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ABSTRACT: We performed molecular dynamics simulations to
study the crystallization of the P3Sn4 phase from P2Sn5 liquid using
a machine learning (ML) interatomic potential with desirable
efficiency and accuracy. Our results capture the liquid properties of
P2Sn5 at 1300 K, which is well above the melting temperature. The
phase separation and crystallization are observed when P2Sn5 liquid
is cooled down below 832 and 505 K, respectively. The simulation
results are in good agreement with the experimentally observed
phase transformation behaviors and provide useful insights into the
complex nucleation and crystallization process at the details of
atomistic scale. Our work also demonstrated that ML interatomic potentials based on neural network deep learning are robust and
capable of accurately describing the energetics and kinetics of complex materials through molecular dynamics simulations.

1. INTRODUCTION

Metal phosphides have attracted considerable interest due to
their promising physical and chemical properties for electronic
applications.1−3 However, metal phosphides, especially those
with high phosphorus content (i.e., polyphosphides), are
difficult to synthesize by direct combinations of the elements,
because they need high temperatures and are companied by
reactive byproducts.4 At high temperatures, polyphosphides
tend to decompose into lower phosphides and phosphorus
vapor, whereas, at relatively low temperatures, the reactions are
too slow to grow crystals in a reasonable time frame. This
difficulty can be overcome using the low-melting-temperature
metal (e.g., tin) flux growth method, and high-quality crystals
of metal phosphides can be obtained. The low melting
temperature (232 °C) makes tin an ideal metal flux, in which
tin acting as a transporting medium dissolves the components
in one place and grows the product at another location.
Compared to the high-temperature direct synthesis method,
the low-temperature tin-flux method avoids the thermody-
namic traps and thus increases the odds for desirable
compounds and/or phases. For example, the thermodynami-
cally favored monoclinic NiP2 can be easily synthesized using
the low-temperature tin-flux method.5 Moreover, the Re2P5
compound was obtained only through the tin-flux method.6 In
addition, liquid tin acts not only as solvents, but also as
reactants, providing species which can be incorporated into a
final product such as Cu4SnP10.

7 Therefore, a fundamental
understanding of the interactions among metal elements (M),
P, and Sn and accurate computational modeling of the

thermodynamics and growth kinetics of M−P−Sn systems,
such as temperature dependence of phase stability and crystal
nucleation and growth, are highly desirable in order to
accelerate the discovery and synthesis of metal phosphide
compounds for various modern technological applications.
Molecular dynamics (MD) simulation provides a useful

computational tool to elucidate atomic details of the liquid,
amorphous, and crystalline phases and provides atomistic
insight into guiding the design and discovery of materials for
various applications. However, an accurate and efficient
description of the interatomic interactions plays a vital role
in reliable MD simulations. While ab initio methods under the
framework of density functional theory (DFT) are available to
calculate the total energy and the forces on each atom based on
the laws of quantum mechanics to ensure accurate MD
simulations, such ab initio molecular dynamics (AIMD) is
computationally very demanding and suffers from relatively
smaller size (∼500 atoms) and shorter simulation time
(typically less than 1 ns). Alternatively, various empirical
interatomic potential schemes, such as the Lennard-Jones
potential,8 potentials based on the embedded atom method
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(EAM),9 and the Stillinger−Weber potential,10 have been
constructed for MD simulations. Based on physical consid-
erations and reasonable approximations, these empirical
interatomic potentials are usually analytic with some fitting
parameters, which allows one to perform MD more efficiently
than solving the quantum mechanics problem. However, the
accuracy and transferability of these potentials is often in
question. In addition, tuning the parameters of an empirical
potential is usually a tedious task. Development of accurate
empirical interatomic potentials for even pure P and Sn has
been a challenging task due to several competing allotropic
crystalline structures of P and Sn with different bonding
characters. Most of the P and Sn interatomic potentials
developed so far were constructed by the modified embedded
atom method (MEAM).11 The MEAM is an extension of the
EAM formulation in which directional bonding is included in
order to accurately describe the different local structures. The
current MEAM models of P usually focus on a specific system,
such as the P−Si system12 and the P−Fe system.13−16 The
available MEAM models of Sn can describe various types of
atomic bonds, including the metallic and covalent bonds;17−21

