
Received: 1 November 2020 Revised: 10 March 2021 Accepted: 22 March 2021 Published on: 8 April 2021

DOI: 10.1002/sam.11508

R E S E A R C H A R T I C L E

Supervised compression of big data

V. Roshan Joseph1 Simon Mak2

1Stewart School of Industrial and Systems
Engineering, Georgia Institute of
Technology, Atlanta, Georgia, USA
2Department of Statistical Science, Duke
University, Durham, North Carolina, USA

Correspondence
V. Roshan Joseph, Stewart School of
Industrial and Systems Engineering,
Georgia Institute of Technology, 755 Ferst
Dr NW, Atlanta, GA 30332, USA.
Email: roshan@gatech.edu

Funding information
NSF CSSI Frameworks, Grant/Award
Number: 2004571; U.S. National Science
Foundation (NSF), Grant/Award Number:
CMMI-1921646

Abstract
The phenomenon of big data has become ubiquitous in nearly all disciplines,
from science to engineering. A key challenge is the use of such data for fitting sta-
tistical and machine learning models, which can incur high computational and
storage costs. One solution is to perform model fitting on a carefully selected sub-
set of the data. Various data reduction methods have been proposed in the liter-
ature, ranging from random subsampling to optimal experimental design-based
methods. However, when the goal is to learn the underlying input–output rela-
tionship, such reduction methods may not be ideal, since it does not make use
of information contained in the output. To this end, we propose a supervised
data compression method called supercompress, which integrates output
information by sampling data from regions most important for modeling the
desired input–output relationship. An advantage of supercompress is that it
is nonparametric—the compression method does not rely on parametric mod-
eling assumptions between inputs and output. As a result, the proposed method
is robust to a wide range of modeling choices. We demonstrate the usefulness
of supercompress over existing data reduction methods, in both simulations
and a taxicab predictive modeling application.

K E Y W O R D S

clustering, data reduction, experimental design, K-means algorithm, subsampling

1 INTRODUCTION

The phenomenon of big data has become ubiquitous
in nearly all disciplines, from science to engineering.
With this wealth of information, however, a key chal-
lenge is extracting useful information from the big data
in a timely fashion, particularly given limited computa-
tional resources. As statistical and machine learning mod-
els become more complex, with hundreds to millions of
parameters to tune, the size of the training dataset becomes
an increasingly significant computational bottleneck. One
possible solution is to train the desired model on a reduced
dataset: by carefully choosing this reduced dataset from

the big data, for example, 100,000 out of a billion samples,
one can use this for efficient model building and inference.
This data reduction approach is crucial for scaling up a
wide range of learning methods in big data applications
(e.g., [6, 17]).

Much work in the literature on data reduction is
on random subsampling, that is, choosing a subsam-
ple from the big data uniformly at random. For specific
modeling approaches, considerable improvements to ran-
dom subsampling can be realized by using nonuniform
probabilities for sampling, for example, for fitting linear
regression models [9, 16]. Recently, Wang et al. [21] devel-
oped information-based selection of subsamples using

Stat Anal Data Min: The ASA Data Sci Journal. 2021;14:217–229. wileyonlinelibrary.com/sam © 2021 Wiley Periodicals LLC 217

https://orcid.org/0000-0002-9430-5301
https://orcid.org/0000-0002-5693-7076
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fsam.11508&domain=pdf&date_stamp=2021-04-08

218 JOSEPH and MAK

ideas from optimal experimental design. Extensions of
these approaches to classification using logistic regression
have also been developed [20, 22]. There has also been an
analogous line of work on coresets in the computer science
literature [11].

In practical problems, however, model building is an
iterative process: the modeler may wish to try out dif-
ferent modeling approaches (e.g., Gaussian processes or
neural networks) besides linear regression, then choose
the method which fits the data the best. However, the
aforementioned methods assume an underlying paramet-
ric model (e.g., linear regression) for data reduction. Such
methods can therefore give an excellent reduction of the
big data when the model is specified correctly, but can
yield very poor reduction performance when the model is
misspecified. A simple illustration is shown in Figure 1.
The left panel shows a large sample generated from a mix-
ture normal distribution (the “big data”), and the next
panel shows a reduction of this into 100 points using
the information-based optimal subsample (IBOSS; [21])
method, which assumes an underlying linear model. We
see that IBOSS selects extreme points on the boundaries
of the big data, which are known to have high influence
(or leverage) on a linear regression model fit. However, if
the modeler wishes to fit more nonlinear or nonparametric
models, the IBOSS subsample would clearly not be ideal
for fitting such models. Given the iterative nature of model
building and the computational burdens of model fitting
with big data, a model-independent (or robust) data reduc-
tion strategy is oftentimes preferred—one which provides
good model fitting performance over a wide range of mod-
eling choices.

A reasonable model-independent data reduction
approach might be to find representative points on the
input features via a clustering approach, for example,
k-means clustering. The third panel of Figure 1 shows this
reduction using k-means cluster centers for the earlier
example. We can see that the cluster centers (as reduced
data points) provide a good representation of the input
features, and can thus be robust to the modeling choices.
However, k-means may not result in a subsample of the
big data, in that the reduced dataset may not be a subset
of the larger dataset. Therefore, it can be viewed as a com-
pression method rather than a data reduction method. As
we will see later, this will not be an issue for modeling.
If the goal is to attain a subsample, then one can take
the closest data points to the compressed sample using
a nearest neighbor algorithm [13]. Because of this, we
might use the terms data reduction and data compression
interchangeably.

