LARGE FIELDS IN DIFFERENTIAL GALOIS THEORY
ANNETTE BACHMAYR, DAVID HARBATER, JULIA HARTMANN AND FLORIAN POP

ABSTRACT. We solve the inverse differential Galois problem over differential fields with a
large field of constants of infinite transcendence degree over Q. More generally, we show that
over such a field, every split differential embedding problem can be solved. In particular, we
solve the inverse differential Galois problem and all split differential embedding problems

over Q(z).

INTRODUCTION

Large fields play a central role in field arithmetic and modern Galois theory, providing an
especially fruitful context for investigating rational points and extensions of function fields
of varieties. A field k is called large if every smooth k-curve with a k-rational point has
infinitely many such points (see [Pop96, p. 2]). In this paper we extend a key result about
the Galois theory of large fields to the context of differential Galois theory.

Differential Galois theory, the analog of Galois theory for linear differential equations, had
long considered only algebraically closed fields of constants; but more recently other con-
stant fields have been considered (e.g. see [AMO05], [And01], [BHHI6], [CHvdP13], [Dyc08],
[LSP17]). Results on the inverse differential Galois problem, asking which linear algebraic
groups over the constants can arise as differential Galois groups, have all involved constant
fields that happen to be large. In this paper, we prove the following result (see Theorem :

Theorem A. Ifk is any large field of infinite transcendence degree over Q, then every linear
algebraic group over k is a differential Galois group over the field k(x) with derivation d/dzx.

As a consequence, we solve the inverse differential Galois problem over Q,(z); this had
previously been open. (See also Corollary )

In differential Galois theory (as in usual Galois theory), authors have considered embedding
problems, which ask whether an extension with a Galois group H can be embedded into one
with group G, where H is a quotient of G. (For example, see [MvdP03|, [Hrt05], [Obe03],
[Ern14], [BHHW1g|, [BHH1S].) In order to guarantee solutions, it is generally necessary to
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assume that the extension is split (i.e., G — H has a section). In this paper we prove the
following result about split embedding problems over large fields (see Theorem :

Theorem B. If k is a large field of infinite transcendence degree over Q, then every split
differential embedding problem over k(x) with derivation d/dz has a proper solution.

In fact, our proof shows somewhat more. Given a field kg of characteristic zero, and a
linear algebraic group G over kq, there exists an integer n such that for any large overfield
k/ko of transcendence degree at least n, there is a Picard-Vessiot ring over k(x) with differ-
ential Galois group Gy, (see Theorem [3.3[a)). A similar assertion holds in the situation of
Theorem [B] see Theorem [£.4f(a).

Theorems A and B above carry over Main Theorem A of [Pop96] from usual Galois theory
to differential Galois theory. That result, which was the culmination of much work on inverse
Galois theory for function fields over various types of base fields, proved that every finite
group is a Galois group over k(x), and that finite split embedding problems are solvable over
k(x), if k is large. That result made clear that inverse Galois theory over function fields is
best studied in the context of large fields, which include in particular R, Q,, k((2)), k((s, 1)),
algebraically closed fields, and pseudo-algebraically closed fields. We refer the reader to
[Pop14] for a further discussion.

Theorem [A] also generalizes a number of known results on the differential inverse Galois
problem (e.g., in the cases of k being algebraically closed, or real, or a field of Laurent series
in one variable), as well as yielding other results (e.g., the cases of PAC fields, Laurent
series in more than one variable, and the p-adics). Moreover, in this paper we generalize the
theorem further from k(x) to all differential fields with field of constants k that are finitely
generated over k (Corollary .

A special case of Theorems [A| and [B| was proven by the first three authors in [BHHI6],
where k was required to be a Laurent series field ky((¢)). The restriction there to that case
had resulted from the use of patching methods in that paper. In the current paper, we
bring in other ideas to build on the results of [BHHI16] and of two sequels ([ BHHW18] and
[BHH1S]), in order to obtain our theorems about function fields over large fields. In [BHHIS|,
Theorem 4.2], it was shown that proper solutions exist to every split differential embedding
problem over ko((t))(z) that is induced from a split embedding problem over ky(x). Since
Laurent series fields are large, the main result in this current paper also yields a new result
over Laurent series fields, namely that in [BHH18] the hypothesis on the embedding problem
being induced from ky(z) can be dropped.

As in the case of embedding problems over large fields in usual Galois theory, it is necessary
in our main result to assume that the embedding problem is split. In usual Galois theory,
this is because in order for all finite embedding problems over k(x) to have proper solutions,
it is necessary by [Ser02, 1.3.4, Proposition 16] for k(z) to have cohomological dimension
at most one; and hence for k to be separably closed (not merely large). In differential
Galois theory, every finite regular Galois extension of k(z) is a Picard-Vessiot ring for a
finite constant group, and so the same reason applies. On the other hand, in usual Galois
theory, every finite embedding problem over k(z) (even if not split) has a proper solution if
k is algebraically closed, and in fact has many such solutions in a precise sense; this implies

that the absolute Galois group of k(x) is free of rank card(k) (see [Pop95] and [Har95]).
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In the differential situation, it was shown in [BHHWIS| Theorem 3.7] that all differential
embedding problems over C(z) have proper solutions. The main theorem of the current
paper combined with Proposition 3.6 of [BHHW18] implies that for any algebraically closed
field k£ of infinite transcendence degree over QQ, every differential embedding problem over
k(z) has a proper solution (Corollary [4.6)).

