
Motivating High Performance Serverless Workloads

Hai Duc Nguyen
ndhai@cs.uchicago.edu

University of Chicago

Chicago, Illinois, U.S.A.

Zhifei Yang
zhifei@cs.uchicago.edu

University of Chicago

Chicago, Illinois, U.S.A.

Andrew A. Chien
achien@cs.uchicago.edu

University of Chicago and Argonne

National Laboratory

Chicago, Illinois, U.S.A.

ABSTRACT

The historical motivation for serverless comes from internet-of-

things, smartphone client server, and the objective of simplify-

ing programming (no provisioning) and scale-down (pay-for-use).

These applications are generally low-performance best-effort. How-

ever, the serverless model enables flexible software architectures

suitable for awide range of applications that demand high-performance

and guaranteed performance. We have studied three such appli-

cations - scientific data streaming, virtual/augmented reality, and

document annotation. We describe how each can be cast in a server-

less software architecture and how the application performance

requirements translate into high performance requirements (invoca-

tion rate, low and predictable latency) for the underlying serverless

system implementation. These applications can require invocations

rates as high as millions per second (40 MHz) and latency deadlines

below amicrosecond (300 ns), and furthermore require performance

predictability. All of these capabilities are far in excess of today’s

commercial serverless offerings and represent interesting research

challenges.

CCS CONCEPTS

· Computer systems organization→ Cloud computing.

KEYWORDS

Serverless; High Performance Computing; Document Annotation;

Virtual Reality; Stream Processing

ACM Reference Format:

Hai Duc Nguyen, Zhifei Yang, and Andrew A. Chien. 2021. Motivating High

Performance Serverless Workloads. In Proceedings of the 1st Workshop on

High Performance Serverless Computing (HiPS ’21), June 25, 2021, Virtual

Event, Sweden. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/

3452413.3464786

1 INTRODUCTION

Recent years have witnessed a rapid growth in the popularity of

serverless (aka function-as-a-service or FaaS), which enables users

to create functions without provisioning VM’s or containers, and

provides a pay-for-use model. With these advantages, serverless

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

HiPS ’21, June 25, 2021, Virtual Event, Sweden

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8388-2/21/06. . . $15.00
https://doi.org/10.1145/3452413.3464786

lowers the bar for building applications in effort, use, and cost. With

the cloud provider responsible for resource management, server-

less allows applications to scale rapidly to hundreds of invocations

within a few seconds [19, 42]. This has been a great boon to IoT and

smartphone applications. Most commercial serverless implementa-

tions focus on these smartphone clients and IoT applications. These

applications are low rate per client (but can scale up for large num-

bers of clients) and access the serverless functions over wide area

networks. They are not demanding in terms of invocation rate (per

client) and invocation latency. As a result, serverless systems today

require 10-250 milliseconds of software overhead per invocation

[12, 42], limiting the scope of application use in both invocation

rate (cost) and guaranteed performance.

Recently, serverless has been the focus of interest for a wide

range of distributed applications, such as video encoding, distributed

compilation, and data analytics [3, 14, 15, 19, 20, 27]. These types

of intra-cloud serverless applications are driving increased perfor-

mance requirements for serverless systems. These applications and

more are the focus of our work.

Despite the current commercial incarnations of serverless that

provide only best-effort service and incur significant overhead for

invocations (limiting invocation rates), we believe that the server-

less model and serverless application architectures can be applied

for a wide range of demanding distributed applications. Specifically,

we consider demands of high performance and strict performance

guarantees. To support these applications, serverless systems will

need to achieve dramatically lower overhead per invocation (high

performance) and provide applications with the ability to engineer

strict performance guarantees (real-time). To make this case, we

have collected a set of demanding applications of the serverless

model, and present them here.

We consider three applications: streaming scientific data, aug-

mented reality, and text document annotation. For each, we de-

scribe the application and its critical performance requirements.

Next, we map the application onto a serverless software architec-

ture, describe how these requirements manifest in the serverless

application architecture, and the derived performance requirements

that result such as invocation rate, latency, etc. These serve as moti-

vation and requirements for high-performance serverless systems.

Next, to enable research on high-performance serverless implemen-

tations, we describe a set of parametric workload models, which

characterize each application, and can be used to study both the

performance of serverless implementations and their impact on

application performance.

Specific contributions of the paper include

• Identification and documentation of three compelling high-

performance application classes for serverless systems

• Exposition of a serverless architecture that illustrates how

the quantitative application performance requirements and

guarantees translate into quantitative performance require-

ments in invocation rates (millions/second) and latency guar-

antees (< 1 microsecond) for the serverless system

• For each we present a characterization and workload model

enabling future applications and serverless systems research

The rest of the paper is organized as follows. Sections 2, 4, and

3 each describe a demanding application, its performance require-

ments, and a serverless architecture for that application. We close

each section with a workload model that can be used for serverless

system experiments. Section 5 briefly describes related work, and

Section 6 summarizes the paper.

2 SCIENTIFIC DATA STREAMING

High data rate instruments ś small (e.g. DNA sequencing or CAT

scanners) and large (the advanced photon source or CERN’s parti-

cle accelerator) produce high bandwidth streams of scientific data.

These streams are increasingly reliant on real-time processing ca-

pabilities and machine learning workflows for filtering, analysis,

and adaptive experiment control. Beyond high data rates, they also

require low latency response for real-time control. In Particular, we

focus on a challenging example from high-energy physics (HEP) to

highlight how extreme these performance requirements can be.

