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Phylogenomics of peacock spiders and their kin
(Salticidae: Maratus), with implications for the evolution
of male courtship displays
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Understanding diversity has been a pursuit in evolutionary biology since its inception. A challenge arises when sexual
selection has played a role in diversification. Questions of what constitutes a ‘species’, homoplasy vs. synapomorphy,
and whether sexually selected traits show phylogenetic signal have hampered work on many systems. Peacock
spiders are famous for sexually selected male courtship dances and peacock-like abdominal ornamentation. This
lineage of jumping spiders currently includes over 90 species classified into two genera, Maratus and Saratus. Most
Maratus species have been placed into groups based on secondary sexual characters, but evolutionary relationships
remain unresolved. Here we assess relationships in peacock spiders using phylogenomic data (ultraconserved
elements and RAD-sequencing). Analyses reveal that Maratus and the related genus Saitis are paraphyletic. Many,
but not all, morphological groups within a ‘core Maratus’ clade are recovered as genetic clades but we find evidence
for undocumented speciation. Based on original observations of male courtship, our comparative analyses suggest
that courtship behaviour and peacock-like abdominal ornamentation have evolved sequentially, with some traits
inherited from ancestors and others evolving repeatedly and independently from ‘simple’ forms. Our results have
important implications for the taxonomy of these spiders, and provide a much-needed evolutionary framework for
comparative studies of the evolution of sexual signal characters.

ADDITIONAL KEYWORDS: Australia — character evolution — multimodal signals — rapid evolution — sexual
selection — taxonomy — ultraconserved elements.

INTRODUCTION

Sexual selection has driven the evolution of a
spectacular diversity of colours, sounds, smells, shapes
and forms across the animal kingdom, from darters
(Hulse et al., 2020) to bower birds (Frith & Frith, 2004)
to mantis shrimps (Porter et al., 2010) to treehoppers
(Rodriguez et al., 2004). One common theme that has

*Corresponding author. E-mail: doelias@berkeley.edu

emerged from many of these studies is that sexually
selected traits sometimes show low phylogenetic signal
(Kusmierski et al., 1997; Gleason & Ritchie, 1998;
Ohmer et al., 2009; Puniamoorthy et al., 2009; Hosner
& Moyle, 2012; Hebets et al., 2013; Owens et al., 2020),
often in the traits that are the most obvious to human
observers (i.e. bower bird plumage and bowers, hind
wings in swallowtails, tyrant flycatcher plumage,
frog calls, etc.). It thus follows that for comparative
studies, particularly those focused on the evolution
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of potentially homoplastic sexually selected traits,
species hypotheses and phylogenetic relationships
should be based on independent evidence (e.g.
phylogenomic data).

Peacock spiders of the genus Maratus Karsch
1878 comprise a diverse clade of jumping spiders
(Fig. 1; Supporting Information, Fig. S1) distributed
predominately in eastern and western Australia, with
over 90 described species (Otto & Hill, 2019a; World
Spider Catalog, 2020) and active on-going species
discovery (e.g. Schubert & Whyte, 2019; Schubert,

2020). Sexual dimorphism is profound in this group,
with cryptic adult females contrasting with highly
decorated adult males. Male Maratus are now famous
for their elaborate visual and vibrational courtship
displays (Girard et al., 2011; Otto & Hill, 2011; Girard
& Endler, 2014; Girard et al., 2018; Otto & Hill, 2019a;
Wilts et al., 2020), facilitated by conspicuous behaviour
in which they raise their often colourful abdomens
vertically and along with elongated, brush-adorned,
third legs perform a vigorous courtship display. Some
male peacock spiders have cuticular flaps that wrap

Figure 1. Peacock spiders in courtship posture and variation in fan morphology. A, Maratus sarahae — elliptical fan. B,
M. calcitrans — no fan. C, M. mungaich — elliptical fan. D, M. pardus - elliptical fan. E, M. amabilis — elliptical fan. F,
M. vespa —posterior lobed fan. G, Saratus hesperus —no fan. H, M. flavus —no fan. I, M. rainbowi — round fan. J, M. plumosus
— posterior lobed fan. K, M. harrisi —lobed fan. L, M. anomalus — no fan. M, M. jactatus — round fan. N, M. volans — elliptical
fan. O, M. linnaei — no fan. P, M. clupeatus — elliptical fan. Q, M. cinerus — no fan. R, M. personatus — no fan. S, M. elephans
— elliptical fan. T, M. madelineae — elliptical fan. U, M. proszynskii — no fan. V, M. australis — lobed fan. W, M. spicatus — no
fan. X, M. vespertilio — lobed fan. Y, M. pavonis — round fan. Z, M. speciosus — no fan. Latitude and longitude data for all

specimens can be found in Supporting Information, Table S1.
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beneath the abdomen (Dunn, 1947; Waldock, 1993;
Hill, 2009), unfurled during the male courtship display,
revealing remarkable patterns of scale pigmentation
and structural colours (Stavenga et al., 2016; Hsiung
etal.,2017,2019; Wilts et al., 2020; Fig. 1; Fig. S1; Table
S1). The extensive radiation of peacock spider courtship
ornaments and displays is perhaps comparable to
that of the better-known birds of paradise (Cooper &
Forshaw, 1977; Nunn & Cracraft, 1996; Ligon et al.,
2018), but these spiders have remained obscure
until recently because of their small size. Despite
tremendous sexual signal diversity seen in this group,
the evolutionary patterns and processes of ornament
evolution remain mostly unstudied due to a lack of
formal phylogenetic study and resolution.

Previous molecular systematics research has placed
Maratus within a clade of mostly Australasian salticids
in the Saitis Clade (Fig. 2A; Zhang & Maddison, 2013),
within the tribe Euophryini (Maddison, 2015; Zhang &
Maddison, 2015). Zhang & Maddison (2015) considered
the multiple genera in the Saitis Clade (Maratus,
Saratus Otto & Hill 2017a, Hypoblemum Peckham &
Peckham 1885, Jotus Koch 1881, Saitis Simon 1876,
etc.) as so closely related as to be possibly congeneric.
Conversely, other authors have maintained the above
taxa as separate genera (Otto & Hill, 2012a, 2019a;
Otto & Hill, 2017a; Prészynski et al., 2018; Baehr
et al., 2019). A hypothesized sub-lineage in this clade
includes the ‘Maratus group’ (Otto & Hill, 2012a,
2019a; Otto et al., 2019), including Maratus, Saratus,
‘Lycidas’ (now mostly synonymized with Maratus) and
Hypoblemum. Otto et al. (2019) suggested that the two
species of Hypoblemum are sister to peacock spiders,
including Maratus and Saratus (Fig. 2B). Saratus is
monotypic, with male and female genitalia that differ
from Maratus, but with somatic morphology, male
coloration and male display behaviours otherwise
similar to the latter (Otto & Hill, 2017a).