Unlike the analogous results in usual Galois theory, our Theorems [A] and [B] assume infinite
transcendence degree. This extra hypothesis results from specialization in differential Galois
theory behaving differently than in usual Galois theory. In both situations, an extension
of k((t))(x) with a given group G descends to an extension of [(z) with group G, for some
finitely generated field extension [/k contained in k((¢)). The field [ is the function field
of a k-variety V', over which the Galois extension is defined. In usual Galois theory, the
Bertini-Noether theorem (e.g., [F-JO8, Proposition 9.4.3]) yields a dense open subset U C V
such that the specialization of the Galois extension to any k-point of U is again a GG-Galois
field extension; and this yields the desired result for k large. But in differential Galois theory,
the natural analog of Bertini-Noether fails, and the situation is much more complicated (see
[Hru02l Section 5]). In order to complete the strategy in our situation, we first use that the
given group descends to a finitely generated field extension ky/Q. Then the extension of
k((t))(z) with differential Galois group G descends to an extension of k;(z) with differential
Galois group G for a suitable finitely generated field extension ky C ko((t)) of ko. If the
transcendence degree of k/kg is greater or equal the transcendence degree of ki /kg, then
we can embed k; into k£ (Cor. [1.2)) and achieve Theorem [A| by base change from k; to k.
(This can be viewed as descending to a kg-variety and then specializing to a k-point that
lies over the generic point of that variety.) As the group varies, so do kg and kq; so to obtain
Theorem [A] for all G we require k to have infinite transcendence degree over Q.

This manuscript is organized as follows. Section [If concerns embeddings of function fields
into large fields. More specifically, Proposition [1.1] originally proven by Arno Fehm, states
that the function field of a smooth connected variety over a subfield of a large field can be
embedded into that large field under certain hypotheses. This proposition and its corollary
are key to deducing our results over large fields from the case of Laurent series fields, in
Sections [3| and [4] Section [2] concerns Picard-Vessiot theory over arbitrary constant fields of
characteristic zero. In particular, it is proven here that the property of being Picard-Vessiot
is preserved under base change. In Proposition [3.1] and [£.2] respectively, this is used to
descend a Picard-Vessiot ring over a function field to one over a smaller ground field (viz. a
rational function field over a finitely generated subfield of the original field of constants). We
use these descent results to solve the differential inverse problem and differential embedding
problems in Sections [3] and [} in the context of large fields.

We thank William Simmons and Henry Towsner for helpful discussions.

1. EMBEDDINGS INTO LARGE FIELDS

The aim of this section is to prove that certain subfields of the Laurent series field k((t))
can be embedded into k if £ is a large field, which will become important in Section (3| and
Section [l Recall that a field k is large if every smooth k-curve with a k-rational point

has infinitely many such points. Examples include algebraically closed fields, fields that are
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complete with respect to a nontrivial absolute value (see e.g. [Pop14], Section 1, Ex. A.2]), and
fraction fields of domains that are Henselian with respect to a non-trivial ideal (see [Pop10],
Theorem 1.1). In particular, the fields C, R, Q,, and the fraction field ko((1,...,t,)) of a
power series ring in several variables are all large.

If k is large, then every smooth k-curve with a rational point has card(k) rational points
([Popl4, Thm. 3.1.1]). Also, if k is large and X is a smooth irreducible k-variety with a
rational point, then X (k) is dense in X ([Popl4, Prop. 2.6]). Moreover a field k is large
if and only if it is existentially closed in its Laurent series field k((¢)) ([Popl4l Prop. 2.4]).
Hence if k is large and X is a smooth k-variety with a k((¢))-point, then X has a k-point.

The following result was proven in [Fehll]; see Theorem 1 and Lemma 4 there. Below we
give a shorter and more direct proof, using a different strategy. (Here and below we write
td(k/l) for the transcendence degree of a field extension k/I.)

Proposition 1.1. Let k be a large field, | C k be a subfield, and V' be a smooth connected
l-variety with function field L = 1(V') and V (k) non-empty. Suppose that td(k/l) > dim(V').
Then the canonical embedding of fields | — k can be prolonged to an embedding of fields
L — k. Equivalently, there exist k-rational points dominating the generic point of V.

Proof. Since V' is smooth and connected, it is also integral. Hence the given k-rational point
is contained in a nonempty (dense) affine open subvariety which is smooth and integral,
and we may replace V' by that subvariety (which we again call V). Let R := [[V] be its
coordinate ring; then L = Frac(R). Given any k-point of Spec(R) (i.e., a point = € Spec(R)
together with an l-algebra map ¢ : k(z) < k), let d, := td (k(z)/l). Choose (z,1) as above
such that d, is maximal; hence d, < dim(V'). It suffices to show that d, = dim(V), since
then x is the generic point of V.

Suppose to the contrary that d, < dim(V). Let u := (uq,...,uq4,) be a system of func-
tions in R such that its image & = (4, ..., uq,) under the reduction map R — k(z) is a
transcendence basis of k(x) over [. The composition [[u] - R — R/I, = k(x) is injective,
hence l[u] N I, = {0}, where I, < R is the prime ideal defining z. Let {; = I(u) = Frac(l[u])
and Ry := R @y [;. The l-embedding R — R, defines a dominant morphism of schemes
Vi := Spec Ry < Spec R = V, with V} a smooth [;-variety. Since k(z) is an algebraic field
extension of Iy, x € V is the image of a closed point of V;. Hence 7 : k(x) — k defines a
k-point z; € Vi(k). Let [ be the algebraic closure of Iy in k. Since td(ly/l) < td(L/l) =
dim(V') < td(k/1), it follows that [ is strictly contained in k. Hence by Theorem 3.1, 2) from
[Pop14], V; has a k-point that is not an [;-point. The associated point z € Vi = Spec(R;)
is equipped with an l;-embedding ¢ : k(z) < k whose image is thus not algebraic over .
Viewing z as a point of V' via V; — V| we obtain a contradiction to maximality because

d, =td (H(Z)/l) = td (/{(z)/ll) + td(l1 /1) > td(l1 /1) = d,. 0J
This proposition yields the following corollary, which we use in proving Theorem [3.3]

