Universal Geometric Graphs ${ }^{\star}$

Fabrizio Frati ${ }^{1}$, Michael Hoffmann ${ }^{2}$, and Csaba D. Tóth ${ }^{3,4}$
${ }^{1}$ Roma Tre University, Rome, Italy frati@dia.uniroma3.it
${ }^{2}$ ETH Zürich, Zürich, Switzerland hoffmann@inf.ethz.ch
${ }^{3}$ California State University Northridge, Los Angeles, CA, USA
${ }^{4}$ Tufts University, Medford, MA, USA
csaba.toth@csun.edu

Abstract

We introduce and study the problem of constructing geometric graphs that have few vertices and edges and that are universal for planar graphs or for some sub-class of planar graphs; a geometric graph is universal for a class \mathcal{H} of planar graphs if it contains an embedding, i.e., a crossing-free drawing, of every graph in \mathcal{H}.

Our main result is that there exists a geometric graph with n vertices and $O(n \log n)$ edges that is universal for n-vertex forests; this extends to the geometric setting a well-known graph-theoretic result by Chung and Graham, which states that there exists an n-vertex graph with $O(n \log n)$ edges that contains every n-vertex forest as a subgraph. Our $O(n \log n)$ bound on the number of edges is asymptotically optimal. We also prove that, for every $h>0$, every n-vertex convex geometric graph that is universal for the class of the n-vertex outerplanar graphs has $\Omega_{h}\left(n^{2-1 / h}\right)$ edges; this almost matches the trivial $O\left(n^{2}\right)$ upper bound given by the n-vertex complete convex geometric graph. Finally, we prove that there is an n-vertex convex geometric graph with n vertices and $O(n \log n)$ edges that is universal for n-vertex caterpillars.

1 Introduction

A graph G is universal for a class \mathcal{H} of graphs if G contains every graph in \mathcal{H} as a subgraph. The study of universal graphs was initiated by Rado [20] in the 1960s. Obviously, the complete graph K_{n} is universal for any family \mathcal{H} of n-vertex graphs. Research focused on finding the minimum size (i.e., number of edges) of universal graphs for various families of sparse graphs on n vertices. Babai et al. [3] proved that if \mathcal{H} is the family of all graphs with m edges, then the size of a universal graph for \mathcal{H} is in $\Omega\left(m^{2} / \log ^{2} m\right)$ and $O\left(m^{2} \log \log m / \log m\right)$. Alon et al. [1,2] constructed a universal graph of optimal $\Theta\left(n^{2-2 / k}\right)$ size for n-vertex graphs with maximum degree k.

Significantly better bounds exist for minor-closed families. Babai et al. [3] proved that there exists a universal graph with $O\left(n^{3 / 2}\right)$ edges for n-vertex planar

[^0]graphs. For bounded-degree planar graphs, Capalbo [10] constructed universal graphs of linear size, improving an earlier bound by Bhatt et al. [5], which extends to other families with bounded bisection width. Böttcher et al. [7,8] proved that every n-vertex graph with minimum degree $\Omega(n)$ is universal for n-vertex bounded-degree planar graphs. For n-vertex trees, Chung and Graham [12,13] constructed a universal graph of size $O(n \log n)$, and showed that this bound is asymptotically optimal apart from constant factors.

In this paper, we extend the concept of universality to geometric graphs. A geometric graph is a graph together with a straight-line drawing in the plane in which the vertices are distinct points and the edges are straight-line segments not containing any vertex in their interiors. We investigate the problem of constructing, for a given class \mathcal{H} of planar graphs, a geometric graph with few vertices and edges that is universal for \mathcal{H}, that is, it contains an embedding of every graph in \mathcal{H}. For an (abstract) graph G_{1} and a geometric graph G_{2}, an embedding of G_{1} onto G_{2} is an injective graph homomorphism $\varphi: V\left(G_{1}\right) \rightarrow V\left(G_{2}\right)$ such that (i) every edge $u v \in E\left(G_{1}\right)$ is mapped to a line segment $\varphi(u) \varphi(v) \in E\left(G_{2}\right)$; and (ii) every pair of edges $u_{1} v_{2}, u_{2} v_{2} \in E\left(G_{1}\right)$ is mapped to a pair of noncrossing line segments $\varphi\left(u_{1}\right) \varphi\left(v_{1}\right)$ and $\varphi\left(u_{2}\right) \varphi\left(v_{2}\right)$ in the plane.

Previous research in the geometric setting was limited to finding the smallest complete geometric graph that is universal for the planar graphs on n vertices. The intersection pattern of the edges of a geometric graph is determined by the location of its vertices; hence universal complete geometric graphs are commonly referred to as n-universal point sets. De Fraysseix et al. [16] proved that the $2 n \times n$ section of the integer lattice is an n-universal point set. Over the last 30 years, the upper bound on the size of an n-universal point set has been improved from $2 n^{2}$ to $n^{2} / 4+O(n)$ [4]; the current best lower bound is $(1.293-o(1)) n$ [21] (based on stacked triangulations, i.e., maximal planar graphs of treewidth three; see also $[11,19]$). It is known that every set of n points in general position is universal for n-vertex outerplanar graphs [6,18]. An $O\left(n^{3 / 2} \log n\right)$ upper bound is known for n-vertex stacked triangulations [17].