however, these MEAM potentials were developed mostly
focusing on properties of the liquid phase and showed
deficiencies in reproducing physical properties of solid
phases.22 Furthermore, to the best of our knowledge, there
are no P−Sn MEAM interatomic potentials.
In recent years, machine learning (ML) methods have

emerged as a powerful tool to balance the accuracy and
efficiency in the development of interatomic potentials.23 ML
potentials usually do not require an explicit mathematical form
as in the conventional empirical potentials and are trained on a
set of reference data including potential energy and atomic
forces of small systems, which can be obtained by accurate ab
initio calculations. A number of promising ML approaches have
been proposed. Some examples include the Behler−Parrinello
neural network (BPNN),24 the Gaussian approximation
potential (GAP),25 the gradient-domain machine learning
method (GDML),26 the deep potential molecular dynamics
scheme (DPMD),27−29 etc. In particular, the DPMD method
has been applied successfully to a variety of systems, from finite
molecules to extended systems and from metallic systems to
chemically bonded systems.28−31

As a first step toward MD simulation studies of M−P−Sn
ternary systems based on ML interatomic potentials, we
develop an interatomic potential for the Sn-rich P−Sn system
using the DPMD scheme (see the Supporting Information).
P−Sn binaries can be considered as a special case of metal
phosphides which contains complex interactions, i.e., covalent
P−P interaction, metallic Sn−Sn interaction, and metal−
metalloid P−Sn interaction. The special metal−metalloid
bonding scheme makes P−Sn a system with unique properties,
complemented by a wide range of compositions32−38 and a
complex phase diagram (see the Supporting Information).39−41

Several binary tin phosphides, such as PSn and P3Sn4, have a
layered structure. This special structure makes the P−Sn
system exhibit a good electrochemical performance as anode
materials and makes it a good catalyst for hydrogen evolution
reactions.42 P3Sn4 and P3Sn are found to be anode materials for
Na-ion batteries owing to their high volumetric specific
capacity and good electrical conductivity.43 P3Sn/C anodes
can reversibly react with Na through conversion and alloy
reaction processes, and this self-healing of alloy electrodes
offers a new approach to explore novel superior electrode

materials for rechargeable batteries. In addition, nanostruc-
tured P3Sn4 catalysts could photocatalytically degrade some
typical organic dyes.44

In this paper, using MD simulations, we show that the neural
network ML many-body interatomic potential for the P−Sn
system developed by the DPMD scheme can accurately predict
the temperature dependence of the phase stability of Sn-rich
P2Sn5 liquid and the crystallization of P3Sn4 phases from P2Sn5
liquid upon cooling.

2. MD SIMULATION DETAILS

MD simulations are performed using a medium-size model
(406 atoms) and large-size model (3248 atoms) with P2Sn5
composition. The 406-atom model is used so that AIMD can
be performed for the liquid state to validate the developed
neural network potential (NNP). Periodic boundary con-
ditions are applied in all three directions of the simulation box.
The NVT ensemble (constant number of particles, constant
volume, and constant temperature) with Nose−́Hoover
thermostat is used in the simulations. A time step of 3 fs is
used with the Verlet algorithm to integrate Newton’s equations
of motion. The AIMD simulation for liquid in the 406-atom
model is performed using the Vienna Ab Initio Simulation
Package (VASP).45,46 The exchange and correlation energy is
assessed by GGA in the scheme of Perdew−Burke−Ernzerhof
(PBE).47 Projector augmented wave (PAW)48 pseudopoten-
tials for P and Sn are used. A plane wave basis set with an
energy cutoff of 255 eV and only the Γ point of the Brillouin
zone are used. Classical MD simulations with the NNP are
performed through the interface of the DEEPMD-KIT27 to the
LAMMPS code.49 To compare the liquid structures obtained
by AIMD and DPMD, the same simulation condition is
applied, i.e., the same initial configurations, the same
simulation steps, and the same NVT ensemble. However,
since the atomic positions at each time step from AIMD and
DPMD cannot be exactly the same, the comparison is
meaningful only in the statistics sense (e.g., average energy,
evolution trend of the energy, etc.).