Corollary 1.2. Let k be a large field, kg C k and ki C ko((t)) be subfields with ko C ki,
td(k1/ko) < td(k/ko) and ky/ko finitely generated. Then there exists a ko-embedding ki — k.
In particular, if ko C k are fields such that k is large and td(k/ko) is infinite, then for every
finitely generated field extension ki /ko with kv C ko((t)) there is a ko-embedding ki — k.
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Proof. Let ky be as in the statement of the corollary. Since K := ko((t)) is separably gener-
ated over ko and kq is relatively algebraically closed in Ky (that is, Ky/ko is a regular field
extension), it follows that k; is separably generated over kg and ky is relatively algebraically
closed in k; as well. Equivalently, there exists a geometrically integral smooth kg-variety
V with ko(V) = ky and dim(V') = td(ky/ko). For such a V', V (k1) is non-empty (because
it contains the generic point of V') and thus V(Kj) is non-empty as well since Ky D k.
Therefore, so is V(K), where K := k((t)) 2 ko((t)) = Ko. Since k is large, it is existentially
closed in K = k((t)) (as noted earlier); and so V' (k) is also non-empty. An application of
Proposition yields a kg-embedding k; — k (with [ of loc.cit. replaced by k). O

2. PICARD-VESSIOT THEORY

Our main results concern differential Galois theory over a field of constants that is large but
not necessarily algebraically closed. Whereas classical Picard-Vessiot theory (as in [vdPS03])
assumes an algebraically closed field of constants, we need to use a more general form of the
theory; e.g., see [Dyc08] and [BHHIG). In Proposition [2.3] we prove that being a Picard-
Vessiot ring is preserved under extension of constants; this is used in Sections [ and [4

Let Cr denote the ring of constants of a differential ring R. For a differential field F' of
characteristic zero, K = Cp is a field that is relatively algebraically closed in F'. Consider
a matrix A € F™*" and the corresponding linear differential equation d(y) = Ay. A fun-
damental solution matriz for this equation is a matrix Y € GL,(R) with entries in some
differential ring extension R/F such that 0(Y) = A - Y ie., the columns of the matrix
Y form a fundamental set of solutions. A Picard-Vessiot ring for 0(y) = Ay is a simple
differential ring extension R/F with Cr = K such that R is generated by the entries of
a fundamental solution matrix Y € GL,(R) together with det(Y)~!. For short, we write
R = F[Y,det(Y)™!].

The differential Galois group of a Picard-Vessiot ring R/F is the functor

G : (K —algebras) — (Groups), G(S):= Aut?(R®x S/F ®k S),

where Aut?(R ®@x S/F ®x S) indicates the F ®g S-linear differential automorphisms of
R ®k S , and where the K-algebra S is given the trivial derivation. The functor G is
represented by the K-Hopf algebra Cre,r = K[(Y '®Y),det(Y '®@Y) "], where Y '®Y :=
(Y"'®1) - (1®Y). Hence G is an affine group scheme of finite type over K, and thus a
linear algebraic group over K (since char(K) = 0).

Remark 2.1. If K is algebraically closed, then G is determined by its group of K-points
G(K) = Aut?(R/F), which is the classical differential Galois group over such a K. Moreover,
in that situation there is a unique Picard-Vessiot ring up to isomorphism for every matrix
A e F»*" ([vdPS03, Prop. 1.18]). This is not the case for general fields of constants; both
existence and uniqueness can fail. But over a rational function field, Picard-Vessiot rings
do always exist, which is easy to see using a power series expansion of the solution at an
ordinary point of the differential equation (i.e., where it is not singular) which is defined over
K. More generally, the same holds for the function field of any K-curve with an ordinary

K-point, whether or not K is finitely generated.
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The following fact is worth noting but will not be used in this paper: If a Picard-Vessiot
ring does exist for a given differential equation, the set of isomorphism classes of Picard-
Vessiot rings for that equation is in bijection with H'(K,G). Here G is the differential
Galois group of (any) one of the Picard-Vessiot rings for the equation (choosing a different
Picard-Vessiot ring gives an inner form of G and thus does not change the Galois cohomology
set). For a proof, see [Dyc08, Cor. 3.2] or [CHvdP13|, Prop. 1].

By differential simplicity, every Picard-Vessiot ring R/F is an integral domain such that
Ctrac(r) = Cr = Cp. More generally:

Lemma 2.2. Let R be a simple differential ring containing Q. Then R is an integral domain
such that Cr is a field, and the constant field of Frac(R) is equal to Cg.

Proof. As in [vdPS03, Lemma 1.17.1], every zero divisor of R is nilpotent and the radical
ideal is a differential ideal (see also [Dyc08, Lemma 2.2]). Hence R is an integral domain. If
x € Frac(R) is constant, then I = {a € R | ax € R} is a non-zero differential ideal in R and
thus 1 € I and x € R. Hence Crac(r) = Cr and in particular, Cr is a field. O

Proposition 2.3. Let F' be a differential field of characteristic zero with field of constants
K and let R/F be a Picard-Vessiot ring with differential Galois group G. Let K'/K be a
field extension and define F' = Frac(F @k K') and R' = R®p F'. Then F' is a differential

field extension of F with Cr = K’ and R’ is a Picard-Vessiot ring over F' with Galois group
GK/ =G XK K'.

