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Abstract. We introduce and study the problem of constructing geomet-
ric graphs that have few vertices and edges and that are universal for
planar graphs or for some sub-class of planar graphs; a geometric graph
is universal for a class H of planar graphs if it contains an embedding,
i.e., a crossing-free drawing, of every graph in H.
Our main result is that there exists a geometric graph with n vertices
and O(n logn) edges that is universal for n-vertex forests; this extends to
the geometric setting a well-known graph-theoretic result by Chung and
Graham, which states that there exists an n-vertex graph with O(n logn)
edges that contains every n-vertex forest as a subgraph. Our O(n logn)
bound on the number of edges is asymptotically optimal.
We also prove that, for every h > 0, every n-vertex convex geometric
graph that is universal for the class of the n-vertex outerplanar graphs
hasΩh(n2−1/h) edges; this almost matches the trivial O(n2) upper bound
given by the n-vertex complete convex geometric graph.
Finally, we prove that there is an n-vertex convex geometric graph with
n vertices and O(n logn) edges that is universal for n-vertex caterpillars.

1 Introduction

A graph G is universal for a class H of graphs if G contains every graph in H as a
subgraph. The study of universal graphs was initiated by Rado [20] in the 1960s.
Obviously, the complete graph Kn is universal for any family H of n-vertex
graphs. Research focused on finding the minimum size (i.e., number of edges)
of universal graphs for various families of sparse graphs on n vertices. Babai et
al. [3] proved that if H is the family of all graphs with m edges, then the size
of a universal graph for H is in Ω(m2/ log2m) and O(m2 log logm/ logm). Alon
et al. [1,2] constructed a universal graph of optimal Θ(n2−2/k) size for n-vertex
graphs with maximum degree k.

Significantly better bounds exist for minor-closed families. Babai et al. [3]
proved that there exists a universal graph with O(n3/2) edges for n-vertex planar
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graphs. For bounded-degree planar graphs, Capalbo [10] constructed universal
graphs of linear size, improving an earlier bound by Bhatt et al. [5], which extends
to other families with bounded bisection width. Böttcher et al. [7,8] proved
that every n-vertex graph with minimum degree Ω(n) is universal for n-vertex
bounded-degree planar graphs. For n-vertex trees, Chung and Graham [12,13]
constructed a universal graph of size O(n log n), and showed that this bound is
asymptotically optimal apart from constant factors.

In this paper, we extend the concept of universality to geometric graphs. A
geometric graph is a graph together with a straight-line drawing in the plane in
which the vertices are distinct points and the edges are straight-line segments not
containing any vertex in their interiors. We investigate the problem of construct-
ing, for a given class H of planar graphs, a geometric graph with few vertices and
edges that is universal for H, that is, it contains an embedding of every graph in
H. For an (abstract) graph G1 and a geometric graph G2, an embedding of G1

onto G2 is an injective graph homomorphism ϕ : V (G1)→ V (G2) such that (i)
every edge uv ∈ E(G1) is mapped to a line segment ϕ(u)ϕ(v) ∈ E(G2); and (ii)
every pair of edges u1v2, u2v2 ∈ E(G1) is mapped to a pair of noncrossing line
segments ϕ(u1)ϕ(v1) and ϕ(u2)ϕ(v2) in the plane.

Previous research in the geometric setting was limited to finding the smallest
complete geometric graph that is universal for the planar graphs on n vertices.
The intersection pattern of the edges of a geometric graph is determined by the
location of its vertices; hence universal complete geometric graphs are commonly
referred to as n-universal point sets. De Fraysseix et al. [16] proved that the 2n×n
section of the integer lattice is an n-universal point set. Over the last 30 years,
the upper bound on the size of an n-universal point set has been improved from
2n2 to n2/4 + O(n) [4]; the current best lower bound is (1.293 − o(1))n [21]
(based on stacked triangulations, i.e., maximal planar graphs of treewidth three;
see also [11,19]). It is known that every set of n points in general position is
universal for n-vertex outerplanar graphs [6,18]. An O(n3/2 log n) upper bound
is known for n-vertex stacked triangulations [17].