Consider online filtering for the Large Hadron Collider (LHC)

[4, 13] where the system targets at finding HEP events that may

contain evidence of new subatomic physical phenomena such as

dark matter. The objective is to rapidly identify the potentially

interesting collisions because the rest must be discarded due to

data storage limitations. Because collisions are extremely short,

sampling must be taken at extremely high frequency, and filtering

must in turn operate at extremely high frequency and low latency.

Detailed description is provided below.

2.1 Application Description

Figure 1: HEP Event Filtering and Analysis System Work-

flow

At the Large Hadron Collider (LHC), a stream of event records is

generated by sampling internal physics processes. The LHC experi-

ment instruments pre-process each record into an image summary.

The image summaries are output at a fixed frequency of 40 MHz. A

Trigger Neural Network (TNN) then classifies each image summary

to tell whether it contains an interesting signal. Once it detects

an interesting signal, the TNN tells LHC Experiment buffering

devices to send the corresponding buffered event record into a

secondary processing workflow, which may include heavy and

hardware-accelerated computations, such as energy measurement,

data selection, data formatting, serialization, and data archiving.

Due to limited LHC buffering capacity, the TNN has to finish every

detection within a hard deadline of 150-300 nanoseconds (upgrades

to the LHC detectors are expected to increase this latency budget as

much as 10-fold [10]. Asynchronously, there is also a real-time qual-

ity monitoring process that samples event records and periodically

pushes updates to the TNN model to adjust filtering quality.

Figure 1 shows the workflow. Each part is annotated with in-

vocation rate and latency requirements, which will be elaborated

later in Section 2.4.

2.2 Examples

Besides HEP, there is a range of scientific data streaming examples

with similar real-time requirements, including:

• Experiments on synchrotron facilities such as ANL’s Ad-

vanced Photon Source and LBL’s Advanced Light Source

• High Energy Physics, Large Hadron Collider and ATLAS

experiments

• High speed genome sequencing machines

• High Resolution MRI (magnetic resonance imaging) or CAT

Systems (Computed Axial Tomography)

Despite objective and workflow differences, the scientific and

medical instrument that used in these examples have three key prop-

erties in common: operate at extremely high event rates, process a

large amount of data, and has strict, short deadline requirement.

2.3 Mapping into Serverless Architecture

Data stream processing in scientific experiments can be naturally

mapped into a event-driven serverless software architecture, and

doing so improves the portability, scalability and flexibility of these

workflows. As a concrete example, Figure 2 shows the serverless

architecture for the LHC event filtering workload. Each double-

border box represents a serverless function. The LHC Experiment

box at the bottom refers to the event record collecting and buffering

devices inside LHC, with the assumption that it can invoke server-

less functions with image summaries, sampled event records, or

interesting event records selected by the TNN.

Figure 2: Serverless Software Architecture for LHCTrigger-

ing

Comparing Figure 1 and Figure 2, the Trigger Neural Network

is mapped to function TNN_inference(), which receives an image

summary from LHC Experiment as input, performs classification,

and responds with an event ID if it contains an interesting sig-

nal. The Secondary Processing pipeline maps to a set of functions

that process event data in a chained invocation manner. Real-time

Quality Monitoring is implemented by updateModel(), which is

invoked with sampled event records and if necessary, updates func-

tion TNN_inference(). Depending on the actual algorithm, it may

be implemented in multiple functions, and involve the use of exter-

nal storage to maintain its state.

2.4 Performance Requirements

Such scientific data streaming tasks demand a high frequency of

processing on large bandwidth of event streams. All events must

be processed within a hard real-time deadline. For the serverless

architecture, it implies the following performance requirements:

• High invocation rate. To avoid an infinitely growing request

queue, functions need to be invoked at the input rate.

• Low latency. Functions are subject to hard deadlines, and the

tolerated latency is low.

Such extreme requirement is a tough, even impossible, challenge

for current serverless implementations. For example, the Trigger

Neural Network in LHC event filtering requires 40 million infer-

ences per second, each to be finishedwithin 300 nanoseconds. Three

FPGAs are installed at the LHC, each with 6,840 DSPs clocked at

200 MHz [44], which can do 20,520 integer multiply-add operations

in one cycle (5 ns), or 1200K operations in 300 ns, that supports the

pipelined neural network implementation.

A high-end server CPU such as Intel’s Ice Lake SP (40 cores)

is capable of approximately 2,944 Int16 Gigaops/second, giving it

a capacity of approximately 900K operations in 300ns or 9000K

operations in 3 microseconds. This is already competitive with

the FPGA in throughput. An NVIDIA A100 GPU [30] is quoted at

624 teraflops of fp/int16 performance. In a 300ns window, it can

achieve 180 million operations in 300ns or 1.8 billion operations

in 3 microseconds. This shows that the GPU also has sufficient

throughput to meet the needs of these streaming applications.

So while these performance requirements seem fantastical, in

fact even a single chip of these conventional platforms has more

than enough throughput to achieve these rates. However, there

is the problem of latency, achieving the 300ns latency is probably

not realistic due to current serverless software overheads, batching,

and other hardware computation structure requirements needed

to achieve high performance. The upgrade to the LHC sensors in

the next generation LHC detector provides increased buffering,

and hence a looser deadline of 3 microseconds [10]. On the other

hand, it is always possible to encapsulate high performance special-

ized hardware as functions in serverless runtimes. To achieve this,

we need radically more efficient software architectures and imple-

mentation for serverless, such as custom runtimes and dedicated

containers [37].

