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ABSTRACT

The rapid growth of datacenter (DC) loads can be leveraged to
help meet renewable portfolio standard (RPS, renewable fraction)
targets in power grids. The ability to manipulate DC loads over time
(shifting) provides a mechanism to deal with temporal mismatch
between non-dispatchable renewable generation (e.g. wind and
solar) and overall grid loads, and this flexibility ultimately facilitates
the absorption of renewables and grid decarbonization. To this end,
we study DC-grid coupling models, exploring their impact on grid
dispatch, renewable absorption, power prices, and carbon emissions.
With a detailed model of grid dispatch, generation, topology, and
loads, we consider three coupling approaches: fixed, datacenter-
local optimization (online dynamic programming), and grid-wide
optimization (optimal power flow).

Results show that understanding the effects of dynamic DC load
management requires studies that model the dynamics of both
load and power grid. Dynamic DC-grid coupling can produce large
improvements: (1) reduce grid dispatch cost (-3%), (2) increase grid
renewable fraction (+1.58%), and (3) reduce DC power cost (-16.9%).
It also has negative effects: (1) increase cost for both DCs and
non-DC customers, (2) differentially increase prices for non-DC
customers, and (3) create large power-level changes that may harm
DC productivity.
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· Hardware → Power and energy; · Applied computing →
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1 INTRODUCTION

Recent years have seen the rapid growth of power consumption
(loads) by hyperscale cloud providers (e.g. Amazon, Microsoft,
Google, Alibaba, Baidu) and also large-scale computing compa-
nies (e.g. Facebook, Apple, Tencent). While obscured by their rapid
cannibalization of enterprise datacenters (DCs) in recent reports
[38], a close look at the data documents their sustained growth
in power consumption of 31% annually through 2018. Recent ac-
celerants such as machine learning [27, 50], and Covid-19 driven
digitalization [41, 49] may have increased this rate. With DCs ex-
ceeding 5% of power consumption in the Northern Virginia grid and
2% of US consumption today [2], their loads are already significant.
Extrapolated to 2025, the power consumption of these hyperscale
providers will exceed 5% of US power consumption.

Renewable generation is also increasing rapidly, driven by falling
generation costs and growing climate concerns. The past decade
(2010-2020) has seen wind and solar renewable power generation
quadruple in the United States, reaching 11% nationwide, and higher
fractions in California (33%) and Texas (21.5%), and across Europe.
Ambitious renewable portfolio standard (RPS) goals have been
set in many regions for the coming decadeÐincluding California
(60%) [12], New York (70%) [43], Europe (33%) [6] all by 2030. This
transformation of the power grid has created significant renew-
able integration challenges, including both decreasing renewable
capacity credit and rapid fluctuation in generation mix (wind, solar,
fossil-fuel), driven by ever larger variation in renewable genera-
tion as share of power grid generation increases [54] (see Figure 2).
Specifically, a key challenge to overcome as we seek to enable deep
grid decarbonization is the fact that our main renewable power
sources (wind and solar) are intermittent, non-dispatchable, and
are not synchronized with overall grid load dynamics. This issue is
already creating inefficiencies in the system at moderate renewable
adoption levels (e.g. negative prices and stranded power) [10].

Researchers in universities and cloud companies have proposed
shifting computing load (power consumption) to save money [3, 28,
31, 36, 37, 45, 47, 53, 57] and also to reduce the carbon emissions
of datacenters [13, 15, 16, 18, 19, 33, 34, 46]. This is a promising
idea, but these studies do not consider the dynamic interaction with
the power grid, viewing computing as too small a load to affect
grid dynamics. With hyperscale cloud operators building gigawatt
facilities, and now a significant and growing percentage of load in
several power grids, we explore the importance of modelling grid
dynamics on the viability of DC load shifting.

Some researchers have sought to exploit excess power embod-
ied in curtailment and negative-priced power [10, 55, 56], shifting



e-Energy ’21, June 28–July 2, 2021, Virtual Event, Italy Liuzixuan Lin, Victor M. Zavala, and Andrew A. Chien

computation to datacenters intermittently-powered by such zero-
carbon power. Startups are commercializing these ideas [1, 48], and
a number of power grid researchers have proposed the dynamic
shifting of cloud power load to improve grid stability and to absorb
more renewable generation (carbon-free power) [26, 32, 59, 60].
These studies consider simple power grids and datacenter loads,
showing the theoretical promise of co-optimization.

In this paper, we consider multiple datacenters under intelligent
control as a set of dynamic loads. We explore this coupling in the
context of a detailed, realistic power grid dispatch model, exploring
a range of cloud and grid renewable configurations.We study a wide
range of hyperscale cloud configurations, ranging from 3.5% to 14%
of the grid peak load, reflecting a realistic range for several US grids
in 2022 [38] and nationally by 2027. For example, Northern Virginia
was solidly in this range by 2018, passing 5% in 2019 [2, 14]. We also
consider a wide range of renewable (wind) penetration, scaling from
15% to 60%, reflecting 2015 and aspirational 2050 in a US National
Renewable Energy Laboratory (NREL) Wind Vision Report [42].
Across that space, we consider coupling approaches ranging from
DCs as constant loads, local optimization of power cost using online
dynamic programming (DP-ONL), and delegation of datacenter
flexibility to the power grid (GC), allowing it to optimize social
welfare for all. In each situation, we examine grid dispatch cost,
renewable absorption, as well as both cloud datacenter and non-
datacenter power prices. Our findings can help power grid operators
understand benefits and challenges that arise from DC load shifting
flexibility. Moreover, they can help both DC and grid operators
understand how to best coordinate. Specific insights include:

• Greater datacenter (DC) load increases the quantity of re-
newable power absorbed, but due to temporal misalignment
fixed DC loads reduce grid renewable fraction (RPS), retard-
ing grid progress towards decarbonization. Directly, they
produce a larger increase in fossil-fuel power consumption
than prior RPS would suggest.

• Dynamic coupling of DC loads with the grid can improve
alignment, which in the best cases reduces grid dispatch
cost by 3% and increases RPS by as much as 1.58%, and also
benefit DCs by reducing their power cost by 16.9%.

• The coupling model is important: independent, local op-
timization (DP-ONL) preserves DC autonomy, but aligns
load less effectively, overshifting load and increasing both
prices and emissions. Further, DC shifting can differentially
increase prices for non-DC customers. Delegating load flexi-
blity to the grid (GC) outperforms DP-ONL in grid benefits
and fairness, but creates rapid DC capacity variationÐa chal-
lenge for DC productivity.

Overall, results indicate that the coupling model is significant
for power grid and datacenter costs as well as carbon emissions.

The remainder of the paper includes background in Section 2. In
Section 3 we consider grid impacts of growth in DC load and re-
newable generation, proposing our approach. Section 4 summarizes
power grid model, metrics, and coupling models, and describes the
coupling simulations. Sections 5 and 6 present simulations assess-
ing additional DC load and renewable generation, and the impact
of coupling models. In Sections 7 and 8, we discuss related work
and present the conclusion and future directions.