Proof. The derivation on F' extends canonically to the integral domain F' ®x K’ and hence
to F’, by considering elements in K’ as constants. Both F and R are simple differential
rings with constant field K; so F' ®x K’ and R ®k K’ are also simple differential rings,
by [Maul(, Lemma 10.7], with constants K’. By Lemma [2.2] Cp = Cpgx = K’ and
CFrac(R®KK’) = CR®KK’ =K'

Since R/F is a Picard-Vessiot ring, R = F[Y,det(Y)™!] for some fundamental solution
matrix Y € GL, (R) for a differential equation d(y) = Ay over F.. Thus R’ = F'[Y,det(Y)™1],
where we view R C R'. Identifying R ®x K’ with R ®p (F ®k K') C R', we have R’ =
RrF =Rer SHF @k K') =S Y Rer (F o K')) =S YR®k K') and Frac(R') =
Frac(R®g K'), where S is the set of non-zero elements in F' @ K'. S0 Cprac(ry = K' = Cpr.
By [Dyc08, Cor. 2.7], it then follows that R’ is simple and R'/F" is a Picard-Vessiot ring for
the differential equation 0(y) = Ay.

Let G’ denote the differential Galois group of R'/F’. We claim that G’ = Gks. For every
K’-algebra S, there is an injective group homomorphism

Grr(S) = Awt?(R®x S/F @ S) = G'(S) = Awt?(R' ®x: S/F' @51 ),

using that R’ ®g S is a localization of R @k S. Conversely, every v € G'(S) restricts to
an injective differential homomorphism R @ S — R’ Q@ S. The matrix B = Y !9(Y) €
GL, (R ®k S) has constant entries and is thus contained in GL,(S). Therefore, v(Y) =Y B
is contained in R ®f S. Since R = F[Y,det(Y)™!], we conclude that 7(R ®x S) = R®x S.
Thus ~ restricts to an element in G/ (S). Hence the homomorphism Gg/ (S) — G'(S) is a

bijection and it defines an isomorphism of linear algebraic groups Gg — G'. 0J
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If K'/K is algebraic, then F' ®y K’ is a field, and the statement and proof of the above
proposition simplify. We will use Proposition in Sections [3] and [ in the context of
F = K(z) and F' = K'(z), with K’'/K not algebraic.

3. THE INVERSE DIFFERENTIAL (GALOIS PROBLEM

In this section we solve the inverse differential Galois problem for rational function fields
over a large field of constants having infinite transcendence degree over Q. Our strategy is to
build on the main result of [BHHI6], which solved the problem in the case that the ground
field is of the form ko((t)). Concerning the passage from that case to the case of large fields,
we note that Laurent series fields are large; and in addition, any large field & is existentially
closed in the Laurent series field k((t)).

Our proof relies on the notion of “descent”. More precisely, if F'/F is an extension
of differential fields, we say that a Picard-Vessiot ring R'/F’ descends to a Picard-Vessiot
ring over F' if there exists a Picard-Vessiot ring R/F together with an F’-linear differential
isomorphism R®p F’ = R'. In particular, given a field extension K/k, a Picard-Vessiot ring
R over K (x) descends to a Picard-Vessiot ring over k(z) if there exists a Picard-Vessiot ring
Ry/k(x) together with a K (z)-linear differential isomorphism R = Ry @y, K (z).

Proposition 3.1. Consider a rational function field K(z) of characteristic zero with deriva-
tion 0 = d/dx and let R/ K (x) be a Picard-Vessiot ring with differential Galois group G. Let
further ko C K be a subfield and let Gy be a linear algebraic group over ko with (Go)x = G.
Then there is a finitely generated field extension ki/ky with kv C K such that R/K(x)
descends to a Picard-Vessiot ring Ry/ki(x) with differential Galois group (Go)g, -

Proof. As R is a finitely generated K (x)-algebra, we can write R as a quotient of a polynomial
ring K (x)[X1,...,X,] by an ideal J. We fix generators ¢i, ..., gn, of J:

R=K()[Xy,....X.)/(91,- -, 9m)-

We fix an extension of 0 from K(z) to K(z)[Xq,...,X,] such that this derivation induces
the given derivation on R. In particular, J is a differential ideal in K (x)[X7,...,X,]. We
can now choose a finitely generated field extension k/kqg with & C K such that

(1) g; € k(x)[X1,...,X,] foralli=1,...,m, and

(2) 0(X;) € k(x)[Xy,...,X,] foralli=1,...,r and

(3) R = K(x)[Y,det(Y)™!] for a fundamental solution matrix Y € GL,(R) with the property
that all entries of Y have representatives in k(z)[Xy, ..., X,], and

(4) the element in R represented by X; can be written as a polynomial expression over k(z)
in the entries of Y and det(Y) ™! foralli=1,...,r.

Property (2) implies that k(z)[ Xy, ..., X,] is a differential subring of K (x)[Xy,...,X,]. Set
I =JnNk(x)Xy,...,X,]. Then I is a differential ideal in k(z)[X, ..., X,] and it contains
g1y, 9m by (1). As K(z)/k(x) is faithfully flat, I is thus generated by g¢i,...,gm. We
define Ry = k(z)[X4,...,X,]/I. Hence

Ry = k(z)[Xy, .. - X /(91,1 9m)



is a differential ring and as K(x) is flat over k(x), there is a K (x)-linear isomorphism of
differential rings

R, k() K(x) =~ R.

