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Abstract. Motivated by applications in gerrymandering detection, we
study a reconfiguration problem on connected partitions of a connected
graph G. A partition of V(G) is connected if every part induces a con-
nected subgraph. In many applications, it is desirable to obtain parts of
roughly the same size, possibly with some slack s. A Balanced Con-
nected k-Partition with slack s, denoted (k, s)-BCP, is a partition
of V(G) into k nonempty subsets, of sizes ni,...,n, with |n; —n/k| < s,
each of which induces a connected subgraph (when s = 0, the k parts
are perfectly balanced, and we call it k~~-BCP for short).

A recombination is an operation that takes a (k, s)-BCP of a graph G
and produces another by merging two adjacent subgraphs and reparti-
tioning them. Given two k-BCPs, A and B, of G and a slack s > 0, we
wish to determine whether there exists a sequence of recombinations that
transform A into B via (k, s)-BCPs. We obtain four results related to this
problem: (1) When s is unbounded, the transformation is always possi-
ble using at most 6(k — 1) recombinations. (2) If G is Hamiltonian, the
transformation is possible using O(kn) recombinations for any s > n/k,
and (3) we provide negative instances for s < n/(3k). (4) We show that
the problem is PSPACE-complete when k € O(n®) and s € O(n' %), for
any constant 0 < € < 1, even for restricted settings such as when G is
an edge-maximal planar graph or when k£ > 3 and G is planar.

1 Introduction

Partitioning the vertex set of a graph G = (V, E) into k nonempty subsets
V= Uf;l V; that each induces a connected graph G[V;] is a classical problem,
known as the Connected Graph Partition problem [9/T6]. Motivated by fault-
tolerant network design and facility location problems, it is part of a broader fam-
ily of problems where each induced graph G[V;] must have a certain graph prop-
erty (e.g., {-connected or H-minor-free). In some instances, it is desirable that
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the parts Vi,..., Vi have the approximately the same size (depending on some
pre-established threshold). A Balanced Connected k-Partition (for short,
k-BCP) is a connected partition requiring that |V;| = n/k, for i € {1,...,k}
where n = |V(G)] is the total number of vertices. Dyer and Frieze [7] proved
that finding a k-BCP is NP-hard for all 2 < k < n/3. For k = 2,3 the problem
can be solved efficiently when G is bi- or triconnected, respectively [20022], and
is equivalent to the perfect matching problem for k = n/2. Later Chlebikové [4]
and Chataigner et al. [3] obtained approximation and inapproximability results
for maximizing the “balance” ratio max; |V;|/min; |V;| over all connected k-
partitions. See also [T2JT4T923] for variants under various other optimization
criteria.

In this paper, our basic element is a connected k-partition of a graph G =
(V, E) that is balanced up to some additive threshold that we call a slack s >
0, denoted (k, s)-BCP. We explore the space of all (k,s)-BCPs of the graph
G = (V, E). Note that the total number of (k, s)-BCPs for all s > 0, is bounded
above by the number k-partitions of V', which is the Stirling number of the
second kind S(n, k), and asymptotically equals (1 + o(1))k™/k! for constant k.
This bound is the best possible for the complete graph G = K,,.

In a recent application [TJ6I18], G = (V, E) represents the adjacency graph
of precincts in an electoral map, which should be partitioned into k districts
Vi,..., Vi where each district will elect one representative. Motivated by the
design and evaluation of electoral maps under optimization criteria designed to
promote electoral fairness, practitioners developed empirical methods to sample
the configuration space of potentialdistrict maps by a random walk on the graph
where each step corresponds to some elementary reconfiguration move [g].
From a theoretical perspective, the stochastic process converges to uniform sam-
pling [I3JI5]. However, the move should be local, i.e., it must affect a constant
number of districts, to allow efficient computation of each move, and it should
support rapid mixing (i.e., the random walk should converge, in total variation
distance, to its steady state distribution in time polynomial in n). Crucially, the
space of (approximately balanced) k-partitions of G must be connected under
the proposed move. Previous research considered the single switch move, in
which a single vertex v € V switches from one set V; to another set V; (assuming
that both G[V;] and G[V;] remain connected). Akitaya et al. [2] proved that the
configuration space is connected under single switch moves if G is biconnected,
but in general it is NP-hard both to decide whether the space is connected and
to find a shortest path between two valid k-partitions. While the single switch is
local, both worst-case constructions and empirical evidence [5II8] indicate that
it does not support rapid mixing.