Except for the Sanger-sequencing-based studies
of Zhang & Maddison (2013, 2015), relationships
within the Saitis Clade have never been tested via
phylogenetic analysis, although authors have inferred
relationships based on character argumentation
(Fig. 2B). A unique aspect of generic-level diagnoses
in this clade is that many are based mostly or entirely
on male courtship morphology and behaviour (Otto &
Hill, 2012a, 2017a; Prészynski et al., 2018; Baehr et al.,
2019; Otto et al., 2019), rather than the traditional
(for salticid systematics) male and/or female genitalic
morphology (see Zhang & Maddison, 2015). It
remains to be seen whether independent evidence
(e.g. molecular evidence) supports taxa based on male
courtship characters, or rather, if such characters
might be subject to higher levels of homoplasy, calling
into question current generic-level diagnostic traits
(see also Zhang & Maddison, 2015).

The genus Maratus included fewer than ten
described species in 2008 (Waldock, 2008). The
description of new Maratus species has exploded over
recent years, as interest in these spiders has increased,
and macrophotography and video of live specimens
has facilitated the discovery of complex male courtship
ornaments and behaviours (Otto & Hill, 2019a;
Schubert, 2020). Most peacock spider species have
been placed into complexes of related species (species
groups) based on male morphology and/or display
characters (Otto & Hill, 2019a). As of early 2020,
16 species groups have been recognized (Table 1).
Relationships within and among groups have not been
independently tested using other types of evidence,
and resolution within these groups is mostly lacking.
Some species are not currently placed into species
groups (Table 1) and it remains unclear whether these
taxa are truly phylogenetically isolated, or are nested
cryptically within described groups. Also, some species
appear to share morphological features of multiple
groups (Schubert, 2020), blurring species group limits.
Similar to arguments above for generic-level diagnoses
and because species groups are defined mostly on male
courtship morphologies and behaviours (but see Baehr
& Whyte, 2016), current phylogenetic hypotheses do
not present an independent framework to understand
potential homoplasy in these same character systems
(Maddison & Hedin, 2003).

Ofthe now more than 90 accepted species in Maratus,
no species hypotheses have been independently tested
using molecular evidence. There are many species
known only from single (type) locations, and these could
represent divergent populations of otherwise known
species (i.e. geographical variation). Some ‘varieties’
have been described within wide-ranging species [e.g.
M. pavonis (Dunn 1947); Hill & Otto, 2011; Otto &
Hill, 2012a; Baehr & Whyte, 2016], possibly indicating
undetected speciation. Some of these wide-ranging
species have conspicuously disjunct distributions
with populations along the eastern seaboard and in
south-western Australia, but populations are absent
from the more xeric temperate arid zone [e.g. eastern
vs. western M. pavonis, M. vespertilio (Simon 1901)].
Finally, researchers have discussed possible evidence
for gene flow across species boundaries (Otto & Hill,
2014b, 2016a; Schubert, 2020), again blurring species
limits, and testable using genetic data.

We collected ultraconserved element (UCE) and
RAD-sequencing (RAD-seq) phylogenomic data to
address relationships in the Saitis Clade, emphasizing
Maratus relationships. Our sample includes type
species for core genera [Jotus auripes L. Koch 1881,
Saitis barbipes (Simon 1868), Hypoblemum griseum
(Keyserling 1882), ‘Lycidas’ anomalus (=Maratus
anomalus) (Karsch 1878), Saratus hesperus Otto &
Hill 2017a, and Maratus amabilis (Karsch 1878)]. For
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Maileus cf. fuscus (Malaysia)_JXZ098 A) Sanger sequence data -
Saitis barbipes (SPAIN)_JXZ147 Zhang & Maddison 2013, fig 1
cf Saitis sp. (WA)_JXZ091 <«— Saitis mutans

Maratus rainbowi (WA)_JXZ160

Maratus sp. (soAU)_JXZ159

Lycidas cf. karschi (NSW)_JXZ157 <«— Hypoblemmum scutulatum

Hypoblemum cf. albovittatum (soAU)_JXZ164 <— Hypoblemmum scutulatum?
Hypoblemmum sp. (NSW)_JXZ085 <«— Hypoblemmum scutulatum

Lycidas cf. griseus (NSW)_JXZ092 <— Hypoblemmum griseum?

Lycidas cf. vittatus (QL)_JXZ14 .
- of. Jotus sp. (QL)_JXZ155 uncertain

Prostheclina sp. (NSW)__JXZ095

Jotus auripes (QL)_JXZ090

Servaea vestita

B) Compilation - multiple sources, see legend

Saitis

Saitis
(5 species, S. barbipes type)

male leg Il long, w/ “bottle brush”
slender unmodifed leg |

flexibile pedicel
MF elevation of abdomen

Hypoblemum scutulatum
Hypoblemum griseum

heavy outer embolar ring

“Maratus
group”

I Maratus

M abdomen with
dorsal plate or scute

Barraina
(monotypic, B. anfracta type

) M palp,

! ) Saratus hesperus
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(monotypic, M. fuscus type)
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(8 species,
J. auripes type)
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abdomen with lateral bands
male leg | setal brush

combined conductor +
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Figure 2. Overview of the phylogenetic structure of the Saitis clade. A, results of Zhang & Maddison (2013: fig. 1), based
on maximume-likelihood analysis of four concatenated genes. Annotation of uncertain taxon names reflects UCE by-catch
phylogenetic results (see Supporting Information, Fig. S3). B, hypothesized phylogenetic structure of the Saitis Clade from
multiple sources (Richardson & Zabka, 2007; Otto & Hill, 2012a, 2016a, 2017a; Prészynski et al., 2018; Otto et al., 2019;
Baehr et al., 2019), with partial list of supporting characters for genera and generic groupings.
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peacock spiders (Maratus and Saratus), we generated
data for a representative sample of species, including
species from all 16 currently recognized species
groups (Table 1). Our phylogenomic results reveal
that both Saitis and Maratus, as currently recognized,
are paraphyletic taxa. Most described species are
recovered as exclusive genetic groupings, but we find
evidence for undetected speciation and we present
data for three probable new species. Phylogenetic
comparative analysis of male visual and vibratory
signals reveals a combination of synapomorphic and
homoplastic signal. Overall, our research establishes a
phylogenetic framework for future studies of peacock
spider morphology, behaviour and evolution.

MATERIALS AND METHODS

For a majority of specimens, genomic DNA was
extracted from legs or whole spiders using a QIAamp
DNA mini kit (Qiagen, Valencia, CA, USA). Saitis
barbipes samples used in UCE experiments were
extracted using a Qiagen DNeasy blood and tissue kit.

TAXONOMIC CORRECTION

The name Maratus rainbowi (Roewer, 1951) is used
in this study, in accordance with the World Spider
Catalogue (2020), replacing the use of Maratus
splendens common in other catalogues (Otto & Hill,
2019a). The name Attus splendens was assigned
to a North American salticid species by Peckham
& Peckham (1883), which is now considered to be a
junior synonym of Habronattus decorus (Blackwall,
1846). Rainbow (1896) also established a species
that he called Attus splendens for a new species from
Australia, overlooking the prior usage by Peckham &
Peckham (1883). Attus splendens Rainbow, 1896 was
transferred to Saitis by Simon (1901) and to Maratus
by Zabka (1991). In the meantime, Roewer (1951)
recognized that Attus splendens Peckham & Peckham,
1883 and Attus splendens Rainbow, 1896 were primary
homonyms, and provided the replacement name
Saitis rainbowi Roewer, 1951. With the transfer of all
Australian species of Saitis to Maratus, this species is
correctly known as Maratus rainbowi (Roewer, 1951).
This usage is in accordance with the International
Code of Zoological Nomenclature (1999).