2 BACKGROUND

2.1 Hyperscale Datacenter Power Growth

The history of cloud computing efforts in sustainability includes sig-
nificant efficiency improvements (reducing power usage effective-
ness (PUE) from over 2 to as low as 1.1 for hyperscale datacenters),
and increasing the renewable power in grids by executing long-
term power purchase agreements. Despite these efforts, the power
consumption and associated carbon emissions of the largest cloud
operators continue rapid growth. For example, the long-term trend
for hyperscale cloud providers in North America is 31% growth per
annum. Figure 1 shows the recent trajectory of hyperscale datacen-
ter (cloud) power consumption in the past decade and extrapolation
to 2025 [38]. This growth may be accelerating due to machine learn-
ing; at the current rate the hyperscale providers alone will exceed
10% of the world’s power by 2030 [25].

Figure 1: Hyperscale Datacenter Power growth (TWh) in

North America 2010-18 [38], confirmed by renewable power

purchases (2018-20), and extrapolated to 2025. 2% of US elec-

tric power in 2020 with 31% annual growth.

A key reason for this growth is Jevon’s paradox (1865), which
paraphrased tersely says "efficiency increases and price reductions
only increase use, perhaps even faster" [24]. So computing’s effi-
ciency and price reductions drive the growth of computing use.
Further, the cloud success in increased ease of software develop-
ment, deployment and scaling, accelerates the use of computing
for existing and new applications from search to social networks
to worldwide videoconferencing.

In hyperscale cloud companies such as Amazon, Google, and
Microsoft, datacenter sites have grown dramatically to increase cost-
efficiency and to meet demand. Today (2020), many of these sites
exceed 200 megawatts, and larger planned sites exceed 1 gigawatt
[2, 4, 17, 39]. Our study explores modulating these large loads by
20, 40, even 60% to both increase power grid efficiency in absorbing
renewable generation and reduce the carbon emissions of cloud
computing, but also to enable datacenters (and other customers) to
achieve lower prices.

2.2 Economic Dispatch, Fluctuating
Generation, and Adaptive Load

Modern power grids use economic dispatch (lowest price power
first) to select which generation is used, subject to transmission
capacities and loads. Economic dispatch has enabled the integration
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of thousands of renewable generators that bid their variable gener-
ation into power markets when it is available. These bids typically
describe generation quantity for a specific period. Low-price bids
enable renewables to displace other generators. Economic dispatch
combined with transmission constraints produces the locational
marginal prices (LMPs), the power prices at each grid location.

In the past decade, wind and solar renewable power generation
has quadrupled in the United States, reaching 11% nationwide, and
higher fractions in California (33%) and Texas (21.5%). Future RPS
goals include California (60%), New York (70%), Europe (33%) all in
2030. Because of their variable generation, renewable absorption is
challengingwith failures producing curtailment and decreasing grid
capacity factors [54]. For example, curtailment has been analyzed
extensively in several US power grids [9, 11, 30] (1.5 TWh / year)
and worldwide [5, 21, 22] (10’s to as much as 100 TWh / year).

Figure 2: Generation Mix for CAISO Grid (California) (July

15, 2020). Renewable generation leads at noon, but it shifts

to natural gas at 7pm and continues overnight.

This transformation of the power grid has produced fluctua-
tion in generation mix (wind, solar, fossil-fuel) that grows with
renewable generation. For example, California’s power grid, Cal-
ifornia ISO (CAISO), reached an annual RPS of 30% in 2019, but
on dozens of winter days, reached over 90% RPS for most daylight
hours. These swings cause the carbon content of power in the grid
to swing by 4x and more. The CAISO example shown in Figure 2
exhibits solar at 50% midday, with natural gas rising to 46% at 8pm.
Similar phenomena occur in wind-heavy power grids (e.g ERCOT
in Texas, Germany), but with different duration and periodicity.

3 PROBLEM AND APPROACH

Power markets and grids have complex dynamics, driven by trans-
mission, generation, pricing, and ramp constraints. Small changes
in load or supply can cause large effects (e.g. a $100/MWh price
change). We consider multiple datacenters managed with intel-
ligent control to support computation load shifting; this makes
them dynamic loads. To explore combined dynamics of the data-
center control and power grid, we employ simulation, real load and
generation profiles, optimal power flow (OPF) in the grid.

We explore questions such as: how does dynamic management
of datacenter loads affect grid dynamics? Renewable absorption?
Power prices? Using OPF, we simulate grid dispatch [23] for a
detailed CAISO system model interconnected with the Western

Electricity Coordinating Council (WECC), exploring varied config-
urations as below:

• Datacenters: 1.4ś5.6 gigawatts (3.5 to 14%)
• Wind Penetration: 15% to 60% of grid consumption

The datacenter loads are 200 megawatts per site. While cloud
power use varies widely by region, this range spans 2020 power
levels to 5ś10 year projections [38]. At these levels, datacenters
are a critical component of power load. Wind penetration spans
the 2015 level (15%) to the NREL Wind Vision [42] goal for 2050
(50%). Across this space, we explore intelligent techniques to shift
loadÐunder datacenter or grid controlÐusing three datacenter-grid
coupling models:

• Uncoupled: Datacenters are a constant power load
• Datacenter-local: Datacenters optimize cost independently,
determining dynamic load (selfish-local)

• Grid-wide: Grid determines datacenter dynamic loads, opti-
mizing overall dispatch cost (grid-global)

These models are illustrated in Figure 3. Uncoupled reflects fixed
datacenter loads. Datacenter-local models independent datacenters,
each with cloud resource managers time-shifting workload to opti-
mize local power cost independently. Grid-wide optimization gives
temporal-load flexibility to the power grid, allowing it to set data-
center power-levels to minimize grid-wide dispatch cost. Studies
explore grid dispatch cost, renewable absorption, and power prices.
We also examine datacenters’ market power, characterizing impact
on non-datacenter (non-DC) customers.

4 METHODS

We assess the impact of growing cloud load and renewable gen-
eration based on the direct-current optimal power flow (DC-OPF)
model and notation in [26] and in Appendix A. The model min-
imizes the dispatch cost (generation and curtailment) subject to
generation, load, transmission, power flow, and ramp constraints.
One unusual feature (see Section 4.4) is that Datacenter-local uses
a local algorithm to determine load dynamically.

4.1 Experiment Setup

We study a reduced model of the California power system (CAISO)
which consists of 225 buses, 375 transmission lines, 130 thermal
generation units with a total capacity of 31.2 GW, 40 loads, 11 non-
wind renewable power plants, and 5 wind power plants. Imports
flow into the system at 5 boundary buses. We use load and genera-
tion data from [40], and scale ramp rates for thermal power plants
by 4-fold to reflect flexibility of the current CAISO fleet.

We run grid OPF optimization with a one-day time horizon and
hourly intervals. The model minimizes total dispatch cost for the
day, similar to day-ahead economic dispatch used in CAISO. We
use load profiles (days) that correspond to typical weekday (WD)
and weekend (WE) load for each season (Spring, Summer, Fall,
Winter). The load ranges from 23,708 MW (WinterWE) to 31,089
MW (SummerWD), averaging 27,283 MW. Overall grid non-DC
load and generation are shown in Appendix B.

For each season, there is one non-wind renewable generation
profile and 1,000 wind scenarios from [26, 40]. These wind power
scenarios average 15% of load (15% wind penetration). Weekdays
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Figure 3: Three Models of Coupling: Uncoupled, Datacenter-local, and Grid-wide Optimization.
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Figure 4: Load Profile and Wind Supply in Coupling Model

Studies. (a) Non-DC Load for Each Day Type. (b) Sampled

Wind Scenarios for Summer, 15% Level (Blue Line: average).