Our Results. The results on universal point sets yield an upper bound of $O\left(n^{4}\right)$ for the size of a geometric graph that is universal for n-vertex planar graphs and $O\left(n^{2}\right)$ for n-vertex outerplanar graphs, including trees. We improve the upper bound for n-vertex trees to an optimal $O(n \log n)$, and show that the quadratic upper bound for outerplanar graphs is essentially tight for convex geometric graphs. More precisely, we prove the following results:

- For every $n \in \mathbb{N}$, there is a geometric graph G with n vertices and $O(n \log n)$ edges that is universal for forests with n vertices (Theorem 1 in Sect. 2). The $O(n \log n)$ bound is asymptotically optimal, even in the abstract setting, for caterpillars (a caterpillar is a tree such that the removal of its leaves results in a path, called spine), and if the universal graph is allowed to have more than n vertices [12, Theorem 1]. The proof of universality is constructive and yields a polynomial-time algorithm that embeds any n-vertex forest onto G.
- For every $h \in \mathbb{N}$ and $n \geq 3 h^{2}$, every n-vertex convex geometric graph that is universal for the family of n-vertex cycles with h disjoint chords has $\Omega_{h}\left(n^{2-1 / h}\right)$ edges (Theorem 2 in Sect. 3); this almost matches the trivial $O\left(n^{2}\right)$ bound, which hence cannot be improved by polynomial factors even for n-vertex outerplanar graphs of maximum degree three. For n-vertex cycles with 2 disjoint chords, there is an n-vertex convex geometric graph with $O\left(n^{3 / 2}\right)$ edges (Theorem 3 in Sect. 3), which matches the lower bound above.
- For every $n \in \mathbb{N}$, a convex geometric graph with n vertices and $O(n \log n)$ edges exists that is universal for n-vertex caterpillars (Theorem 4 in Sect. 3).

A full version of the paper can be found in [14].

2 Universal Geometric Graphs for Forests

In this section, we prove the following theorem.
Theorem 1. For every $n \in \mathbb{N}$, there exists a geometric graph G with n vertices and $O(n \log n)$ edges that is universal for forests with n vertices.

Construction. We adapt a construction of Chung and Graham [13] to the geometric setting. For $n \in \mathbb{N}$, they construct an n-vertex graph G with $O(n \log n)$ edges that contains every n-vertex forest as a subgraph. We present this construction. For simplicity assume $n=2^{h}-1$ with $h \geq 2$. Let B be an n-vertex complete rooted ordered binary tree. A level is a set of vertices at the same distance from the root. The levels are labeled $1, \ldots, h$, from the one of the root to the one of the leaves. A preorder traversal of B (visiting first the root, then recursively the vertices in its left subtree, and then recursively the vertices in its right subtree) determines a total order on the vertices, which also induces a total order on the vertices in each level. On each level, we call two consecutive elements in this order level-neighbors; in particular, siblings are level-neighbors. We denote by $B(v)$ the subtree of B rooted at a vertex v. The graph G contains B and three additional groups of edges (see Fig. 1): (E1) Every vertex v is adjacent to all vertices in $B(v)$; (E2) every vertex v with a level-neighbor u in B is adjacent to all vertices in $B(u)$; and (E3) every vertex v whose parent has a left level-neighbor p is adjacent to all vertices in $B(p)$.

Number of edges. The tree B has 2^{i-1} vertices on level i, for $i=1, \ldots, h$. A vertex v on level i has $2^{h-i+1}-1$ descendants (including itself), and its at most two level-neighbors have the same number of descendants. In addition, the left level-neighbor of the parent of v (if present) has $2 \cdot\left(2^{h-i+1}-1\right)$ descendants (excluding itself). Altogether v is adjacent to less than $5 \cdot 2^{h-i+1}$ vertices at the same or at lower levels of B. Hence, the number of edges in G is less than $5 \cdot \sum_{i=1}^{h} 2^{i-1} \cdot 2^{h-i+1}=5 \cdot 2^{h} \cdot h=5(n+1) \cdot \log _{2}(n+1) \in O(n \log n)$.

Chung and Graham [13] showed that G is universal for n-vertex forests. ${ }^{5}$

[^1]

Fig. 1: A schematic drawing of the 15 -vertex universal graph (left) and a geometric drawing of the 7 -vertex universal graph. The edges of B are black; the edges of the groups (E1), (E2), and (E3) are red, orange, and blue, respectively. Edges in several groups have the color of the first group they belong to.

Geometric representation. We next describe how to embed the vertices of G into \mathbb{R}^{2}; see Fig. 2(left) for an illustration. First, the x-coordinates of the vertices are assigned in the order determined by a preorder traversal of B. For simplicity, let us take these x-coordinates to be $0, \ldots, n-1$, so that the root of B is placed on the y-axis. The vertex of G with x-coordinate i is denoted by v_{i}.

The y-coordinates of the vertices are determined by a BFS traversal of B starting from the root, in which at every vertex the right sibling is visited before the left sibling. If a vertex u is visited before a vertex v by this traversal, then u gets a larger y-coordinate than v. The gap between two consecutive y-coordinates is chosen so that every vertex is above every line through two vertices with smaller y-coordinate; this implies that, for any vertex v, all vertices with larger y-coordinate than v, if any, see the vertices below v in the same circular order as v. The vertices of G are in general position, that is, no three are collinear.

Our figures display the vertices of B in the correct x - and y-order, but-with the exception of Fig. 1(right) - they are not to scale. The y-coordinates in our construction are rapidly increasing (similarly to $[9,17]$). For this reason, in our figures we draw the edges in B as straight-line segments and all other edges as Jordan arcs. We have the following property (refer to Fig. 2(right)).

Observation 1 If $a b, c d \in E(G)$ are such that (1) a has larger y-coordinate than b, c, and d, and (2) b has smaller or larger x-coordinate than both c and d, then $a b$ and $c d$ do not cross.

Intervals. A geometric graph is plane if it contains no crossings. For every interval $[i, j] \subseteq[0, n-1]$ we define $G[i, j]$ as the subgraph of G induced by the vertices with x-coordinate in $[i, j]$. Then $G[i, j]$ is an interval of G. The length of $G[i, j]$ is defined as $|G[i, j]|=j-i+1$, which is the number of vertices in $G[i, j]$. If I is an interval of integers, then we denote by $G(I)$ the corresponding interval of G. For a subset $U \subset V(G)$, we denote by $G[U]$ the subgraph of G induced by U. We will show eventually that every tree on h vertices admits an embedding onto every interval of length h of G. We now present the following lemma.

Fig. 2: Illustration for the assignment of x - and y-coordinates to the vertices of G, and for the definition of interval (left). Illustration for Observation 1(right).