2.5 Workload Model

Scientific data filtering and analysis workloads can be modelled for

serverless systems with the following parameters:

Figure 3: Distributed VR/ARArchitecture inspired by [8, 16]

• 𝑁𝑡 - Event rate, 30 Hz to 40Mhz, this corresponds to the invo-

cation rate for TNN_inference() in the LHC event filtering

workload

• 𝑂𝑝 Associated computation for each event, 5K to 1000K

operations

• 𝑆𝐼 - Size of an event summary, 2KB to 1MB

• 𝐿𝑡 - Latency limit for for filtering decision, currently 300ns

• 𝑁𝑠 - Sampling rate for quality monitoring, 1-100 kHz, corre-

ponds to the invocation rate for updateModel() in the LHC

event filtering workload

With these parameters, one can build a workload generator to

study serverless system performance with workloads demonstrat-

ing these characteristics. We call the serverless implementation

meeting the performance requirements when all invocation rates

and hard latency limit are met.

3 DISTRIBUTED VIRTUAL
REALITY/AUGMENTED REALITY

Distributed Virtual Reality (VR) / Augmented Reality (AR) applica-

tions allowmany geographically distributed participants to join and

interact in a virtual world, either artificial (VR) or blending over the

real-world (AR), through a set of actions (e.g. speaking, touching,

moving, etc.). Such actions are made independently and simultane-

ously by individual participants and all together affect the virtual

world structure. VR/AR applications capture these actions, apply

their effects, and inform participants that should experience the

changes by continuously re-rendering their surrounding 3D images.

Participants who receive the changes can react with another action,

essentially creating a loop of action-update-action interaction. As

most VR/AR applications are highly interactive, smoothly handling

the action-update process is crucial for good user experiences.

3.1 Application Descriptions

Distributed VR/AR operationsmostly surroundVirtual worldswhich

are 3D spaces that contain many 3D objects. These objects either

represent real-object or are totally made up by the application. Users

or Participants are placed in this world as virtual objects and can

interact with other objects through making actions such as moving,

touching, speaking, etc. User actions trigger the application to up-

date the virtual world to reflect the action effect. Figure 3 depicts a

typical distributed VR/AR architecture showing how interactions

are handled in 5 steps:

(1) Participantsmake an action at their end device, asynchronously

initiating an action request.

(2) Action request are processed by an action handler to resolve

its effect.

(3) The application synchronizes actions (if needed) then adjusts

the virtual world to reflect action effects.

(4) The application identifies participants who should experi-

ence the update.

(5) Updates are sent to proper participants and the application

goes back to resolve new actions, starting a new action-

update circle.

Since VR/AR are highly interactive, participant actions may be-

come very intensive as we will see from the examples below.

3.2 Examples

Pokemon GO [29] is a great example of massive distributed AR ap-

plications. It is a mobile multi-player AR-based game that players

can hold their phones, walk around the real world to find and

catch virtual characters, call Pokemons, rendered by the game

through the phone’s camera view. Pokemons are located at some

specific geographic locations and only appear to players when they

walk around these areas. Since Pokemon GO virtual world is con-

structed upon the real world, it is vast enough to let millions of

players/participants join and interact. They make actions by simply

walking and looking for new Pokemon through the phone camera.

Pokemon app will keep track of player’s movement and response

with the appearance of Pokemon or collectible items as rewards.

Despite simple gameplay, the game was a big hit right after it

was released with more than 10 million downloads after the first

week. The game is still popular nowadays. By 2020, Pokemon GO

has approximately 600 million active players worldwide [40]. Even

with a simple action-update design, this number is very highly

demanding: suppose an average person walks around 7,000 steps a

day and Pokemon GO app generates an action for every 10 of them;

if only 1% of active players intensively play the game daily then

there are up to 4.2 billion actions can be made a day, an average rate

of 50,000 requests per second! This demand is not uniform, however.

According to [40], Pacific Asia accounts for 52% of global players so

this region is far more demanding than Central and Latin America,

where has only 9%. Furthermore, in 2019, Pokemon GO held 77

events, and one of them, Safari Zone New Taipei City, attracted

327,000 attendees with 50 million Pokemon caught, potentially

generating a burst of thousands of actions per second in Taiwan

alone. And in the most extreme case, soon after its release in 2016,

Pokemon received a never-seen-before demand increase of 50x

their expected load, causing severe experience disruptions for days

before it successfully upgraded in Google Cloud and became one

of their biggest services since then [7].

Stand Out: VR Battle Royale [33] is another example. It is a

VR first-person shooter battle royale that can allow up to 40 play-

ers/participants to combat over a wide battlefield that is totally

made up by the game designers. Unlike Pokemon GO, the game lets

participants make actions in a much more intensive way: to win,

they have to act (run, shoot, hide, etc.) fast to take others down. If

Figure 4:MappingDistributed VR/AR to Serverless Architec-

ture

participants make actions by pressing their controller keys then it

is possible to have up to multiple key presses per sec during combat

resulting 100 or higher action per second per match. If there are

500 matches are hosted concurrently, then the total rate can go

up to 50,000 actions per second, comparable with Pokemon GO

load worldwide with merely 20,000 participants! As VR/AR appli-

cations are becoming more popular, we are expecting to see a more

aggressive load increase in the future.