Our Results. The results on universal point sets yield an upper bound of O(n4)
for the size of a geometric graph that is universal for n-vertex planar graphs and
O(n2) for n-vertex outerplanar graphs, including trees. We improve the upper
bound for n-vertex trees to an optimal O(n log n), and show that the quadratic
upper bound for outerplanar graphs is essentially tight for convex geometric
graphs. More precisely, we prove the following results:

– For every n ∈ N, there is a geometric graph G with n vertices and O(n log n)
edges that is universal for forests with n vertices (Theorem 1 in Sect. 2). The
O(n log n) bound is asymptotically optimal, even in the abstract setting, for
caterpillars (a caterpillar is a tree such that the removal of its leaves results
in a path, called spine), and if the universal graph is allowed to have more
than n vertices [12, Theorem 1]. The proof of universality is constructive and
yields a polynomial-time algorithm that embeds any n-vertex forest onto G.



– For every h ∈ N and n ≥ 3h2, every n-vertex convex geometric graph that
is universal for the family of n-vertex cycles with h disjoint chords has
Ωh(n2−1/h) edges (Theorem 2 in Sect. 3); this almost matches the trivial
O(n2) bound, which hence cannot be improved by polynomial factors even
for n-vertex outerplanar graphs of maximum degree three. For n-vertex cy-
cles with 2 disjoint chords, there is an n-vertex convex geometric graph with
O(n3/2) edges (Theorem 3 in Sect. 3), which matches the lower bound above.

– For every n ∈ N, a convex geometric graph with n vertices and O(n log n)
edges exists that is universal for n-vertex caterpillars (Theorem 4 in Sect. 3).

A full version of the paper can be found in [14].

2 Universal Geometric Graphs for Forests

In this section, we prove the following theorem.

Theorem 1. For every n ∈ N, there exists a geometric graph G with n vertices
and O(n log n) edges that is universal for forests with n vertices.

Construction. We adapt a construction of Chung and Graham [13] to the
geometric setting. For n ∈ N, they construct an n-vertex graph G with O(n log n)
edges that contains every n-vertex forest as a subgraph. We present this con-
struction. For simplicity assume n = 2h − 1 with h ≥ 2. Let B be an n-vertex
complete rooted ordered binary tree. A level is a set of vertices at the same
distance from the root. The levels are labeled 1, . . . , h, from the one of the root
to the one of the leaves. A preorder traversal of B (visiting first the root, then
recursively the vertices in its left subtree, and then recursively the vertices in
its right subtree) determines a total order on the vertices, which also induces a
total order on the vertices in each level. On each level, we call two consecutive
elements in this order level-neighbors; in particular, siblings are level-neighbors.
We denote by B(v) the subtree of B rooted at a vertex v. The graph G contains
B and three additional groups of edges (see Fig. 1): (E1) Every vertex v is ad-
jacent to all vertices in B(v); (E2) every vertex v with a level-neighbor u in B
is adjacent to all vertices in B(u); and (E3) every vertex v whose parent has a
left level-neighbor p is adjacent to all vertices in B(p).

Number of edges. The tree B has 2i−1 vertices on level i, for i = 1, . . . , h.
A vertex v on level i has 2h−i+1 − 1 descendants (including itself), and its at
most two level-neighbors have the same number of descendants. In addition, the
left level-neighbor of the parent of v (if present) has 2 · (2h−i+1− 1) descendants
(excluding itself). Altogether v is adjacent to less than 5 · 2h−i+1 vertices at
the same or at lower levels of B. Hence, the number of edges in G is less than
5 ·
∑h

i=1 2i−1 · 2h−i+1 = 5 · 2h · h = 5(n+ 1) · log2(n+ 1) ∈ O(n log n).
Chung and Graham [13] showed that G is universal for n-vertex forests.5

5 The construction by Chung and Graham uses fewer edges: in the edge groups (E2)
and (E3), they use siblings instead of level-neighbors. But we were unable to verify
their proof with the smaller edge set, namely we do not see why the graph G2 in [13,
Fig. 7] is admissible. However, their proof works with the edge set we define here.



Fig. 1: A schematic drawing of the 15-vertex universal graph (left) and a geo-
metric drawing of the 7-vertex universal graph. The edges of B are black; the
edges of the groups (E1), (E2), and (E3) are red, orange, and blue, respectively.
Edges in several groups have the color of the first group they belong to.