3. RESULTS AND DISCUSSION

Figure 1 shows snapshots of the P2Sn5 liquid at 1300 K from
the AIMD and DPMD simulations. The snapshots of the 406-
atom model from the AIMD and DPMD simulations are
labeled as “AIMD406” and “DPMD406”, respectively. It can be

Figure 1. Snapshot structure of P2Sn5 liquid at 1300 K from AIMD
and DPMD simulations. (a) 406-atom model from AIMD, (b) 406-
atom model from DPMD, and (c) 3248-atom model from DPMD.
The large and small spheres represent Sn and P atoms, respectively.
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seen that the distributions of the P atoms in the liquid from
both the AIMD and DPMD simulations are similar. The
potential energies of the AIMD406 and DPMD406 liquid as a
function of time are shown in the upper panel of Figure 2a.
The potential energies of AIMD406 and DPMD406 fluctuate
with MD simulation time. The difference between the average
energy from the AIMD and DPMD simulations is approx-
imately 6.9 meV/atom, which is within the RMSE of the
energy (9.5 meV/atom) in our NNP model when trained
against ab initio calculation data. The MD simulation for large-
size P2Sn5 liquid at 1300 K using the NNP is performed for 1.5
ns (500,000 MD steps). This sample is labeled “DPMD3248”,
and the potential energy versus MD simulation time for this
sample is illustrated in the lower panel of Figure 2a. The
potential energy of DPMD3248 fluctuates around a constant
value with MD simulation time, indicating no phase transition
or separation takes place at 1300 K, which is consistent with
the P−Sn phase diagram.41

The local structures of the P2Sn5 liquid at 1300 K are
analyzed for the AIMD406, DPMD406, and DPMD3248. Total
pair correlation functions (PCFs), total bond angle distribu-
tions (BADs), and coordination numbers (CN) are shown in
Figure 2b−d. Very similar distributions are obtained for the
liquid phase of P2Sn5 at 1300 K between AIMD and DPMD.
The total PCF peak positions of DPMD406 coincide with that
of AIMD406. The first PCF peak of liquid P2Sn5 at 1300 K is
located at 2.18 Å, corresponding to P−P interaction. The
height of the first PCF peak of DPMD406 is slightly lower than
that of AIMD406, showing that NNP slightly underestimates
the P−P interaction in the P2Sn5 system. An excellent
agreement of PCFs and BADs is observed for the DPMD406
and DPMD3248, therefore confirming the validation of NNP for
the large system. In addition, the comparison of the partial g(r)
from AIMD and our DPMD is also shown in the Supporting
Information. The underestimation of the nearest neighbor P−
P correlation can be more clearly seen from the partial P−P
g(r). While this discrepancy is the indication of the
underestimation of the P−P nearest neighbor interaction in
the NNP, some statistics error in the MD sampling would also
contribute to the discrepancy, since the number of P atoms in
the simulation cell is relatively much smaller.

The coordination number (CN) as a function of the cutoff
distance r from the AIMD406 and DPMD3248 models is
obtained by integrating the partial PCFs, as shown in Figure
2d. The coordination number of P−P for the AIMD406 model
is systematically larger than that for the DPMD3248 model. If
the bond length cutoffs are chosen to be 2.80 Å for the P−P

Figure 2. (a) Potential energy versus MD time, (b) total PCF, (c)
total BAD, and (d) CN of liquid P2Sn5 from the AIMD and DPMD at
1300 K.