(WD) and weekends (WE) in a season share the same set of wind
scenarios. Figure 4a shows the varied load profiles (day type, sea-
son), and as an example, Figure 4b shows 200 of the summer wind
production scenarios used. While the demand usually peaks around
noon, wind production peaks in the late night or early morning,
which is a mismatch and a reason for the absorption challenge. In all
of our experiments, we add wind scenarios until the change in met-
rics is small, randomly selecting 200 scenarios from the 1,000 wind
scenarios available for each season. For higher wind penetration,
wind production levels for each site are scaled up equally, reflecting
the assumption that existing wind locations are productive sites
that could be scaled with larger turbines or site expansion [44].

As in [26], three levels of generation costs are used for con-
ventional generation: 1 $/MWh (nuclear), 2 $/MWh (coal), and 4
$/MWh (gas), corresponding to the fuel price. Curtailment penalties
𝐶𝑚
𝑖 (import), 𝐶𝑟

𝑖 (non-wind renewables), and 𝐶𝑤
𝑖

(wind) are 500,
1000, and 100 $/MWh respectively. The value of lost load is set as
1000 $/MWh for load shedding. As the locational marginal price
(LMP) at a bus represents the marginal dispatch cost of adding 1
MW load there, we expect that the LMP may go negative when
some type of curtailment arises. On the contrary, it can go very
high when load shedding happens.

Datacenters are 200 MW at each site, and operate at 70% average
power producing a 200 × 0.7 = 140 MW per hour average load
in each 24 hours. This compute resource utilization is typical of
cloud datacenters [2, 17, 39, 52], but the power level is well below
the largest sites that already exceed 1.5 GW [2]. Our discussions

with infrastructure planners at leading hyperscale cloud companies
indicate future designs exceed 1 GW per site. In our simulations, the
200 MW datacenters are added to random buses (Appendix C) in the
grid, and we ensure that the associated bus has sufficient capacity
to support a 200 MW datacenter; this reflects cloud company site
selection based on business considerations external to the power
grid (e.g. tax breaks, jobs, internet hookups, etc.).

4.2 Implementation

The OPF model and coupling models in Section 4.4 are implemented
in Julia 1.3.1 and solved with Gurobi Optimizer 8.1.1[20]. We paral-
lelize the simulation instances with different parameter combina-
tions using Python’s Multiprocessing package.

Given a profile for a specific day type, a wind scenario, and a
datacenter coupling model, we solve grid dispatch for that day. We
find that sampling 200 wind production scenarios (see Figure 4b)
is sufficient to create stable metric results in all cases, so all of the
studies in Sections 5 and 6 reflect 200 wind scenarios.

4.3 Metrics

• Grid Dispatch Cost (dollars)Ðthe objective function for
OPF in power grid simulations. This is often called social
welfare in electricity market clearing models [26].

• Renewable Portfolio Standard (RPS) is the ratio of ab-
sorbed renewable generation to total power consumed, in-
versely related to average carbon emissions per unit power.

• Price (dollars) is the average price (locational marginal
price or LMP, power price at a location) across a set of loca-
tions and/or intervals, weighted by power demand. This is
closely related to the prices that customers (both datacenters
and non-datacenters) pay for electric power.

• Capacity Variation (megawatts) is defined as the average
change in power level (load) of a datacenter between adjacent
one-hour periods. More formally:

1

23

24∑
𝑡=2

|𝑙𝑖,𝑡 − 𝑙𝑖,𝑡−1 |

where 𝑙𝑖,𝑡 denotes the power level of datacenter 𝑖 at time 𝑡 .

We report results that are the average of 8 day-types (weighted
for the number of weekdays and weekend days) and varied wind
scenarios. Standard deviations across the wind scenarios are shown
as error bars, reflecting the range of results.



Evaluating Coupling Models for Cloud Datacenters and Power Grids e-Energy ’21, June 28–July 2, 2021, Virtual Event, Italy

4.4 Datacenter-Power Grid Coupling Models

In the uncoupled case, each datacenter keeps the average power
level (𝑎𝑣𝑔𝐿𝑜𝑎𝑑) for all the 24 hours (i.e. constant load):

𝑙𝑖,𝑡 = 𝑎𝑣𝑔𝐿𝑜𝑎𝑑, ∀𝑖, 𝑡

For the other two coupling models, we assume that datacenters
have some load flexibility, but must catch up within a 24-hour day.
The two key parameters are:

• Dynamic Range. The magnitude of the interval over which
datacenter load can be adjusted. Larger dynamic range re-
flects greater load flexibility.

• Backlog. The datacenter’s deferred work relative to aver-
age progress (constant progress). Backlog is always positive,
reflecting the fact that work can only be deferred as in [46].

Thus the formal flexibility constraints are:

𝑙𝑜𝑎𝑑𝑚𝑖𝑛 ≤ 𝑙𝑖,𝑡 ≤ 𝑙𝑜𝑎𝑑𝑚𝑎𝑥 , ∀𝑖, 𝑡 (1)

That is, all datacenter loads are always within the dynamic range.
At time 𝑡 , datacenter 𝑖’s backlog update can be written as:

𝑏𝑎𝑐𝑘𝑙𝑜𝑔𝑖,𝑡 = 𝑏𝑎𝑐𝑘𝑙𝑜𝑔𝑖,𝑡−1 + (𝑎𝑣𝑔𝐿𝑜𝑎𝑑 − 𝑙𝑖,𝑡 ) (2)

The backlog is always non-negative and must be zero at the end of
the day to satisfy the average load constraint:

𝑏𝑎𝑐𝑘𝑙𝑜𝑔𝑖,𝑡 ≥ 0, ∀𝑖, 𝑡 (3)

4.4.1 Datacenter Local Optimization, using Online Dynamic Pro-

gramming (DP-ONL). Datacenters make local decisions to set load
levels. As an exemplar of the many possible selfish algorithms, we
use an online algorithm that makes hourly decisions that set data-
center load to minimize the expected power cost using the current
price of power and a reference price.

Algorithm 1 Online Dynamic Programming (DP-ONL)

Input: LMP𝑖,𝑡 : current price, avgLMP𝑖 : reference, 𝑏𝑎𝑐𝑘𝑙𝑜𝑔𝑖,𝑡−1
Output: 𝑙𝑖,𝑡 : datacenter load, 𝑏𝑎𝑐𝑘𝑙𝑜𝑔𝑖,𝑡
1: Select load level from {𝑎𝑣𝑔𝐿𝑜𝑎𝑑 + 𝑑𝑟

2 , 𝑎𝑣𝑔𝐿𝑜𝑎𝑑 , 𝑎𝑣𝑔𝐿𝑜𝑎𝑑 − 𝑑𝑟
2 }

2: to Minimize 𝑙𝑖,𝑡 ∗ LMP𝑖,𝑡 +
(𝑏𝑎𝑐𝑘𝑙𝑜𝑔𝑖,𝑡−1 + 𝑎𝑣𝑔𝐿𝑜𝑎𝑑 − 𝑙𝑖,𝑡 ) ∗ avgLMP𝑖

3: 𝑏𝑎𝑐𝑘𝑙𝑜𝑔𝑖,𝑡 = 𝑏𝑎𝑐𝑘𝑙𝑜𝑔𝑖,𝑡−1 + 𝑎𝑣𝑔𝐿𝑜𝑎𝑑 − 𝑙𝑖,𝑡
4: return 𝑙𝑖,𝑡 , 𝑏𝑎𝑐𝑘𝑙𝑜𝑔𝑖,𝑡

Each datacenter uses a local average price, 𝑎𝑣𝑔𝐿𝑀𝑃𝑖 , as reference.
The DP-ONL algorithm uses the current power price (LMP𝑖,𝑡 ) and
the reference (𝑎𝑣𝑔𝐿𝑀𝑃𝑖 , local average), weighted by the current
load and future load to select a current load (𝑙𝑖,𝑡 ). The algorithm
chooses from three levelsÐaverage load (70%), average load + half
the dynamic range, average load - half the dynamic range. The
catchup constraint at 24 hours can limit choice late in the day.