Geometric representation. We next describe how to embed the vertices
of G into R2; see Fig. 2(left) for an illustration. First, the x-coordinates of the
vertices are assigned in the order determined by a preorder traversal of B. For
simplicity, let us take these x-coordinates to be 0, . . . , n− 1, so that the root of
B is placed on the y-axis. The vertex of G with x-coordinate i is denoted by vi.

The y-coordinates of the vertices are determined by a BFS traversal of B
starting from the root, in which at every vertex the right sibling is visited before
the left sibling. If a vertex u is visited before a vertex v by this traversal, then u
gets a larger y-coordinate than v. The gap between two consecutive y-coordinates
is chosen so that every vertex is above every line through two vertices with
smaller y-coordinate; this implies that, for any vertex v, all vertices with larger
y-coordinate than v, if any, see the vertices below v in the same circular order
as v. The vertices of G are in general position, that is, no three are collinear.

Our figures display the vertices of B in the correct x- and y-order, but—with
the exception of Fig. 1(right)—they are not to scale. The y-coordinates in our
construction are rapidly increasing (similarly to [9,17]). For this reason, in our
figures we draw the edges in B as straight-line segments and all other edges as
Jordan arcs. We have the following property (refer to Fig. 2(right)).

Observation 1 If ab, cd ∈ E(G) are such that (1) a has larger y-coordinate
than b, c, and d, and (2) b has smaller or larger x-coordinate than both c and d,
then ab and cd do not cross.

Intervals. A geometric graph is plane if it contains no crossings. For every
interval [i, j] ⊆ [0, n − 1] we define G[i, j] as the subgraph of G induced by the
vertices with x-coordinate in [i, j]. Then G[i, j] is an interval of G. The length of
G[i, j] is defined as |G[i, j]| = j− i+ 1, which is the number of vertices in G[i, j].
If I is an interval of integers, then we denote by G(I) the corresponding interval
of G. For a subset U ⊂ V (G), we denote by G[U ] the subgraph of G induced by
U . We will show eventually that every tree on h vertices admits an embedding
onto every interval of length h of G. We now present the following lemma.
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Fig. 2: Illustration for the assignment of x- and y-coordinates to the vertices of
G, and for the definition of interval (left). Illustration for Observation 1(right).

Lemma 1. Every interval G[i, j] of G on at least two vertices contains two plane
spanning stars, centered at the highest vertex vk and at the second highest vertex
vs of G[i, j]. If k < j, then G[i, j] contains a plane spanning star centered at the
highest vertex of G[k + 1, j] (which may or may not be vs).

Our upcoming recursive algorithm sometimes embeds a subtree of T onto an
induced subgraph of G that is “almost” an interval, in the sense that it can be
obtained from an interval of G by deleting its highest vertex or by replacing its
highest vertex with a vertex that does not belong to the interval.

We first prove that the “structure” of an interval without its highest vertex
is similar to that of an interval. Let U and W be two subsets of V (G) with
h = |U | = |W |. Let u1, . . . , uh and w1, . . . , wh be the vertices of U and W ,
respectively, ordered by increasing x-coordinates. We say that G[U ] and G[W ]
are crossing-isomorphic if: (C1) for any p, q ∈ {1, . . . , h}, the edge upuq belongs
to G[U ] if and only if the edge wpwq belongs to G[W ]; (C2) for any p, q, r, s ∈
{1, . . . , h} such that the edges upuq and urus belong to G[U ], the edges upuq
and urus cross if and only if the edges wpwq and wrws cross; and (C3) if ui is
the highest vertex of G[U ], for some i ∈ {1, . . . , h}, then wi is the highest vertex
of G[W ]. The graph isomorphism given by λ(ui) = wi, for all i = 1, . . . , n, is
a crossing-isomorphism. Clearly, the inverse of a crossing-isomorphism is also a
crossing-isomorphism. We have the following.

Lemma 2. Let vk be the highest vertex in an interval G[i, j], and assume that
G[i, j] contains neither the right child of vk nor any descendant of the left child
of its left sibling (if it exists). Then G[i, j] − vk is crossing-isomorphic to some
interval G(I) of G; the interval I can be computed in O(1) time.

We now present our tools for embedding trees onto “almost” intervals.