Lemma 1. Every interval $G[i, j]$ of G on at least two vertices contains two plane spanning stars, centered at the highest vertex v_{k} and at the second highest vertex v_{s} of $G[i, j]$. If $k<j$, then $G[i, j]$ contains a plane spanning star centered at the highest vertex of $G[k+1, j]$ (which may or may not be v_{s}).

Our upcoming recursive algorithm sometimes embeds a subtree of T onto an induced subgraph of G that is "almost" an interval, in the sense that it can be obtained from an interval of G by deleting its highest vertex or by replacing its highest vertex with a vertex that does not belong to the interval.

We first prove that the "structure" of an interval without its highest vertex is similar to that of an interval. Let U and W be two subsets of $V(G)$ with $h=|U|=|W|$. Let u_{1}, \ldots, u_{h} and w_{1}, \ldots, w_{h} be the vertices of U and W, respectively, ordered by increasing x-coordinates. We say that $G[U]$ and $G[W]$ are crossing-isomorphic if: (C1) for any $p, q \in\{1, \ldots, h\}$, the edge $u_{p} u_{q}$ belongs to $G[U]$ if and only if the edge $w_{p} w_{q}$ belongs to $G[W] ;(\mathrm{C} 2)$ for any $p, q, r, s \in$ $\{1, \ldots, h\}$ such that the edges $u_{p} u_{q}$ and $u_{r} u_{s}$ belong to $G[U]$, the edges $u_{p} u_{q}$ and $u_{r} u_{s}$ cross if and only if the edges $w_{p} w_{q}$ and $w_{r} w_{s}$ cross; and (C3) if u_{i} is the highest vertex of $G[U]$, for some $i \in\{1, \ldots, h\}$, then w_{i} is the highest vertex of $G[W]$. The graph isomorphism given by $\lambda\left(u_{i}\right)=w_{i}$, for all $i=1, \ldots, n$, is a crossing-isomorphism. Clearly, the inverse of a crossing-isomorphism is also a crossing-isomorphism. We have the following.

Lemma 2. Let v_{k} be the highest vertex in an interval $G[i, j]$, and assume that $G[i, j]$ contains neither the right child of v_{k} nor any descendant of the left child of its left sibling (if it exists). Then $G[i, j]-v_{k}$ is crossing-isomorphic to some interval $G(I)$ of G; the interval I can be computed in $O(1)$ time.

We now present our tools for embedding trees onto "almost" intervals.
Lemma 3. Let v_{k} be the highest vertex in an interval $G[i, j]$ with $h+1$ vertices. Suppose that there is a crossing-isomorphism λ from $G[i, j]-v_{k}$ to some interval $G(I)$ of G with h vertices. Further, suppose that a tree T with h vertices admits an embedding φ onto $G(I)$. Then $\varphi^{\prime}=\lambda^{-1} \circ \varphi$ is an embedding of T onto $G[i, j]-v_{k}$, and if a is the vertex of T such that $\varphi(a)$ is the highest vertex of $G(I)$, then $\varphi^{\prime}(a)$ is the highest vertex of $G[i, j]-v_{k}$.

Lemma 4. Let $G[i, j]$ be an interval of G with h vertices and let v_{k} be its highest vertex. Let v_{x} be a vertex of G that is higher than all vertices in $G[i, j]-v_{k}$ and that does not belong to $G[i, j]$. Suppose that a tree T with h vertices admits an embedding φ onto $G[i, j]$. Let a be the vertex of T such that $\varphi(a)=v_{k}$; further, let $\varphi^{\prime}(a)=v_{x}$ and $\varphi^{\prime}(b)=\varphi(b)$ for every vertex b of T other than a. Then φ^{\prime} is an embedding of T onto $G[i, j]-v_{k}+v_{x}$.

The following lemma is a variant of the (unique) lemma in [13].
Lemma 5. Given a rooted tree T on $m \geq 2$ vertices and an integer s, with $1 \leq s \leq m$, there is a vertex c of T such that $|V(T(c))| \geq s$ but $|V(T(d))| \leq s-1$, for all children d of c. Such a vertex c can be computed in time $O(m)$.

Proof strategy. Given a tree T on h vertices and an interval $G[i, j]$ of length h, we describe a recursive algorithm that constructs an embedding φ of T onto $G[i, j]$. For a subtree T^{\prime} of T, we denote by $\varphi\left(T^{\prime}\right)$ the image of φ restricted to T^{\prime}. A step of the algorithm explicitly embeds some vertices; the remaining vertices form subtrees that are recursively embedded onto pairwise disjoint subintervals of $G[i, j]$. We insist that in every subtree at most two vertices, called portals, are adjacent to vertices not in the subtree. We also ensure that whenever a subtree is embedded onto a subinterval, the vertices not in the subtree that connect to the portals of that subtree are embedded above the subinterval.

For a point p, we denote $Q^{+}(p)=\left\{q \in \mathbb{R}^{2}: x(p)<x(q)\right.$ and $\left.y(p)<y(q)\right\}$ and $Q^{-}(p)=\left\{q \in \mathbb{R}^{2}: x(q)<x(p)\right.$ and $\left.y(p)<y(q)\right\}$.

We inductively prove the following lemma, which immediately implies Theorem 1 with $G[i, j]=G[0, n-1]$ and a portal a chosen arbitrarily.

Lemma 6. We are given a tree T on h vertices, an interval $G[i, j]$ of length h, and either (1) a single portal a in T, or (2) two distinct portals a and b in T. Then there exists an embedding φ of T onto $G[i, j]$ with the following properties:

1. If only one portal is given, then
(a) $\varphi(a)$ is the highest vertex in $G[i, j]$; and
(b) if $\operatorname{deg}_{T}(a)=1$ and a^{\prime} is the unique neighbor of a in T, then $Q^{-}\left(\varphi\left(a^{\prime}\right)\right)$ does not intersect any vertex or edge of the embedding $\varphi\left(T\left(a^{\prime}\right)\right)$.
2. If two distinct portals are given, then
(a) $\varphi(a)$ is to the left of $\varphi(b)$;
(b) $Q^{-}(\varphi(a))$ does not intersect any edge or vertex of $\varphi(T)$; and
(c) $Q^{+}(\varphi(b))$ does not intersect any edge or vertex of $\varphi(T)$.