Algorithm 2 Grid Simulation with DP-ONL Datacenters

1: for all i,t: 𝑙𝑖,𝑡 = 𝑎𝑣𝑔𝐿𝑜𝑎𝑑 , (Initialize Datacenter loads)
2: Solve grid OPF for 𝑙𝑖,𝑡 , defining initial prices (LMP𝑖,𝑡 ) for all i,t

(each DC for all 24 hours)
3: for each time interval 𝑡 in [1,...,24] do
4: for each 𝑖 do

5: 𝑙𝑖,𝑡 , 𝑏𝑎𝑐𝑘𝑙𝑜𝑔𝑖,𝑡 = DP-ONL(LMP𝑖,𝑡 ,avgLMP𝑖 , 𝑏𝑎𝑐𝑘𝑙𝑜𝑔𝑖,𝑡−1)
6: end for

7: Solve grid OPF using 𝑙𝑖,𝑡 and setting new LMP𝑖,𝑡 prices for
futureÐ[𝑡 + 1, ..., 24]

8: end for

A coupled studymust reflect the datacenters dynamic load changes
in grid dispatch. To reflect the history and thereby enable dynamic
programming decisions to affect the grid dispatch, we iterate for-
ward over the hours of the day, computing the DP-ONL decisions
for each datacenter, then power-grid dispatch for that hour.

4.4.2 Grid-controlled Optimization (GC) of Datacenter Load. In
the GC model, the DCs fully delegate load flexibility to the power
grid dispatch as in [59]. That is, grid dispatch sets the datacenter
power level within the dynamic range for each hour, subject to
the 24-hour average capacity and backlog constraints. Because
the power levels are set by grid dispatch which maximizes social
welfare (e.g. dispatch cost), it seeks to benefit the entire grid, not
just the datacenters.

5 IMPACT OF GROWING DATACENTER
LOAD AND RENEWABLE GENERATION

We consider datacenters as fixed loads in the base case. Each data-
center’s load is 140 MW for all 24 hours.
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Growth, 15% Wind.

5.1 Datacenter Load Growth

We first analyze the impact of adding 10ś40 DCs (3.5-14% of aver-
age load) to the base system, under 15% wind penetration. Figure 5
shows how grid dispatch cost changes as we add datacenters. As
the number of DCs increases, dispatch cost first decreases as more
import and wind generation are consumed. From 10 to 25 DCs, the
dispatch cost decreases by 2.7%, with 29.1% less wind curtailment
and 14.2% less import curtailment. However, at the highest num-
bers of datacenters, transmission constraints become critical, and
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the greater load is serviced by additional conventional generation,
increasing dispatch cost by 0.9% from 35 to 40 DCs. In addition,
significant renewable and import curtailment reflects the fact that
absorption challenges still exist. Also shown in Figure 5, the average
power price increases with the growth of datacenters, producing a
$34.2/MWh increase, as we go from 10 to 40 DCs.
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Figure 6: Power Price across Datacenters, 15% Wind.

Figure 6 captures one day of power price variation across the
different datacenter locationsÐspatial variation. For each hour of
the day, the blue line shows the median price, and the box captures
the interval between the first and third prices quartiles. In Figure
6a, the 10-DC scenario has excess renewables, especially when
their production increases in the afternoon (coastal wind). This
causes power prices decrease in some locations, producing a wider
variation in power prices amongst the datacenters. In Figure 6b, the
greater load associated with the 40 DCs reduces the excess, both
reducing occurrence of negative prices and increasing the highest
prices. The net effect is a much narrower spatial price variation.

5.2 Renewable Generation Growth

Next we consider how the growth of renewable generation affects
the grid. With a fixed number of DCs (20), we scale up wind gen-
eration from 15% to 60%, corresponding to the Wind Vision goal
for 2050 [42]. Then we vary DCs and wind penetration together
producing 4 scenarios: (10, 15%), (20, 30%), (30, 45%), (40, 60%).

5.2.1 Dispatch Cost. Figure 7a shows the change in dispatch cost
as wind penetration grows. From 15% to 60% penetration, most ele-
ments of dispatch cost remain constant, and there is a small decrease
in generation cost. However, wind curtailment (and associated cur-
tailment penalty) increases sharply due to the grid’s inability to
absorb the increased wind generation. While the dispatch cost also
increases sharply with combined wind and datacenter growth, the
additional datacenters eliminate 11.3% and 14.3% wind curtailment
in (30, 45%) and (40, 60%) cases respectively (Figure 7b).

5.2.2 GenerationMix. In Figure 8a, as wind generation increases, it
squeezes out the fossil-fuel based generation, ultimately displacing
40.4% of that generation. Over the same increase, the grid shows
the diminishing absorption of wind generation: a 4-fold increase
in generation nets only 2.2x increase in absorbed power. When
both datacenters and wind generation are increased (Figure 8b), the
added datacenter load increases wind absorption slightly but also
conventional generation (fossil-fuel), producing a lower RPS.

Figure 9a details how each increment of datacenters reduces the
achieved RPS. At 15% wind penetration, as fixed load datacenters
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Figure 7: Dispatch Cost by Wind and Combined Growth.
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are added (10, 20, 30, then 40), the grid RPS decreases by 1.47ś5.74%.
This decrease is because each increment of DC load is temporally
misaligned with renewables. For higher wind penetrations, the grid
RPS increases for all scenarios, but a penalty for added DC load
remains. At 30% and 45% the penalty for 40 DCs is 3.44% and 2.01%
respectively. At 60% wind, the range is 0.08ś1.05% for 10ś40 DCs.
Note that a four-fold increase in wind has produced a 1.62-fold
increase in RPS (at best!), due to growing wind curtailment.
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Figure 9: RPS and Power Price by Wind Growth and Data-

center Load Growth.

5.2.3 Price. We present grid power prices for 10ś40 DCs and 15%ś
60% wind penetration scenarios in Figure 9b. Each increment of DC
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load increases the price of power across the range of wind levels.
Again at higher levels of wind, excess generation produces wind
curtailment and lower power prices.

5.3 Summary

Growing renewable generation presents absorption challenges for
power grids, producing renewable curtailment that both increases
costs and is a missed opportunity to reduce carbon emissions. Grow-
ing demand from datacenters as fixed loads can improve absorption,
but does not eliminate curtailment.Worse, the addition of such loads
decreases RPS due to temporal mismatch between new load and
renewable supply. This frames an opportunity for improvement by
coupling dynamic load of datacenters to the grid situation.