Lemma 3. Let vk be the highest vertex in an interval G[i, j] with h+1 vertices.
Suppose that there is a crossing-isomorphism λ from G[i, j]−vk to some interval
G(I) of G with h vertices. Further, suppose that a tree T with h vertices admits
an embedding ϕ onto G(I). Then ϕ′ = λ−1 ◦ ϕ is an embedding of T onto
G[i, j] − vk, and if a is the vertex of T such that ϕ(a) is the highest vertex of
G(I), then ϕ′(a) is the highest vertex of G[i, j]− vk.



Lemma 4. Let G[i, j] be an interval of G with h vertices and let vk be its highest
vertex. Let vx be a vertex of G that is higher than all vertices in G[i, j]− vk and
that does not belong to G[i, j]. Suppose that a tree T with h vertices admits an
embedding ϕ onto G[i, j]. Let a be the vertex of T such that ϕ(a) = vk; further,
let ϕ′(a) = vx and ϕ′(b) = ϕ(b) for every vertex b of T other than a. Then ϕ′ is
an embedding of T onto G[i, j]− vk + vx.

The following lemma is a variant of the (unique) lemma in [13].

Lemma 5. Given a rooted tree T on m ≥ 2 vertices and an integer s, with
1 ≤ s ≤ m, there is a vertex c of T such that |V (T (c))| ≥ s but |V (T (d))| ≤ s−1,
for all children d of c. Such a vertex c can be computed in time O(m).

Proof strategy. Given a tree T on h vertices and an interval G[i, j] of length
h, we describe a recursive algorithm that constructs an embedding ϕ of T onto
G[i, j]. For a subtree T ′ of T , we denote by ϕ(T ′) the image of ϕ restricted to T ′.
A step of the algorithm explicitly embeds some vertices; the remaining vertices
form subtrees that are recursively embedded onto pairwise disjoint subintervals
of G[i, j]. We insist that in every subtree at most two vertices, called portals, are
adjacent to vertices not in the subtree. We also ensure that whenever a subtree
is embedded onto a subinterval, the vertices not in the subtree that connect to
the portals of that subtree are embedded above the subinterval.

For a point p, we denote Q+(p) = {q ∈ R2 : x(p) < x(q) and y(p) < y(q)}
and Q−(p) = {q ∈ R2 : x(q) < x(p) and y(p) < y(q)}.

We inductively prove the following lemma, which immediately implies The-
orem 1 with G[i, j] = G[0, n− 1] and a portal a chosen arbitrarily.

Lemma 6. We are given a tree T on h vertices, an interval G[i, j] of length h,
and either (1) a single portal a in T , or (2) two distinct portals a and b in T .
Then there exists an embedding ϕ of T onto G[i, j] with the following properties:

1. If only one portal is given, then
(a) ϕ(a) is the highest vertex in G[i, j]; and
(b) if degT (a) = 1 and a′ is the unique neighbor of a in T , then Q−(ϕ(a′))

does not intersect any vertex or edge of the embedding ϕ(T (a′)).
2. If two distinct portals are given, then

(a) ϕ(a) is to the left of ϕ(b);
(b) Q−(ϕ(a)) does not intersect any edge or vertex of ϕ(T ); and
(c) Q+(ϕ(b)) does not intersect any edge or vertex of ϕ(T ).

Proof sketch: We proceed by induction on h. In the base case h = 1, hence T
has one vertex, which must be the portal a, and the map ϕ(a) = vi maps a to
the highest vertex of G[i, i]. For the induction step we assume that h ≥ 2.

Case 1: There is only one portal a. Let vk denote the highest vertex in G[i, j].
We need to find an embedding of T onto G[i, j] where ϕ(a) = vk. Consider T to
be rooted at a. We distinguish two cases depending on the degree of a in T .

Case 1.1: degT (a) ≥ 2. Assume that a has t children a1, . . . , at. Refer to
Fig. 3. Partition the integers [i, j] \ {k} into t contiguous subsets I1, . . . , It such
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Fig. 3: Case 1.1: Tree T (left) and its embedding onto G[i, j] (right).
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Fig. 4: Case 1.2.4. Tree T (left) and its embedding onto G[i, j] (right).

that |Ix| = |V (T (ax))|, for x = 1, . . . , t. W.l.o.g. assume that Iq contains k−1 or
k+1, and so Iq∪{k} is an interval of integers. By induction, there is an embedding
ϕx of T (ax) onto G(Ix) such that ϕx(ax) is the highest vertex of G(Ix), for all
x 6= q, and there is an embedding ϕq of T −