Figure 3. (a) Snapshots of all of the atoms in P2Sn5 at 0.003 and 1.35
ns at 832 K. (b) Potential energy versus MD time of P2Sn5 at 832 K
with the snapshots at the MD simulation times of 0.003 and 1.35 ns,
respectively, shown in the inset. Only P atoms (green sphere) are
shown in these insets. (c) PCFs of P2Sn5 at 1300 and 832 K.

Figure 4. Histogram of the atomic density distribution of (a) P and
(b) Sn in P2Sn5 at 832 K at two different times. The vertical lines
indicate the average atomic density.
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pair, 3.50 Å for the P−Sn pair, and 4.76 Å for the Sn−Sn pair,
the P atom is coordinated by 1.0 P and 4.1 Sn atoms and the
Sn atom is coordinated by 1.7 P and 10.1 Sn atoms in the
AIMD406 model. For the DPMD3248 model, the P atom is
coordinated by 0.7 P and 4.5 Sn atoms and the Sn atom is
coordinated by 1.8 P and 10.2 Sn atoms. The discrepancy
between AIMD and DPMD on the P−P coordination number
would be an indication that the NNP underestimates the P−P
interaction in the P2Sn5 system. In addition, we compare the
diffusivity of P and Sn atoms between AIMD and DPMD
simulations at 1300 and 800 K, as shown in Table S1. We find
the DPMD slightly overestimates the diffusivity of both atoms.
Because the crystallization rate is also dependent on the liquid
diffusivity,50 one would expect a slight overestimation of the
crystallization speed from DPMD simulation for this system.
Nevertheless, we do not expect any qualitative change on the
phenomena reported here. More details about the calculation
of the diffusion constant are given in section S2 of the
Supporting Information.
After demonstrating the performance of NNP for the liquid,

we turn our attention to the cooling process of P2Sn5 to check

whether the NNP could capture the phase transformation
behaviors. By carefully examining the P−Sn phase diagram,41

we find that there are two characteristic temperatures, i.e., 832
and 505 K, for the system at the P2Sn5 composition. Liquid
P2Sn5 undergoes phase separation at 832 K and crystallization
at 505 K. Therefore, we focus on MD simulations at 832 and
505 K, respectively, with the DPMD3248 model to further verify
the reliability of the NNP. The potential energy of P2Sn5 vs
MD time at 832 K using the DPMD3248 model is displayed in
Figure 3b. The potential energy of P2Sn5 suddenly drops at
around 0.4 ns and then smoothly decreases until 1.2 ns. The
potential energy of P2Sn5 drops approximately 16% during this
process. Compared with the snapshot of P2Sn5 at 0.003 ns, the
P atoms segregate in the snapshot of 1.35 ns. These results
indicate the phase separation of P2Sn5, which is consistent with
the P−Sn phase diagram.41

Figure 3c shows the PCFs for P2Sn5 at 832 K in comparison
with those at 1300 K. It can be seen that the first peak in the
total PCF and the first peak of the P−P partial PCF around 2.1
Å dramatically increase as the temperature drops from 1300 to
832 K. In addition, some new peaks emerge around 3.5 and 4.5
Å at 832 K, as shown in the P−P partial PCF. Meanwhile, the
first and second peaks of the Sn−Sn partial PCF at 832 K
become sharper than those at 1300 K. Accordingly, the PCF of
P−Sn at 832 K decreases compared with that at 1300 K. These
results clearly indicate that P and Sn atoms segregate from each
other at 832 K, which is in agreement with the snapshot of
P2Sn5, as shown in Figure 3b.
To further demonstrate the phase separation of P2Sn5 at 832

K, we investigate the distribution of local atomic density at
different MD simulation times. Here the local atomic density is
computed by coarse graining the atomic distribution with a
Gaussian smearing scheme as