The above methods, while robust, are “unsupervised”
in the sense that they use data only in the input variables
(call this x), but does not incorporate information of the

response variable (call this y). Figure 1 also shows true
input–output relationship as a colored image. We can see
that IBOSS has missed the interesting regions of the rela-
tionship, whereas k-means clustering seems to oversample
from inactive regions of the space. Clearly, we could get
a much better subsample using the information on the
response variable y from the big data. How such informa-
tion can be used efficiently to select subsamples seems to
be an understudied problem, but could lead to substan-
tial improvements for model building. Developing such a
supervised reduction or compression method is the main
aim of this article.

The article is organized as follows. Section 2 pro-
vides a formulation of the proposed supercompress
method and discusses a heuristic algorithm for solv-
ing this optimization problem. Section 3 investigates
the robustness of this method and proposes a modifi-
cation of supercompress which can improve robust-
ness over different modeling choices. Section 4 discusses
several numerical examples comparing the proposed
supercompress methods with existing approaches.
Section 5 presents a semiparametric extension of the
supercompress methods. Section 6 compares our
approach to existing methods on a real-world predic-
tive modeling problem for taxicab scheduling. We con-
clude in Section 7 with remarks and future research
directions.

2 SUPERVISED COMPRESSION
VIA CLUSTERING

We first introduce some notation. Let (Xj, Y j), j = 1,… , N
be the big data we wish to reduce, where Xj is the
input variables (or features) and Y j is its correspond-
ing response variable for the jth data point. Assume that
both the input and response variables are either stan-
dardized to have zero mean and unit variance. Our aim
is to reduce or compress the big data to a smaller set
(xi, yi), i = 1, … , n, where n≪N. Once compression is
performed, we will “throw away” the big data to save
storage space, and use the compressed dataset for model
fitting.

2.1 Mathematical formulation

We will first use a simple nonparametric modeling
approach to motivate an optimality criterion for data
reduction, which we later modify for improved robustness.
Consider the nearest neighbor method for prediction, one
of the most basic modeling methods which can be used as a
building block in more sophisticated models. To predict at

JOSEPH and MAK 219

0.0 0.2 0.4 0.6 0.8 1.00.
0

0.
2

0.
4

0.
6

0.
8

1.
0 Big Data

x1

x 2

0.0 0.2 0.4 0.6 0.8 1.00.
0

0.
2

0.
4

0.
6

0.
8

1.
0 IBOSS

x1

x 2

0.0 0.2 0.4 0.6 0.8 1.00.
0

0.
2

0.
4

0.
6

0.
8

1.
0 K−Means Clustering

x1

x 2

F I G U R E 1 From left to right: Big data, a sample of 100 points using information-based optimal subsample (IBOSS), and k-means
clustering. The true input–output relationship is shown as an image

a given x, we first need to find the closest point xi∗ , where

i∗ = argmin
i=1∶n

||x − xi||,
where || ⋅ || denotes the Euclidean distance. Thus, for a
given set of points {x1, … , xn}, we can partition the index
set of big data, namely {1, … , N}, into index sets Ii, i = 1,
… , n, which collect all indices of points in the big data
closest to point xi:

Ii = {j ∶ ||Xj − xi|| < ||Xj − xi′ || for all i′ ≠ i},
i = 1, … ,n. (1)

Clearly, the union of these sets recovers the full index
set, that is,

⋃n
i=1 Ii = {1, … ,N}, and the partition is also

disjoint, that is, Ii ∩ Ij = ∅ for i≠ j. The nearest-neighbor
regions in (1) are also known as Voronoi regions [7].

With this, for any Xj, j∈ Ii, we will use the predic-
tion yi within region Ii, where this value can be chosen
to minimize a desired loss function. Using the ubiquitous
least squares loss, the prediction yi within region Ii can be
chosen to minimize

Li =
∑
j∈Ii

(Yj − yi)2. (2)

This gives the familiar solution of the cluster mean

yi =
∑

j∈Ii
Yj

Ni
,

where Ni is the number of points in cluster i. The total loss
function is then given by

L =
n∑

i=1

∑
j∈Ii

(Yj − yi)2. (3)

The proposed method supercompress aims to
find the reduced points {x1, … , xn}, with corresponding

partition I1, … , In, which minimize the loss function L.
This then yields the reduced dataset {(xi, yi)}n

i=1, which can
be used for model fitting.

At first glance, the minimization of (3) might look like
a standard clustering problem, but it is not! The standard
clustering problem (on the y-space) is to minimize the loss
function

n∑
i=1

∑
j∈Ji

(Yj − yi)2 (4)

with respect to {y1, … , yn} and partitions J1, … , Jn, where

Ji = {j ∶ |Yj − yi| < |Yj − yi′ | for all i′ ≠ i},
i = 1, … ,n

is the index set of points whose response is closest to yi. The
loss function (4) can be efficiently solved using iterative
algorithms such as k-means clustering [15, 18]. Although
the objective functions (3) and (4) look similar, the opti-
mization in our problem (i.e., the former) is with respect
to the input points {x1, … , xn} and corresponding parti-
tion of the input space I1, … , In. Because each response
variable y can produce many x values, the input partitions
I1, … , In can induce a corresponding partition J1, … , Jn
in the y-space which may be overlapping. This makes our
problem much more difficult to solve.