UCE DATA

Specimens of Jotus auripes, Saitis barbipes, Saitis
mutans Otto & Hill 2012a, Saitis virgatus Otto & Hill
2012a, Hypoblemum griseum, H. scutulatum L. Koch
1881, Saratus hesperus, and a subsample of seven
Maratus species were included in UCE experiments

(Supporting Information, Table S1). We also included
the more divergent genus Servaea Simon 1888 to root
phylogenies (data shared by W. Maddison), following
the results of Zhang & Maddison (2013, 2015).
We lacked samples of Barraina Richardson 2013,
Maileus Peckham & Peckham 1907 and Prostheclina
Keyserling 1882, all hypothesized members of the
Saitis Clade (Zhang & Maddison (2013, 2015). We used
the MYbaits Spider v.1 kit (Arbor Biosciences, Ann
Arbor, MI, USA; Kulkarni et al., 2020) to capture UCE
loci, using methods of library preparation as in recent
publications (Starrett et al., 2017; Hedin et al., 2019).
Sequencing was conducted on an Illumina HiSeq400 at
the U.C. Davis Genome Center with 150-bp paired-end
reads. Sequence reads were trimmed and assembled
using TRINITY v.2.1.1. (Grabherr et al., 2011)
using default settings (trimmomatic = full_cleanup,
kmer = 25), then processed using PHYLUCE (Faircloth,
2016). Assembled contigs were matched to probes
using standard minimum coverage and minimum
identity values (80_80). UCE loci were aligned with
MAFFT (Katoh & Standley, 2013) and trimmed with
GBLOCKS (Castresana, 2000; Talavera & Castresana,
2007) using strict settings (--b1 0.5 --b2 0.85 --b3 4
--b4 8). Resulting PHYLUCE alignments with at least
70% sample occupancy were imported into Geneious
11.0.4 (Biomatters, Auckland, New Zealand), where all
individual alignments were visually inspected.

Maximum-likelihood (ML) phylogenetic analyses
were conducted using IQ-TREE v.2.0-rc2 (Nguyen
et al., 2015). Initial partitions corresponded to
individual loci, and ModelFinder (Kalyaanamoorthy
et al., 2017) was then used to find best-fit models
and merge partitions (-s -p -m TESTMERGE
-rcluster 10); the relaxed hierarchical clustering
algorithm (Lanfear et al., 2014) was used to reduce
computational burden. Support was assessed via 1000
ultrafast bootstrap replicates (Hoang et al., 2018).
An SVDQuartets analysis (Chifman & Kubatko,
2014; Chifman & Kubatko, 2015) was conducted on
a concatenated matrix using PAUP* 4.0a (Swofford,
1988), implementing the multispecies coalescent tree
model with exhaustive quartets sampling and 1000
bootstrap replicates.

Using IQ-TREE 2 we calculated gene (gCF) and
site concordance (sCF) factors. For every branch of a
reference tree, gCF can be defined as the percentage of
‘decisive’ gene trees containing that branch, while sCF
can be defined as the percentage of decisive sites (in
an alignment) supporting a branch (Minh et al., 2020).
The latter support metric is particularly useful when
individual gene trees are uncertain. Because ML and
SVDQuartets UCE tree topologies agreed (see below),
we used the partitioned ML tree as a reference for CF
calculations, with individual gene trees calculated as
default in IQ-TREE 2 (-S command).
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UCE BY-CATCH

We assembled ribosomal 28S and mitochondrial
16S_ND1 ‘by-catch’ using standard BLAST searches
in Geneious 11.0.4 (Biomatters). Specifically, we
used published sequences to query UCE TRINITY
assemblies using blastn (maximum e-value of 1le-5).
We then stitched together UCE by-catch data with
published sequences from Zhang & Maddison (2013,
2015), aligned matrices manually, and conducted
ML analyses using IQ-TREE 2 (-s, -B 1000, -bnni).
Our primary interest here was to potentially resolve
uncertain taxon identities from Zhang & Maddison
(2013) (e.g. see Fig. 2A), while also including Maileus
and Prostheclina, not sampled in other matrices.

RAD DATA COLLECTION

Specimens of Jotus auripes, Saitis mutans, S.
virgatus, Hypoblemum griseum, H. scutulatum and
Saratus hesperus were included as ‘outgroup taxa’
(Supporting Information, Table S1). Lacking Servaea
RAD data, we used UCE topology results to root RAD
trees. Specimens representing 48 described Maratus
species were included, based on 2013-2015 collections
from eastern and western Australia (ACT, NSW, QLD,
SA, TAS, VIC, WA; Table 1; Appendix S1). One to three
individuals per species were sampled per location, and
for more broadly distributed species we attempted to
sample populations spanning known geographical
ranges. Our taxon sample included five novel forms
(Maratus cf. neptunus, M. ‘carmel’, M. ‘flame’, M. cf.
leo, M. cf. plumosus), representing potentially new
species.

We generated RAD libraries using the protocol of
Ali et al. (2016) without completing the targeted bait
capture step and using Pippin Prep (Sage Science,
Beverley, MA, USA) instead of beads to size-select
fragments between 250 and 600 bp. Each of two
96-sample libraries was sequenced on an Illumina
HiSeq 4000 lane at the U.C. Davis Genome Center
with 150-bp paired-end reads. Raw fastq reads were
de-multiplexed allowing one barcode mismatch.
De-multiplexed reads were removed if the expected
cut site (also one mismatch allowed) was not found at
the beginning of the 5-end of sequences.

Two separate sets of analytical pipelines and
downstream analyses were conducted on RAD data:
(1) a custom pipeline was used to extract a set of loci
conserved across all taxa — this locus set was used to
reconstruct a phylogeny for Maratus and ‘outgroups’;
(2) based on the ‘all taxa’ RAD results, the ipyrad
pipeline (Eaton et al., 2017) was used to assemble
locus sets for well-supported species groups (or clades
comprising multiple species groups). Because ipyrad
analyses were focused on more closely related sets of

taxa (rather than all taxa), this enabled us to extract
more loci per clade.