Proof sketch: We proceed by induction on h. In the base case $h=1$, hence T has one vertex, which must be the portal a, and the map $\varphi(a)=v_{i}$ maps a to the highest vertex of $G[i, i]$. For the induction step we assume that $h \geq 2$.

Case 1: There is only one portal a. Let v_{k} denote the highest vertex in $G[i, j]$. We need to find an embedding of T onto $G[i, j]$ where $\varphi(a)=v_{k}$. Consider T to be rooted at a. We distinguish two cases depending on the degree of a in T.

Case 1.1: $\operatorname{deg}_{T}(a) \geq 2$. Assume that a has t children a_{1}, \ldots, a_{t}. Refer to Fig. 3. Partition the integers $[i, j] \backslash\{k\}$ into t contiguous subsets I_{1}, \ldots, I_{t} such

Fig. 3: Case 1.1: Tree T (left) and its embedding onto $G[i, j]$ (right).

Fig. 4: Case 1.2.4. Tree T (left) and its embedding onto $G[i, j]$ (right).
that $\left|I_{x}\right|=\left|V\left(T\left(a_{x}\right)\right)\right|$, for $x=1, \ldots, t$. W.l.o.g. assume that I_{q} contains $k-1$ or $k+1$, and so $I_{q} \cup\{k\}$ is an interval of integers. By induction, there is an embedding φ_{x} of $T\left(a_{x}\right)$ onto $G\left(I_{x}\right)$ such that $\varphi_{x}\left(a_{x}\right)$ is the highest vertex of $G\left(I_{x}\right)$, for all $x \neq q$, and there is an embedding φ_{q} of $T-\bigcup_{x \neq q} T\left(a_{x}\right)$ onto $G\left(I_{q} \cup\{k\}\right)$ such that $\varphi_{q}(a)=v_{k}$. Then the combination of these embeddings is an embedding φ of T onto $G[i, j]$ satisfying Properties 1(a) and 1(b). In particular, the edges $\varphi(a) \varphi\left(a_{x}\right)$ are in $G[i, j]$ by Lemma 1 , and an edge $\varphi(a) \varphi\left(a_{x}\right)$ does not cross $\varphi\left(T\left(a_{y}\right)\right)$, where $y \neq x$, by Observation 1.

Case 1.2: $\operatorname{deg}_{T}(a)=1$. Let a^{\prime} be the neighbor of a in T and let $T^{\prime}=T\left(a^{\prime}\right)$.
Case 1.2.1: $k=j$. Set $\varphi(a)=v_{k}$ and recursively embed T^{\prime} onto $G[i, k-1]$ with a single portal a^{\prime}, which is mapped to the highest vertex in $G[i, k-1]$. Clearly, φ is an embedding of T onto $G[i, j]$ satisfying Properties 1(a) and 1(b), since the edge $\varphi(a) \varphi\left(a^{\prime}\right)$ is above, and hence does not cross, $\varphi\left(T^{\prime}\right)$.

Case 1.2.2: $k=i$. This case is symmetric to Case 1.2.1.
Case 1.2.3: $i<k<j$ and the left sibling v_{ℓ} of v_{k} exists and is in $G[i, j]$. It follows that $\ell=i$, as if $\ell>i$, then $v_{\ell-1}$, which is the parent of v_{ℓ} and v_{k}, would be a vertex in $G[i, j]$ higher than v_{k}. By construction, v_{i} is the second highest vertex in $G[i, j]$. Recursively construct an embedding ψ of T^{\prime} onto $G[i+1, j]$ with a single portal a^{\prime}. By Property 1(a), we have $\psi\left(a^{\prime}\right)=v_{k}$. By Lemma 4, there exists an embedding φ of T^{\prime} onto $G[i+1, j]-v_{k}+v_{i}=G[i, j]-v_{k}$ in which $\varphi\left(a^{\prime}\right)=v_{i}$ (hence φ satisfies Property $1(\mathrm{~b})$). Finally, set $\varphi(a)=v_{k}$ (hence φ satisfies Property 1(a)). As in Case 1.2.1, the edge $\varphi(a) \varphi\left(a^{\prime}\right)=v_{k} v_{i}$ does not $\operatorname{cross} \varphi\left(T^{\prime}\right)$, hence φ is an embedding of T onto $G[i, j]$.

Case 1.2.4: $i<k<j$, the left sibling of v_{k} does not exist or is not in $G[i, j]$, and the right child of v_{k} is not in $G[i, j]$. Refer to Fig. 4. By construction, the left child of v_{k} is v_{k+1}, which is in $G[i, j]$. By the assumptions of this case, v_{k+1} is the second highest vertex in $G[i, j]$. Set $s=j-k+1$; then $s<h$, given that $k>i$. By

Lemma 5 , there is a vertex c in T^{\prime} such that $\left|V\left(T^{\prime}(c)\right)\right| \geq s$ but $\left|V\left(T^{\prime}(d)\right)\right| \leq s-1$ for all children d of c. Label the children of c as c_{1}, \ldots, c_{t} in an arbitrary order and let $\ell \in[1, t]$ be the smallest index such that $1+\sum_{x=1}^{\ell}\left|V\left(T\left(c_{i}\right)\right)\right| \geq s$. Since $\left|V\left(T\left(c_{\ell}\right)\right)\right| \leq s-1$, we have $s \leq 1+\sum_{x=1}^{\ell}\left|V\left(T\left(c_{i}\right)\right)\right| \leq 2 s-2$.