It is also useful to compare the proposed formulation
(3) with the traditional k-means clustering formulation in
the x-space, which aims to minimize

n∑
i=1

∑
j∈Ii

||Xj − xi||2 (5)

with respect to input points {x1, … , xn} and its corre-
sponding partition I1, … , In. Given a fixed partition,
optimizing (5) over xi’s gives the familiar cluster mean
solution xi =

∑
j∈Ii

Xj∕Ni, i = 1, … , n. Similarly, given fixed

220 JOSEPH and MAK

points x1,… , xn, optimizing (5) over partition I1, … , In
yields the nearest-neighbor (Voronoi) regions in (1). The
well-known k-means clustering algorithm iterates these
two conditional optimization steps until convergence. In
our formulation, however, the proposed objective function
(3) is different, in that the sum-squares term is summed
over the y-space instead of the x-space.

One potential drawback of our formulation is that,
given a fixed partition, there may not be any unique solu-
tion to the reduced points {x1, … , xn}. The nonuniqueness
is not a serious issue, so we will ignore it for the moment.
We will see that this problem will disappear when we reg-
ularize our objective function using the k-means criterion,
which is discussed later in Section 3.

2.2 Heuristic algorithm

Clustering in the Euclidean space, that is, finding the
global minimizer of the objective function in (5), is known
to be an NP-hard problem [1]. Finding the globally opti-
mal solution for our data reduction formulation (3) is even
harder, because the objective function is related to the
x’s through an unknown nonlinear mapping. Since the
purpose behind data reduction is to save time for fitting
computationally expensive models to big data, the data
reduction procedure should be computationally efficient.
We propose next a simple algorithm which approximates
the solution of (3) for efficient data reduction.

We illustrate our method using a simple
one-dimensional example. Suppose N = 3000 data points
(the “big data”) are generated from the model Y i = 𝜙(Xi;
0.4,0.01)+ϵi, where i = 1, … , N, Xi’s are equally spaced
points from 0 to 1,𝜙(x; 0.4, 0.01) is the normal density with
mean 0.4 and standard deviation 0.01, and ϵi∼iidN(0, 𝜎2)
with 𝜎 = 0.1. This is shown in Figure 2 as black circles
after standardizing both x and y. Our aim is to reduce this
big data to n = 30 reduced points. The reduced points from
the “unsupervised” k-means clustering procedure (5) are
shown in the same figure as red crosses. Here, the response
value for each reduced point is obtained by averaging the
response values of the big data within its respective clus-
ter. We can see that the n = 30 points are almost uniformly
sampled on the input domain [0, 1], and therefore misses
the important region in the data space around x = 0.4.

Now consider the following strategy for sequentially
optimizing the proposed data reduction criterion (3). We
first start off with two points, say obtained using “unsuper-
vised” k-means clustering on the x-space. This is shown
on the first top panel of Figure 3. The loss computed for
the two corresponding clusters (see (2)) are L1 = 2888.4
and L2 = 0.6. Since the first cluster (left) has larger loss,
we divide that cluster into two, by performing k-means

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

0
2

4
6

K−Means Clustering

x

y

F I G U R E 2 One-dimensional example. Big data are shown as
black circles and the compressed data using k-means clustering is
shown as red crosses

clustering on the points within the first cluster. This then
gives two new cluster centers, as shown in the second top
panel of Figure 3. Note that the two new points replace the
cluster center from the original cluster. Finally, we com-
pute the new Voronoi regions (see (1)) with respect to the
three points and continue the procedure to obtain the next
reduced point. This last step is shown on the bottom left
panel of the figure.

The three steps above can then be iterated sequentially
to generate the compressed dataset. In particular, at the
mth step, we will identify the worst cluster as the one with
highest loss, that is,

i∗ = argmax
i=1∶m

Li,

where Li is computed using (2) for i = 1, … , m. Then
we divide the cluster Ii∗ into two by using k-means clus-
tering. The two new cluster centers will then replace the
old cluster center xi∗ . Finally, the Voronoi regions (1) with
respect to the m+ 1 points are then computed. The com-
putation of Voronoi regions can be done very fast even for
big datasets using kd-tree based algorithms, for example,
using the implementation in the R package FNN [4]. The
procedure is then continued until the desired number of
points is selected. The bottom right panel of Figure 3 shows
the results of the final step (Step 29). We can see that the
n = 30 points obtained by this greedy algorithm nicely cap-
tures the input–output relationship, especially within the
high variability region around x = 0.4.

An advantage of this sequential construction algorithm
is that we can monitor the performance of data reduction,
which can be used as a stopping rule for the procedure. We
can compute, say, the root-mean squared prediction error

JOSEPH and MAK 221

F I G U R E 3 Step-by-step
illustration of the proposed
method in the one-dimensional
example

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

0
2

4
6

Step 1

x

y

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

0
2

4
6

Step 2

x

y

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

0
2

4
6

Step 3

x

y

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

0
2

4
6

Step 29

x
y

(RMSE):

RMSEn =

√√√√ n∑
i=1

Li∕N,

which is shown on the left panel of Figure 4. This measure,
of course, decreases to 0 as n increases to N. So we may
choose an n where the curve stabilizes. Another option
is to use an R2 or adjusted-R2 measure as in regression
analysis:

R2
n = 1 −

∑n
i=1 Li∑N

j=1 (Yj − Y)2
and

adjR2
n = 1 −

∑N
i=1 Li∕(N − n)∑N

j=1 (Yj − Y)2∕(N − 1)
,

where Y is the mean response in the big data. The right
panel of Figure 4 shows the adjusted R2 measure for this
example. We see that, while the adjusted R2 seems to
improve (i.e., increase) as n increases, unlike the RMSE,
it will start decreasing after a large enough choice of n
(here, around n = 100). This provides a useful heuristic for
stopping the sequential data reduction procedure.