RAD ANALYSIS — ALL TAXA

A custom script was used to process RAD data (available
at https://github.com/CGRL-QB3-UCBerkeley/RAD),
calling various external programs. This pipeline has
been used in several other recent publications (Krohn
et al., 2018; Maas et al., 2018; Klonoski et al., 2019).
Exact duplicates were removed using Super Deduper
(https://github.com/dstreett/Super-Deduper). Raw
reads were filtered using Cutadapt (Martin 2011)
and Trimmomatic (Bolger et al., 2014) to trim adapter
contaminations and low-quality reads. The resulting
cleaned forward reads of each individual were first
clustered using Cd-hit (Li & Godzik, 2006; Fu et al.,
2012), and only clusters with at least two reads
supported were kept. To remove potential paralogues,
Blastn (Altschul et al., 1990) was used to compare
clustered loci against themselves, and remove any
locus that matched to a locus other than itself. The
resulting RAD loci from each individual were then
combined for all individuals and the resulting marker
sets served as a master reference. We then used Blastn
(Altschul et al., 1990) to compare markers from each
individual to the master reference and only kept
those that had unique hits. These uniquely matched
markers from each individual served as a reference
for that individual. Cleaned sequence reads from each
individual were aligned to its own reference using
Novoalign (http://www.novocraft.com) and reads that
mapped uniquely to the reference were kept. Picard
(http://picard.sourceforge.net) was used to add read
groups and GATK (McKenna et al., 2010) to perform
realignment around indels. SAMtools/BCFtools and
‘vefutils.pl vef2fq’ implemented in SAMTools (Li et al.,
2009) were used to generate individual consensus
sequences by calling genotypes and incorporating
ambiguous sites. We kept a consensus base only when
its depth was at least 3x or above and retained loci
that contained no more than 80% missing data. We
also masked sites within 5-bp windows around indels.
We converted the resulting consensus fastq sequence
file to fasta format using Seqtk (https://github.com/
1h3/seqtk). Using MAFFT (Katoh & Standley, 2013),
final filtered loci from each individual were aligned by
comparing against the master reference. Ambiguously
aligned regions were then trimmed using Trimal
(Capella-Gutierrez et al., 2009). To avoid excess
missing data, we removed alignments if more than
90% missing data were present in at least 30% of
samples.

Using a subsample of the entire available sample
(152 specimens), we performed several all-taxa
phylogenomic analyses. Species trees were inferred
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using the multispecies coalescent model implemented
in SVDQuartets. Originally developed for unlinked
single nucleotide polymorphism (SNP) data, where
each site has an independent genealogy drawn from
a coalescent model, the method has also been shown
to perform well for linked SNP data (Chifman &
Kubatko, 2014), as used here. SVDQuartets was
used to construct a ‘lineage’ tree, relating individual
sequences. We also used a taxon partition to assign
individual samples to species (partition = species); for
M. pavonis, which includes multiple well-supported
sub-lineages (see Results below), each sub-lineage
here was treated as a ‘species’. For both lineage and
partitioned analyses we evaluated all possible quartets
(evalq = all, quartet assembly algorithm = QFM),
and conducted a non-parametric bootstrap analysis,
resampling with replacement both loci and sites
within loci (bootstrap = multilocus, loci = combined,
nreps = 100). IQ-TREE was also used to reconstruct
an ML tree from a concatenated matrix, with a single
best-fit model automatically chosen by ModelFinder,
and support assessed via 1000 ultrafast bootstrap
replicates (-s, -B 1000, -bnni).

RAD ANALYSIS — SPECIES GROUPS

Based on RAD phylogenomic results from all-
taxa analyses (see below), additional analyses
were conducted for members of four well-
supported clades (FC = fimbriatus + chrysomelas,
pavonis, anomalus, MTVC = expanded
mungaich + tasmanicus + volans + calcitrans). Here,
forward read (R1) RAD data were de novo assembled
using ipyrad v.0.7.30 (Eaton & Overcast, 2016), with
the following settings adjusted from default: max_
Indels_locus = 4, clust_threshold = 0.85 (within and
across), min_samples_locus = 5; see Eaton et al., 2017).
We used a phylogenetic invariants analysis (Lake,
1987; Chifman & Kubatko, 2015) on linked SNPs to
infer quartet trees and a species tree using tetrad
v.0.7.30, part of the ipyrad.analysis toolkit, sampling
all quartets with 100 bootstrap replicates.

COURTSHIP CHARACTERS

Adult male visual and vibrational courtship signals
were characterized using video and laser vibrometer
recordings (see Girard et al., 2011 for a detailed
description of methods). From these recordings we
scored nine characters for all taxa, based on original
observations: (1) lateral fan flaps, (2) overall fan shape,
(8) raises fan, (4) third leg use, (5) white brushes, (6)
elongated spinneret display, (7) vibratory display, (8)
vigorous tapping and (9) pre-mount display. Detailed
character descriptions and scorings can be found
in Supporting Information, Appendix S1 and Table

S2. Character scorings for Saitis barbipes were
extracted from other sources (Hill, 2009; https://
www.youtube.com/watch?v=wQT2bHTOdwo); some
scorings for Hypoblemum scutulatum were taken from
the courtship description of Otto et al. (2019). The
characters presented here are not intended to capture
the full diversity or complexity of courtship characters
seen within Maratus, but rather represent a set of
scoreable traits with hypothesized deeper homology
across all genera included.

CHARACTER EVOLUTION

For tree-based character evolution analyses we used
pruned UCE and all-taxa RAD matrices, removing
duplicate specimens/populations for individual
species, while retaining the most data-rich samples
(summarized using AMAS; Borowiec, 2016). We then
conducted partitioned and unpartitioned ML analyses
of these matrices, as outlined above. Mesquite v.3.6
(build 917) (Maddison & Maddison, 2018) was used to
reconstruct ancestral states for courtship phenotypes,
scored as alternative discrete states (Supporting
Information, Table S3). ML character reconstructions
were conducted using the one-parameter Markov
k-state model (Lewis, 2001).

RESULTS

Voucher specimen data and relevant summary values
are presented in Supporting Information, Table S1.
Raw UCE and RAD data have been submitted to the
Short Read Archive (BioProjects PRJNA667490 and
PRJNAG665271), and all data matrices and resulting
tree files referenced below are available at Dryad
(https://doi.org/10.5061/dryad.9p8cz8wdp).

UCE DATA

The final primary 70% occupancy UCE matrix
included 472 loci, with a combined alignment length
of 282 674 bp and 39 224 parsimony-informative sites.
ML and SVDquartets tree topologies were identical,
and both were well supported, with almost all nodes
receiving maximum support (Fig. 3; Supporting
Information, Fig. S2). Both gene (gCF) and site
concordance (sCF) factors were relatively high, except
for a node uniting Saitis mutans with ‘Maratus
group’ genera.

The genus Saitis is not recovered as monophyletic
(Fig. 3). Saitis virgatus is sister to Jotus auripes,
possibly misplaced in Saitis. Saitis mutans and Saitis
barbipes are also not recovered together; instead they
are found to be successive sister species to ‘Maratus
group’ taxa (Hypoblemum, Maratus, Saratus; Fig. 2B).
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Figure 3. UCE maximum-likelihood phylogeny, with concordance factor (CF) values. All bootstrap values = 100, unless
otherwise indicated. Bootstrap values from SVDQuartets analysis are also shown for nodes with values <100.

Maratus is not recovered as monophyletic. One
primary branch includes species representing the
fimbriatus and chrysomelas morphological species
groups (Table 1), with a conspicuously long branch
leading to this clade (Fig. 3). These Maratus species are
recovered as sister to Hypoblemum. We hereafter refer
to this entire clade, also recovered in RAD analyses
(see below), as the Hypoblemum clade. A second
primary branch includes other Maratus species, with
Saratus nested within this larger clade. We hereafter
refer to this clade as ‘core Maratus’ (also recovered in
RAD analyses, see below).
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UCE BY-CATCH

Custom Blastn searches returned ND1 _16S data
from about half of the UCE TRINITY assemblies,
and 28S data from almost all assemblies. Most taxa
returned approximately full-length 28S sequences
(> 7000 bp); these were trimmed to match the Sanger
data. Based on phylogenetic placement in gene trees,
we tentatively resolve the identity of five samples
from Zhang & Maddison (2013, 2015) (see Fig. 2A;
Supporting Information, Fig. S2). Two Hypoblemum
samples have discordant 28S vs. 16S_ND1 placements;
we leave these identified to genus only. Prostheclina
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appears allied to Jotus (e.g. Fig. 2B), with Maileus
surprisingly nested, although some nodes are poorly
supported for these individual gene trees (Supporting
Information, Fig. S3).