Let c^{\prime} be the parent of c in T. Let H denote the subtree of T induced by c and by $V\left(T\left(c_{1}\right)\right), \ldots, V\left(T\left(c_{\ell}\right)\right)$, and let $m=|V(H)|$. By the above inequalities, we have $s \leq m \leq 2 s-2$. On the one hand, $j-k+1 \leq m$ implies that the subinterval $G[j-m, j]$ contains v_{k}, and so v_{k} is the highest vertex in $G[j-m, j]$. On the other hand, the interval $G[j-m, k-1]$ contains $k-1-j+m+1=m-s+1 \leq s-1$ vertices, given that $m \leq 2 s-2$; however, since the right child of v_{k} is not in $G[i, j]$, we know that the size of a subtree of B rooted at any vertex at the level below v_{k} is larger than or equal to $s-1$. It follows that $G[j-m, j]$ does not contain any descendants of the left child of the left sibling of v_{k} (if it exists). By Lemma 2, $G[j-m, j]-v_{k}$ is crossing-isomorphic to an interval $G(I)$ of size m.

Recursively embed H onto $G(I)$ with one portal c. By Lemma 3, there exists an embedding φ of H onto $G[j-m, j]-v_{k}$ such that $\varphi(c)=v_{k+1}$. Set $\varphi(a)=v_{k}$. If c has more than ℓ children, then embed the subtrees $T\left(c_{\ell+1}\right), \ldots, T\left(c_{t}\right)$ onto subintervals to the left of $G[j-m, j]$, with single portals $c_{\ell+1}, \ldots, c_{t}$, respectively. Finally, by induction, we can embed $T^{\prime}-T(c)$ onto the remaining subinterval of $G[i, j]$ with two portals a^{\prime} and c^{\prime}. Then φ is an embedding of T onto $G[i, j]$ satisfying Properties 1(a) and 1(b). In particular, the edge $\varphi(c) \varphi\left(c^{\prime}\right)$ does not cross $\varphi\left(T^{\prime}-T(c)\right)$, since this satisfies Property 2(c) (note that $\varphi(c)$ is in $\left.Q^{+}\left(\varphi\left(c^{\prime}\right)\right)\right) .4$

Case 1.2.5: $i<k<j$, the left sibling of v_{k} does not exist or is not in $G[i, j]$, and the right child v_{r} of v_{k} is in $G[i, j]$. By assumption, we have $k+1<r \leq j$; further, the second highest vertex in $G[i, j]$ is v_{r}. Set $s=j-r+1$. Lemma 5 yields a vertex c in T^{\prime} such that $|V(T(c))| \geq s$ but $|V(T(d))| \leq s-1$ for all children d of c. Let $T(c)$ be the subtree of T rooted at c, set $m=|V(T(c))|$, and label the children of c by c_{1}, \ldots, c_{t} in an arbitrary order. Let c^{\prime} be the parent of c and denote by $T_{c}\left(c^{\prime}\right)$ the subtree of T induced by c^{\prime} and $V(T(c))$.

Case 1.2.5.1: $m \leq j-k-1$. Then the interval $[j-m, j]$ contains r but does not contain k, hence v_{r} is the highest vertex in $G[j-m, m]$. By induction, there is an embedding ψ_{1} of $T^{\prime}-T(c)$ onto $G[i, j-m-1]$ with two portals a^{\prime} and c^{\prime}. By Lemma 4 , there is an embedding φ of $T^{\prime}-T(c)$ onto $G[i, j-m-1]-v_{k}+v_{r}$. Set $\varphi(a)=v_{k}$. Again by induction, there is an embedding ψ_{2} of $T_{c}\left(c^{\prime}\right)$ onto $G[j-m, j]$ with a single portal c^{\prime}. Let $\varphi(T(c))=\psi_{2}(T(c))$ and note that $\varphi\left(c^{\prime}\right)$ may be different from $\psi_{2}\left(c^{\prime}\right)=v_{r}$. This completes the definition of $\varphi(T)$, which is an embedding of T onto $G[i, j]$ satisfying Properties $1(\mathrm{a})$ and $1(\mathrm{~b})$. In particular, we argue that the edge $\varphi(c) \varphi\left(c^{\prime}\right)$ is in $G[i, j]$. Let $v_{p}=\varphi\left(c^{\prime}\right)$ and $v_{q}=\varphi(c)$, and note that $p<q$ or $p=r$. In the latter case, $\varphi(c) \varphi\left(c^{\prime}\right)$ exists as $\psi_{2}\left(c^{\prime}\right)=v_{r}$ and the edge $c c^{\prime}$ belongs to $T_{c}\left(c^{\prime}\right)$; hence, assume that $p<q$. By Property 2(c) of ψ_{1}, we have that $Q^{+}\left(\psi_{1}\left(c^{\prime}\right)\right)$ does not intersect $\psi_{1}\left(T^{\prime}-T(c)\right)$, hence $k<p$, as otherwise v_{k} would be in $Q^{+}\left(\psi_{1}\left(c^{\prime}\right)\right)$; hence, v_{p} is the highest vertex in $G[p, j-m-1]$. Further, by Property $1(\mathrm{~b})$ of ψ_{2}, we have that $Q^{-}\left(\psi_{2}(c)\right)$ does not intersect $\psi_{2}(T(c))$; hence, v_{q} is either the highest or the second highest vertex in $G[j-m, q]$ (as v_{r} might belong to such an interval). Overall, one of v_{p} or v_{q} is the highest or

Fig. 5: Case 2. Tree T (left) and its embedding onto $G[i, j]$ (right).
the second highest vertex in $G[p, q]$. By Lemma $1, G[p, q]$ contains a star centered at v_{p} or v_{q}, and so it contains the edge $v_{p} v_{q}=\varphi\left(c^{\prime}\right) \varphi(c)$.