⋃
x 6=q T (ax) onto G(Iq ∪ {k}) such

that ϕq(a) = vk. Then the combination of these embeddings is an embedding
ϕ of T onto G[i, j] satisfying Properties 1(a) and 1(b). In particular, the edges
ϕ(a)ϕ(ax) are in G[i, j] by Lemma 1, and an edge ϕ(a)ϕ(ax) does not cross
ϕ(T (ay)), where y 6= x, by Observation 1. J

Case 1.2: degT (a) = 1. Let a′ be the neighbor of a in T and let T ′ = T (a′).
Case 1.2.1: k = j. Set ϕ(a) = vk and recursively embed T ′ onto G[i, k − 1]

with a single portal a′, which is mapped to the highest vertex in G[i, k − 1].
Clearly, ϕ is an embedding of T onto G[i, j] satisfying Properties 1(a) and 1(b),
since the edge ϕ(a)ϕ(a′) is above, and hence does not cross, ϕ(T ′). J

Case 1.2.2: k = i. This case is symmetric to Case 1.2.1. J
Case 1.2.3: i < k < j and the left sibling v` of vk exists and is in G[i, j]. It

follows that ` = i, as if ` > i, then v`−1, which is the parent of v` and vk, would
be a vertex in G[i, j] higher than vk. By construction, vi is the second highest
vertex in G[i, j]. Recursively construct an embedding ψ of T ′ onto G[i + 1, j]
with a single portal a′. By Property 1(a), we have ψ(a′) = vk. By Lemma 4,
there exists an embedding ϕ of T ′ onto G[i + 1, j] − vk + vi = G[i, j] − vk in
which ϕ(a′) = vi (hence ϕ satisfies Property 1(b)). Finally, set ϕ(a) = vk (hence
ϕ satisfies Property 1(a)). As in Case 1.2.1, the edge ϕ(a)ϕ(a′) = vkvi does not
cross ϕ(T ′), hence ϕ is an embedding of T onto G[i, j]. J

Case 1.2.4: i < k < j, the left sibling of vk does not exist or is not in G[i, j],
and the right child of vk is not in G[i, j]. Refer to Fig. 4. By construction, the left
child of vk is vk+1, which is in G[i, j]. By the assumptions of this case, vk+1 is the
second highest vertex in G[i, j]. Set s = j−k+1; then s < h, given that k > i. By



Lemma 5, there is a vertex c in T ′ such that |V (T ′(c))| ≥ s but |V (T ′(d))| ≤ s−1
for all children d of c. Label the children of c as c1, . . . , ct in an arbitrary order
and let ` ∈ [1, t] be the smallest index such that 1 +

∑`
x=1 |V (T (ci))| ≥ s. Since

|V (T (c`))| ≤ s− 1, we have s ≤ 1 +
∑`

x=1 |V (T (ci))| ≤ 2s− 2.

Let c′ be the parent of c in T . Let H denote the subtree of T induced by c and
by V (T (c1)), . . . , V (T (c`)), and let m = |V (H)|. By the above inequalities, we
have s ≤ m ≤ 2s−2. On the one hand, j−k+1 ≤ m implies that the subinterval
G[j−m, j] contains vk, and so vk is the highest vertex in G[j−m, j]. On the other
hand, the interval G[j−m, k− 1] contains k− 1− j+m+ 1 = m− s+ 1 ≤ s− 1
vertices, given that m ≤ 2s − 2; however, since the right child of vk is not in
G[i, j], we know that the size of a subtree of B rooted at any vertex at the level
below vk is larger than or equal to s − 1. It follows that G[j − m, j] does not
contain any descendants of the left child of the left sibling of vk (if it exists). By
Lemma 2, G[j −m, j]− vk is crossing-isomorphic to an interval G(I) of size m.