In this example, the final R2 for the “unsupervised”
k-means clustering (i.e., on the x-space) is 81.4%, whereas

with the proposed algorithm, the R2 increases to 99.75%,
which is a substantial improvement. Of course, the greedy
procedure above can be improved through more care-
ful optimization. For example, at each step, we can try
to find the two new cluster centers via nonlinear opti-
mization. However, even though we consider only two
points (i.e., a binary split of the worst cluster), it is still
an optimization problem in 2p dimensions, which can
be very time-consuming to solve using standard nonlin-
ear optimization methods. Another approach might be to
compute several choices of cluster centers which may be
good approximations of the optimal solution, then choose
the best centers. In our implementation, we used another
solution obtained by clustering in the y-space to get the
new points. Then, at each step we can make a choice
between the two centers obtained by clustering in the
x-space and those obtained using clustering in the y-space.
This is still very fast to compute. The details are given
in Algorithm 1. Using this modified approach, the R2

becomes 99.79%, which is a slight improvement to what
we got before.

Now let us examine the effect of noise on the
supercompress procedure. Figure 5 shows the selected
points as 𝜎 in the noise term increases. We can see that the
performance of the proposed method deteriorates as the
noise in the data increases, which is not too unexpected.

222 JOSEPH and MAK

0 5 10 15 20 25 30

0.
2

0.
4

0.
6

0.
8

1.
0

RMSE

number of samples

R
oo

t M
ea

n
S

qu
ar

e
E

rr
or

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

adjR2

number of samples

A
dj

us
te

d
R

−
sq

ua
re

d

F I G U R E 4 Monitoring the performance of the supercompress algorithm using root mean squared error and adjusted R2 in the
one-dimensional example

Algorithm 1. supercompress(n, {(Xj,Yj)}N
j=1): Supervised data reduction via clustering.

Return: reduced data points {(xi, yi)}n
i=1 ;

• Perform k-means clustering using two clusters on input features of the big data {X j}m
j=1, yielding two cluster

centers in x-space {x1, x2} and partitions {I1, I2};
• Initialize cluster centers  = {x1, x2} and partitions  = {I1, I2};
• Compute the loss (2) for each partition in  ;
for m = 1, · · · ,n − 2 do

• Find the cluster with highest loss i∗ = argmaxi=1,···,m+1 Li;
• Split 1: Perform k-means clustering using two clusters on input features in cluster i∗: {X j}j∈Ii∗ , yielding two
cluster centers in x-space {x′, x̃′};
• Split 2: Perform k-means clustering using two clusters on the response in cluster i∗: {yj}j∈Ii∗ , yielding a
partition in the y-space. Let {x∗, x̃∗} be the cluster means in x-space for this partition;
• Compute the loss (2) for the two split choices, and choose the cluster centers (x, x̃) which yield smaller loss;
• Remove from  the old center xi∗ and add new centers {x∗, x̃∗};
• Update the partitions  = {Ii}m+2

i=1 from centers ;
end

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

0
2

4
6

σ = 0.5

x

y

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

0
5

10

σ = 1

x

y

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−
2

0
2

4
6

8
10

12

σ = 2

x

y

F I G U R E 5 Performance of the supercompress procedure as the noise in the data increases

JOSEPH and MAK 223

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

0
2

4
6

8
Nearest Neighbor

x

y

unsupervised=0.77

supervised=0.07

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

0
2

4
6

8

Ordinary Kriging

x

y

unsupervised=0.80

supervised=1.71

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

0
2

4
6

8

Limit Kriging

x

y

unsupervised=0.80

supervised=0.14

F I G U R E 6 Performance of different modeling methods using the reduced dataset created by unsupervised k-means (red-dashed lines)
and the proposed supercompress procedure (blue-solid lines). The root mean squared prediction errors of the two methods are shown in
the legend

However, it seems to still perform better than the tradi-
tional unsupervised k-means (see Figure 2).

3 ROBUSTIFYING THE
SUPERCOMPRESS PROCEDURE

To investigate the robustness of thesupercompress pro-
cedure to different modeling choices, consider again the
simple one-dimensional example of the previous section.
Let N = 10,000 and that we want to reduce the data
to n = 20. Consider the following three nonparametric
regression models: (i) 1-nearest neighbor, (ii) ordinary
kriging [19], and (iii) limit kriging [12]. Two sets of com-
pressed data are generated, the first using the traditional
k-means (on only input features), and the second using the
proposed supercompress procedure. The compressed
points and the three fitted models are plotted in Figure 6.
The RMSE values of these fits are shown in the legend of
each plot. The ordinary kriging and limit kriging were fit-
ted using a Gaussian correlation function with parameters
estimated using the R package mlegp [8].

We can see that there is more than a 10-fold improve-
ment in the nearest neighbor prediction when using the
proposed supercompress method. However, the pre-
dictions became worse with ordinary kriging because the
fitted predictor behaves strangely in the regions where
the data are sparse. One reason for this is that the ordi-
nary kriging model assumes stationarity, which makes the
predictor “regress” back to the mean in regions where
there is no data. Limit kriging, proposed in Joseph [12],
is a simple modification to the ordinary kriging model to
avoid this mean-regressive feature, and because of this,
supercompress still provides a noticeable improvement
over its unsupervised counterpart. In fact, for limit kriging,

the fitted predictor converges to the nearest neighbor pre-
dictor, which explains why the proposed method is per-
forming better for such a model.

The foregoing results are a bit disappointing, because
our aim was to develop a data reduction method which
can perform well on a wide variety of modeling methods.
Thus, our hope that the nearest neighbor method would be
robust to all modeling choices appears to not be true! We
introduce next a modification of supercompresswhich
can yield improved robustness.