Case 1.2.5.2: $j-k-1<m$. Then $[j-m, j]$ contains both k and r. Partition $[j-m, j] \backslash\{k, r\}$ into t contiguous subsets I_{1}, \ldots, I_{t} such that $\left|I_{x}\right|=\left|V\left(T\left(c_{x}\right)\right)\right|$, for $x=1, \ldots, t$. W.l.o.g. assume that I_{q} contains $r-1$. Let $\mathcal{I}(c)$ be the collection of the sets $I_{q} \cup\left\{v_{r}\right\}$ and I_{x}, for $x \in[1, t] \backslash\{q\}$. At least $t-1$ of these sets are intervals, and at most one of them, say I_{p}, is an interval minus its highest element. Since every tree $T\left(c_{i}\right)$ has at most $s-1$ vertices, I_{p} has at most s elements. Since $s=j-r-1$, we have $\left|I_{p}\right| \leq\left|V\left(B\left(v_{r}\right)\right)\right|$, hence I_{p} contains neither the right child of v_{k} nor any descendant of its left sibling. By Lemma 2, $G\left(I_{p}\right)$ is crossing-isomorphic to an interval. By Lemma 3, we can embed $T\left(c_{p}\right)$ onto $G\left(I_{p}\right)$. We also recursively embed $T\left(c_{x}\right)$ onto $G\left[I_{x}\right]$ for all $x \in[1, t] \backslash\{p, q\}$ and $T(c)-\bigcup_{x \neq q} T_{x}$ onto $G\left(I_{q} \cup\{u\}\right)$. Embed a at v_{k}. Finally, embed $T^{\prime}-T(c)$ onto $G[i, j-m-1]$ with portals a^{\prime} and c^{\prime}. The combination of these embeddings is an embedding φ of T onto $G[i, j]$ satisfying Properties $1(\mathrm{a})$ and $1(\mathrm{~b})$.

Case 2: Two portals a and b; refer to Fig. 5. Let $P=\left(a=c_{1}, \ldots, c_{t}=b\right)$ be the path between a and b in T, where $t \geq 2$. The deletion of the edges in P splits T into t trees rooted at c_{1}, \ldots, c_{t}. Partition $[i, j]$ into t subintervals I_{1}, \ldots, I_{t} such that $\left|I_{x}\right|=\left|V\left(T\left(c_{x}\right)\right)\right|$, for $x=1, \ldots, t$. For $x=1, \ldots, t$, recursively embed $T\left(c_{x}\right)$ onto $G\left(I_{x}\right)$ with one portal c_{x}. The combination of these embeddings is an embedding φ of T onto $G[i, j]$ satisfying Properties $2(\mathrm{a}), 2(\mathrm{~b})$, and 2(c).

3 Convex Geometric Graphs

Every graph embedded onto a convex geometric graph is outerplanar. Clearly, an n-vertex complete convex geometric graph has $O\left(n^{2}\right)$ edges and is universal for the n-vertex outerplanar graphs. We show that this trivial bound is almost tight. For $h \geq 0$ and $n \geq 2 h+2$, let $\mathcal{O}_{h}(n)$ be the family of n-vertex outerplanar graphs consisting of a spanning cycle plus h pairwise disjoint chords.

Theorem 2. For every positive integer h and $n \geq 3 h^{2}$, every convex geometric graph C on n vertices that is universal for $\mathcal{O}_{h}(n)$ has $\Omega_{h}\left(n^{2-1 / h}\right)$ edges.

Proof: Denote by ∂C the outer (spanning) cycle of C. The length of a chord $u v$ of ∂C is the length of a shortest path between u and v along ∂C. For $k \geq 2$, denote by E_{k} the set of length- k chords in C, and let $m \in\{2, \ldots,\lfloor n /(3 h)\rfloor\}$ be an integer such that $\left|E_{m}\right|=\min \left\{\left|E_{2}\right|, \ldots,\left|E_{\lfloor n /(3 h)\rfloor}\right|\right\}$.

Let \mathcal{L} be the set of labeled n-vertex outerplanar graphs that consist of a spanning cycle $\left(v_{0}, \ldots, v_{n-1}\right)$ plus h pairwise-disjoint chords of length m such that one chord is $v_{0} v_{m}$ and all h chords have both vertices on the path $P=$ $\left(v_{0}, \ldots, v_{\lfloor n / 3\rfloor+h m-1}\right)$. Every graph $G \in \mathcal{L}$ has a unique spanning cycle H, which is embedded onto ∂C. Since they all have the same length, the h chords of H have a well-defined cyclic order along H. A gap of G is a path between two consecutive chords along H. Note that G has h gaps. The length of P is $\lfloor n / 3\rfloor+h m-1 \leq\lfloor n / 3\rfloor+h \cdot\lfloor n /(3 h)\rfloor-1<2\lfloor n / 3\rfloor$, hence the length of the gap between the last and the first chords is more than $n-2\lfloor n / 3\rfloor=\lceil n / 3\rceil$. This is the longest gap, as the lengths of the other gaps sum up to at most $\lfloor n / 3\rfloor$.

Let \mathcal{U} denote the subset of unlabeled graphs in $\mathcal{O}_{h}(n)$ that correspond to some labeled graph in \mathcal{L}. Each graph in \mathcal{L} is determined by the lengths of its $h-1$ shortest gaps. The sum of these lengths is an integer between $h-1$ and $(\lfloor n / 3\rfloor+h m-1)-h m<\lfloor n / 3\rfloor$. The number of compositions of $\lfloor n / 3\rfloor$ into h positive integers (i.e., $h-1$ lengths and a remainder) is $\binom{\lfloor n / 3\rfloor}{ h-1} \in \Theta_{h}\left(n^{h-1}\right)$. Each unlabeled graph in \mathcal{U} corresponds to at most two labeled graphs in \mathcal{L}, since any graph automorphism setwise fixes the unique spanning cycle as well as the longest gap. Hence, $|\mathcal{U}| \in \Theta(|\mathcal{L}|) \subseteq \Theta_{h}\left(n^{h-1}\right)$.