6 COUPLING DATACENTERS TO THE GRID

With the rapid growth of datacenter power consumption, the flexi-
bility of computing load provides opportunities for co-optimization
with the power grid. So, we consider three alternatives for couplingÐ
no coupling, selfish DC cost-minimization, and global grid opti-
mization by the power grid as defined in Section 4.4. We examine
the impact on the power grid, the datacenters, and the other non-
DC grid customers. The trends are summarized here, with detailed
numerical results included in Appendix D.

6.1 Impact on Power Grid

6.1.1 Dispatch Cost. To highlight the impact of dynamic coupling,
we consider DP-ONL (selfish DC) and GC (grid control) relative to
the constant datacenter power case (no coupling). Figure 10 shows
the dispatch cost impact of coupling models by wind penetration
and dynamic range. First, the solid bars show a consistent 1% reduc-
tion in grid dispatch cost for both DP-ONL and GC (approximately
$450,000 dollars/day) for a narrow dynamic range [0.6, 0.8]. GC
performs slightly better. With a larger dynamic range [0.4, 1.0], the
reduction in grid dispatch cost is over two times larger in nearly all
cases, with reductions as large as 3% with GC. The one exception
is where generation is tightest (15% Wind, 30 DCs), and DP-ONL
(selfish) causes significant harm, increasing dispatch cost by 0.1%.
We performed a deeper study and found that the harm is due to
overshifting load in response to price signals, which also increases
conventional generation (see Figure 12).
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The primary benefit of coupling is to reduce renewable curtail-
ment. This reduces dispatch cost by avoiding curtailment penalties,
and also increases renewable absorption. As wind penetration in-
creases, the mix of dispatch cost that coupling eliminates shifts.
As shown in Figure 11, at 15% wind, the coupling eliminates cur-
tailment penalties from a mix of wind (20%) and other renewables
(58%), but there is a significant fraction from other sources. At 60%
wind penetration, the curtailment penalties eliminated are nearly
exclusively wind curtailment (92%). We examine these dynamics
more closely in following sections.
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Figure 11: Contribution to reduction is dominated by re-

duced curtailmentÐGC examples (30 DCs, [0.4, 1.0]).

While distinct owners or operators might require independence,
such independent control can create an overshifting problem (Fig-
ure 10). We examine this issue more closely, looking at the effect
of DP-ONL shifting on conventional generation in Figure 12. The
scatterplot illustrates how shifts by DP-ONL in the (30 DCs, 15%,
[0.4, 1.0], SummerWD) scenario often fail to produce the antici-
pated benefit (shown as the red line). When DP-ONL increases the
datacenter load (the right half of the x-axis), it expects that there is
excess wind generation, but the grid effect is to increase conven-
tional (fossil-fuel) generation. The datacenter load increase may not
improve renewable absorption, relative to the unshifted baseline.
When DP-ONL decreases load (left half of x-axis), it hopes to reduce
conventional generationÐby the corresponding amount. As the plot
shows, sometimes conventional generation is reduced, but often by
less than desired. In this example, uncoordinated, independent man-
agement at each of the 30 DCs by DP-ONL increases conventional
generation by 1,821 MWh. The dynamic control incurs higher dis-
patch cost and even produces lower RPS than fixed-load datacenters.
This result shows the importance of modeling grid dynamics in
detail with multiple datacenters. Isolated study of datacenters with-
out a grid model would have significantly overestimated DP-ONL’s
shifting benefits for price and carbon emissions.

6.1.2 Generation Mix. Let’s consider generation mix, looking at
how coupling affects overall grid renewable absorption as captured
by RPS (or renewable fraction). In Section 5.2, we saw that the
addition of datacenters as fixed loads can reduce RPS.

Both DP-ONL and GC improve RPS when compared to fixed
datacenter loads as shown in Figure 13. RPS improvement from
coupling increases with wind penetration, and GC (grid-wide) opti-
mization gives clearly greater improvements at both low and high
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Figure 12: Overshifting can increase conventional genera-

tion: DP-ONL, 30 DCs, 15%, [0.4, 1.0], SummerWD,Wind Sce-

nario No. 200.

dynamic range. DP-ONL’s overshifting impacts RPS negatively at
low wind levels, and particularly with large dynamic range. In con-
trast, GC gives robust RPS improvement that grows with both wind
penetration and dynamic range. For 60% wind penetration, the RPS
improvement with 40 DCs reaches 1.58% RPS, matching the RPS
decrease we observed in adding the 40 DCs (Section 5.2). In short,
coupling with GC would allow the addition of 40 DCs to be neutral
(no negative effect) to grid RPS. This a positive highlight of the
benefits from intelligently coupling datacenters with the grid.
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Next we focus narrowly on how coupling affects datacenter car-
bon emissions (RPS). We compute datacenter RPS as the weighted
average of hourly grid RPS and datacenter hourly load. In Figure 14,
the fixed-load datacenter RPS (red), increases with wind penetration.
Dynamic coupling, using DP-ONL and GC, increases datacenter
RPS by an additional 0.1%ś1.9%, a benefit that increases with wind
penetration. GC outperforms DP-ONL significantly, with a maxi-
mum benefit more than doubling that from fixed load. Here again
we see DP-ONL’s overshifting harm. DP-ONL’s overshifting re-
duces datacenter RPS, underperforming both when the generation
is tight and at high dynamic range.

6.1.3 Power Price. To assess the impact on grid customers, we
consider the average power price. We first consider the entire grid
in Figure 15a, and then break this down into DC and non-DC power
prices. Starting from the left, increased wind penetration decreases
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Figure 14: Datacenter RPS Improvement relative toGridRPS

by Wind Penetration and Dynamic Range, 40 DCs.

average grid power prices and increased datacenter load produces
higher prices. At lower load and wind penetration, DP-ONL and
GC appear to increase competition for powerÐworking against
the dynamics of the grid, producing higher prices. At higher wind
fractions, both DP-ONL and GC have more room to work smoothly
with the grid, shifting power to mitigate competition, and reducing
average price. GC, with its global view does this more effectively.

6.2 Differential Impact on Datacenter and
Non-Datacenter Prices

Figure 15b shows the impact of dynamic management on datacen-
ter power prices. In the 10-DC scenario, the DCs experience prices
much lower than the overall grid, and the prices decrease faster
than with fixed loads as wind penetration is increased, producing as
much as a 16.9% decrease relative to fixed for (GC, 45% wind pene-
tration, [0.4, 1.0]). For 30 DCs, prices start higher due to tight supply,
but fall below overall grid prices with higher wind penetration.

As shown in Figure 15c, non-DC customers, the majority of grid
customers, show trends similar to the overall grid averageÐthey
have much higher prices across the board for the 10 DC case, but
when load is increased to 30 DCs, they get much lower prices, with
the advantage diminishing as the wind penetration grows.

To highlight differences, we subtract the non-DC customers price
change from datacenters price change in Figure 15d, presenting the
differential price impact. With 30 datacenters and conservative dy-
namic range ([0.6, 0.8]), both coupling schemes benefit datacenters.
However, when the datacenters have large dynamic range ([0.4,
1.0]), at low wind penetrations, their shifing harms themselves,
producing a DC-nonDC price differential of as much as $5.1/MWh.