One possible strategy to robustify the method is to
take a convex combination of the objective functions in
the unsupervised and supervised procedures. Consider the
new loss function:

L̃ = 𝜆

n∑
i=1

∑
j∈Ii

||Xj − xi||2 + (1 − 𝜆)
n∑

i=1

∑
j∈Ii

(Yj − yi)2, (6)

where 𝜆∈ [0, 1] is a weight parameter quantifying the
trade-off the unsupervised and supervised clustering
criteria. When 𝜆 = 0, the formulation (6) reduces to the
earlier supercompress criterion (3), and when 𝜆 = 1,
this reduces to traditional (unsupervised) k-means crite-
rion (5). One can view this modified criterion as a trade-off
between a fully supervised reduction strategy (𝜆= 0), which
fully incorporates response information for data reduc-
tion, and a fully robust reduction strategy (𝜆 = 1), which
reduces the data using just input feature information. With
a choice of𝜆∈ (0, 1), the reduced points {xi}n

i=1 minimizing
(6) would (conceptually) integrate response information in
a model-robust way.

Of course, the choice of parameter 𝜆 in (6) plays a crit-
ical role in the quality of the reduced points. One option
would be to tune 𝜆 via cross-validation, but this would
incur multiple passes of the big data and would be very

224 JOSEPH and MAK

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

0
2

4
6

8
Nearest Neighbor

x

y

unsupervised=0.77

robust−supervised=0.11

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

0
2

4
6

8

Ordinary Kriging

x

y

unsupervised=0.80

robust−supervised=0.66

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

0
2

4
6

8

Limit Kriging

x

y

unsupervised=0.80

robust−supervised=0.15

F I G U R E 7 Performance of different modeling methods using the reduced dataset created by unsupervised k-means (red-dashed lines)
and the rsupercompress procedure (blue-solid lines). The root mean square prediction errors of the two methods are shown in the legend

computationally expensive. Instead, we found that the
default choice of 𝜆 = 1/(1+ p) (where p is the number of
input variables) works well in practice. One reason for this
is because, with this choice of 𝜆, the objective function (6)
becomes proportional to

n∑
i=1

∑
j∈Ii

1
p
||Xj − xi||2 +

n∑
i=1

∑
j∈Ii

(Yj − yi)2.

This suggests that, with 𝜆 = 1/(1+ p), equal impor-
tance is placed on the clustering problems in x-space
and y-space, thus providing a balanced trade-off between
supervision and robustness.

To optimize the new loss function (6), we can in fact use
the same heuristic algorithm from Section 2 with a slight
modification. The only change needed is that the Y j’s in
the previous algorithm are changed to Ỹj =

√
(1 − 𝜆)∕𝜆Yj,

and the loss functions Li in (2) are changed to

L̃i =
∑
j∈Ii

{||Xj − xi||2 + (Ỹj − yi)2}.

Furthermore, when 𝜆 = 1, all the points can be gener-
ated using the traditional k-means algorithm, and we do
not need to perform any of the iterative steps of Algorithm
1. Therefore, we initialize the algorithm with ⌈𝜆n⌉ points
obtained using k-means. We will call this robust modifica-
tion of supervised compression rsupercompress from
here on.

The reduced dataset constructed by the new
rsupercompress method with 𝜆 = 1/(1+ p) and the
three fitted models are shown in Figure 7. We can see that
there are now more points in the left and right tails of the
function, so the fitted models are uniformly performing
better than those fitted using the unsupervised k-means
dataset. Hence, for this problem, the proposed modified
supervised approach indeed provides effective and robust

data compression, which is as desired. We can still see the
undesirable “reversion to the mean” issue in the ordinary
kriging predictor, but the deviation from the true function
is reduced due to the presence of more points in the tails.

4 EXAMPLES

4.1 A test example

Consider the Michaelwicz function in p dimensions given
by

f (x) = −
p∑

k=1
sin(𝜋xk)sin20(k𝜋x2

k),

where x∈ [0, 1]p. First consider two dimensions, that is,
p = 2. We generate N = 20,000 points randomly from
U(0, 1)2 and Y i = f (Xi)+ϵi, where ϵi

iid∼ N(0,0.00012). After
standardizing, this dataset is compressed to n = 200 points
using the traditional unsupervised k-means, the pro-
posed supervised compression supercompress (𝜆 = 0)
and robust supervised compression rsupercompress
(𝜆 = 1/(p+ 1)). The compressed data points are shown in
Figure 8, along with the image of the function and Voronoi
regions (1).

We can see that the unsupervised k-means spreads
the points uniformly in the space, whereas the pro-
posed supercompress places more points in the regions
where the function varies a lot. On the other hand,
rsupercompress is a compromise between the two,
which as demonstrated in the previous section will be
more robust to different modeling choices. We can also see
that the Voronoi regions are roughly the same size in the
unsupervised k-means, whereas they are quite different
with the supervised procedures. Bigger Voronoi regions
appear where the function varies less and smaller Voronoi
regions appear where the function varies more. This makes

JOSEPH and MAK 225

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

unsupervised

x1

x 2

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

supervised

x1

x 2

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

robust−supervised

x1

x 2

F I G U R E 8 Two-dimensional example using Michaelwicz function

F I G U R E 9 Comparison of
unsupervised (middle) and supervised
(right) procedures on the 5%
compression of the original boat image
(left)

original image unsupervised supervised

sense because the function is approximated by a constant
within each Voronoi region.