∑
σ π

⃗ = σ− ⃗− ⃗i
k
jjj

y
{
zzzD r

1
2

( ) e
i

2

3 2
r r 2

/
( ) /i

2 2

where r  i is the position of atom i. δ is the length of the first
minimum in the PCF. The summation goes over all of the P or
Sn atoms. In Figure 4a, the distribution of P density at 0.003 ns
shows a single peak at the density of 0.01, indicating an overall

Figure 5. (a) Snapshots of all of the atoms in P2Sn5 at 0.003 and1.35
ns at 505 K. (b) Potential energy versus MD time of P2Sn5 at 505 K
with the snapshots at the MD simulation times of 0.0 and 1.35 ns,
respectively, shown in the inset. Only P atoms (green sphere) are
shown in these insets. (c) PCFs of P2Sn5 at the MD simulation times
of 0.0 and 1.35 ns.

Figure 6. PCFs of P2Sn5 at 1.35 ns, crystal P3Sn4, and liquid Sn at 505
K. (a) Total PCF, (b) P−P PCF, (c) P−Sn PCF, and (d) Sn−Sn
PCF.
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uniform distributed state. This peak downshifts to 0.005 at
1.35 ns, and a small shoulder peak emerges at a higher density
of 0.016. This indicates the P distribution becomes
heterogeneous at the end of the MD simulations. Similarly,
there is also one peak for the uniform distribution of Sn density
at 0.003 ns, which is centered at 0.025, indicating that Sn is
also homogeneously distributed at the beginning of the
simulation at 832 K. At 1.35 ns, this peak moves upward to
0.030 and a small peak at the density of 0.006 appears, as
shown in Figure 4b. Therefore, at 832 K, the system emerges a
Sn-rich region at equilibrium. Based on the experimental phase
diagram,41 there exists a liquid−liquid separation at this region.
The current heterogeneous density distribution indicates that
the NNP well captures the phase separation in P2Sn5 liquid
below 832 K.
Next, we perform a MD annealing simulation for the

DPMD3248 model at 505 K. The potential energy decreases
quickly in the first 0.3 ns and then smoothly decreases, as
shown in Figure 5b. At the beginning of theMD simulation, P
and Sn atoms are distributed homogeneously, as can be seen
from the snapshot of the atomic structure at 0.0 ns in Figure
5a. A snapshot of the atomic distribution of P in the sample at
1.35 ns, as displayed in the inset of Figure 5b, shows that part
of the P atoms tend to form ordered packing, indicating the
crystallization of P2Sn5 at 505 K, which is also seen in Figure 5a
where all P and Sn atoms in the simulation box are plotted.
The crystallization in the P2Sn5 at 505 K can also be clearly
seen by comparing the PCFs at the beginning (0.0 ns) and
final stage (1.35 ns) of the simulation, as shown in Figure 5c.
Compared to the total PCF of the P2Sn5 snapshot at 0.0 ns, the
total PCF peaks of the snapshot at 1.35 ns become sharper and
narrower, indicating strong crystalline order. It should be
noted that the first small peak located at 2.1 Å of the snapshot
at 0.0 ns almost disappears in the snapshot at 1.35 ns. This
small peak reflects the P−P interaction, which can be clearly
seen from the top-right panel of Figure 5c. The first peak of the
P−P partial PCF dramatically drops during the crystallization,
whereas the second peak of the P−P partial PCF centered at 4
Å rises, indicating the breaking of the P−P chemical bonds.