RAD ANALYSIS — ALL TAXA

Thirty-four samples were removed from downstream
analysis because of low raw read counts. Of retained
samples, 152 were included in all-taxa phylogenomic
analysis. Using the custom pipeline, the number of
filtered reads for these samples ranged from 101 077
to 3623 248, with an average coverage of individual
RAD loci of 12x (range from 3.0 to 61.1; Supporting
Information, Table S1). We recovered between 9400
and 27 893 loci per sample, but the number of shared
loci across the entire taxon sample was lower, probably
due to the deep divergences among genera. In total

we recovered 513 loci (alignment length = 59 997 bp,
11 290 SNPs, 7196 parsimony-informative sites) for
the sample including Jotus, Saitis, Hypoblemum,
Saratus and Maratus.

Following UCE results (see above), we rooted
phylogenies using Jotus auripes + Saitis virgatus. With
this root placement, neither Saitis nor Maratus were
recovered as monophyletic in unpartitioned ML (Fig. 4;
Supporting Information, Fig. S3) or SVDQuartets
(Supporting Information, Figs S4, S5) analyses. One
primary branch includes members of the fimbriatus,
chrysomelas and spicatus morphological species groups
as defined by Otto & Hill (2019a; Table 1). As for UCE
data, members of this lineage occur on a conspicuously
long branch. Members of the chrysomelas group are
intermixed with species of the spicatus group; because
the former species were described first, we hereafter
refer to this entire larger clade as the chrysomelas
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Figure 4. RAD all-taxa maximum-likelihood phylogeny. Bootstrap values below 90 are not shown for most nodes. Placement
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group (redefined). Many species in the above three
groups were previously placed in the genus ‘Lycidas’
(but not including the type species of ‘Lycidas’).
Consistent with UCE data, fimbriatus + chrysomelas
(FC) clades are recovered as sister to Hypoblemum,
and together comprise the Hypoblemum clade. We
discuss below possible morphological and behavioural
synapomorphies that unite members of this clade.

A second primary Maratus branch includes all other
Maratus taxa (‘core Maratus’), with Saratus samples
nested within this larger clade (Fig. 4; Supporting
Information, Figs S4, S5). The ‘core Maratus’ clade
includes the anomalus species group, including both
the type species of ‘Lycidas’, and M. amabilis, the type
species of the genus Maratus. Many clades within
‘core Maratus’ are mostly concordant with the species
group divisions of Otto & Hill (2019a), as based on
morphological/behavioural similarities. Exceptions
include a monophyletic anomalus group, with the
inclusion of M. sceletus Otto & Hill 2015a (from the
calcitrans group). Maratus plumosus Otto & Hill
2013b, a hypothesized (but divergent) member of the
calcitrans group, also falls outside of this group. The
tasmanicus group is not recovered as monophyletic,
but instead represents a grade sister to the ‘expanded
mungaich’ (EM) clade. The large, poorly resolved EM
clade includes species from several groups as follows:
M. clupeatus Otto & Hill 2014d (not a straggler),
M. pardus Otto & Hill 2014c (from the volans group),
M. australis Otto & Hill 2016b (from the tasmanicus
group), and single sampled species from the flavus,
linnaet, personatus and vespa groups. The EM clade
is further discussed below, but this grouping is
biogeographically compelling, as all included taxa are
endemic to south-west Australia.

RAD ANALYSIS — SPECIES GROUPS

Tetrad results and locus statistics for the FC, pavonis,
anomalus and MTVC clades are shown in Figure 5.
Interspecific relationships in tetrad analyses are
generally better supported than in ML or SVDQuartets
analysis, perhaps reflecting the greater number of
loci recovered for each group. An exception is the EM
clade — although tetrad analyses included more SNPs
and parsimony-informative sites than in all-taxa
ML analyses, relationships are conspicuously poorly
supported in both (Figs 4, 5).

Almost all a priori species are supported as
monophyletic on tetrad trees (Fig. 5). One caveat of
this claim is that several species with multiple samples
only include specimens from the same geographical
location. Five species not recovered as monophyletic
on ML trees are recovered as exclusive groupings on
tetrad trees [M. chrysomelas (Simon 1909), M. leo
Otto & Hill 2014b + M. cf. leo, M. literatus Otto & Hill

2014b, M. neptunus Otto & Hill 2017a, M. aurantius
Otto & Hill 2017a]. The only clear case of strongly
supported non-monophyly involves the geographically
widespread M. pavonis. In both tetrad and ML results,
M. pavonis specimens from Western Australia are more
closely related to Western Australia M. maritimus Otto
& Hill 2014b, with eastern M. pavonis populations
phylogenetically closer to geographically adjacent
M. literatus and M. leo (Figs 4, 5). This result supports
the contention that M. pavonis currently includes
several distinct species, as supported by both genitalic
(Baehr & Whyte, 2016) and male ornamentation
characters (Hill & Otto, 2011; Otto & Hill, 2019a).
Introgression with geographical neighbours might also
be driving this pattern, but if this were true we might
expect more lineage non-monophyly (e.g. Western
Australia M. pavonis intermixed with Western
Australia M. maritimus, etc.).

Multiple analyses support the hypothesis that three
novel forms included here represent undescribed
species (M. ‘carmel’, M. ‘flame’, M. cf. plumosus).
Two forms (M. cf. neptunus, M. cf. [eo) might best be
interpreted as geographical variants (Figs 4, 5), but
larger sample sizes and formal integrative species
delimitation analyses are needed to rigorously test
these species hypotheses.

CHARACTER EVOLUTION

We lacked some character data for Saitis barbipes
and Hypoblemum (Supporting Information, Table
S2), causing ambiguity in certain ancestral character
reconstructions. For the sparse UCE taxon sample that
importantly includes Saitis barbipes, we reconstruct
the common ancestor of the entire Saitis Clade as
males using third legs during courtship (character 4,
Fig. S6), and with vibrations produced during a pre-
mount display (character 8, Fig. S7; see Girard et al.,
2011), with reversals observed for both characters.
The common ancestor of the Maratus group is
unambiguously reconstructed as with males raising
their abdomen during courtship (character 1, Fig. S6),
consistent with the hypothesis of Otto & Hill (2012a;
Fig. 2B). Ancestral state reconstructions for other
characters are shown in Figures S6 and S7.