Now consider a higher dimensional example. Let p = 5
in the Michaelwicz function. We generate N = 50,000
points as before. Suppose we want to reduce this to n = 500
points. Both the unsupervised and supervised procedures
did not perform well here. For comparison, the R2 value
of the unsupervised k-means is about 19%, whereas for
the supervised version it is about 25%. This indicates
that both requires much larger n in high dimensions to
accurately represent the big data. If we increase the n
to 5000, the R2 for the unsupervised and supervised pro-
cedures becomes 43% and 57%, respectively. We can see
that the gain in R2 with the supervised version is bigger
because the data points are selected more carefully from
regions where it matters the most. On the other hand,
the supercompress procedure took 645 s to generate
the 5000 points as opposed to only 12 s for the k-means
on a 3.2 GHz computer. This is the price we need to pay
for the improved performance of the supercompress
procedure.

4.2 An image compression example

We will use an image compression example to compare
the performance of supervised and unsupervised k-means.
The left panel of Figure 9 shows the gray scale image of

a boat taken from the R package imager [2], which is a
compressed version of a picture taken from http://r0k.us/
graphics/kodak/kodim09.html. This image has 256× 384
pixels and thus, Y is a vector of length 98,304. Suppose
we wish to compress it to 5% of its original size, that is,
n = 4915.

The middle panel of Figure 9 shows the compressed
image based on unsupervised k-means and the last panel
shows the compressed image based on supercompress.
The supervised procedure clearly does a better job in the
image compression than the unsupervised k-means. This
is because the supervised procedure picks out the regions
with large or sudden changes, which is helpful in recon-
structing the image. It is quite striking to see that the
number “14255” in the sail of the boat is readable even
with a 5% compression. However, the clouds in the picture
are not well captured, but this may not be the interesting
part of the picture. Overall, the supercompress proce-
dure seems to automatically pick up the salient features of
the picture that seem to agree with our intuition.

5 SEMIPARAMETRIC DATA
REDUCTION

Fitting a parametric model to data can be thought of as a
way to compress data. For example, suppose the big data
were indeed generated from a linear regression model.

http://r0k.us/graphics/kodak/kodim09.html
http://r0k.us/graphics/kodak/kodim09.html

226 JOSEPH and MAK

Then, by fitting a perfectly specified linear regression
model to this data, we can estimate the p+ 1 regression
parameters and throw away the big data. The p+ 1 param-
eter estimates can then be viewed as the compressed data.
The catch here is, of course, when the data are not gener-
ated from a linear regression model, such a “parametric”
compression may result in a poor summary of the big
data. What we have proposed so far is a “nonparamet-
ric” way to compress data, one which is robust to a wide
range of data generating mechanisms. We explore next
a compromise between these two extremes—a semipara-
metric approach—which aims to combine the best of both
worlds.

Suppose the data is generated from the following
model

Yi = 𝜇(Xi; 𝜷) + ϵi, i = 1, … ,n, (7)

where 𝜇(X; 𝜷) is a model parameterized by the unknown
parameters 𝜷. In the absence of any prior information
about the underlying relationship, we could use the follow-
ing parametric model

𝜇(X; 𝛽) = 𝛽0 +
p∑

k=1
𝛽kfk(Xk),

where f k(⋅)’s are some known data-independent basis
functions. The unknown parameters 𝛽 can be estimated
from the big data using, for example, maximum likelihood
estimation. Let 𝛽k denote the estimate of parameter 𝛽k,
k = 1, … , p. We can then compute the residuals

Zi = Yi − 𝜇(Xi; 𝜷), i = 1, … ,n.

The data compression procedure of the previous
sections can now be applied to {(Xi,Zi)}N

i=1 to obtain the
reduced data {(xi, zi)}n

i=1. However, in addition to this com-
pressed data, we also need to store the estimates of 𝜷 and
the basis functions f 1(⋅), … , f p(⋅). Note that it is important
to choose data-independent basis functions, otherwise the
data (or “knots”) that are needed to define the basis func-
tions will also need to stored, and will become part of the
compressed data.

Consider again the one-dimensional example in
Section 3. Suppose we take 𝜇(X ; 𝛽) = 𝛽0. From the big data,
we obtain the estimate 𝛽0 = 0 (because the data have been
standardized). The reduced data using the unsupervised
k-means and supercompress procedures are shown in
Figure 10, which is the same as before. Now, instead of fit-
ting an ordinary kriging model to the reduced data, we fit a
zero-mean simple kriging model to the residuals. The final
predictions can be obtained by adding back the 𝛽0 to the
predictions from the simple kriging model. These are also
plotted in Figure 10. We can see that this semiparametric

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

0
2

4
6

8

Simple Kriging

x

y

unsupervised=0.80

supervised=0.186

F I G U R E 10 Comparison of simple kriging model fitted to the
compressed data from unsupervised k-means andsupercompress
procedures with mean estimated from the big data

approach yields a substantial improvement in predictive
performance even with a simple constant parametric
model, compared to the earlier nonparametric approaches
(see the middle panels of Figures 6 and 7). This is because
the predictions now regress back to the “true” mean of the
data, and not to the estimated mean from the compressed
data.

6 APPLICATION TO TAXICAB
SCHEDULING

Finally, we illustrate the usefulness of the proposed reduc-
tion method in a real-world application on predicting
the ride duration of taxi trips in New York City. A com-
mon challenge faced by taxi companies is real-time taxi
scheduling: the efficient assignment of taxis to passengers
to ensure smooth and timely service. One key part of this
scheduling involves predicting the duration of a current
trip, which allows one to anticipate when the cab will be
available for future trips. We consider here the predictive
modeling problem for ride duration of a taxi trip from
individual trip attributes.