3.3 Mapping to Serverless Architecture

Hosting VR/AR application components over serverless is attrac-

tive, at least from the cost perspective as it allows the applications

to scale the cost to support their highly varied demand down to

actual use. Doing so is straightforward, as shown in Figure 3. Each

action is mapped to one serverless invocation. After a participant

makes an action via their VR/AR end device, the action is sent to an

API Gateway. This component collects actions and redirects them

to functions located at appropriate locations. Serverless invocations

are invoked upon action arrivals to apply their effect, synchronize

with the virtual world structure persisted on a geo-distributed stor-

age. Update on the virtual world will trigger a pub/sub system that

continuously listens to changes inside the virtual world to inform

affected participants.

3.4 Performance Requirements

Since most VR/AR applications are interactive, maintaining a good

interactive experience is crucial. From the performance perspective,

this is about smoothly responding to/updating participant actions,

and can be done by specifying certain requirements around the

following metrics:

• High update/rendering rate. Participant experience becomes

smoother when his view of the virtual world refreshes more

often. Low update rate, especially variable, damages effective

tracking of changes, reducing the quality of experience. For

high quality, an update/rendering rate of 30 to 60 fps is

required.

• Low latency. Each update is perceptible to the participant.

Low latency enables rendering at high rate without skipping

or missing changes, improving the interaction quality. To

meet the update rate requirement of 30 to 60 fps, the latency

requirement should be around 15-30ms. In some cases, this

can be a statistical requirement (e.g. 1% of the frames could

be late), or qualitative requirements on the "shape" of the

distribution.

• Scalability: participant experience must be robust, as the

system scales to large numbers of participants, and distribu-

tions of those participants in both the interaction space and

geographic space.

Given the architecture mapping and requirements above, imple-

menting Pokemon GO with serverless will generate a load of 50,000

invocations per second, each need to be done within 15-30ms. For

Stand Out, the demand can be much more if their active users in-

creases. However, with 100+ milliseconds of invocation latency that

the current commercial serverless implementation are experiencing

nowadays, meeting this latency requirement is challenging [42].

It is even harder as action arrivals are so intensive bursty in both

temporal and spatial that requires careful resource allocation and

load distribution design.

3.5 Distributed AR/VRWorkload Model

VR/AR workloads can be modeled as a sequence of actions initiated

by participants. The work depends on the type of actions, and the

clustering of other participants in the interaction space. This can

be characterized by the following parameters.

• 𝜆𝑖 ś Action arrival rate for participant 𝑖 , reflecting the fre-

quency of making actions (and serverless invocation). The

arrivals should be bursty. We model this as a Poisson process

with the average rate raging from 0.01 to 10 per second, de-

pending on participants’ aggressiveness of making actions.

• 𝐿 ś Location distribution of participants in the virtual world.

𝐿 can be formed as a set of multiple clusters of participants

(e.g. region, see example above), each is modeled as a two-

variable Gaussian distribution with standard deviation vary

from 0.1x to 10x of the mean depending on the cluster den-

sity.

• 𝑃 (𝐿) ś The distribution of the number of participant affected

by a given action, and depends on 𝐿, the location distribution

• 𝐹 (𝐿) ś The work embodied in the serverless functions that

are required to respond to an action. It is also a function

of the participant location distribution 𝐿, capturing the fact

that more affected participants required more effort on syn-

chronization and update.

• 𝐷 ś Update deadline, which is the maximum latency for

any action. To meet the 30-60 fps requirement, we set the

deadline within 15-30ms.

We define the following metrics to evaluate application perfor-

mance over a given workload:

• 𝑀 ś Miss rate, the fraction of actions that take longer than

the deadline 𝐷 . Typical miss rate targets are 5% and 1% or

lower.

• 𝑈𝑠𝑒𝑑 ś Quantity of resource used, for serverless it is in

GB*second, to support the workload

4 DOCUMENT ANNOTATION

To support intelligent human decision making, numerous orga-

nizations have built text document annotation systems that pore

Figure 5: Text Document Annotation Pipeline from [5] that

showshowannotated documents are deposited in a database.

They are also streamed to customers in real-time (see blue

arrows).

through enormous numbers of documents, organizing them with

annotations [6, 24, 25], and providing a large range of derivative

summaries. These systems are under performance pressure because

of the rapid rate of information growth in the world, and the need

to make fast decisions in a competitive landscape, i.e. financial

trading. A document annotation application processes millions of

documents everyday.

4.1 Application Description

Wedescribe the Bloomberg Financial text annotation pipelinewhich

processes 2 million documents a day. Bloomberg is a real-time in-

formation service, and to a large degree, they are annotating docu-

ments that are publicly released (company earnings reports, filings,

government/fed/treasury statements, business press, and more). In

order to provide value to their customers for their very expensive

Bloomberg terminals, their document annotation system has a hard

deadline of 100ms and no lower bound on desired lower latency

(see Figure 5). Examples of processing include natural language

processing, specific features (e.g. earnings), topic formation and

classification, summarization, and more. Some annotations are done

in parallel to minimize the latency, and others may follow a work-

flow that depends on its content ś topics and type of document. The

heavy use of natural language means that growing deep learning

models such as BERT and GPT-3 are often used. The Bloomberg

annotation workflow has a hard deadline of 100ms ś though no

latency is too low! The objective is to meet ALL of the deadlines

with the lowest resource cost.