In this paper we consider a different move. Specifically, we consider the con-
figuration space of k-partitions under the recombination move, proposed by
DeFord et al. [5], in which the vertices in V; UV}, for some ¢,j € {1,...,k},
are re-partitioned into V; U V] such that both G[V/] and G[V]] are connected.
We also study variants restricted to balanced or near-balanced partitions, that
is, when |V;| = n/k for all ¢ € {1,...,k}, or when HVl\ — n/k;| < s for a given



slack s > 0. In application domains mentioned above, the underlying graph G is
often planar or near-planar, and in some cases it is a triangulation (i.e., an edge-
maximal planar graph). Results pertaining to these special cases are of particular
interest. Our results lay down theoretical foundations for this model in graph
theory and computational tractability. Although our results imply lower bounds
in the mixing time of worst-case instances, they have no direct implication for
the average case analysis.

Definitions. Let G = (V, E) be a graph with n = |V (G)|. For a positive integer k,
a connected k-partition IT of G is a partition of V(G) into disjoint nonempty
subsets {V1,...,Vi} such that the induced subgraph G[V;] is connected for all
i € {1,...,k}. Each subgraph induced by V; is called a district. We write IT(v)
for the subset in IT that contains vertex v.

Denote by Part(G, k) the set of connected k-partitions on G. We also consider
subsets of Part(G, k) in which all districts have the same or almost the same
number of vertices. A connected k-partition of G is balanced (k-BCP) if every
district has precisely n/k vertices (which implies that n is a multiple of k);
and it is balanced with slack s > 0 ((k, s)-BCP), if ||U| — n/k| < s for every
district U C V. Let Bals(G, k) denote the set of connected k-partitions on G that
are balanced with slack s, i.e., the set of all (k,s)-BCPs. The set of balanced
k-partitions is denoted Bal(G, k) = Balg(G, k); and Part(G, k) = Bal (G, k).

We now formally define a recombination move as a binary relation
on Bals(G, k). Two non-identical (k,s)-BCPs, II; = {Vi,...,Vi} and Il =
{W1,..., Wy} are related by a recombination move if there exist ¢, 7 € {1,...,k},
and a permutation 7 on {1,...,k} such that V; UV; = Wy, U W, and
Vi =Wx forall £ € {1,...,k} \ {i,j}. We say that IT; and II, are a recombi-
nation of each other. This binary relation is symmetric and defines a graph on
Bals(G, k) for all s > 0. This graph is the configuration space of Bals(G, k)
under recombination, denoted by R, (G, k).

Balanced Recombination Problem BR(G,k,s): Given a graph G = (V, E) with
|V | = n vertices and two (k, s)-BCPs A and B, decide whether there exists a path
between A and B in R4(G, k), i.e. whether there is a sequence of recombination
moves that carries A to B such that every intermediate partition is a (k, s)-BCP.

Our Results. We prove, in Section [2f that the configuration space Roo(G, k)
is connected whenever the underlying graph G is connected and the size of
the districts is unrestricted. It is easy, however, to construct a graph G where
Ro(G, k) is disconnected. We study what is the minimum slack s, as a function of
n and k, that guarantees that R (G, k) is connected for all connected (or possibly
biconnected) graphs G with n vertices. We prove that Rs(G, k) is connected and
its diameter is O(nk) for s = n/k when G is a Hamiltonian graph (Section [3).
As a counterpart, we construct a family of Hamiltonian planar graphs G such
that R4(G, k) is disconnected for s < n/(3k) (Section [4).

We prove in Section [5| that BR(G, k, s) is PSPACE-complete even for the
special case when G is a triangulation (i.e., an edge-maximal planar graph), k



is O(nf) and s is O(n'=¢) for constant 0 < ¢ < 1. As a consequence we show
that finding a (k,s)-BCP of G is NP-hard in the same setting. Note that the
previously known hardness proofs for finding k-BCPs either require that G is
weighted and nonplanar [3] or G contain cut vertices [7]. In contrast, if G is
planar and 4-connected, then G admits a Hamilton cycle [21I] and, therefore, a
(k, s)-BCP is easily obtained by partitioning a Hamilton cycle into the desired
pieces. Finally, we modify our construction to also show that BR(G,k,s) is
PSPACE-complete even for the special case when G is planar, k > 3, and s is
bounded above by O(n'~¢) for constant 0 < ¢ < 1.