For model training, we adopt a dataset released by
the New York Taxi and Limosine Commission in 2016,
which was made publicly available for a popular Kag-
gle predictive modeling competition in 2017 [14], with
over 11,000 submission entries. Since then, there has been
much work on augmenting this dataset with additional
input features from real-time routing engines. In particu-
lar, we use the augmented dataset provided in Benmeida
[3], which includes additional features extracted from the
Open Source Routing System [10], a high-performance

JOSEPH and MAK 227

T A B L E 1 Input features (units)
for training the taxicab predictive
modeling problem

Input features

Trip distance (m) Secondary proportion (% of total distance)

Motorway proportion (% of total distance) Tertiary proportion (% of total distance)

Trunk proportion (% of total distance) Unclassified proportion (% of total distance)

Primary proportion (% of total distance) Residential proportion (% of total distance)

Note: The response variable to predict is trip duration (in seconds).

T A B L E 2 Test RMSE of a 1-NN predictor trained using
n reduced points from random subsampling, k-means,
supercompress, and rsupercompress

1-NN predictor

n = 250 n = 500 n = 2000

K-means (NP) 81.60 66.00 71.37

K-means (SP) 32.52 31.73 30.46

supercompress (NP) 40.85 37.73 34.05

supercompress (SP) 29.56 29.50 28.29

rsupercompress (NP) 41.11 38.30 33.98

rsupercompress (SP) 29.73 29.47 28.83

Note: All reduction methods are performed both nonparametrically (NP) and
semiparametrically (SP) via an l1-regularized linear model with fitted Box–Cox
transformation (BoxCox-l1). The test RMSE for BoxCox-l1 is 37.92.

routing engine for shortest paths in road networks. There
are a total of p = 8 input features in this dataset (details
found in Table 1), with the response variable for predic-
tion being the trip duration (in seconds). This augmented
dataset is then randomly split into N = 1,458,643 entries
for training, and the remaining N te = 625,134 entries for
testing.

Clearly, with over 1,000,000 training data points, fit-
ting an efficient predictive model for real-time schedul-
ing is a daunting task. One solution (among many) is
to train the predictive model on a smaller subset of the
data. To this end, we compare the proposed supervised
procedures (supercompress and rsupercompress)
with k-means clustering. Each method is performed with
and without the initial parametric reduction outlined in
Section 5, via an l1-regularized linear regression model
with a fitted Box–Cox transformation on the response
variable (we refer to this as BoxCox-l1 from here on).
Prediction performance is then evaluated on the holdout
test set.

Consider first the 1-nearest-neighbor (1-NN) predic-
tor, on which the proposed compression method is based.
Table 2 shows the test RMSE of the considered data com-
pression methods using the 1-NN predictor, for reduced
sample sizes of n = 250, 500, and 2000. The test RMSE
for a parametric BoxCox-l1 fit is also provided as a bench-
mark. We see that the two proposed supervised methods

provide a noticeable lower test errors compared to the
unsupervised k-means clustering, which shows that infor-
mation from the output variable can indeed improve
predictive performance under 1-NN. For each method,
the semiparametric approach of performing compression
after an initial BoxCox-l1 fit yields much lower test errors
than its nonparametric counterpart, which suggests a
linear trend in the data.

Consider next the performance of these methods for
two other widely used predictive models in the litera-
ture: the Gaussian process (GP) model [19] and the neu-
ral network (NNet) model [5]. The GP model is fit with
an anisotropic Matérn correlation function. Two types of
NNets are implemented here: a simple NNet using one hid-
den layer with one node, and a more complex NNet using
two hidden layers with four and one nodes, respectively.
Both NNet models use a tanh activation function. Table 3
shows the test RMSE of the considered methods using
n = 500 reduced points. We see that rsupercompress
(with semiparametric compression) provides uniformly
low test errors over all model choices, whereas all other
methods yield high test errors for at least one of the con-
sidered models. This shows that the proposed supervised
data compression approach, with the robustness and semi-
parametric modifications, provides both better and more
robust predictive performance over the unsupervised com-
pression method.

228 JOSEPH and MAK

1-NN GP 1-Layer NNet 2-Layer NNet

K-means (NP) 66.00 73.29 924.27 921.57

K-means (SP) 31.73 453.86 490.38 918.70

supercompress (NP) 37.73 627.03 687.77 687.72

supercompress (SP) 29.50 232.52 37.90 37.90

rsupercompress (NP) 38.30 92.62 507.18 711.55

rsupercompress (SP) 29.47 58.35 37.90 37.92

Note: All reduction methods are performed both non-parametrically (NP) and semi-parametrically (SP) via an
l1-regularized linear model with fitted Box–Cox transformation (BoxCox-l1). The test RMSE for BoxCox-l1 is
37.92.

T A B L E 3 Test RMSE of
different predictors trained using
n = 500 reduced points from
k-means, supercompress, and
rsupercompress

7 CONCLUSION

This article discusses the problem of reducing/compress-
ing the size of big data using the information in the output.
We first proposed a solution to this problem by choosing
a subset of the data or more accurately some represen-
tative points that will give a good fit to the big data if
we were to use a 1-nearest neighbor prediction approach.
The distinguishing feature of this approach is that the
representative points are chosen from regions where it
matters the most for modeling purposes. We also proposed
a fast supervised k-means-based algorithm for finding the
solution. Although the proposed approach seems to work
well, the solution is found to be not robust to all possi-
ble input–output modeling choices. We then discussed on
how the approach can be modified to improve robustness
against possible modeling choices. We also discussed fur-
ther improvements to the method by using a semiparamet-
ric data compression approach. We demonstrated through
many examples that the proposed supervised data com-
pression method can outperform the other data compres-
sion methods that do not use information in the output.