Ancestral state reconstructions for the denser RAD
taxon sample that included the full Maratus sample
(but lacked Saitis barbipes) are shown in Supporting
Information, Figures S8—S15. These reconstructions
suggest the evolution of a strong white brush on the
male third leg evolving at the base of ‘core Maratus’
(character 5, Fig. S11). Two characters suggest that
the pre-mount display and pre-mount vibrations may
be unique in the Hypoblemum clade (characters 8 and
9, Figs S14, S15), predicting that missing data for
Hypoblemum species will conform to the FC clade. The
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Figure 6. Maximum-likelihood ancestral character reconstruction for fan shape, on the skeletal RAD taxon sample
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evolution of fan shape diversity across Maratus group the abdomen during courtship are ancestral to the
members is illustrated in Figure 6. ‘core Maratus’ clade. Other traits, particularly fan
shape, show evidence of multiple independent gains
and losses throughout what is currently recognized

DISCUSSION as Maratus.
Our phylogenomic results reveal that both Saitis and
Maratus, as currently recognized, are paraphyletic SAITIS CLADE
taxa. In Maratus, some species are more closely Zhang & Maddison (2015) define the Saitis Clade as
related to Hypoblemum taxa. A ‘core Maratus’ including multiple genera (Saitis, Maratus, Saratus,

clade includes several well-supported sub-clades Jotus, Hypoblemum, Prostheclina, Maileus, Barraina
that mostly correspond to morphological species and possibly Margaromma), united in sharing several
groups, although some hypothesized groupings were male genitalic features, including a lamella on the
not supported. Saratus is nested within the ‘core tegular shoulder distinctive for euophryine spiders.
Maratus’ clade. Based on this phylogenomic tree Zhang & Maddison (2015) recognized the striking
topology, some traits such as using third legs and  variation in male courtship ornamentation in the
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clade (Fig. 2B), but viewed genitalia and overall
body form as conservative, and suggested that all
genera in the clade might represent junior synonyms
of Saitis. As they suggest, ‘the clade is compact
enough morphologically that separating ... genera
is unnecessary and gives rise to possible paraphyly
and uncertain placement of poorly studied species’
(30). This perspective was voiced from a comparative
vantage that included detailed knowledge of all
euophryine spiders, a clade including over 100 genera
(Zhang & Maddison, 2015).

A phylogenomic framework for formal revision
of the Saitis Clade will require the inclusion of
missing genera (Prostheclina, Maileus, Barraina,
Margaromma),additional Jotus species and additional
Mediterranean Saitis species.The UCE data presented
here provide a starting point for such a larger study.
While we do not take formal taxonomic action, our
results are consistent with the proposal of Zhang &
Maddison (2015) that the Saitis Clade is over-split at
the generic level. For example, to retain Maratus and
Saratus as monophyletic taxa (a criterion we view as
fundamental for genera) would require fragmenting
Maratus into three additional genera (FC clade,
pavonis group, Maratus clade sister to Saratus), with
the anomalus clade retaining the name Maratus.
Saitis would suffer the same fate. We propose that a
more stable and conservative taxonomy would include
FC clade members as Hypoblemum, with Saratus as
a junior synonym of Maratus. Saratus was placed in
its own genus because its genitalia differ from other
described Maratus (Otto & Hill, 2017a), a situation
similar to Mediterranean Saitis that are similar in
courtship ornamentation but show divergent male
pedipalps (Hill, 2009: fig. 3). Both of these examples
illustrate that evolution is heterogeneous in the
Saitis Clade, with most taxa showing rapid evolution
of courtship ornaments with conservative genitalia,
but with small clades sometimes reversing this trend
(diverging more quickly in genitalia than in courtship
ornamentation).

Although again we lack all constituent genera, our
phylogenomic results indicate that the Saitis Clade
has primary biogeographical roots in Australia.
Multiple genera have radiated exclusively or mostly in
Australia (Jotus, Maratus, Hypoblemum, Prostheclina,
Barraina). The obvious exception is the Mediterranean
Saitis barbipes, which we agree probably forms a clade
with two other described Mediterranean Saitis (Saitis
graecus, Saitis tauricus; Prészynski et al., 2018).
This Mediterranean lineage is nested well within
the Australian radiation, and phylogenomic depth
(Fig. 3) indicates that this biogeographical disjunction
is natural, not the result of recent human-mediated
dispersal (contra Otto & Hill, 2012a).

SPECIES GROUPS

Many phylogenomic clades within Maratus are
mostly congruent with the species group divisions
of Otto & Hill (2019a), as defined by morphological
and/or behavioural characters. In this sense, our
results reveal congruence. Baehr & Whyte (2016)
propose that details of the male palp, as examined
using scanning electron microscopy (SEM), could
reveal additional morphological synapomorphies
for groups defined mostly by male ornamentation
— SEM study of the phylogenomic groups defined
herein will be an important next step. We highlight
below areas of incongruence between morphology
and phylogenomics, particularly as this relates to
patterns of morphological and behavioural homoplasy.
This includes interrelationships of the species groups
themselves, essentially unresolved prior to this study,
which reveal further homoplasy.

Although details differ, phylogenomic recovery of the
fimbriatus clade, together with the chrysomelas clade
(redefined), coincides with the hypotheses of Otto &
Hill (2019a, and references therein). Most members
of these groups lack typical Maratus features, such as
tufted legs and a traditional pre-mount display. The
pre-mount display (described by Girard et al., 2011)
is different in that third legs are not extended at 90°
angles from the body, but instead remain touching the
substrate. Also, vibrations are not used prior to the
modified pre-mount display. Lastly, the use of third
legs in male displays is either severely reduced or non-
existent and instead first legs are primarily employed.
Exceptions to the above include the nested species
M. chrysomelas and M. nigromaculatus (Keyserling,
1883), with standard pre-mount displays, strong white
brushes, third leg use, etc. Based on ancestral character
reconstructions, these would be independently
evolved character states in these taxa (Supporting
Information, Figs S10, S11, S15). Further study of the
pre-mount display in the two Hypoblemum species will
be important to understand whether these behaviours
unite a larger Hypoblemum clade (FC + Hypoblemum);
features of the outer embolus ring might also unite
these taxa (Baehr & Whyte, 2016; Otto & Hill, 2019a).

Phylogenomics recovers a monophyletic anomalus
clade, but with the inclusion of M. sceletus from the
calcitrans group. The latter group is defined by
courtship traits, including an asymmetric display
in which males also display inflated and extended
spinnerets (Otto & Hill, 2019a, and references
therein). Our results instead show that M. sceletus is
allied with a group of grassland species (M. cinereus
Otto & Hill 2017a, M. neptunus Otto & Hill 2017a +
M. cf. neptunus, M. aurantius) that display spinnerets
during courtship, but to a lesser extent (Supporting
Information, Fig. S12). The novel phylogenomic
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placement of M. sceletus thus reveals morphological/
behavioural homoplasy at the level of ‘core Maratus’,
and a perhaps novel synapomorphy within the
anomalus clade (Fig. S12).