Let ¢ € Cg,. As Cr = K, there exists an a € K such that we have c® 1 = 1 ® a in
Ry @y K(x). Thus a € k() and ¢ = a € k. Hence Cg, = k.

Next, consider a non-zero differential ideal I; C R;. Then J; = I; ®j(y) K () is a non-zero
differential ideal in Ry ®y(,) K(x) = R, and as R is a simple differential ring, we conclude
1€ Ji. As K(x)/k(z) is faithfully flat, Ry ®p) K () is faithfully flat over R, and therefore
I, = J1 N Ry. Hence 1 € I} and we conclude that R; is a simple differential ring.

Finally, (3) implies that the matrix Y has entries in the subring Ry of R. Its determinant
det(Y) € R; is a unit when considered as an element in Ry ®j) K (z) and thus det(Y)
is invertible in Ry, so Y € GL,(R;). Set A = 9(Y)Y~'. As Y is a fundamental solution
matrix for R/K(z), A has entries in K(z). On the other hand, ¥ € GL,(R;) implies
that the entries of A are contained in R;. Hence A has entries in Ry N K(z) = k(z) and
thus Y is a fundamental solution matrix for a differential equation over k(x). Furthermore,
Ry = k(x)[Y,det(Y)™!] by (4). Hence Ry is a Picard-Vessiot ring over k(x).

Let Gy be the differential Galois group of Ry/k(z). Then G is a linear algebraic group
over k and (G1)x = G by Proposition 2.3] Therefore, (G1)x = ((Go)x)rx, and hence there
exists a finite extension ki /k with

() (Gw = (Go)g,-
We conclude that R descends to the Picard-Vessiot ring Ry ®p) ki(z) over ki(z) with
differential Galois group (Go)x, by Proposition [2.3] O

An analog of Proposition in the context of differential embedding problems can be
found in the next section (Proposition below). We illustrate the above proposition with
the following example. Here we take K in the proposition to be a Laurent series field,
since that is the type of field that will be used in the next result; and we illustrate how a
Picard-Vessiot ring over K (z) can be descended to the rational function field over a finitely
generated field of constants.

Example 3.2.  (a) Let E be a subfield of C, let K = E((t)), and let G be the orthogonal
group Og k. Here G is induced by the group Gy = Oy over ky = Q C K. Endow
K (z) with the derivation 0 = d/dx and consider the differential equation Y =

AY over K(x) with A = (i _tl) Then a Picard-Vessiot ring R/K(z) for this

differential equation is given by

R = K(z)[y1, y2, (i +33)"'] C K((@)),

with y; = e cos(z) € K((z)) and y, = e®sin(z) € K((x)), so that y} + y2 = e*2;
Y —Y2
Y2 U1
R over K(x) is then G. This Picard-Vessiot ring descends to a Picard-Vessiot ring

over ki(x) with group (Gy)g, (satisfying conditions (1)-(5) in the above proof) for a
8
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finitely generated field extension k;/Q with k; C K, as in Proposition . Namely,
we may take k; = Q(t).

(b) Let K = C((t)) and now consider the group G = G2, ;, which is induced by Gy :=
G2, o- Since i € K, the groups G}, ;- and Ok are isomorphic; but the groups G7,
and Oy g are not. So if we consider the same differential equation as in part @, then
the descent of R to Q(¢)(x) considered above does not have differential Galois group
(Go)a), but rather O g(). On the other hand, over the field k; := Q(3, ), these two
groups become isomorphic. So the above Picard-Vessiot ring over K (z) with group
G descends to a Picard-Vessiot ring over ki(x) with group (Go)y, -

We now come to the main result of this section, the second part of which is Theorem [A]
from the Introduction.

Theorem 3.3. (a) Let ko be a field of characteristic zero, and let G be a linear algebraic
group over kqg. Then there exists a constant cq € N, depending only on G, with the
following property: For all large fields k with ko C k and td(k/ky) > cq, Gk is a
differential Galois group over (k(z), L).

(b) If k is a large field of infinite transcendence degree over Q, then every linear algebraic
k-group is a differential Galois group over k(z) endowed with 0 = d/dzx.

Proof. Let K := ko((t)) be the Laurent series field over ky. Then 0 = d/dz extends from
k(x) to K(x) and by [BHHI16, Thm. 4.5], there exists a Picard-Vessiot ring R/K (x) with
differential Galois group G. Then by Proposition [3.1] there exists a finitely generated field
extension ki /ko with ky C K such that R/K(z) descends to a Picard-Vessiot ring Ry /ki(x)
with differential Galois group Gg,. Set ¢, := td(k1/ko).

Let k be a large field with ky C k and td(k/ko) > c¢5. Then by Corollary , there
exists a kop-embedding k; — k. To conclude the proof of (a), we can now base change R
to Ry ®g, () k(x), and obtain a Picard-Vessiot ring over k(x) with differential Galois group
(Gky)r = Gy, by Proposition [2.3]

The proof of assertion (b) follows easily from (a), by noticing that every linear algebraic
k-group G descends to a subfield ky C k, which is finitely generated over Q. 0

Example 3.4. (a) Let kp = Q and G = Oqg. Proceeding as in the proof of Theorem (3.3
let K = Q((¢)) and consider a Picard-Vessiot ring R/K (z) with differential Galois
group Gk . Specifically, we may choose R as in Example (with F = Q). As
in that example, R descends to a Picard-Vessiot ring over k; = Q(¢). If k is a large
field of transcendence degree at least one over (Q, then we can embed k; into k, and
we can then base change the Picard-Vessiot ring over k;(x) to obtain one over k(z).