Each document input is a short collection of text written in natu-

ral language, typically 50 to 750 words. In the higher-end examples,

images can be included. Annotation is application output that con-

tains information extracted from the document and may relate it to

other information in the knowledge base. Workflow is a set of tasks

performed by the application to generate annotations for a docu-

ment. Tasks may depend on each other. Document workflows may

interact with each other. A number of papers have been written

about a variety of real-time annotations [5, 43]. While each appli-

cation differs, the basic structure and properties are representative

of all of the applications mentioned below.

Annotating a document uses NLP techniques combined with

ML/DL models. A standard pipeline is

Figure 6: The text annotation application cast into a server-

less architecture has key parameters for each function and

workflow, as well as their number. Another key parameter

is the deadline.

(1) Pre-processing, including parsing [36, 43], cleaning, and to-

kenization [23], etc. Tasks dependency in the step is prede-

fined (e.g. Parsing→ Cleaning→ Tokenization). Depending

on the annotation purposes, some tasks may be skipped by

the workflow.

(2) Feature extraction, with tasks vary depending on the pur-

pose of annotation, and models used in downstream steps.

Generally, this step contains POS tagging [24], word em-

bedding construction [24, 26], etc. Tasks are independent.

Depending on the annotation purpose, some tasks may be

skipped by the workflow.

(3) Annotating the document from selected features using pre-

trained ML/DL models for natural language [5], topic analy-

sis [34], sentiment analysis [32] and more. Tasks are gener-

ally independent, and some are large. For example, state of

the art models such as BERT or GPT-3 for NLP requires 200

ms with batch size 8 on an AWS GPU instance [21].1

4.2 Examples

While document annotation for financial information services may

aggressively optimize to create investment or trading advantage,

there are several other at-scale high-performance document anno-

tation problems. For example, Facebook analyzes posts in real-time

filtering for a variety of properties (hate speech, interest, ...), and

a more ambitious non-real-time annotation for a variety of other

properties such as targeted advertisement, user classification, and

so on. In another setting, Google and other search engines take

real-time feeds from Twitter, news services, new website pages, and

more, performing similar real-time document annotation and incre-

mental indexing to provide the ability to search the latest postings

and content. We summarize these examples below.

(1) Bloomberg Financial Text Document Annotation (real-time):

2 million documents/day, multiple sources, geographically

distributed, real-time, <100ms, no lower bound on latency.

(2) Facebook Post Annotation (real-time): 350 million posts/day,

4,000 per second, geographically distributed, real-time and

near real-time, no lower bound on latency [38].

1Interestingly, also estimated at 1000 request/$.

(3) Tweet/article/Web Page Annotation (high rate, near real

time): 500 million Tweets/day, 6,000/second, 2 million news

articles/day, 24/second, 10 million new pages added to aver-

age of 55 billion pages, near-real-time to support incremental

search index update for fast-moving content [31, 39].

4.3 Mapping into Serverless Architecture

The document annotation pipeline maps naturally onto an event-

driven serverless architecture.When each document arrives, a set of

individual functions and workflows are launched. These functions

vary in size, and the workflows are a sequence of functions. This

mapping is illustrated in Figure 6. The documents vary in size

depending on application domain and may also include images

as in Facebook posts. Processing times for functions range from

short, real-time to longer analysis. Some applications partition

their processing into short real-time functions (e.g. hate speech

detection) and longer running analysis (e.g. interest classification

for targeting).

4.4 Performance Requirements

The application/system is subject to hard real-time deadlines. Its

cost is determined by how much computation resources and types

of resources (best effort, real-time, etc.) are required to meet its

constraints. All documents must meet their deadlines, or the system

FAILs. Performance requirements of the system include:

• Invocation rate

• Latency to completed annotation (hard deadline, or 99th

percentile)

• Cost: dedicated resources

4.5 Document Annotation Workload Model

Text annotations can be modeled as a series of document arrival, the

simplest model would be memoryless (Poisson), but more realistic

models would be bursty. The document processing time is typically

proportional to size, with modest variation.

• 𝜆 - Document arrival rate ś memoryless (poisson) process

or one with more bursty, correlated arrivals

• 𝑆 - Document size distribution, ranging from 40 bytes to

4 megabytes (including images). Uniform distributions, or

skewed depending on the application.

• < 𝐹1, 𝐹2, ...𝐹𝑛 > - a collection of serverless functions that

are invoked on each document. These serverless functions

have a corresponding runtime which is proportional to the

document size, runtimes distributed across 0.1D to 09D.

• <𝑊1,𝑊2, ...𝑊𝑛 > - a collection of workflows each consisting

of a set of serverless functions. Again the serverless functions

with runtimes proportional to the document size. Runtimes

distributed across 0.5D to 0.95D.

• 𝐷 ś hard deadline of 100 milliseconds for text document

annotation, soft 99th percentile deadlines of a few seconds

for other applications.

Performance metrics for a text document annotation workload

include:

Workload Invocation Rate (per second) Latency Requirement Scalability

Scientific Stream 40M 300ns (hard) N.A.