We then drill down into distributions of non-DC costs (Figure 16)
to figure out the impact of coupling models and datacenter dynamic
management, presenting the cumulative distribution function (CDF)
of non-DC customers’ cost changes (ranging from a 60% reduction
to a 20% increase). At low datacenter load and wind penetration,
for both DP-ONL and GC, nearly 50% of the non-DC customers
experience harm (about 10% price increase). With 30 DCs and low
wind, competition arises. In this case non-DC customers split, with
some experiencing more harm and more gaining large benefit. GC
outperforms DP-ONL slightly with similar harm but larger benefit.
At higher (60%) wind penetration, the situation is much better due
to less competition for power, with DP-ONL and GC producing
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similar effects. Essentially no customers are harmed, and 40% of
them see slight harm (< 5%). Many non-DC customers even see
more than 60% benefit with 30 DCs.

6.3 Datacenter Capacity Variation

Thus far, we have focused on the benefits of optimized power
acquisitionÐlower power price or overall grid dispatch cost. How-
ever, dynamic coupling mechanisms increase or decrease the avail-
able power, changing the computation capacity of the datacenters,
incurring a potential penalty.We illustrate this variation across time
for 10 of 30 DCs in Figure 17 (SummerWD, 60% wind, 30 DCs, [0.4,
1.0])Ðthe first two rows are curtailment and price. In the last row,
the two coupling models produce varied power levels and distinct
capacity variation patterns. With relatively uniform behaviors, DP-
ONL defers workload to avoid high prices during daytime, but fails
to create backlog and exploit low prices in the early morning. GC
creates backlog and temporal load shifting, capturing more wind
curtailment, exploiting low prices better. It exploits spatial diversity
(see last row of Figure 17), all at the cost of frequent maximum
capacity change, and large average capacity change.

To understand variability for individual datacenters, we summed
the hourly capacity changes for each datacenter, showing the results
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Figure 17: Spatial and Temporal Capacity Variation (30 DCs,

60%, [0.4, 1.0] SummerWD, Wind Scenario No. 200). Top to

bottom: total curtailment (fixed load), DC power price (fixed

load), datacenter capacity (only 10 shown for readability).

in Figure 18 (30 DCs). DP-ONL creates significant hourly variation
in capacity with hourly changes averaging 6ś8MW (4ś5%) with
small dynamic range and 14ś20MW (10ś14%) with large dynamic
range, and the capacity variation increases steadily with wind pen-
etration. The situation for GC is more variable. For small dynamic
range, GC produces larger hourly changes of 15 MW (11%), and
with large dynamic range 40ś42 MW (28ś30%). Such large average
changes roughly correspond to a random capacity distribution, and
represent a challenge to cloud resource managers.

6.4 Summary

Our studies on intelligent management of power-level show that
even modest numbers of datacenters and small dynamic range
can change renewable absorption and power prices significantly.
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Both selfish-local (DP-ONL) or global grid (GC) coupling can im-
prove renewable absorption and reduce power cost; GC is capable
of restoring the damage to RPS that fixed datacenter loads create.
However, the impact of dynamic management is sensitive to wind
penetration, total load, and dynamic range. GC, delegating flexibil-
ity to the grid, with largest dynamic range gives largest benefits
for RPS (absorption) and dispatch cost, but DP-ONL can also pro-
vide significant benefits. While both coupling approaches reduce
datacenter power costs, because of their market power, they also
produce a negative relative impact on power cost of other cus-
tomers. The concerns about fairness that arise from this are also
worthy of study. Local techniques (DP-ONL) can cause overshift-
ing harm, reducing RPS and increasing power prices. All of these
results show that understanding the effects of workload shifting
must include detailed grid models to be accurate. While good for
the grid, both DP-ONL and GC can cause datacenter capacity to
fluctuate, challenging datacenter efficiency.

7 RELATED WORK

This study is the first to explore large-scale dynamic-management
of datacenter power coupled with the power grid. We also consider
independent optimization, as might occur with multiple datacenter
operators. We review closely related work below.

Datacenters as Demand-Response. Researchers propose compute
workload shedding or deferral to enable datcenters to reduce power
consumption in response to a grid shortage. These approaches can
reduce power costs, and priority and time shifting are used to min-
imize SLO (service-level objective) impact [29, 36]. Others have
created markets that distribute the economic benefits of demand-
response to flexible customersÐboth datacenters [35] or tenants
colocated in a datacenter [7, 8, 51, 58]. In others, datacenter opera-
tors shift load across grids based on grid information about social
welfare, optimizing social welfare across grids [61, 63].

Demand-response is one-way power managementÐdirected by
the power grid. Further, demand-response is designed for rare high
load periods (typically < 10 periods/year), and target small power
reductions (e.g. 10%). In contrast, our study considers continuous
two-way coupling with large dynamic ranges up to 60%. Further,
we consider action of multiple datacenters shifting load that is large
enough to change economic dispatch in the power grid.

Datacenters as Dispatchable Loads. The closest related work is
the Zero-carbon Cloud project (ZCCloud), which proposed DCs
with 100% dynamic range, with power level determined by the
grid (i.e. GC). ZCCloud DCs were only powered when excess zero-
carbon power was available [10, 55, 56]. ZCCloud research showed
that datacenters could increase grid RPS, reduce dispatch cost, and
reduce renewable curtailment. GC in this paper can be thought
of as moderate version of ZCCloud, allowing limited grid control.
Aligned efforts exploring spatial and temporal load shifting have
demonstrated grid benefits of reduced price variation, improved
renewable absorption, and lower dispatch cost [32, 59].

Local Price or Carbon Optimization. Research efforts have ex-
plored power purchase to reduce energy costs, or utilize local and
grid renewables. These approaches typically employ selfish opti-
mization based on dynamic programming, optimal online control
and optimization [15, 16, 31, 33, 47, 53, 57], prediction [37], and even
machine learning [3] to determine the quantity of power purchase
or charge/discharge energy storage. This work usually assumes
datacenter load changes are small enough that they do not affect
prices or grid dispatch. In contrast, we studied hyperscale cloud
datacenters whose sizes can be 200 MW (and growing) and there-
fore can individually and collectively affect power markets and grid
dispatch; consequently grid coupling is a primary focus.

Global Price or Carbon Optimization. With the same goals as
local optimization, some efforts perform global optimization on a
network of datacenters instead [19, 28, 34, 45, 60, 62, 64]. These
efforts couple these decisions to internal datacenter managementÐ
employing load balancing or shifting across datacenters, a comple-
mentary focus to our work.

8 CONCLUSION AND FUTUREWORK

Growing renewable generation challenges the ability of power
grids to absorb it. Further, adding fixed loads such as datacenters
can damage RPS. We study load shifting, using a detailed grid
model to accurately capture the dynamic impacts of cloud-scale
datacenter shifts on power price and carbon-emissions. We study
three coupling modelsÐfixed loads, selfish local optimization, and
grid orchestrated loadsÐand show that selfish-local methods give
some benefits (improved grid dispatch cost), but their uncoordinated
actions cause harm (overshifting that increases prices and carbon
emissions). Larger grid benefits arise with grid control (GC) in grid
dispatch cost, datacenter power prices, and improved renewable
absorption. However, GC doubles datacenter capacity variation
compared to DP-ONL, which may harm datacenter efficiency.