The poorly resolved EM clade includes species from
several groups as follows: M. clupeatus (not a straggler),
M. pardus (from the volans group), M. australis (from
the tasmanicus group), and single sampled species
from the flavus, linnaei, personatus and vespa groups.
Most of these latter groups have been suspected as
relatives (Otto & Hill, 2019a, and references therein).
Because we only sampled a single species for the latter
four groups, we cannot address group monophyly,
but all of these groups comprise species restricted to
south-west Australia. Moreover, although short-range
endemic species with naturally small ranges (Harvey,
2002) are known for several Maratus species groups,
all 30 described species in the mungaich, flavus,
linnaei, personatus and vespa groups are short-range
endemics (Table 1). Distribution records indicate that
all species are found in strict allopatry, with very rare
and possibly non-existent syntopy (Otto & Hill, 2019a,
and references therein; Schubert, 2020). This striking
biogeographical pattern also applies to M. clupeatus,
M. pardus and M. australis, recovered as part of the
EM clade (Supporting Information, Fig. S16). Based
on the observation that unplaced M. tessellatus Otto
& Hill 2016b and M. trigonus Otto & Hill 2017c are
single-site endemics from south-western Australia
(Table 1), we predict their ultimate placement in the
EM clade.

We thus propose that a clade of at least 35
(described) species exists in the Western Australia
global biodiversity hotspot (Rix et al., 2015), all short-
range endemics where allopatry prevails. Despite
gathering phylogenomic data with numbers of overall
sites and parsimony-informative sites comparable to
other species groups, internal relationships within
the EM clade are conspicuously unresolved (Figs 4,
5). We hypothesize that an extremely rapid radiation
has occurred, and that future phylogenomic studies
will confirm and confront this lack of resolution.
Otto & Hill (2014a) have discussed rapid evolution
for certain members of this complex. Schubert (2020)
also suggested that morphological homoplasy between
some members of constituent groups [e.g. M. laurenae
Schubert 2020 (linneae group) with homoplasy
to mungaich group] might indicate introgression,
again consistent with a rapid radiation (Seehausen,
2004; Meier et al., 2017), and further challenging
phylogenetic resolution.

Although members of different subgroups are not
recovered within the more inclusive EM clade (e.g.
mungaich vs. vespa), species in these subgroups are
clearly different in many respects, and we are not
arguing against subgroup monophyly. Instead, it

seems that the rate of morphological and behavioural
evolution in these subgroups (and the larger EM
clade) has out-paced that of the nuclear RAD dataset.
A similar dynamic of extremely rapid morphological
evolution out-pacing nuclear RAD divergence was
found in oasis-dwelling populations of jumping
spiders in western North America (Hedin et al., 2020).
Regarding the observation of strict allopatry, we
hypothesize that this might indicate that described
species within distinct subgroups are all part of a single
reproductive community, akin to different populations
of a single species, with sympatry precluded because of
reproductive interference.

Another possibility is that some taxa in the EM clade
are misplaced because of nuclear introgression from
geographical neighbours, in what are actually more
distant phylogenetic relatives [e.g. M. pardus (from
the volans group), M. australis (from the tasmanicus
group)]. If this is the case, introgression has been
differential, because not all species sampled from
Western Australia fall into the EM clade [M. specious
(0. Pickard-Cambridge 1874), western M. pavonis,
M. maritimus, ete.].

PATTERNS OF CHARACTER EVOLUTION

In previous behavioural work on M. volans (O.
Pickard-Cambridge 1874), it was demonstrated that
visual signals (in particular fan dancing and third leg
movements) strongly predicted mate choice (mating
success, mating latency, copulation duration) while
vibratory signals weakly predicted mate choice (Girard
et al., 2015). It follows that some aspects of sexually
dimorphic abdominal morphology, third leg morphology
and vibratory song play a role in sexual selection
and the evolution of the group. In our investigation
of courtship character evolution, we focused on the
evolution of visual traits (abdominal raising, flaps,
fan morphology, third leg tufts) and the presence
of vibratory song. The broader pattern of character
evolution suggests that some of these key courtship
characters are more ancient (use of vibratory songs,
third leg use), others evolved in the common ancestor
of the Hypoblemum clade and ‘core Maratus’ (raising of
the abdomen), others evolved in the common ancestor
of the ‘core Maratus’ group (third leg tufts), and others
evolved recently through multiple evolutionary events
(lateral fan flaps, fan shape variation).

Abdominal raising allows the presentation of a body
part that would otherwise be hidden from view, to be
available for assessment in mate choice. The use of
the abdomen as a signal is probably important not
only because it allows the presentation of patterns
important for species recognition (Girard et al., 2018)
but also because it can be moved and shaken which
could indicate ‘quality’ (Shamble et al., 2009; Girard
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et al., 2015). Character reconstruction suggests that
the use of the abdomen in courtship evolved twice,
possibly independently in the Hypoblemum and
Maratus clades, with three losses in Maratus spread
amongst the pavonis (M. watagansi Otto & Hill
2013b), anomolus (M. albus Otto & Hill 2016b) and EM
clades (M. personatus Otto & Hill 2015¢) (Supporting
Information, Fig. S8). Losses in abdomen-raising
are also associated with losses of abdominal
ornamentation. The species involved tend to occupy
open sandy habitats (M. albus and M. watagansi),
suggesting that this loss may be associated with
predator avoidance, although this remains to be tested.
The use of the abdomen in signalling has interestingly
been demonstrated to be an anti-receptivity signal in
female M. volans (Girard et al., 2015) and observations
suggest that this type of behaviour may be present
in other Maratus (e.g. M. rainbowi, M. plumosus;
M. digitatus Otto & Hill, 2012b; M. B. Girard, personal
observation; M. digitatus Otto & Hill, 2012b) as well
as Maratus ancestors (e.g. Saitis barbipes). These
female signals may thus precede the use of abdominal
courtship signalling in males.

The use of the abdomen in male courtship has led
to the evolution of multiple characters including,
but not limited to, flaps and varying shapes, colours
and patterns on the abdomen (Figs 1, 6; Supporting
Information, Table S2). Our preliminary analyses
suggest that abdominal flaps are evolutionarily
labile, showing multiple gains and losses (11 and five,
respectively) across the phylogeny whether flaps are
minimal (e.g. M. pavonis), large (e.g. M. madelineae
Waldock 2014) or consisting of elongated bristles
(e.g. M. speciosus, M. nigromaculatus; Fig. 6). The
overall shape of the fan results from the presence/
extent of modifications to the abdomen. Assumed
synapomorphies in fan morphology/shape have been
used as characters to distinguish species and species
groups and, although mostly concordant, molecular
evidence suggests that some fan morphologies
have arisen multiple times (see above). Our data
support the hypothesis that most fan shapes evolved
independently from a common ancestor that did not
have a fan. For example, the round fan in several
members of the pavonis clade, M. vultus Otto & Hill
2016a from the anomalus clade and M. jactatus Otto
& Hill 2015a from the calcitrans clade each evolved
independently from a ‘non-fanned’ ancestor. Similar
patterns are observed for elliptical (e.g. M. amabilis,
volans clade, EM clade), lobed (e.g. M. vespertilio,
M. harrisi Otto & Hill 2011, M. digitatus, M. australis,
M. tasmanicus Otto & Hill 2013b) and posterior-lobed
(tasmanicus clade, M. vespa Otto & Hill 2016b) fans.
The evolution of complex male morphologies associated
with courtship from more simple morphologies is thus
common and appears to have arisen through multiple

singular evolutionary events. Finally, our analyses
suggest that the EM clade has a wide diversity in fan
shapes, suggesting that fan shapes can evolve rapidly
(Fig. 6). Alternatively, the diversity of fans in the
EM clade may result from adaptive introgression, as
some studies have suggested that introgression may
be a source of novel morphological traits (reviewed by
Abbott et al., 2013; Leduc-Robert & Maddison, 2018).