(b) More generally, for any positive integer n, and with kg and K as in part @, we may
consider the differential equation Y = A,)Y, where A,, is the 2n x 2n block diagonal

t; —1

(e.g., algebraically independent) elements of K. A Picard-Vessiot ring R/K(x) for

this differential equation is given by

R= K<x)[y1i>y2i7 (y%z + ygi)_l ’Z =1,... 7n] C K(<$))’
9
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with differential Galois group Oj ;. This Picard-Vessiot ring descends to a Picard-
Vessiot ring over ky(x) with group (O%)x,, where k1 = Q(ty,...,t,) C K. If kis a
large field of transcendence degree at least n, then we can embed k; into k and we
obtain a Picard-Vessiot ring over k(z) with group O3 .

Remark 3.5. (a) Theorem guarantees the existence of a Picard-Vessiot ring with pre-
scribed differential Galois group. By a standard Tannakian argument, one can more-
over prescribe the representation, i.e., the action on the solution space (see [BHH16],
Prop. 3.2).

(b) There exist large fields of arbitrary transcendence degree over Q. Namely, for any
non-zero cardinal d, if K = Q(z,|a € I) where {z, |« € I} is a set of d variables,
then the algebraic closure k of K (t) in K((t)) is a large field with td(k/Q) = d. The
field of algebraic p-adics (i.e., the relative algebraic closure of Q in Q,) is large of
transcendence degree equal to zero.

By [BHHI16, Cor. 4.14] (this is an adaption of a trick due to Kovacic), Part (b) of Theo-
rem (3.3 extends from the rational function field k(z) to all finitely generated field extensions
with arbitrary derivations that have field of constants k:

Corollary 3.6. Let k be large field of infinite transcendence degree over Q. Let F be a
differential field with a non-trivial derivation and field of constants k. If F/k is finitely
generated, then every linear algebraic group over k is a differential Galois group over F'.

This result in particular applies if the field of constants k is Q, (or, more generally, a
Henselian valued field of infinite transcendence degree) or if k = ko((¢4,...,t,)), the fraction
field of a power series ring in several variables.

4. DIFFERENTIAL EMBEDDING PROBLEMS

In this section, we solve split differential embedding problems over k(z) for large fields k
of infinite transcendence degree over Q. As in Section [3| we build on the Laurent series case,
relying here on [BHHIS], where induced differential split embedding problems were solved
via patching methods. In this way, we parallel the strategy that was used in usual Galois
theory, where the solvability of finite split embedding problems for function fields over large
fields was deduced from an analogous assertion over Laurent series fields; see [Pop96], [HJ98],
and [HS05]. But in the differential context, new issues need to be treated.

To this end, we work with differential torsors, which were introduced in [BHHW18]. Let
F be a differential field of characteristic zero with field of constants K and let G be a linear
algebraic group over K. We equip its coordinate ring K[G| with the trivial derivation,
hence F|Gr| = F ®k K[G] is a differential ring extension of F. We write F[G] = F[GF].
A differential Gg-torsor is a Gp-torsor X = Spec(R) such that R is a differential ring
extension of " and such that the co-action p: R — R®p F[G] is a differential homomorphism.
A morphism of differential Gp-torsors ¢: X — Y is a morphism of G g-torsors (i.e., a Gp-
equivariant morphism of varieties) such that the corresponding homomorphism F[Y] — F[X]
is a differential homomorphism.

If Spec(R) is a differential G g-torsor and H is a closed subgroup of G, the ring of invariants

is defined as R¥7 = {r € R | p(r) = r ® 1}. If N is a normal closed subgroup of G, then
10



Spec(RMF) is a differential (G/N)p-torsor and the co-action RV — RNr @p F[G/N] =
RNr @p F|G)VF is obtained from restricting the co-action p: R — R®p F[G] (see Prop. 1.17
together with Prop. A.6(b) in [BHHW1S]).

By Kolchin’s theorem, if R/F is a Picard-Vessiot ring with differential Galois group G,
then Spec(R) is a Gp-torsor. The co-action p: R — R ®p F[G] can be described explicitly
as follows. Let Y € GL,(R) be a fundamental solution matrix, i.e., R = F[Y,det(Y)™!].
Recall that K[G] = Cgg g is generated by the entries of the matrix Y ' ® Y and its inverse.
Then p is determined by setting p(Y) =Y @ (Y ' ®Y). Conversely, if X = Spec(R) is a
differential G'p-torsor with the property that R is a simple differential ring and Cr = K,
then R is a Picard-Vessiot ring over F' with differential Galois group G ([BHHWIS| Prop.
1.12)).

Lemma 4.1. Let K/k be a field extension in characteristic zero and let Fy be a differential
field with field of constants k. We equip K with the trivial derivation and set F' = Frac(F) ®,
K). Let further G be a linear algebraic group over k. Assume that we are given a Picard-
Vessiot ring R/ F with differential Galois group G which descends to a Picard-Vessiot ring
Ry /Fy with differential Galois group G. Then the following holds.
(a) The co-action p: R — R ®p F[G] restricts to the co-action py: Ry — Ry ®@p, F1[G].
(b) For every closed subgroup H of G, the isomorphism Ry @, F = R restricts to an
isomorphism Ry™ @p, F = RHF,

Proof. Let Y € GL,(R;) be a fundamental solution matrix, i.e., By = Fi[Y,det(Y)™]. As
R descends to R;, there is a differential isomorphism Ry ®p, F' = R over F'. Hence after
identifying R; with a subring of R, we obtain an equality R = F[Y,det(Y)™!]. Define
Z=Y'®Y € GL,(R; ®r, R1) C GL,(R ®r R). Recall that F\[G] = Fi[Z,det(Z)™!]
and the co-action p;: Ry — Ry ®p, F1[G] is given by Y — Y ® Z. Similarly, the co-action
p: R— R®p F|G] is given by Y — Y ® Z. Hence p = p; ®p, F and (a) follows.