2 Recombination with Unbounded Slack

In this section, we show that the configuration space Roo(G, k) is connected
under recombination moves if G is connected (cf. Theorem. The proof proceeds
by induction on k, where the induction step depends on Lemma [2| below.

We briefly review some standard graph terminology. A block of a graph G is
a maximal biconnected component of G. A vertex v € V(G) is a cut vertex if it
lies in two or more blocks of GG, otherwise it is a block vertex. In particular, if
v is a block vertex, then G — v is connected. If G is a connected graph with two
or more vertices, then every block has at least two vertices. A block is a leaf-
block if it contains precisely one cut vertex of G. Every connected graph either
is biconnected or has at least two leaf blocks. The arboricity of a graph G is the
minimum number of forests that cover all edges in E = (G). The degeneracy
of G is the largest minimum vertex degree over all induced subgraphs of G. It is
well known that if the arboricity of a graph is a, then its degeneracy is between
a and 2a — 1.

Lemma 1. If the arboricity of a graph is a, then it contains a block vertex of
degree at most 2a — 1.

The proof of Lemma [I| can be found in [I7]. The heart of the induction step
of our main result hinges on the following lemma.

Lemma 2. Let G be a connected graph, k > 2 an integer, and II1,Il; €
Part(G, k) be two k-partitions of G. Then there exists a block vertex v € V(G)
such that up to three recombination moves can transform Ily and Il5 each to two
new k-partitions in which {v} is a singleton distinct.

Proof. Let IIy = {V1,..., Vi } and Il = {Wy,..., Wy }. We construct two span-
ning trees, 17 and T, for G that each contain k—1 edges between the districts of
ITy and I, respectively. Specifically, for i € {1,...,k}, let T(V;) be a spanning
tree of G[V;], T(W;) a spanning tree of G[W;]. As G is connected, we can augment
the forest Ule T(V;) to a spanning tree T7 of G, using k — 1 new edges, which
connect vertices in distinct districts. Similarly, we can augment Ule T(W;) to
a spanning tree Ty of G. Now, let G’ = T7 U Ty. By definition, the arboricity of
G’ is at most 2. By Lemma |1} G’ contains a block vertex v with degq (v) < 3.



We show that we can modify IT; (resp., II3) to create a singleton district
{v} in at most three moves. Assume without loss of generality that v € Vj
and v € Wi. Since degg (v) < 3, we have degp(y,)(v) < 3 and degpy,)(v) <
3. Consequently, T'(Vy) — v (resp., T(W;) — v) has at most three components,
each of which is adjacent to some other district, since G’ — v is connected.
Up to three successive recombinations can decrease the district V; with the
components of T' (V1) —v, and reduce V; to {v}. Similarly, at most three successive
recombinations can reduce Wi to {v}. O

Theorem 1. Let G be a connected graph and k > 1 a positive integer. For all
II1,II; € Part(G, k), there exists a sequence of at most 6(k — 1) recombination
moves that transforms II; to Ils.

Proof. We proceed by induction on k. In the base case, k = 1, and II; = II5.
Assume that & > 1 and claim holds for k£ — 1. By Lemma [2] we can find a block
vertex v € V(G) and up to six recombination moves transform II; and I, into
IT{ and I7) such that both contain {v} as a singleton district. Since v is a block
vertex, G — v is connected; and since {v} is a singleton district in both IT{ and
11}, we have II; — {v}, Il — {v} € Part(G — v, k — 1). By induction, a sequence
of up to 6(k — 2) recombination moves in G — v can transform IT; — {v} into
IT,—{v}. These moves remain valid recombination moves in G if we add singleton
district {v}. Overall, the combination of these sequences yields a sequence of up
to 6 4+ 6(k —2) = 6(k — 1) recombination moves that transforms ITy to IT5. This
completes the induction step. O

3 Recombination with Slack

In this section, we prove that the configuration space Rs(G, k) is connected if
the slack is greater or equal to the average district size, that is, s > n/k, and
the underlying graph G is Hamiltonian (Theorem .

