neptunus, M. aurantinus) and 
in M. cinerus. Vibratory songs are thus ancient and 
probably important in sexual selection across the 
entire group and their ancestors.

Spiders have been used to examine the evolution 
of mating behaviour, particularly jumping spiders in 
the genus Habronattus (Maddison & McMahon, 2000; 
Masta & Maddison, 2002; Elias et al., 2006; Blackburn 
& Maddison, 2014; Leduc-Robert & Maddison, 2018) 
and wolf spiders in the genus Schizocosa (Stratton & 
Uetz, 1981; Miller et al., 1998; Stratton, 2005; Hebets, 
2008; Hebets et al., 2013; Rosenthal & Elias, 2019). 
Similar to the results found in Maratus, these studies 
have found evidence for the accumulation of signalling 
complexity in some lineages (Elias et al., 2012; Hebets 
et al., 2013; Herberstein et al., 2014) and repeated 
reversions to simpler morphologies (Maddison & 
Hedin, 2003; Elias et al., 2012).

CONCLUSIONS

This study provides a taxonomically broad phylogenetic 
analysis of peacock spiders using genome-wide 
markers, the first molecular phylogeny estimated for 
this group. Our results challenge the current status of 
peacock spiders as monophyletic and, accordingly, our 
molecular phylogeny has important implications for 
the taxonomy of Maratus and closely related genera. 
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Our phylogenetic analyses largely corroborate several 
species groups proposed by Otto & Hill (2019a), while 
bringing new surprises.

Our data suggest that the evolution of male courtship 
behaviour in this group has moved toward greater 
complexity via a number of singular evolutionary 
events (e.g. use of abdomen in courtship, development 
of third leg ornamentation, development of courtship 
vibrations and development of fan flaps). Occasional 
reversions to simpler morphologies (reduced fan flaps, 
loss of third leg ornaments or loss of third leg use in 
courtship displays) have also occurred several times in 
the course of peacock spider evolution, perhaps most 
notably in species such as M. personatus, M. velutinus 
and M. proszynskii. There are also specific aspects of 
courtship complexity that have seemingly emerged 
independently in different lineages (e.g. elongated 
and inflated spinnerets). Different fan morphologies 
also appear to be evolutionarily labile, with multiple 
evolutionary events stemming from non-fanned 
ancestors. However, the use of vibratory song in 
courtship is more ancient, with notable losses in the 
FC clade.

The role of sexual selection in diversification has 
been a contentious issue (Rolan-Alvarez & Caballero, 
2000; Phillimore et  al., 2006; Kraaijeveld et  al., 
2011; Gomes et al., 2016; Servedio & Boughman, 
2017). One take-home message from this literature 
is that the relationship between sexual selection, 
diversification, speciation and local adaptation can be 
extremely nuanced (Servedio & Boughman, 2017). It 
follows that in systems such as the peacock spiders 
in which the ‘showiness’ of male display characters 
drives assumptions of behavioural and evolutionary 
patterns, there is a great need to understand species- 
and population-level relationships. While much work 
remains to be done, our study shows that the evolution 
of displays in the peacock spiders is multifaceted and 
complex and that there is a need for more systematics 
research to build the appropriate evolutionary context.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article at the publisher’s website:

Fig. S1. Additional peacock spiders in courtship posture and variation in fan morphology. (a) Maratus velutinus 
– no fan; (b) M. amabilis – elliptical fan; (c) M. tasmanicus – elliptical fan; (d) M. neptunus – no fan; (e) M. cf. 
neptunus – no fan; (f) M. sceletus – no fan; (g) M. michaelorum – no fan; (h) M. digitatus – lobed fan; (i) M. robinsoni 
– no fan; (j) M. aurantinus – no fan; (k) M. ottoi – no fan; (l) M. cf. leo – no fan; (m) M. vultus – round fan; (n) 
M. albus – no fan; (o) M. leo – no fan; (p) M. literatus – round fan; (q) M. eliasi – diamond fan; (r) M. nigromaculatus 
– no fan; (s) ‘flame’ – no fan; (t) M. avibus – elliptical fan; (u) M. purcellae – no fan; (v) M. speculifer – no fan; (w) 
M. chyrsomelas – no fan; (x) M. mungaich – elliptical fan; (y) M. caeruleus – elliptical fan. Latitude and longitude 
data for all specimens can be found in Supporting Information, Table S1.
Fig. S2. UCE SVDQuartets phylogeny.
Fig. S3. ND1_16S and 28S by-catch ML phylogenies.
Fig. S4. RAD all-taxa SVDQuartets species tree, with species partitioning.
Fig. S5. RAD all-taxa SVDQuartets species tree, with lineage partitioning.
Fig. S6. ML ancestral character reconstructions for UCE taxon sample (characters 1, 4 and 5).
Fig. S7. ML ancestral character reconstructions for UCE taxon sample (characters 7–9).
Fig. S8. ML ancestral character reconstruction for RAD taxon sample, character 1–raises abdomen.
Fig. S9. ML ancestral character reconstruction for RAD taxon sample, character 2–lateral fan flap (see main text 
Figure 6 for character 3 reconstruction).
Fig. S10. ML ancestral character reconstruction for RAD taxon sample, character 4–third leg (leg III) use.
Fig. S11. ML ancestral character reconstruction for RAD taxon sample, character 5–white brush on third leg (leg 
III) tarsi.
Fig. S12. ML ancestral character reconstruction for RAD taxon sample, character 6–elongated spinnerets display.
Fig. S13. ML ancestral character reconstruction for RAD taxon sample, character 7–vigorous tapping display.
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Fig. S14. ML ancestral character reconstruction for RAD taxon sample, character 8–vibrations produced during 
pre-mount display.
Fig. S15. ML ancestral character reconstruction for RAD taxon sample, character 9–pre-mount display.
Fig. S16. RAD tetrad phylogeny for the EM clade, with geographical distributions in western Australia.
Table S1. Specimen information.
Table S2. Character states for all examined specimens. D
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