The H-invariants are defined as R” = {f € R | p(f) = f ® 1} and so the equality
p = p1 ®p, F implies (b). O

A split differential embedding problem (N x H,S) over F' consists of a semidirect product
N x H of linear algebraic groups over K together with a Picard-Vessiot ring S/F with
differential Galois group H. A proper solution of (N x H,S) is a Picard-Vessiot ring R/F
with differential Galois group N x H and an embedding of differential rings S C R such that
the following diagram commutes:

N x H H

; |

Aut’(R/F) —=—= Aut’(S/F)

Equivalently, R is a Picard-Vessiot ring with differential Galois group N x H such that
there exists an isomorphism of differential Hp-torsors Spec(S) = Spec(RMr) ([BHHWIS,
Lemma 2.8]).

Proposition 4.2. Let F = K(x) be a rational function field of characteristic zero with

derivation 0 = d/dx and let kg C K be a subfield. Let (Ng x Hy, So) be a split differential
11



embedding problem over ko(x). Then for every proper solution R of the induced differential
embedding problem ((No) x X (Ho)k, So@ky@) K (v)) over K(x), there exists a finitely generated
field extension ki/ko with ky C K such that the following holds: R/K(x) descends to a
Picard-Vessiot ring Ry/ki(x) that is a proper solution of the split differential embedding
problem ((No)r,  (Ho)k,, So @ko(a) k1(x)) over ky(z).

Proof. We define N = (No)g, H = (Ho)k, S = So ®@ryz) K(v) and further G = N x H
and Go = Ny X Hy, hence (Gy)x = G. By Proposition , there exists a finitely generated
extension ki /ky with k; C K such that R descends to a Picard-Vessiot ring Ry /ki(x) with
differential Galois group (Go)g,. Therefore, we can write R = K(z)[X1,...,X,|/I and Ry =
ki(z)[X1,...,X,]/I;, for some polynomial ring K (x)[X7,...,X,]| with a suitable derivation
that restricts to ki(x)[X1,...,X,] and some differential ideal I that is generated by its
contraction I} = I N ky(x)[Xy,...,X,]|. Similarly, we can write Sy = ko(z)[Y1,..., Ys]/Jo,
S = K(z)[Y1,...,Y]/J with J = Jy Qpyz) K(x). We define S; = Sy ®py(e) k1(z). Then
S = ki(x)[Yr, ..., Y]/ Ji with Ju = Jy ®py) ki1(x). Since K(x)/ki(x) is faithfully flat,
Ji=J Nk (x)[Y1,...,Ys]. Let
@: S — RNk

be the given isomorphism of Hp(,)-torsors. After passing from k; to a finitely generated
extension, we may assume that

(1) » maps the elements in S = K (x)[Y1, ..., Y]/ J represented by Yi, ..., Y to elements in
R = K(z)[Xy,...,X,]/I that are represented by elements in k;(z)[X7, ..., X,]

(2) RVx@ is generated as a K(x)-algebra by finitely many elements a1,...,q,, € R =
K(z)[Xy,...,X,]/I with the property that all ay, ..., a,, are represented by elements in
k?l(l')[Xl, ce 7X7‘]

(3) for i = 1,...,m, a; = ¢(pf;) for an element B; € S = K(x)[Y1,...,Ys]/J that is repre-
sented by an element in &y (x)[Y3, ..., Y]]

For the sake of simplicity, we will write expressions such as Ny, (), Hy, () meaning (No), (2
(Ho)k, (). We will also write expressions such as k1 [G], ki1[H]| meaning k;[Go] and ki [Hy,
respectively.

Property (1) implies ¢(S;) C By N RV« and as Ry N RVk@ = Rivkl(”) by Lemma
we conclude that ¢ restricts to an injective differential homomorphism

Niy (o
Q1 Sl—>R1k1<>.

It remains to show that ¢ is an isomorphism of Hy, (,)-torsors.

We claim that Rivklm = kilay, ..., qp]. Since By N RVx@) = Rivkl(z), Property (2) implies
that «; is contained in Rivkl(””) for all 4, and hence Rivkl(m) D kylaq, ..., ). On the other
hand, a1, ..., a,, generate RVE@  that is,

RVk@) — ]{jl[al, - ,am] ks (x) K(I‘)
By Lemma , we also have an equality RVx@ = Rivkl(z) Qky () K () and thus

Nigy (x
12



and we conclude
Rflkl(x) = ]{?1[0./1, Ce ,O./m].