Let G be a graph with n vertices that contains a Hamilton cycle C'. Assume
that n is a multiple of k. A k-partition in Bals(G, k) is canonical if each dis-
trict consists of consecutive vertices along C. Using a slack of s > n/k, we can
transform any canonical k-partition to any other using O(k?) reconfigurations.

Lemma 3. Let G be a graph with n vertices and a Hamilton cycle C, k > 1 is a
divisor of n, and s > n/k. Then the subgraph of Rs(G, k) induced by canonical
k-partitions is connected and its diameter is at most k? + 1.

Proof Sketch. We proceed by induction: We assume that the first £ € {0, ..., k}
districts each have size 7, and we change the size of the (¢4 1)st district to
using at most k — ¢ — 1 recombinations. Since the average size of the remaining
k — ¢ districts is n/k, there are two consecutive districts of size at most 7 and at
least 7, respectively. We recombine the first such pair of districts, and propagate

the changes to the (£ + 1)st district, completing the induction step. O

In the remainder of this section, we show that every k-partition in Bals(G, k)
can be brought into canonical form by a sequence of O(nk) recombinations.



Preliminaries. We introduce some terminology. Let IT = {Vi,...,V;} €
Bals(G, k) with a slack of s > n/k. For every ¢ € {1,...,k}, a fragment of
G[V;] is a maximum set F' C V; of vertices that are contiguous along C. Ev-
ery set V; is the disjoint union of one or more fragments. The k-partition IT is
canonical if and only if every district has precisely one fragment. Our strategy
is to “defragment” IT if it is not canonical, that is, we reduce the number of
fragments using recombination moves.

We distinguish between two types of districts in IT: A district V; is small
if |V;| < n/k, otherwise it is large. Every edge in E(G) is either an edge or a
chord of the cycle C. For every i € {1,...,k}, let f; be the number of fragments
of V;. Let T; be a spanning tree of G[V;] that contains the minimum number of
chords. The edges of G[V;] along C form a forest of f; paths; we can construct
T; by augmenting this forest to a spanning tree of G[V;] using f; — 1 chords.

The center of a tree T is a vertex v € V(T') such that each component of
T — v has up to |V(T)|/2 vertices. It is well known that every tree has a center.
For i € {1,...,k}, let ¢; be a center of the spanning tree T; of G[V;]. Let the
fragment of V; be heavy if it contains ¢;; and light otherwise. We also define a
parent-child relation between the fragments of V;. Fragments A and B are in a
parent-child relation if they are adjacent in T; and if ¢; is closer to A than to B
in T;. Note that a light fragment and its descendants jointly contain less than
[Vil/2 < (n/k + s)/2 vertices; see Fig.
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Fig. 1: Left: A distinct V; with 26 vertices (hollow dots) in six fragments (bold
arcs) along C. The spanning tree T; of G[V;] contains five edges, with a center
at ¢;. Right: Parent-child relationship between fragments is defined by the tree
rooted at the fragment containing c;.

The following four lemmas show that we can decrease the number of frag-
ments under some conditions. In all four lemmas, we assume that G is a graph
with a Hamiltonian cycle C, and IT is a noncanonical (k, s)-BCP with s > n/k.

Lemma 4. If a light fragment of a large district is adjacent to a small district
along C, then a recombination move can decrease the number of fragments.



Proof. Assume without loss of generality that vivs is an edge of C', where v, €
Fy C Vi, v9 € Fy C Vo, F} is a light fragment of a large district V;, and F3 is
some fragment of a small district V5. Let F; be the union of fragment F; and all
its descendants. By the definition of the center ¢, we have |F| < |V4|/2. Apply
a recombination replacing Vi and Va with Wy = Vi \ Fy; and Wy = Vo U Fy.
We show that the resulting partition is a (k, s)-BCP. Note also that both
G[F1] and G[V; \ F1] = G[W] are connected. Since vivy € E(G), then G[V, U
F1] = G[Wy] is also connected. As W contains the center of V;, we have |W;| > 1
and [W1| < [V1| < n/k+s. As Va is small, have |[Wa| = |Va| +|F1| < n/k+n/k <
2n/k < n/k + s. Finally, note that Fy U F is a single fragment in the resulting
k-partition, hence the number of fragments decreased by at least 1. O

Lemma 5. If no light fragment of a large district is adjacent to any small dis-
trict along C, then there exists two adjacent districts along C' whose combined
size is at most 2n/k.