Looking forward, design of better coupling models presents
challenges of autonomy, market fairness, and datacenter efficiency.
Interesting future research directions include advanced local opti-
mization techniques and coordination to avoid overshifting.
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A OPTIMAL POWER FLOW FORMULATION

We use an optimal power flow formulation from [26]. For reviewer
convenience, that formulation is reprinted below.

A.1 Notation

To begin with, the model notations are listed in the following table.
The units for power/load, energy, and phase angle are megawatts,
megawatt-hours, and degrees respectively.
Sets:

D;D𝑛 Demand loads; demand loads at bus 𝑛
G;G𝑛 Generators; generators at bus 𝑛
I;I𝑛 Import points; import points at bus 𝑛
L Transmission lines
L+
𝑛 ;L

−
𝑛 Transmission lines to bus 𝑛; lines from bus 𝑛

N Buses
R;R𝑛 Renewable generators; Renewable generators at bus 𝑛
T Time periods
W;W𝑛 Wind-farm locations; wind farms at bus 𝑛
𝐷𝐶;𝐷𝐶𝑛 Datacenter locations; datacenters at bus 𝑛

Parameters:

𝐵𝑙 Susceptance of transmission line 𝑙
𝐶𝑖 Generation cost of generator 𝑖
𝐶𝑑
𝑗
Load-shedding penalty at load 𝑗

𝐶𝑤
𝑖

Curtailment penalty at wind farm 𝑖

𝐶𝑚
𝑖

Curtailment penalty at import point 𝑖
𝐶𝑟
𝑖
Curtailment penalty at renewable 𝑖

𝐷 𝑗,𝑡 Demand load of consumer 𝑗 at time 𝑡
𝐹𝑚𝑎𝑥
𝑙

Maximum power flow of transmission line 𝑙
𝑀𝑖,𝑡 Power production of import 𝑖 at time 𝑡
𝑃𝑚𝑎𝑥
𝑖

Maximum power output of generator 𝑖
𝑅𝑖,𝑡 Power production of renewable 𝑖 at time 𝑡
𝑅𝑈𝑖 Ramp-up limit of generator 𝑖
𝑅𝐷𝑖 Ramp-down limit of generator 𝑖
𝑊𝑤,𝑡 Power from wind farm𝑤 at time 𝑡
Θ
𝑚𝑖𝑛
𝑛,𝑡 Minimum phase angle at bus 𝑛 at time 𝑡

Θ
𝑚𝑎𝑥
𝑛,𝑡 Maximum phase angle at bus 𝑛 at time 𝑡

Decision variables:

𝑑 𝑗,𝑡 Load shedding at load 𝑗 at time 𝑡
𝑓𝑙,𝑡 Power flow of line 𝑙 at time 𝑡
𝑚𝑖,𝑡 Curtailment at import 𝑖 at time 𝑡
𝑝𝑖,𝑡 Power from generator 𝑖 at time 𝑡
𝑟𝑖,𝑡 Curtailment at renewable 𝑖 at time 𝑡
𝑤𝑖,𝑡 Curtailment at wind farm 𝑖 at time 𝑡
𝜃𝑛,𝑡 Phase angle at bus 𝑛 at time 𝑡

Others:

𝑙𝑖,𝑡 Power level (load) of datacenter 𝑖 at time 𝑡

A.2 Optimal Power Flow Model

Given the parameters, the power grid solves the following direct-
current optimal power flow model (called łeconomic dispatchž in
[26]) to minimize the dispatch cost (objective 4a):

min
∑
𝑡 ∈T

©
«
∑
𝑖∈G

𝐶𝑖𝑝𝑖,𝑡 +
∑
𝑗 ∈D

𝐶𝑑
𝑗 𝑑 𝑗,𝑡 +

∑
𝑖∈I

𝐶𝑚
𝑖 𝑚𝑖,𝑡

+
∑
𝑖∈W

𝐶𝑤
𝑖 𝑤𝑖,𝑡 +

∑
𝑖∈R

𝐶𝑟
𝑖 𝑟𝑖,𝑡

)
(4a)

s.t.
∑
𝑙 ∈L+

𝑛

𝑓𝑙,𝑡 −
∑
𝑙 ∈L−

𝑛

𝑓𝑙,𝑡 +
∑
𝑖∈G𝑛

𝑝𝑖,𝑡 +
∑
𝑖∈I𝑛

(𝑀𝑖,𝑡 −𝑚𝑖,𝑡 )

+
∑

𝑖∈W𝑛

(𝑊𝑖,𝑡 −𝑤𝑖,𝑡 ) +
∑
𝑖∈R𝑛

(𝑅𝑖,𝑡 − 𝑟𝑖,𝑡 )

=

∑
𝑗 ∈D𝑛

(𝐷 𝑗,𝑡 − 𝑑 𝑗,𝑡 ) +
∑

𝑖∈𝐷𝐶𝑛

𝑙𝑖,𝑡 , ∀𝑛 ∈ N , 𝑡 ∈ T , (4b)

𝑓𝑙,𝑡 = 𝐵𝑙 (𝜃𝑛,𝑡 − 𝜃𝑚,𝑡 ), ∀𝑙 = (𝑚,𝑛) ∈ L, 𝑡 ∈ T , (4c)

− 𝐹𝑚𝑎𝑥
𝑙

≤ 𝑓𝑙,𝑡 ≤ 𝐹𝑚𝑎𝑥
𝑙

, ∀𝑙 ∈ L, 𝑡 ∈ T , (4d)

Θ
𝑚𝑖𝑛
𝑛 ≤ 𝜃𝑛,𝑡 ≤ Θ

𝑚𝑎𝑥
𝑛 ∀𝑛 ∈ N , 𝑡 ∈ T , (4e)

− 𝑅𝐷𝑖 ≤ 𝑝𝑖,𝑡 − 𝑝𝑖,𝑡−1 ≤ 𝑅𝑈𝑖 , ∀𝑖 ∈ G, 𝑡 ∈ T , (4f)

0 ≤ 𝑝𝑖,𝑡 ≤ 𝑃𝑚𝑎𝑥
𝑖 , ∀𝑖 ∈ G, 𝑡 ∈ T , (4g)

0 ≤ 𝑑 𝑗,𝑡 ≤ 𝐷 𝑗,𝑡 , ∀𝑗 ∈ D, 𝑡 ∈ T , (4h)

0 ≤ 𝑚𝑖,𝑡 ≤ 𝑀𝑗,𝑡 , ∀𝑖 ∈ I, 𝑡 ∈ T , (4i)

0 ≤ 𝑤𝑖,𝑡 ≤𝑊𝑗,𝑡 , ∀𝑖 ∈ W, 𝑡 ∈ T , (4j)

0 ≤ 𝑟𝑖,𝑡 ≤ 𝑅 𝑗,𝑡 , ∀𝑖 ∈ R, 𝑡 ∈ T . (4k)

In this model, power is supplied from conventional thermal power
plants (e.g. gas, nuclear, coal), non-wind renewables (e.g. hydro),
imports, and wind power plants. Following [26], the imports and
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renewables are non-dispatchable due to long-term commitments
and goal of reducing carbon emissions, but they can be curtailed at
the cost of𝐶𝑚

𝑖
and𝐶𝑟

𝑖
$/MWh (𝐶𝑤

𝑖
$/MWh for wind) respectively. In

addition, each unit of load shedding is at the cost of value of lost load
(VOLL) 𝐶𝑑

𝑗
. Therefore, the dispatch cost (4a) consists of generation

cost of conventional power plants and penalties of curtailment and
load shedding.