Since C is universal for $\mathcal{O}_{h}(n)$ and $\mathcal{U} \subset \mathcal{O}_{h}(n)$, every graph G in \mathcal{U} embeds onto C. Since every embedding of G maps the spanning cycle of G onto ∂C and the h chords of G into a subset of E_{m}, we have that C contains at most $\binom{\left|E_{m}\right|}{h} \leq\left|E_{m}\right|^{h}$ graphs in \mathcal{U}. The combination of the lower and upper bounds for $|\mathcal{U}|$ yields $\left|E_{m}\right|^{h} \in \Omega_{h}\left(n^{h-1}\right)$, hence $\left|E_{m}\right| \in \Omega_{h}\left(n^{1-1 / h}\right)$. Overall, the number of edges in C is at least $\sum_{i=1}^{\lfloor n /(3 h)\rfloor}\left|E_{i}\right| \geq\lfloor n /(3 h)\rfloor \cdot\left|E_{m}\right| \in \Omega_{h}\left(n^{2-1 / h}\right)$.

For the case $h=2$, the lower bound of Theorem 2 is the best possible.
Theorem 3. For every $n \in \mathbb{N}$, there exists a convex geometric graph C with n vertices and $O\left(n^{3 / 2}\right)$ edges that is universal for $\mathcal{O}_{2}(n)$.

Proof: The vertices v_{0}, \ldots, v_{n-1} of C form a convex n-gon and the edges of this spanning cycle are in C. Let $S=\{0, \ldots,\lfloor\sqrt{n}\rfloor-1\} \cup\{i\lfloor\sqrt{n}\rfloor: 1 \leq i \leq\lfloor\sqrt{n}\rfloor\}$ and add a star centered at v_{s}, for every $s \in S$, to C. Clearly, C contains $O\left(n^{3 / 2}\right)$ edges. Moreover, for every $d \in\{1, \ldots,\lfloor n / 2\rfloor\}$ there exist $a, b \in S$ so that $b-a=$ d. For any $G \in \mathcal{O}_{2}(n)$, let $a, b \in S$ so that the distance along the outer cycle between the two closest vertices of the two chords of G is $b-a$. As C contains stars centered at both v_{a} and v_{b}, the graph G embeds onto C.

We next construct a convex geometric graph G with n vertices and $O(n \log n)$ edges that is universal for n-vertex caterpillars; this bound is asymptotically optimal [12]. In order to construct G, we define a sequence π_{n} of n integers. Let $\pi_{1}=(1)$. For every integer m of the form $m=2^{h}-1$, where $h \geq 2$, let $\pi_{m}=\pi_{(m-1) / 2}(m) \pi_{(m-1) / 2}$. For any $n \in \mathbb{N}$, the sequence π_{n} consists of the first n integers in π_{m}, where $m \geq n$ and $m=2^{h}-1$, for some $h \geq 1$. For example, $\pi_{10}=(1,3,1,7,1,3,1,15,1,3)$. Let $\pi_{n}(i)$ be the i th term of π_{n}.

Property 1 ([15]). For every $n \in \mathbb{N}$ and for every x with $1 \leq x \leq n$, the maximum of any x consecutive elements in π_{n} is at least x.

The graph G has vertices v_{1}, \ldots, v_{n}, placed in counterclockwise order along a circle c. Further, for $i=1, \ldots, n$, we have that G contains edges connecting v_{i} to the $\pi_{n}(i)$ vertices preceding v_{i} and to the $\pi_{n}(i)$ vertices following v_{i} along c.

Theorem 4. For every $n \in \mathbb{N}$, there exists a convex geometric graph G with n vertices and $O(n \log n)$ edges that is universal for n-vertex caterpillars.

Proof sketch: The number of edges of G is at most twice the sum of the integers in π_{n}; the latter is less than or equal to the sum of the integers in π_{m}, where $m<2 n$ and $m=2^{h}-1$, for some integer $h \geq 1$. Further, π_{m} is easily shown to be equal to $(h-1) \cdot 2^{h}+1 \in O(n \log n)$.

Let C be an n-vertex caterpillar and let $\left(u_{1}, \ldots, u_{s}\right)$ be the spine of C. For $i=$ $1, \ldots, s$, let S_{i} be the star composed of u_{i} and its adjacent leaves; let $n_{i}=\left|V\left(S_{i}\right)\right|$. Let $m_{1}=0$; for $i=2, \ldots, s$, let $m_{i}=\sum_{j=1}^{i-1} n_{j}$. For $i=1, \ldots, s$, we embed S_{i} onto the subgraph G_{i} of G induced by the vertices $v_{m_{i}+1}, v_{m_{i}+2}, \ldots, v_{m_{i}+n_{i}}$: This is done by embedding u_{i} at the vertex $v_{x_{i}}$ of G_{i} whose degree (in G) is maximum, and by embedding the leaves of S_{i} at the remaining vertices of G_{i}. By Property 1, we have that $v_{x_{i}}$ is adjacent in G to the n_{i} vertices preceding it and to the n_{i} vertices following it along c, hence it is adjacent to all other vertices of G_{i}; thus, the above embedding of S_{i} onto G_{i} is valid. The arguments showing that the edge $v_{x_{i}} v_{x_{i+1}}$ belongs to G for all $i=1, \ldots, s-1$ are analogous. The proof is concluded by observing that the edges of the spine $\left(u_{1}, \ldots, u_{s}\right)$ do not cross each other, since the vertices u_{1}, \ldots, u_{s} appear in this order along c.

4 Conclusions and Open Problems

In this paper we introduced and studied the problem of constructing geometric graphs with few vertices and edges that are universal for families of planar graphs. Our research raises several challenging problems.

What is the minimum number of edges of an n-vertex convex geometric graph that is universal for n-vertex trees? We proved that the answer is in $O(n \log n)$ if convexity is not required, or if caterpillars, rather than trees, are considered, while it is close to $\Omega\left(n^{2}\right)$ if outerplanar graphs, rather than trees, are considered.

What is the minimum number of edges in a geometric graph that is universal for all n-vertex planar graphs? For abstract graphs, Babai et al. [3] constructed a universal graph with $O\left(n^{3 / 2}\right)$ edges based on separators. Can such a construction be adapted to a geometric setting? The current best lower bound is $\Omega(n \log n)$, same as for trees [13], while the best upper bound is only $O\left(n^{4}\right)$.