Distributed VR/AR 50K 15ms (soft) Users

Doc Annotation 12K 200ms (hard) Annotation Complexity

Table 1: Comparison of Performance Requirements

• 𝐹𝑙 ś the fraction of documents who miss the deadline; failing

to complete annotation within the specified 𝐷 period after

arrival

• 𝑅 ś quantity of resources allocated to support the document

annotation to meet deadlines

5 RELATED WORK

Many efforts have been spent on applying the serverless model

for a wide range of applications, including video processing [15],

data analytics [27], modifiable virtual environments [11] and high-

performance computing [9, 37]. These applications, as well as the

ones presented in this paper, are the motivation for many studies on

serverless that optimize the framework towards high performance

[1, 12, 18, 22, 35], enable QoS [41], understand its potentials and

limitations [19], as well as to characterize implementations [42]

and workloads [35].

Meanwhile, there are studies focusing on serverless application

quality in terms of performance guarantee. Batch [2] uses an op-

timizer to provide tail latency guarantees for machine learning

inference. Real-time Serverless [28] provides invocation rate guar-

antee for bursty, real-time workloads. Spock [17] exploits VMs and

serverless functions at the same time to meet SLO at low cost. These

are critical steps towards performance predictability, which is also

a core requirement of the workloads we presented in this paper.

6 SUMMARY AND FUTUREWORK

Table 1 summarizes the three classes of applications we discussed.

They all have real-time (either soft or hard) sub-second latency

requirements and scale from tens of thousands to millions of in-

vocations per second. Such demands are far higher than typical

serverless workloads, which barely reach 1 invocation per second

[35]. Although it is natural to architect these applications on server-

less platforms, the performance requirements are far in excess of

today’s commercial implementations. For example, latency require-

ments of a few milliseconds versus commercial implementations

that are still struggling at 100’s of milliseconds to seconds over-

head with high variability [42]. The current best-effort allocation

employed by serverless platforms also finds it hard to reach or

maintain these high invocation rates [28].

Therefore, to support these high demanding applications, a high-

performance serverless implementation is needed. We leave find

such implementation as an open question as there are many promis-

ing directions worth exploring: reducing function initialization

overhead, employing load prediction to make proper pre-allocation,

adding support for heterogeneous resources such as hardware ac-

celerators, or bringing serverless instances closer to the caller (edge

deployment), etc. The serverless platform also needs to provide

applications ways to engineer their performance guarantee. This

requires better resource isolation to eliminate variability and al-

location guarantees to maintain performance requirements under

uncertainties.

ACKNOWLEDGMENTS

This work supported by National Science Foundation Grants CMMI-

1832230, CNS-1901466, and CCF-1909364. We gratefully acknowl-

edge support from Intel, Google, Samsung, and the CERES Center

for Unstoppable Computing.

REFERENCES
[1] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein, Klaus Satzke,

Andre Beck, Paarijaat Aditya, and Volker Hilt. 2018. SAND: Towards High-
Performance Serverless Computing. In 2018 USENIX Annual Technical Conference
(USENIX ATC 18). USENIX Association, Boston, MA, 923ś935.

[2] AhsanAli, Riccardo Pinciroli, Feng Yan, and Evgenia Smirni. 2020. Batch:Machine
Learning Inference Serving on Serverless Platforms with Adaptive Batching. In
Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis (Atlanta, Georgia) (SC ’20). IEEE Press, Article
69, 15 pages.

[3] LixiangAo, Liz Izhikevich, GeoffreyM. Voelker, andGeorge Porter. 2018. Sprocket:
A Serverless Video Processing Framework. In Proceedings of the ACM Symposium
on Cloud Computing (Carlsbad, CA, USA) (SoCC ’18). Association for Computing
Machinery, New York, NY, USA, 263ś274.

[4] G. Apollinari, I. Béjar Alonso, O. Brüning, P. Fessia, M. Lamont, L. Rossi, and L.
Tavian (Eds.). 2017. High-Luminosity Large Hadron Collider (HL-LHC): Technical
Design Report V. 0.1. 4/2017 (2017).

[5] Joshua Bambrick, Minjie Xu, Andy Almonte, Igor Malioutov, Guim Perarnau,
Vittorio Selo, and Iat Chong Chan. 2020. NSTM: Real-Time Query-Driven News
Overview Composition at Bloomberg. arXiv preprint arXiv:2006.01117 (2020).

[6] Joshua Bambrick, Minjie Xu, Andy Almonte, Igor Malioutov, Guim Perarnau,
Vittorio Selo, and Iat Chong Chan. 2020. NSTM: Real-Time Query-Driven News
Overview Composition at Bloomberg. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics: System Demonstrations. Association
for Computational Linguistics, Online, 350ś361.

[7] Betsy Beyer, Niall Richard Murphy, David K Rensin, Kent Kawahara, and Stephen
Thorne. 2018. The site reliability workbook: practical ways to implement SRE. "
O’Reilly Media, Inc.".

[8] Chih-Yao Chang, Bo-I Chuang, Chi-Chun Hsia, Wen-Cheng Chen, and Min-Chun
Hu. 2020. Framework Design for Multiplayer Motion Sensing Game in Mixture
Reality. In International Conference on Multimedia Modeling. Springer, 703ś708.