Proof. Suppose, to the contrary, that every small district is adjacent only to
heavy fragments along C', and the combined size of every pair of adjacent districts
along C' is greater than 27”, meaning that at least one district is large. We assign
every small district to an adjacent large district as follows. For every small
district V;, let F; be one of its arbitrary fragments. We assign V; to the large
district whose heavy fragment is adjacent to F; in the clockwise direction along
C. Since every large district has a unique heavy fragment, and at most one
district precedes it in clockwise order along C, the assignment is a matching of
the small districts to large districts. Denote this matching by M. Every district
that is not part of a pair in M must be large. By assumption, every pair in M
has combined size greater than 2?”, so the average district size over the districts
in M is greater than 7. The districts not in M are large so their average size also
exceeds 7. Overall the average district size exceeds 7. But I is a k-partition of
n vertices, hence the average district size is exactly 7, a contradiction. O

Lemma 6. If districts Vi and Va are adjacent along C and |V; UVa| < n/k+s,
then there is a recombination move that either decreases the number of fragments,
or maintains the same number of fragments and creates a singleton district.

Proof. Assume, w.l.o.g., that v; € F} C Vp, vo € Fy C V5, where vyv5 is an edge
of C, and F; and F3; are fragments of V7 and V5, respectively. The induced graph
G[V1 U V3] is connected, and Ty U T5 U vy is one of its spanning trees. If T7 or
T5 contains a chord, say e, then (T3 UT5 Uv1v2) — e has two components, T3 and
Ty, each of size at most n/k + s — 1. A recombination move can replace V; and
Vo with V(T3) and V(Ty). Since fragments F; and F» merge into one fragment,
the number of fragments decreases by at least one. Otherwise, neither 77 nor T5
contains a chord. Then V; and V5 each has a single fragment, so V1 UV5 is a chain
of vertices along C. Let v be the first vertex in this chain. A recombination move
can replace V7 and Vo with Wi = {v} and W = (V3 UV2) \ {v}. By construction
both G[W;] and G[W5] are connected, |W1| =1, [Ws| = |[ViUVs|—1 < n/k+s—1,
and the number of fragments does not change. O



Lemma 7. If there exists a singleton district, then there exists a sequence of at
most k — 1 recombination moves that decreases the number of fragments.

Proof. Let C' = (v1,...,v,). Assume without loss of generality that V3 = {v;}
is a singleton district, and vy € Fy C V5, where F5 is a fragment of district V5.
Since not all districts are singletons, we may further assume that V2| > 2. We
distinguish between two cases.

Case 1: Fy # V4 (i.e., Vo has two or more fragments). Let e be an arbitrary
chord in 75, and denote the two subtrees of T, —e by T, and T; such that vy is
T, . Since |Va| < n/k+ s, the subtrees T, and T3, each have at most n/k+s— 1
vertices. We can recombine V4 and Vs into Wy = Vi UV(T, ) and Wa = V(T5,").
Then |[Wi| < 14 (n/k+s—1) =n/k+ s and |Wa| < n/k + s — 1; they both
induce a connected subgraph of G. As the singleton fragment V; and Fy merge
into one fragment of Wi, the number of fragments decreases by at least one.

Case 2: F = V5 (i.e., district V2 has only one fragment). Let ¢ > 2 be
the smallest index such that v; is in a district that has two or more fragments
(such district exists since IT is not canonical). Then the chain (vq,...,v;—1) is
covered by single-fragment districts that we denote by Vi,...,V, along C. By
recombining V; and V;;1 for ¢ = 1,...,f — 1, we create new single-fragment
districts Wy,..., Wy such that |W;| = |Viyq| for i = 1,...,£ 4+ 1 and |W,| =
|[V1| = 1. Now we can apply Case 1 for the singleton district Wy. O

We are now ready to prove the main result of this section.

Theorem 2. If G is a Hamiltonian graph on n vertices and s > n/k, then
Rs(G, k) is connected and its diameter is O(nk).