Recursively embed H onto G(I) with one portal c. By Lemma 3, there exists
an embedding ϕ of H onto G[j−m, j]−vk such that ϕ(c) = vk+1. Set ϕ(a) = vk.
If c has more than ` children, then embed the subtrees T (c`+1), . . . , T (ct) onto
subintervals to the left of G[j−m, j], with single portals c`+1, . . . , ct, respectively.
Finally, by induction, we can embed T ′−T (c) onto the remaining subinterval of
G[i, j] with two portals a′ and c′. Then ϕ is an embedding of T onto G[i, j] sat-
isfying Properties 1(a) and 1(b). In particular, the edge ϕ(c)ϕ(c′) does not cross
ϕ(T ′−T (c)), since this satisfies Property 2(c) (note that ϕ(c) is in Q+(ϕ(c′))).J

Case 1.2.5: i < k < j, the left sibling of vk does not exist or is not in G[i, j],
and the right child vr of vk is in G[i, j]. By assumption, we have k + 1 < r ≤ j;
further, the second highest vertex in G[i, j] is vr. Set s = j − r + 1. Lemma 5
yields a vertex c in T ′ such that |V (T (c))| ≥ s but |V (T (d))| ≤ s − 1 for all
children d of c. Let T (c) be the subtree of T rooted at c, set m = |V (T (c))|, and
label the children of c by c1, . . . , ct in an arbitrary order. Let c′ be the parent of
c and denote by Tc(c

′) the subtree of T induced by c′ and V (T (c)).

Case 1.2.5.1: m ≤ j−k−1. Then the interval [j−m, j] contains r but does
not contain k, hence vr is the highest vertex in G[j−m,m]. By induction, there
is an embedding ψ1 of T ′ − T (c) onto G[i, j −m− 1] with two portals a′ and c′.
By Lemma 4, there is an embedding ϕ of T ′−T (c) onto G[i, j−m−1]−vk +vr.
Set ϕ(a) = vk. Again by induction, there is an embedding ψ2 of Tc(c

′) onto
G[j −m, j] with a single portal c′. Let ϕ(T (c)) = ψ2(T (c)) and note that ϕ(c′)
may be different from ψ2(c′) = vr. This completes the definition of ϕ(T ), which is
an embedding of T onto G[i, j] satisfying Properties 1(a) and 1(b). In particular,
we argue that the edge ϕ(c)ϕ(c′) is in G[i, j]. Let vp = ϕ(c′) and vq = ϕ(c), and
note that p < q or p = r. In the latter case, ϕ(c)ϕ(c′) exists as ψ2(c′) = vr and the
edge cc′ belongs to Tc(c

′); hence, assume that p < q. By Property 2(c) of ψ1, we
have that Q+(ψ1(c′)) does not intersect ψ1(T ′−T (c)), hence k < p, as otherwise
vk would be in Q+(ψ1(c′)); hence, vp is the highest vertex in G[p, j − m − 1].
Further, by Property 1(b) of ψ2, we have that Q−(ψ2(c)) does not intersect
ψ2(T (c)); hence, vq is either the highest or the second highest vertex in G[j−m, q]
(as vr might belong to such an interval). Overall, one of vp or vq is the highest or
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Fig. 5: Case 2. Tree T (left) and its embedding onto G[i, j] (right).

the second highest vertex in G[p, q]. By Lemma 1, G[p, q] contains a star centered
at vp or vq, and so it contains the edge vpvq = ϕ(c′)ϕ(c).

Case 1.2.5.2: j−k−1 < m. Then [j−m, j] contains both k and r. Partition
[j−m, j]\{k, r} into t contiguous subsets I1, . . . , It such that |Ix| = |V (T (cx))|,
for x = 1, . . . , t. W.l.o.g. assume that Iq contains r−1. Let I(c) be the collection
of the sets Iq ∪ {vr} and Ix, for x ∈ [1, t] \ {q}. At least t − 1 of these sets
are intervals, and at most one of them, say Ip, is an interval minus its highest
element. Since every tree T (ci) has at most s − 1 vertices, Ip has at most s
elements. Since s = j − r − 1, we have |Ip| ≤ |V (B(vr))|, hence Ip contains
neither the right child of vk nor any descendant of its left sibling. By Lemma 2,
G(Ip) is crossing-isomorphic to an interval. By Lemma 3, we can embed T (cp)
onto G(Ip). We also recursively embed T (cx) onto G[Ix] for all x ∈ [1, t] \ {p, q}
and T (c)−

⋃
x 6=q Tx onto G(Iq ∪ {u}). Embed a at vk. Finally, embed T ′ − T (c)

onto G[i, j−m−1] with portals a′ and c′. The combination of these embeddings
is an embedding ϕ of T onto G[i, j] satisfying Properties 1(a) and 1(b). J