Our results suggest that displays using the third
legs, unlike many of the abdominal traits, are shared
with the common ancestor of Saitus, Hypoblemum and
Maratus, with some losses in the Hypoblemum clade
and in Saratus. Ornamentation on the third legs (tufts)
also appears to have evolved independently in the
Hypoblemum and ‘core Maratus’ groups. The ancestor
to the ‘core Maratus’ group probably had third leg
tufts with losses in Saratus and the velutinus group
(M. velutinus Otto & Hill 2012a and M. proszynskii
Waldock 2015). Where examined, vibratory songs
have been observed in most of the jumping spider
genera that have been studied (e.g. Habronattus,
Phidippus, Maevia, Cosmophasis; Gwynne & Dadour,
1985; Maddison & Stratton, 1988; Elias et al., 2005,
2008, 2012, 2014; Uhl & Elias, 2011; Zeng et al., 2019)
including Maratus (Girard et al., 2011, 2015, 2018).
Our analyses suggest that the common ancestor to
all Maratus produced vibratory songs with losses in
the FC clade (i.e. M. neptunus, M. aurantinus) and
in M. cinerus. Vibratory songs are thus ancient and
probably important in sexual selection across the
entire group and their ancestors.

Spiders have been used to examine the evolution
of mating behaviour, particularly jumping spiders in
the genus Habronattus (Maddison & McMahon, 2000;
Masta & Maddison, 2002; Elias et al., 2006; Blackburn
& Maddison, 2014; Leduc-Robert & Maddison, 2018)
and wolf spiders in the genus Schizocosa (Stratton &
Uetz, 1981; Miller et al., 1998; Stratton, 2005; Hebets,
2008; Hebets et al., 2013; Rosenthal & Elias, 2019).
Similar to the results found in Maratus, these studies
have found evidence for the accumulation of signalling
complexity in some lineages (Elias et al., 2012; Hebets
et al., 2013; Herberstein et al., 2014) and repeated
reversions to simpler morphologies (Maddison &
Hedin, 2003; Elias et al., 2012).

CONCLUSIONS

This study provides a taxonomically broad phylogenetic
analysis of peacock spiders using genome-wide
markers, the first molecular phylogeny estimated for
this group. Our results challenge the current status of
peacock spiders as monophyletic and, accordingly, our
molecular phylogeny has important implications for
the taxonomy of Maratus and closely related genera.
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Our phylogenetic analyses largely corroborate several
species groups proposed by Otto & Hill (2019a), while
bringing new surprises.

Ourdatasuggestthatthe evolution of male courtship
behaviour in this group has moved toward greater
complexity via a number of singular evolutionary
events (e.g. use of abdomen in courtship, development
of third leg ornamentation, development of courtship
vibrations and development of fan flaps). Occasional
reversions to simpler morphologies (reduced fan flaps,
loss of third leg ornaments or loss of third leg use in
courtship displays) have also occurred several times in
the course of peacock spider evolution, perhaps most
notably in species such as M. personatus, M. velutinus
and M. proszynskii. There are also specific aspects of
courtship complexity that have seemingly emerged
independently in different lineages (e.g. elongated
and inflated spinnerets). Different fan morphologies
also appear to be evolutionarily labile, with multiple
evolutionary events stemming from non-fanned
ancestors. However, the use of vibratory song in
courtship is more ancient, with notable losses in the
FC clade.

The role of sexual selection in diversification has
been a contentious issue (Rolan-Alvarez & Caballero,
2000; Phillimore et al., 2006; Kraaijeveld et al.,
2011; Gomes et al., 2016; Servedio & Boughman,
2017). One take-home message from this literature
is that the relationship between sexual selection,
diversification, speciation and local adaptation can be
extremely nuanced (Servedio & Boughman, 2017). It
follows that in systems such as the peacock spiders
in which the ‘showiness’ of male display characters
drives assumptions of behavioural and evolutionary
patterns, there is a great need to understand species-
and population-level relationships. While much work
remains to be done, our study shows that the evolution
of displays in the peacock spiders is multifaceted and
complex and that there is a need for more systematics
research to build the appropriate evolutionary context.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article at the publisher’s website:

Fig. S1. Additional peacock spiders in courtship posture and variation in fan morphology. (a) Maratus velutinus
—no fan; (b) M. amabilis — elliptical fan; (¢) M. tasmanicus — elliptical fan; (d) M. neptunus — no fan; (e) M. cf.
neptunus — no fan; (f) M. sceletus — no fan; (g) M. michaelorum —no fan; (h) M. digitatus — lobed fan; (i) M. robinsoni
—no fan; (j) M. aurantinus — no fan; (k) M. ottoi — no fan; (1) M. cf. leo — no fan; (m) M. vultus — round fan; (n)
M. albus — no fan; (0) M. leo — no fan; (p) M. literatus — round fan; (q) M. eliasi — diamond fan; (r) M. nigromaculatus
- no fan; (s) ‘flame’ — no fan; (t) M. avibus — elliptical fan; (u) M. purcellae — no fan; (v) M. speculifer — no fan; (w)
M. chyrsomelas — no fan; (x) M. mungaich — elliptical fan; (y) M. caeruleus — elliptical fan. Latitude and longitude
data for all specimens can be found in Supporting Information, Table S1.

Fig. S2. UCE SVDQuartets phylogeny.
Fig. S3. ND1_16S and 28S by-catch ML phylogenies.

Fig. S4. RAD all-taxa SVDQuartets species tree, with species partitioning.

Fig. S5. RAD all-taxa SVDQuartets species tree, with lineage partitioning.

Fig. S6. ML ancestral character reconstructions for UCE taxon sample (characters 1, 4 and 5).

Fig. S7. ML ancestral character reconstructions for UCE taxon sample (characters 7-9).

Fig. S8. ML ancestral character reconstruction for RAD taxon sample, character 1-raises abdomen.

Fig. S9. ML ancestral character reconstruction for RAD taxon sample, character 2—lateral fan flap (see main text

Figure 6 for character 3 reconstruction).

Fig. S10. ML ancestral character reconstruction for RAD taxon sample, character 4—third leg (leg III) use.
Fig. S11. ML ancestral character reconstruction for RAD taxon sample, character 5—white brush on third leg (leg

III) tarsi.

Fig. S12. ML ancestral character reconstruction for RAD taxon sample, character 6—-elongated spinnerets display.
Fig. S13. ML ancestral character reconstruction for RAD taxon sample, character 7—vigorous tapping display.
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Fig. S14. ML ancestral character reconstruction for RAD taxon sample, character 8—vibrations produced during
pre-mount display.

Fig. S15. ML ancestral character reconstruction for RAD taxon sample, character 9—pre-mount display.

Fig. S16. RAD tetrad phylogeny for the EM clade, with geographical distributions in western Australia.

Table S1. Specimen information.

Table S2. Character states for all examined specimens.
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