Therefore, Property (3) implies that ¢, is surjective. Finally, since ¢ is H(y)-equivariant,
we conclude that its restriction is Hy, (,)-equivariant, where we use Lemma . together
with the fact that the co-action of Hy(,) on R¥x@ is given by restricting R — R ®p F|G]
to RNF — RNF QF F[G]NF = RNF QF F[H] OJ

Example 4.3. Take K = Q((t)) and ko = Q C K. Let G be the Borel subgroup Byg C
SLs g consisting of matrices of the form ((g oﬁ 1). Thus G is isomorphic to the semi-

direct product G, g X Gy g, with a € Gy, g conjugating 8 € G, to o?8. The ring Sy :=

Q(z)[e*,e*] C Q((x)) is a Picard-Vessiot ring over Q(z) with group Gy, g, with respect to

the derivation 0 = d/dx; here o € Gy, o takes e” — ae®. Thus we have a split differential

embedding problem £ = (G,g X G, q,50) over Q(x), which induces such an embedding

problem Ex over K(z). Let u be a nonzero element of K, let z € K((z)) be an element
1

satisfying 0(z) = z=e > € K[[z]], and let y = ue®2. Note that z (and hence also y)

is transcendental over the fraction field of Sy because the exponential integral is not an

é ﬁ) Then R = K(x)[e®,e™", 2] = K(x)[e",e ", y] C

K((z)) is a Picard-Vessiot ring for the differential equation 0Y = AY over K(x), with a
° e‘?fx). The differential Galois group of R

elementary function. Let A = (

0
over K(z) is G, with @ € Gy, i taking e — ae® and 2z — a2z, so that y — a~'y; while
B € G,k fixes e¥ and takes y — y + B. Thus R is a proper solution to the embedding
problem Eg. If we take k; = Q(¢,u) C K, then R descends to a proper solution to the
induced split differential embedding problem &, over ki(x) by the proof of Prop. 4.2

fundamental solution matrix given by Y = (

The main result of this article is the following theorem, whose second part is Theorem
from the Introduction.

Theorem 4.4.

(a) Let ko be a field of characteristic zero, and let € = (Ng x Hy, So) be a split differential
embedding problem over (ko(z),-L). Then there is a constant ce € N, depending only
on €, with the following property: For all large fields k with ko C k and td(k/ky) > cg,
the induced differential embedding problem ((No)r % (Ho)k, So @ko(z) k(z)) over the
differential field (k(x), %) has a proper solution.

(b) If k is a large field of infinite transcendence degree over Q, then every split differential
embedding problem over the differential field (k(x), ) has a proper solution.

' dx
Proof. Set Gy = Ny x Hy. We define K' = ko((¢)) and endow K(z) with the derivation
d/dz. Then S = S, ®Qko(z) K () is a Picard-Vessiot ring over K(x) with differential Galois
group (Hp)x by Proposition 2.3 By [BHHIS, Theorem 4.2], the split embedding problem
((No)x % (Hy)k,S) has a proper solution, i.e., there exists a Picard-Vessiot ring R/K (z)
with differential Galois group (Gy)x such that RWo)k@) and S are isomorphic as differential

H g (2)-torsors.
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Then by Proposition , there exists a finitely generated field extension k;/kq with k; C
K = ko((t)) with the property that R descends to a Picard-Vessiot ring R;/ki(x) with

differential Galois group (Gy)x, and such that RgNO)kl(z) and Sy ®py(x) k1(x) are isomorphic
as differential (Hy), )-torsors. Set cg := td(ky/ko).

Now suppose that k is a large field with kg C k and td(k/ko) > ce. Set N = (No)g,
H = (Ho)p, G = (Go)r and S = Sy Qpy(a) k(x). We claim that the embedding problem
(N x H,S) over k(z) has a proper solution. By Corollary [L.2] there exists a ko-embedding
ki — k and hence we can define R = Ry ®y,(») k(x). Then R is a Picard-Vessiot ring over
k(z) with differential Galois group ((Go), )k = (Go)x = G by Proposition 2.3 The isomor-

phism R§N°)k1<“ = S0 ®ko(z) k1 () of differential (Hy)p, (»)-torsors gives rise to an isomorphism
RNk@) = Sy @y () k() of differential Hy(,)-torsors by base change from k(z) to k(z), where

the equality RiNO)kl(gC) Ry () k(x) = RVe@) follows from Lemma and Hj,y)-equivariance
follows from Lemma @ As Sy®py(z)k(x) = S, we obtain an isomorphism of Hj,,)-torsors
RNr@) = S Hence R solves the embedding problem (N x H, S) over k(x) which concludes
the proof of (a).

Assertion (b) follows from (a) as follows: Let (IV x H,S) be a split differential embedding
problem over k(x), i.e., G = N x H is a linear algebraic group over k and S/K(z) is a
given Picard-Vessiot ring with differential Galois group H. We fix a finitely generated field
extension kq/Q with kg C k such that G and its structure of a semidirect product descends to
a linear algebraic group Gy = Ny x Hy over kq. By Proposition 3.1, we may in addition choose
ko such that S descends to a Picard-Vessiot ring Sy over ko(z) with differential Galois group
Hy, i.e., So @) k(x) = 5. We conclude the proof by applying part (a) of the theorem. [

Example 4.5. In the notation of Example [£.3] if & is a large field of transcendence degree at
least two over @, then we can embed k; = Q(¢, ) into k. The proper solution to &, given in
that example then induces a proper solution to the split differential embedding problem &
over k(x). (Note that if we were to replace the group By = G, g X Gy, @ in Example 4.3 with
By = G % G, o, along the lines of Example , then the analogous example would
require a large field of transcendence degree at least 2n.)

In the case that the field & is algebraically closed, the splitness condition in Theorem [4.4{(b)}
can be dropped, and we get a solution to all differential embedding problems:

Corollary 4.6. Let k be an algebraically closed field of infinite transcendence degree over Q.
Then every differential embedding problem defined over the differential field (k(x), d%) has a
proper solution.

Proof. According to [BHHW1S8|, Proposition 3.6], if F' is a one-variable differential function
field over an algebraically closed field of constants k, and if every split differential embedding

problem over F' has a proper solution, then every differential embedding problem over F' has a
proper solution. Using this, the corollary then follows immediately from Theorem{4.4(b)l [
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