Case 2: Two portals a and b; refer to Fig. 5. Let P = (a = c1, . . . , ct = b) be
the path between a and b in T , where t ≥ 2. The deletion of the edges in P splits
T into t trees rooted at c1, . . . , ct. Partition [i, j] into t subintervals I1, . . . , It
such that |Ix| = |V (T (cx))|, for x = 1, . . . , t. For x = 1, . . . , t, recursively embed
T (cx) onto G(Ix) with one portal cx. The combination of these embeddings is
an embedding ϕ of T onto G[i, j] satisfying Properties 2(a), 2(b), and 2(c). �

3 Convex Geometric Graphs

Every graph embedded onto a convex geometric graph is outerplanar. Clearly,
an n-vertex complete convex geometric graph has O(n2) edges and is universal
for the n-vertex outerplanar graphs. We show that this trivial bound is almost
tight. For h ≥ 0 and n ≥ 2h+ 2, let Oh(n) be the family of n-vertex outerplanar
graphs consisting of a spanning cycle plus h pairwise disjoint chords.

Theorem 2. For every positive integer h and n ≥ 3h2, every convex geometric
graph C on n vertices that is universal for Oh(n) has Ωh(n2−1/h) edges.

Proof: Denote by ∂C the outer (spanning) cycle of C. The length of a chord
uv of ∂C is the length of a shortest path between u and v along ∂C. For k ≥ 2,
denote by Ek the set of length-k chords in C, and let m ∈ {2, . . . , bn/(3h)c} be
an integer such that |Em| = min{|E2|, . . . , |Ebn/(3h)c|}.



Let L be the set of labeled n-vertex outerplanar graphs that consist of a
spanning cycle (v0, . . . , vn−1) plus h pairwise-disjoint chords of length m such
that one chord is v0vm and all h chords have both vertices on the path P =
(v0, . . . , vbn/3c+hm−1). Every graph G ∈ L has a unique spanning cycle H, which
is embedded onto ∂C. Since they all have the same length, the h chords of
H have a well-defined cyclic order along H. A gap of G is a path between
two consecutive chords along H. Note that G has h gaps. The length of P is
bn/3c+hm−1 ≤ bn/3c+h · bn/(3h)c−1 < 2bn/3c, hence the length of the gap
between the last and the first chords is more than n − 2bn/3c = dn/3e. This is
the longest gap, as the lengths of the other gaps sum up to at most bn/3c.

Let U denote the subset of unlabeled graphs in Oh(n) that correspond to
some labeled graph in L. Each graph in L is determined by the lengths of its
h − 1 shortest gaps. The sum of these lengths is an integer between h − 1 and
(bn/3c + hm − 1) − hm < bn/3c. The number of compositions of bn/3c into

h positive integers (i.e., h − 1 lengths and a remainder) is
(bn/3c

h−1
)
∈ Θh(nh−1).

Each unlabeled graph in U corresponds to at most two labeled graphs in L, since
any graph automorphism setwise fixes the unique spanning cycle as well as the
longest gap. Hence, |U| ∈ Θ(|L|) ⊆ Θh(nh−1).

Since C is universal for Oh(n) and U ⊂ Oh(n), every graph G in U embeds
onto C. Since every embedding of G maps the spanning cycle of G onto ∂C
and the h chords of G into a subset of Em, we have that C contains at most(|Em|

h

)
≤ |Em|h graphs in U . The combination of the lower and upper bounds for

|U| yields |Em|h ∈ Ωh(nh−1), hence |Em| ∈ Ωh(n1−1/h). Overall, the number of

edges in C is at least
∑bn/(3h)c

i=1 |Ei| ≥ bn/(3h)c · |Em| ∈ Ωh(n2−1/h). �

For the case h = 2, the lower bound of Theorem 2 is the best possible.

Theorem 3. For every n ∈ N, there exists a convex geometric graph C with n
vertices and O(n3/2) edges that is universal for O2(n).