[9] Ryan Chard, Yadu Babuji, Zhuozhao Li, Tyler Skluzacek, Anna Woodard, Ben
Blaiszik, Ian Foster, and Kyle Chard. 2020. FuncX: A Federated Function Serving
Fabric for Science. In Proceedings of the 29th International Symposium on High-
Performance Parallel and Distributed Computing (Stockholm, Sweden) (HPDC ’20).
Association for Computing Machinery, New York, NY, USA, 65ś76.

[10] Nhan V Tran David W. Miller. [n.d.]. Personal communication.
[11] Jesse Donkervliet, Animesh Trivedi, and Alexandru Iosup. 2020. Towards Sup-

porting Millions of Users in Modifiable Virtual Environments by Redesigning
Minecraft-Like Games as Serverless Systems. In Proceedings of the 12th USENIX
Conference on Hot Topics in Cloud Computing.

[12] Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu Yan, Chenggang Qin, Qix-
uanWu, and Haibo Chen. 2020. Catalyzer: Sub-Millisecond Startup for Serverless
Computing with Initialization-Less Booting. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming Languages
and Operating Systems (Lausanne, Switzerland) (ASPLOS ’20). Association for
Computing Machinery, New York, NY, USA, 467ś481.

[13] Lyndon Evans and Philip Bryant. 2008. LHC Machine. Journal of Instrumentation
3, 08 (aug 2008), S08001śS08001.

[14] Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li, Shuvo Chatterjee, Christos
Kozyrakis, Matei Zaharia, and Keith Winstein. 2019. From Laptop to Lambda:
Outsourcing Everyday Jobs to Thousands of Transient Functional Containers.

In 2019 USENIX Annual Technical Conference (USENIX ATC 19). Renton, WA,
475ś488.

[15] Sadjad Fouladi, Riad S. Wahby, Brennan Shacklett, Karthikeyan Vasuki Balasubra-
maniam, William Zeng, Rahul Bhalerao, Anirudh Sivaraman, George Porter, and
Keith Winstein. 2017. Encoding, Fast and Slow: Low-Latency Video Processing
Using Thousands of Tiny Threads. In 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 17). USENIX Association, Boston, MA,
363ś376.

[16] Frank Glinka, Alexander Ploss, Sergei Gorlatch, and Jens Müller-Iden. 2008. High-
level development of multiserver online games. International Journal of Computer
Games Technology 2008 (2008).

[17] J. R. Gunasekaran, P. Thinakaran, M. T. Kandemir, B. Urgaonkar, G. Kesidis, and
C. Das. 2019. Spock: Exploiting Serverless Functions for SLO and Cost Aware
Resource Procurement in Public Cloud. In 2019 IEEE 12th International Conference
on Cloud Computing (CLOUD). 199ś208.

[18] Zhipeng Jia and Emmett Witchel. 2021. Nightcore: Efficient and Scalable Server-
less Computing for Latency-Sensitive, Interactive Microservices. Association for
Computing Machinery, New York, NY, USA, 152ś166.

[19] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai, Anurag
Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Menezes Carreira, Karl Krauth,
Neeraja Yadwadkar, Joseph Gonzalez, Raluca Ada Popa, Ion Stoica, and David A.
Patterson. 2019. Cloud Programming Simplified: A Berkeley View on Serverless
Computing. Technical Report UCB/EECS-2019-3. EECS Department, University
of California, Berkeley.

[20] Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle,
and Christos Kozyrakis. 2018. Pocket: Elastic Ephemeral Storage for Server-
less Analytics. In 13th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18). USENIX Association, Carlsbad, CA, 427ś444.

[21] Chuan Li. [n.d.]. OpenAI’s GPT-3 Language Model: A Technical Overview.
lambdalabs.com.

[22] Junfeng Li, Sameer G. Kulkarni, K. K. Ramakrishnan, and Dan Li. 2019. Under-
standing Open Source Serverless Platforms: Design Considerations and Perfor-
mance. In Proceedings of the 5th International Workshop on Serverless Computing
(Davis, CA, USA) (WOSC ’19). Association for Computing Machinery, New York,
NY, USA, 37ś42.

[23] Mounica Maddela, Wei Xu, and Daniel Preoţiuc-Pietro. 2019. Multi-task Pairwise
Neural Ranking for Hashtag Segmentation. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics. Association for Compu-
tational Linguistics, Florence, Italy, 2538ś2549.

[24] Debanjan Mahata, John Kuriakose, Rajiv Ratn Shah, and Roger Zimmermann.
2018. Key2Vec: Automatic Ranked Keyphrase Extraction from Scientific Articles
using Phrase Embeddings. In Proceedings of the 2018 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 2 (Short Papers). Association for Computational Linguistics,
New Orleans, Louisiana, 634ś639.

[25] Philipp Meerkamp and Zhengyi Zhou. 2016. Information Extraction with
Character-level Neural Networks and Free Noisy Supervision. arXiv preprint
arXiv:1612.04118 (2016).

[26] Yishu Miao, Lei Yu, and Phil Blunsom. 2016. Neural variational inference for text
processing. In International conference on machine learning. PMLR, 1727ś1736.

[27] Ingo Müller, Renato Marroquín, and Gustavo Alonso. 2020. Lambada: Interactive
Data Analytics on Cold Data Using Serverless Cloud Infrastructure. In Proceed-
ings of the 2020 ACM SIGMOD International Conference on Management of Data
(Portland, OR, USA) (SIGMOD ’20). Association for Computing Machinery, New
York, NY, USA, 115ś130.