The constraints are typical for power grid models. Constraints
4cś4e represent how the flow (4c) is determined given the line
capacity (4d) and phase angle (4e) limits. Constraint 4f represents
the ramp constraints limiting the rate of changing generation lev-
els at conventional power plants. Constraints 4gś4k bound the
generation, load shedding, and curtailments respectively.

B DEMAND AND WIND SUPPLY

The average generation and standard deviation of wind generation
are shown in Table 1. The statistics of full set and subset are simi-
lar, which means our subset can represent the varied generation.
Overall grid load and generation variability are shown in Table 2.

Table 1: Wind Generation Statistics: Full Set vs. Simulation

Subset (15% Level, Unit: GWh, Avg. Stdev.: average standard

deviation of 24-hour generations per sample)

Season Type Avg. Generation Avg. Stdev.

Spring
Full 137.2 2.06

Subset 135.6 2.05

Summer
Full 95.0 2.28

Subset 91.8 2.17

Fall
Full 90.1 1.60

Subset 86.3 1.55

Winter
Full 116.4 1.69

Subset 115.1 1.68

Table 2: Average Load, Imports, Renewable Supply, and Net

Load (Load - Import - Renewable) of the Base System (MW)

Load Imports Renewable Net Load
SpringWD 26,868 7,478 6,681 12,708
SpringWE 23,980 7,608 6,998 9,373
SummerWD 31,089 7,678 6,672 16,737
SummerWE 28,184 7,400 7,124 13,659
FallWD 28,055 7,675 6,657 13,722
FallWE 25,186 7,108 7,065 11,012
WinterWD 26,352 7,663 6,634 12,054
WinterWE 23,708 6,800 5,581 11,399

C DATACENTER LOCATIONS

The datacenters are introduced at randomly chosen locations in the
CAISO topology as described in Section 4. The specific locations
(buses) are :

DIABLO1 PINTO VICTORVL TERMINAL CMAIN_GM
GRIZZLY6 LOSBANOS IMPRLVLY2 GRIZZLY STA_BLD
HAYNES3G VICTORVL2 NAUGHT GRIZZLYA STA_E1
MISSION SERRANO RIVER FOURCOR2 CHOLLA
CELILO BURNS2 WESTWING SAN_JUAN NAVAJOGRP4
LUGO MARTIN2 GRIZZLY3 VALLEY COLGATE
VINCENT PITSBURG2 DALLES TRACY STA_B
MEXICO STA_F RINALDI HAYDEN MOENKOP1

There are 40 locations in total, and the first 𝑛 locations are used
for simulations with 𝑛 datacenters.

D DETAILED RESULTS OF COUPLING
APPROACHES

The tables in this section correspond to the trends we summarize
in Section 6 and contain the detailed numbers if only changes are
provided in previous sections. Table 3 shows the dispatch cost in
the uncoupled case and relative changes with DP-ONL and GC,
corresponding to Figure 10.

Table 3: Dispatch Cost ($) by Wind Penetration, Number of

Datacenters, and Dynamic Range (łWindž=Wind Penetra-

tion, łRangež=Dynamic Range). Relative changes are listed

for DP-ONL and GC.

# of DCs Wind Range Uncoupled DP-ONL GC

10

15%
None 2.78 × 107

[0,6, 0.8] -0.96% -1.09%
[0.4, 1.0] -2.34% -2.75%

30%
None 3.24 × 107

[0,6, 0.8] -0.92% -1.09%
[0.4, 1.0] -2.33% -2.91%

45%
None 4.01 × 107

[0,6, 0.8] -0.75% -0.89%
[0.4, 1.0] -1.93% -2.41%

60%
None 4.90 × 107

[0,6, 0.8] -0.62% -0.73%
[0.4, 1.0] -1.60% -1.99%

30

15%
None 2.70 × 107

[0,6, 0.8] -0.47% -0.70%
[0.4, 1.0] +0.10% -1.08%

30%
None 3.00 × 107

[0,6, 0.8] -0.99% -1.48%
[0.4, 1.0] -1.09% -3.03%

45%
None 3.68 × 107

[0,6, 0.8] -0.90% -1.32%
[0.4, 1.0] -1.28% -2.90%

60%
None 4.51 × 107

[0,6, 0.8] -0.76% -1.09%
[0.4, 1.0] -1.18% -2.45%

Table 4 presents the detailed renewable fractions, corresponding
to Figure 13. The improvements in Figure 14 are relative to the
łUncoupledž at each wind penetration level.
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Table 4: RPS by Wind Penetration, Number of Datacenters,

and Dynamic Range. Absolute changes are listed for DP-

ONL and GC.

# of DCs Wind Range Uncoupled DP-ONL GC

10

15%
None 35.46%

[0,6, 0.8] +0.04% +0.06%
[0.4, 1.0] +0.10% +0.15%

30%
None 44.47%

[0,6, 0.8] +0.08% +0.14%
[0.4, 1.0] +0.21% +0.38%

45%
None 48.83%

[0,6, 0.8] +0.07% +0.13%
[0.4, 1.0] +0.20% +0.38%

60%
None 51.48%

[0,6, 0.8] +0.07% +0.12%
[0.4, 1.0] +0.18% +0.35%

40

15%
None 31.19%

[0,6, 0.8] +0.05% +0.08%
[0.4, 1.0] -0.08% +0.09%

30%
None 41.72%

[0,6, 0.8] +0.37% +0.58%
[0.4, 1.0] +0.37% +1.08%

45%
None 47.13%

[0,6, 0.8] +0.45% +0.71%
[0.4, 1.0] +0.61% +1.49%

60%
None 50.51%

[0,6, 0.8] +0.48% +0.74%
[0.4, 1.0] +0.70% +1.58%

Table 5 contains the detailed statistics of datacenter capacity,
which suggests DP-ONL and GC are comparable in terms of stan-
dard deviation but DP-ONL outperforms GC in average capacity
difference.

Table 5: Statistics of Capacity Variation (Unit: MW) byWind

Penetration andDynamicRange, 30Datacenters. (Avg. Local

Stdev.: average standard deviation of 24-hour capacities per

site)

Wind Range Coupling
Approach

Avg. Hourly
Difference

Avg. Local
Stdev.

15%
[0.6, 0.8]

DP-ONL 6.01 16.48
GC 14.89 17.86

[0.4, 1.0]
DP-ONL 13.88 50.30
GC 42.39 50.73

30%
[0.6, 0.8]

DP-ONL 7.39 16.74
GC 14.81 18.17

[0.4, 1.0]
DP-ONL 19.62 50.83
GC 40.48 51.87

45%
[0.6, 0.8]

DP-ONL 7.49 16.41
GC 14.81 18.22

[0.4, 1.0]
DP-ONL 20.61 49.79
GC 40.18 52.29

60%
[0.6, 0.8]

DP-ONL 7.41 16.24
GC 14.64 18.23

[0.4, 1.0]
DP-ONL 20.46 49.32
GC 39.90 52.27
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