Proof: The vertices v0, . . . , vn−1 of C form a convex n-gon and the edges of this
spanning cycle are in C. Let S = {0, . . . , b

√
nc − 1} ∪ {i b

√
nc : 1 ≤ i ≤ b

√
nc}

and add a star centered at vs, for every s ∈ S, to C. Clearly, C contains O(n3/2)
edges. Moreover, for every d ∈ {1, . . . , bn/2c} there exist a, b ∈ S so that b−a =
d. For any G ∈ O2(n), let a, b ∈ S so that the distance along the outer cycle
between the two closest vertices of the two chords of G is b − a. As C contains
stars centered at both va and vb, the graph G embeds onto C. �

We next construct a convex geometric graph G with n vertices and O(n log n)
edges that is universal for n-vertex caterpillars; this bound is asymptotically
optimal [12]. In order to construct G, we define a sequence πn of n integers.
Let π1 = (1). For every integer m of the form m = 2h − 1, where h ≥ 2, let
πm = π(m−1)/2(m)π(m−1)/2. For any n ∈ N, the sequence πn consists of the first

n integers in πm, where m ≥ n and m = 2h − 1, for some h ≥ 1. For example,
π10 = (1, 3, 1, 7, 1, 3, 1, 15, 1, 3). Let πn(i) be the ith term of πn.

Property 1 ([15]). For every n ∈ N and for every x with 1 ≤ x ≤ n, the maxi-
mum of any x consecutive elements in πn is at least x.



The graph G has vertices v1, . . . , vn, placed in counterclockwise order along
a circle c. Further, for i = 1, . . . , n, we have that G contains edges connecting vi
to the πn(i) vertices preceding vi and to the πn(i) vertices following vi along c.

Theorem 4. For every n ∈ N, there exists a convex geometric graph G with n
vertices and O(n log n) edges that is universal for n-vertex caterpillars.

Proof sketch: The number of edges of G is at most twice the sum of the
integers in πn; the latter is less than or equal to the sum of the integers in πm,
where m < 2n and m = 2h − 1, for some integer h ≥ 1. Further, πm is easily
shown to be equal to (h− 1) · 2h + 1 ∈ O(n log n).

Let C be an n-vertex caterpillar and let (u1, . . . , us) be the spine of C. For i =
1, . . . , s, let Si be the star composed of ui and its adjacent leaves; let ni = |V (Si)|.
Let m1 = 0; for i = 2, . . . , s, let mi =

∑i−1
j=1 nj . For i = 1, . . . , s, we embed Si

onto the subgraph Gi of G induced by the vertices vmi+1, vmi+2, . . . , vmi+ni
:

This is done by embedding ui at the vertex vxi
of Gi whose degree (in G) is

maximum, and by embedding the leaves of Si at the remaining vertices of Gi.
By Property 1, we have that vxi is adjacent in G to the ni vertices preceding
it and to the ni vertices following it along c, hence it is adjacent to all other
vertices of Gi; thus, the above embedding of Si onto Gi is valid. The arguments
showing that the edge vxi

vxi+1
belongs to G for all i = 1, . . . , s−1 are analogous.

The proof is concluded by observing that the edges of the spine (u1, . . . , us) do
not cross each other, since the vertices u1, . . . , us appear in this order along c. �

4 Conclusions and Open Problems

In this paper we introduced and studied the problem of constructing geometric
graphs with few vertices and edges that are universal for families of planar
graphs. Our research raises several challenging problems.

What is the minimum number of edges of an n-vertex convex geometric graph
that is universal for n-vertex trees? We proved that the answer is in O(n log n)
if convexity is not required, or if caterpillars, rather than trees, are considered,
while it is close to Ω(n2) if outerplanar graphs, rather than trees, are considered.

What is the minimum number of edges in a geometric graph that is universal
for all n-vertex planar graphs? For abstract graphs, Babai et al. [3] constructed a
universal graph with O(n3/2) edges based on separators. Can such a construction
be adapted to a geometric setting? The current best lower bound is Ω(n log n),
same as for trees [13], while the best upper bound is only O(n4).

Finally, the problems we studied in this paper can be posed for topological
(multi-)graphs, as well, in which edges are represented by Jordan arcs.

Theorem 5. For every n ∈ N, there is a topological multigraph with n vertices
and O(n3) edges that contains a planar drawing of every n-vertex planar graph.

Theorem 6. For every n ∈ N, there is a topological multigraph with n vertices
and O(n2) edges that contains a planar drawing of every n-vertex subhamiltonian
planar graph.
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