Finally, the problems we studied in this paper can be posed for topological (multi-)graphs, as well, in which edges are represented by Jordan arcs.

Theorem 5. For every $n \in \mathbb{N}$, there is a topological multigraph with n vertices and $O\left(n^{3}\right)$ edges that contains a planar drawing of every n-vertex planar graph.

Theorem 6. For every $n \in \mathbb{N}$, there is a topological multigraph with n vertices and $O\left(n^{2}\right)$ edges that contains a planar drawing of every n-vertex subhamiltonian planar graph.

References

1. Alon, N., Capalbo, M.R.: Optimal universal graphs with deterministic embedding. In: Proc. 19th ACM-SIAM Sympos. Discrete Algorithms (SODA). pp. 373-378 (2008), https://dl.acm.org/doi/abs/10.5555/1347082.1347123
2. Alon, N., Capalbo, M.R., Kohayakawa, Y., Rödl, V., Rucinski, A., Szemerédi, E.: Universality and tolerance. In: Proc. 41st IEEE Sympos. Foundations of Computer Science (FOCS). pp. 14-21 (2000). https://doi.org/10.1109/SFCS.2000.892007
3. Babai, L., Chung, F.R.K., Erdős, P., Graham, R.L., Spencer, J.H.: On graphs which contain all sparse graphs. Annals Discrete Math. 12, 21-26 (1982). https://doi.org/10.1016/S0304-0208(08)73486-8
4. Bannister, M.J., Cheng, Z., Devanny, W.E., Eppstein, D.: Superpatterns and universal point sets. J. Graph Algorithms Appl. 18(2), 177-209 (2014). https://doi.org/10.7155/jgaa. 00318
5. Bhatt, S.N., Chung, F.R.K., Leighton, F.T., Rosenberg, A.L.: Universal graphs for bounded-degree trees and planar graphs. SIAM J. Discrete Math. 2(2), 145-155 (1989). https://doi.org/10.1137/0402014
6. Bose, P.: On embedding an outer-planar graph in a point set. Comput. Geom. 23(3), 303-312 (2002). https://doi.org/10.1016/S0925-7721(01)00069-4
7. Böttcher, J., Pruessmann, K.P., Taraz, A., Würfl, A.: Bandwidth, expansion, treewidth, separators and universality for bounded-degree graphs. European Journal of Combinatorics 31(5), 1217-1227 (2010). https://doi.org/10.1016/j.ejc.2009.10.010
8. Böttcher, J., Schacht, M., Taraz, A.: Proof of the bandwidth conjecture of Bollobás and Komlós. Mathematische Annalen 343(1), 175-205 (2009). https://doi.org/10.1007/s00208-008-0268-6
9. Bukh, B., Matoušek, J., Nivasch, G.: Lower bounds for weak epsilon-nets and stair-convexity. Israel Journal of Mathematics 182, 199-228 (2011). https://doi.org/10.1007/s11856-011-0029-1
10. Capalbo, M.R.: Small universal graphs for bounded-degree planar graphs. Combinatorica 22(3), 345-359 (2002). https://doi.org/10.1007/s004930200017
11. Cardinal, J., Hoffmann, M., Kusters, V.: On universal point sets for planar graphs. J. Graph Algorithms Appl. 19(1), 529-547 (2015). https://doi.org/10.7155/jgaa. 00374
12. Chung, F.R.K., Graham, R.L.: On graphs which contain all small trees. J. Combin. Theory Ser. B 24(1), 14-23 (1978). https://doi.org/10.1016/0095-8956(78)90072-2
13. Chung, F.R.K., Graham, R.L.: On universal graphs for spanning trees. J. London Math. Soc. 27(2), 203-211 (1983). https://doi.org/10.1112/jlms/s2-27.2.203
14. Frati, F., Hoffmann, M., Tóth, C.D.: Universal geometric graphs. CoRR abs/2006.11262 (2020), https://arxiv.org/abs/2006.11262
15. Frati, F., Patrignani, M., Roselli, V.: LR-drawings of ordered rooted binary trees and near-linear area drawings of outerplanar graphs. J. Comput. Syst. Sci. 107, 28-53 (2020). https://doi.org/10.1016/j.jcss.2019.08.001
16. de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinatorica 10(1), 41-51 (1990). https://doi.org/10.1007/BF02122694
17. Fulek, R., Tóth, C.D.: Universal point sets for planar three-trees. J. Discrete Algorithms 30, 101-112 (2015). https://doi.org/10.1016/j.jda.2014.12.005
18. Gritzmann, P., Mohar, B., Pach, J., Pollack, R.: Embedding a planar triangulation with vertices at specified points. Amer. Math. Monthly 98(2), 165-166 (1991)
19. Kurowski, M.: A 1.235 lower bound on the number of points needed to draw all n-vertex planar graphs. Inf. Process. Lett. 92(2), 95-98 (2004). https://doi.org/10.1016/j.ipl.2004.06.009
20. Rado, R.: Universal graphs and universal functions. Acta Arithmetica 9(4), 331340 (1964). https://doi.org/10.4064/aa-9-4-331-340
21. Scheucher, M., Schrezenmaier, H., Steiner, R.: A note on universal point sets for planar graphs. J. Graph Algorithms Appl. 24(3), 247-267 (2020). https://doi.org/10.7155/jgaa. 00529

[^0]: * Partially supported by the MSCA-RISE project "CONNECT" No 734922, the MIUR Project "AHeAD" under PRIN 20174LF3T8, and the NSF award DMS-1800734.

[^1]: ${ }^{5}$ The construction by Chung and Graham uses fewer edges: in the edge groups (E2) and (E3), they use siblings instead of level-neighbors. But we were unable to verify their proof with the smaller edge set, namely we do not see why the graph G_{2} in [13, Fig. 7] is admissible. However, their proof works with the edge set we define here.