Proof. Based on Lemmas [4H{7] the following algorithm successively reduces the
number of fragments to k, thereby transforming any balanced k-partition to a
canonical partition. While the number of fragments is more than &, do:

1. If a fragment of a small district is adjacent to a light fragment of a large
district along C, then apply the recombination move in Lemma [4] which
decreases the number of fragments.

2. Else, by Lemmal [f] there are two adjacent districts along C' whose combined
size is at most 2n/k. Apply a recombination move in Lemma @ If this move
does not decrease the number of fragments, it creates a singleton district,
and then up to k — 1 recombination moves in Lemma[7] decrease the number
of fragments by at least one.

There can be at most n different fragments in a k-partition of a set of n vertices.
We can reduce the number of fragments using up to k£ recombination moves.
Overall, O(nk) recombination moves can bring any two (k, s)-BCPs to canonical
form, which are within k% 4+ 1 moves apart by Lemma O

4 Disconnected Configuration Space

In this section we show that the configuration space is not always connected,
even in Hamiltonian graphs. Specifically, we show the following result:



Theorem 3. For any k > 4 and s > 0 there exists a Hamiltonian planar graph
G of n = k(3s + 2) vertices such that Rs(G, k) is disconnected.

s+ [s/2]

s+ [s/2]

Fig. 2: Problem instance showing that Rs(G, k) is not always connected (for
k=4,n=56and s =4 = 35— O(1)).

Proof Sketch. The proof is constructive and can be found in [I7]. We construct
an instance that consists of a cycle and 4 chords (shown in Fig. . Each district
consists of two contiguous arcs along the cycle, which are connected by a unique
chord. We prove that no sequence of recombinations can change this fact. Indeed,
the chords are sufficiently limiting that a district can only gain/lose vertices in
a very restricted fashion (e.g., the district of represented by orange squares can
gain up to s vertices from the district of blue circles). O

5 Hardness Results

This section presents our hardness results. Only a sketch of our reductions are in-
cluded in this extended abstract; see [17] for full details. Our reductions are from
Nondeterministic Constrained Logic (NCL) reconfiguration which is PSPACE-
complete [T0/TT]. An instance of NCL is given by a planar cubic undirected graph
G nc 1 where each edge is colored either red or blue. Each vertex is either incident
to three blue edges or incident to two red and one blue edges. We respectively
call such vertices OR and AND vertices. An orientation of Gy¢y must satisfy
the constraint that at every vertex v € V(Gnc¢r), at least one blue edge or at
least two red edges are oriented towards v. A move is an operation that trans-
forms a satisfying orientation to another by reversing the orientation of a single
edge. The problem gives two satisfying orientations A and B of Gy¢ and asks
for a sequence of moves to transform A into B. As in [2], we subdivide each edge
in Gn¢r, obtaining a bipartite graph Gy, with one part formed by original



10

vertices in V(Gn¢p) and another part formed by degree-2 vertices. We require
that an orientation must additionally satisfy the constraint that each degree-2
vertex v must have an edge oriented towards v. The question of whether there
exists a sequence of moves transforming orientation A" into B” of Gy, remains
PSPACE-complete. We follow the framework in [2] with a few crucial differences.
The main technical challenge is dealing with the slack constraints while main-
taining the desired behavior for the gadgets. We first describe the reduction to
instances with slack equals zero, and We then generalize the proofs.

Zero Slack. In the following reduction, we are given a bipartite instance of
NCL given by (G'yop, A', B'), and we produce an instance of BR(G, k, s) of the
balanced recombination problem cousisting of two (k, s)-BCP of a planar graph
G, II4 and IIp, with k = O(|V(Gncyr)|) districts, and slack s = 0. Here we
give a brief overview of the reduction. Details can be found in [17].

The AND, OR and degree-2 gadgets are shown in Figures 3| (a), (b) and (c)
respectively. The green (black) dots are called heavy (light) vertices and are
considered to be weighed with integer weight more than one (equal to one). We
can implement weights by attaching an appropriate number of degree-1 vertices
to a heavy vertex so that, in order for a k-BCP to be connected, whichever
district contains the heavy vertex must also contain all degree-1 vertices attached
to it. Every edge e € E(G'y ) is represented by two light vertices of G, e and
e~ , that belong to two neighboring gadgets as shown in Figures [3[ (d).