The P atoms also tend to bond Sn atoms, which leads to the
increase of the first peak of the P−Sn partial PCF, as shown in
the bottom-left panel of Figure 5c.
According to the P−Sn phase diagram,41 the P2Sn5 phase

could decompose into crystalline P3Sn4 and liquid Sn phases.
The changes in potential energy of P2Sn5 at 505 K from our
MD simulation imply the possible crystallization in the P−Sn
system. To characterize the crystallized structure in the system,
we calculate the total and partial PCFs of the crystalline P3Sn4
and liquid Sn at 505 K and compare them with those of P2Sn5
at 505 K and 1.35 ns, as shown in Figure 6. The peak positions
of the PCF of the P2Sn5 sample at 1.35 ns agree with those of
the crystalline P3Sn4 structure, as shown in Figure 6a−c. These
results suggest the formation of the crystalline P3Sn4 phase
during the crystallization process. In addition, Figure 6d shows
the first peak position of liquid Sn coincides with that of P2Sn5
at 505 K, indicating that P2Sn5 at 505 K is composed of the
mixed liquid Sn and crystalline P2Sn5 phases.
Crystal P3Sn4 adopts a trigonal R 3m symmetry (space group

no. 166). Each P atom is coordinated to six Sn atoms, forming
a P-centered octahedron, as shown in the inset of Figure 7a.
Thus, the representative structural element or fundamental
building block is a P-center octahedron. To provide an
intuitive picture of the crystallization process, the populations
of P-center octahedra are computed with the cluster-alignment
(CA) method.51 Being a structural order parameter, the CA
method can well differentiate complex crystal structures by
computing the minimal root mean square deviation (RMSD)
between the atomic cluster and the perfect crystal motifs.52,53

With CA, the relative fraction of the P-center octahedron in
the MD simulation box with respect to the simulation time is
shown in Figure 7a. In the first 0.2 ns, the relative fraction of
the P-centered octahedron dramatically increases, and then, it
smoothly increases, which is similar to the trend of the
potential energy change in Figure 5b. Approximately 33% P
atoms form a P-centered octahedron at 0.2 ns, and it increases
to 43% at 1.5 ns. Parts c−e of Figure 7 show the snapshots of
the distribution of the P-centered octahedron at different MD
simulation times. At 0.03 ns, there exists a small P-centered

Figure 7. (a) The relative fraction of the P-centered octahedron of P2Sn5 at 505 K in the MD simulation with the inset showing the P-centered
octahedron. (b) Crystal structure of P3Sn4. (c−e) Snapshots in the MD simulation at 0.03, 0.3, and 1.35 ns. The purple sphere represents the P-
centered octahedron. (f, g) Snapshots with the crystallized part in the MD simulation at 0.03, 0.3, and 1.35 ns.
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octahedron as nuclei in the systems. With the increasing MD
simulation time, multiple nuclei grow dramatically fast and
form a few crystalline grains. The high nuclei density indicates
a barrierless crystallization at current deep undercooling.

4. CONCLUSIONS
Using a many-body interatomic potential in neural-network
representation through ML, DPMD simulations are performed
to study the phase stability and transformation of P2Sn5 at
different temperatures. The PCFs and BADs of liquid P2Sn5
obtained from the DPMD agree well with AIMD results,
validating the accuracy of the ML interatomic potential for the
complex P−Sn system. Upon cooling to 832 K, P2Sn5 exhibits
phase separation, which is verified by PCFs and atomic density
distribution. Furthermore, the crystallization process is
observed in the DPMD3248 model of P2Sn5 at 505 K. The
precipitated crystal is identified to be crystalline P3Sn4 by
analyzing the PCFs of relevant liquid and crystal phases. The
decrease of the first peak of the partial P−P PCF and increase
of the first peak of the partial P−Sn PCF suggest that the P−P
bonding breaks and the formation Sn−P bonds. The
fundamental building block of P3Sn4 is a P-centered
octahedron, and its relative fraction increases with MD
simulation time, which further provides more detailed insights
into the crystallization process. The phase stability and
transformation behavior of P2Sn5 obtained from our
simulations are in excellent agreement with what would be
expected from the known P−Sn binary phase diagram. Our
results also suggest NNP by ML would be a promising avenue
for MD simulation studies of phase stability and crystallization
in complex M−P−Sn systems.
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