In our discussion, we have focused on continuous
inputs and outputs. Extending the proposed method to
deal with categorical inputs and outputs is important for
regression as well as for classification problems. One sim-
ple idea for incorporating categorical inputs is to partition
the data with respect to the levels of the categorical input
and then perform data compression independently within
each partition. However, doing the same thing for categor-
ical outputs may not be the best approach, as evidenced by
the optimal design-based data reduction works on logistic
regression [20, 22]. This seems like a promising topic for
future research.

ACKNOWLEDGMENTS
This research is supported by a U.S. National Science
Foundation (NSF) grant CMMI-1921646, and by an NSF
CSSI Frameworks grant 2004571.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are openly
available.

ORCID
V. Roshan Joseph https://orcid.org/0000-0002-9430-
5301
Simon Mak https://orcid.org/0000-0002-5693-7076

REFERENCES
1. D. Aloise, A. Deshpande, P. Hansen, and P. Popat, NP-hardness

of Euclidean sum-of-squares clustering, Mach. Learn. 75 (2009),
245–248.

2. S. Barthelme, D. Tschumperle, J. Wijffels, H. E. Assemlal, and
S. Ochi, imager: Image processing library based on “CImg”, R
0.42.3, 2020, available at https://CRAN.R-project.org/package=
imager.

3. M. Benmeida, NYC Taxi Trip Durations: Data augmentation
using OSRM, 2017, accessed October 17, 2020.

4. A. Beygelzimer, S. Kakadet, J. Langford, S. Arya, D. Mount, and
S. Li, FNN: Fast nearest neighbor search algorithms and appli-
cations, R 1.1.3, 2019, available at https://CRAN.R-project.org/
package=FNN.

5. C. M. Bishop, Neural networks for pattern recognition, New York,
NY, Oxford University Press, 1995.

6. L. Bottou, Large-scale machine learning with stochastic gradient
descent, in Proceedings of COMPSTAT 2010, Heidelberg, Ger-
many, Springer, 2010, 177–186.

7. J. Conway and N. Sloane, Voronoi regions of lattices, second
moments of polytopes, and quantization, IEEE Trans. Inf. Theory
28 (1982), 211–226.

8. G. M. Dancik, mlegp: Maximum likelihood estimates of Gaussian
processes, R 3.1.7, 2018, available at https://CRAN.R-project.
org/package=mlegp.

9. P. Drineas, M. Magdon-Ismail, M. Mahoney, and D. Woodruff,
Faster approximation of matrix coherence and statistical leverage,
J. Mach. Learn. Res. 13 (2012), 3475–3506.

10. S. Huber and C. Rust, Calculate travel time and distance with
OpenStreetMap data using the open source routing machine
(OSRM), Stata J. 16 (2016), 416–423.

11. J. Huggins, T. Campbell, and T. Broderick, Coresets for scalable
Bayesian logistic regression, in Advances in neural information

https://orcid.org/0000-0002-9430-5301
https://orcid.org/0000-0002-9430-5301
https://orcid.org/0000-0002-9430-5301
https://orcid.org/0000-0002-5693-7076
https://orcid.org/0000-0002-5693-7076
https://cran.r-project.org/package=imager
https://cran.r-project.org/package=imager
https://cran.r-project.org/package=FNN
https://cran.r-project.org/package=FNN
https://cran.r-project.org/package=mlegp
https://cran.r-project.org/package=mlegp

JOSEPH and MAK 229

processing systems, Red Hook, NY, Curran Associates, 2016,
4080–4088.

12. V. R. Joseph, Limit kriging, Technometrics 48 (2006), 458–466.
13. V. R. Joseph and A. Vakayil, Split: An optimal method for data

splitting, arXiv preprint arXiv:2012.10945, 2020.
14. Kaggle, New York City Taxi Trip Duration, 2017, accessed Octo-

ber 17, 2020.
15. S. P. Llyod, Least squares quantization in PCM’s, Bell Telephone

Laboratories Paper, 1957.
16. P. Ma, M. Mahoney, and B. Yu, A statistical perspective on algo-

rithmic leveraging, J. Mach. Learn. Res. 16 (2015), 861–911.
17. S. Mak and V. R. Joseph, Support points, Ann. Statist. 46 (2018),

2562–2592.
18. J. Max, Quantizing for minimum distortion, IRE Trans. Inf. The-

ory IT-6 (1960), 7–12.
19. T. J. Santner, B. J. Williams, and W. I. Notz, The design and

analysis of computer experiments, Springer, New York, 2003.

20. H. Wang, More efficient estimation for logistic regression with
optimal subsamples, J. Mach. Learn. Res. 20 (2019), 1–59.

21. H. Wang, M. Yang, and J. Stufken, Information-based optimal
subdata selection for big data linear regression, J. Amer. Statist.
Assoc. 114 (2019), 393–405.

22. H. Wang, R. Zhu, and P. Ma, Optimal subsampling for large
sample logistic regression, J. Amer. Statist. Assoc. 113 (2018),
829–844.

How to cite this article: Joseph VR, Mak S.
Supervised compression of big data. Stat Anal Data
Min: The ASA Data Sci Journal. 2021;14:217–229.
https://doi.org/10.1002/sam.11508