Fig. 3: Gadgets for the reduction from NCL to BR(G, k, 0).

The weights of heavy vertices are set up so that, for each AND or OR gadget,
a district must contain its heavy vertices v,, vp and v, and no heavy vertices of
neighbor degree-2 gadgets. Then, for all degree-2 gadget, there is a district that
contains v, and v, and no other heavy vertex. Additionally, for all OR gadgets, a
district must contain v" and exactly one vertex in {v),, v}, v.}. We encode whether
an edge e points toward a vertex by whether a district of the corresponding
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gadget contains e™. Then, the connectivity constrains of the districts simulate
the NCL constraints. See Figure [4]

Fig. 4: Equivalence between a satisfying orientation of G’y and a k-BCP of G.

Lemma 8. BR(G,k,0) is PSPACE-complete even for a planar graph G with
constant maximum degree.

Generalizations. We generalize the reduction of Lemma [8]

Bounded-degree triangulation . The main new technical tool presented in
this section is the filler gadget shown in Figure 5| (b). Each face marked with a
dot is called a heavy face associated with an integer weight, and whose recursive
construction is shown in Figure [5] (a). Figure 5| (¢) shows how to use copies of
the filler gadget to transform G in a triangulation. The main property of the
filler gadget is that we set the weights of heavy faces so that each red vertex
must belong to a different district and the gadget only intersects 5 districts.
Then, such districts are “trapped” in the filler gadget and don’t interfere with
the other gadgets.

LY

Fig. 5: Construction of the filler gadget.

Theorem 4. BR(G,k,s) is PSPACE-complete even if G is maximal planar of
constant mazimum degree, k € O(n®), and s € O(n'=¢) for 0 <e < 1.
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Finding Balanced Connected Partitions. The NCL orientation problem
is defined by an input undirected graph G ¢ edge colored as before, and asks
whether there exist an orientation of G ¢ that satisfies the NCL constraints.
This problem is NP-complete [11]. We remark that our construction implies the
following theorem.

Theorem 5. It is NP-complete to decide whether there exist a (k,s)-BCP of a
graph G, even if G is maximal planar of constant mazimum degree, k € O(n?),
and s € O(n'=¢) for 0 <e < 1.

Constant number of districts. The drawback of the previous construction
is that it requires 5 new districts for each filler gadget. We obtain PSPACE-
hardness with k& = 3, but we lose the restriction that G is a triangulation, and
instead we only require that G is a bounded-degree planar graph. The main
technical difficulty is to guarantee that the same subset of heavy vertices is
always contained in the same district. This property is obtained by a careful
setting of the weights so that there is a unique partition of weights of the heavy
vertices that allow for the 3 districts to be balanced within s slack. This allow
us to label the districts according to the heavy vertices that is contains. One of
the districts then locally acts like the districts that previously contained v,, vy
and vs in each AND and OR gadgets, maintaining the equivalency between the
conectedness of this district and the NCL constraints. Our proof can be adapted
for any k > 3.

Theorem 6. BR(G, 3, s) is PSPACE-complete even if G is planar with constant
mazimum degree, and s € O(n'~¢) for 0 <e < 1.

6 Conclusion and Open Problems

We have shown that the configuration space R (G, k) of (k, s)-BCPs is connected
when G is connected and s = oo, or when G is Hamiltonian and s > n/k. We
hope that our results inform future research on the properties of GG, k, and s
that are sufficient to obtain an efficient sampling of Bals(G, k). We also leave it
as an open problem whether our results in Section [3] generalize to other classes
of graphs. We conjecture that the configuration space Rs(n,k) is connected
for every biconnected graph G on n vertices when s > n/k. However, our
techniques do not directly generalize; it is unclear how to extend the notion of
canonical k-partitions in the absence of a Hamilton cycle.

We have shown that BR(G, k, s) is PSPACE-complete even in specific set-
tings that are of interest in applications such as sampling electoral maps. Our
results imply that the configuration space Rs(G, k) has diameter exponential
in n, establishing as well an exponential lower bound on the mixing time of a
Markov chain on Rs(G, k) for these settings. We note that Theorems 4| and |§|
do not include other settings of interest such as when G is maximal planar (or
even 3-connected) and k is a constant. We leave these as open problems.
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