[28] Hai Duc Nguyen, Chaojie Zhang, Zhujun Xiao, and Andrew A. Chien. 2019. Real-
Time Serverless: Enabling Application Performance Guarantees. In Proceedings of
the 5th International Workshop on Serverless Computing (Davis, CA, USA) (WOSC
’19). Association for Computing Machinery, New York, NY, USA, 1ś6.

[29] Niantic. [n.d.]. Pokemon GO. https://pokemongolive.com.
[30] NVIDIA. 2021. NVIDIA A100 Datasheet.

https://www.nvidia.com/content/dam/en-zz/Solutions/Data-
Center/a100/pdf/nvidia-a100-datasheet.pdf.

[31] Daniel Peng and Frank Dabek. 2010. Large-Scale Incremental Processing Using
Distributed Transactions and Notifications. In Proceedings of the 9th USENIX
Conference on Operating Systems Design and Implementation (Vancouver, BC,
Canada) (OSDI’10). USENIX Association, USA, 251ś264.

[32] Daniel Preoţiuc-Pietro, Ye Liu, Daniel Hopkins, and Lyle Ungar. 2017. Beyond
binary labels: political ideology prediction of twitter users. In Proceedings of the
55th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers). 729ś740.

[33] raptor lab. [n.d.]. Stand Out: VR Battle Royale. https://store.steampowered.com/
app/748370/STAND_OUT__VR_Battle_Royale/.

[34] Antonia Saravanou, Giorgio Stefanoni, and Edgar Meij. 2020. Identifying Notable
News Stories. In European Conference on Information Retrieval. Springer, 352ś358.

[35] Mohammad Shahrad, Rodrigo Fonseca, Inigo Goiri, Gohar Chaudhry, Paul Batum,
Jason Cooke, Eduardo Laureano, Colby Tresness, Mark Russinovich, and Ricardo
Bianchini. 2020. Serverless in the Wild: Characterizing and Optimizing the
Serverless Workload at a Large Cloud Provider. In 2020 USENIX Annual Technical
Conference (USENIX ATC 20). USENIX Association, 205ś218.

[36] Tianze Shi, Igor Malioutov, and Ozan Irsoy. 2020. Semantic Role Labeling as
Syntactic Dependency Parsing. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP). Association for Computational
Linguistics, Online, 7551ś7571.

[37] Tyler J. Skluzacek, Ryan Chard, Ryan Wong, Zhuozhao Li, Yadu N. Babuji, Logan
Ward, Ben Blaiszik, Kyle Chard, and Ian Foster. 2019. Serverless Workflows for
Indexing Large Scientific Data. In Proceedings of the 5th International Workshop on
Serverless Computing (Davis, CA, USA) (WOSC ’19). Association for Computing
Machinery, New York, NY, USA, 43ś48.

[38] Kit Smith. [n.d.]. 60 Incredible and Interesting Twitter Stats and Statistics. https:
//www.brandwatch.com/blog/facebook-statistics/.

[39] Kit Smith. [n.d.]. 60 Incredible and Interesting Twitter Stats and Statistics. https:
//www.brandwatch.com/blog/twitter-stats-and-statistics/.

[40] Statista. [n.d.]. Number of active users of Pokémon Go worldwide from 2016 to
2020, by region. https://www.statista.com/statistics/665640/pokemon-go-global-
android-apple-users/.

[41] Ali Tariq, Austin Pahl, Sharat Nimmagadda, Eric Rozner, and Siddharth Lanka.
2020. Sequoia: Enabling Quality-of-Service in Serverless Computing. In Proceed-
ings of the 11th ACM Symposium on Cloud Computing (Virtual Event, USA) (SoCC
’20). Association for Computing Machinery, New York, NY, USA, 311ś327.

[42] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, and Michael
Swift. 2018. Peeking Behind the Curtains of Serverless Platforms. In 2018 USENIX
Annual Technical Conference (USENIX ATC 18). USENIX Association, Boston, MA,
133ś146.

[43] Chunyang Xiao, Christoph Teichmann, and Konstantine Arkoudas. 2019. Gram-
matical Sequence Prediction for Real-Time Neural Semantic Parsing. In Proceed-
ings of the Workshop on Deep Learning and Formal Languages: Building Bridges.
14ś23.

[44] Xilinx. [n.d.]. UltraScale+ FPGA Product Tables and Product Selection
Guide. https://www.xilinx.com/support/documentation/selection-guides/
ultrascale-plus-fpga-product-selection-guide.pdf.

	Abstract
	1 Introduction
	2 Scientific Data Streaming
	2.1 Application Description
	2.2 Examples
	2.3 Mapping into Serverless Architecture
	2.4 Performance Requirements
	2.5 Workload Model

	3 Distributed Virtual Reality/Augmented Reality
	3.1 Application Descriptions
	3.2 Examples
	3.3 Mapping to Serverless Architecture
	3.4 Performance Requirements
	3.5 Distributed AR/VR Workload Model

	4 Document Annotation
	4.1 Application Description
	4.2 Examples
	4.3 Mapping into Serverless Architecture
	4.4 Performance Requirements
	4.5 Document Annotation Workload Model

	5 Related Work
	6 Summary and Future Work
	Acknowledgments
	References

