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Abstract
Adenosine-to-inosine (A-to-I) editing of a subset of RNAs in a eukaryotic cell is required in order to avoid triggering the 
innate immune system. Editing is carried out by ADAR1, which exists as short (p110) and long (p150) isoforms. ADAR1p150 
is mostly cytoplasmic, possesses a Z-RNA binding domain (Zα), and is only expressed during the innate immune response. A 
structurally homologous domain to Zα, the Zβ domain, is separated by a long linker from Zα on the N-terminus of ADAR1 
but its function remains unknown. Zβ does not bind to RNA in isolation, yet the binding kinetics of the segment encompass-
ing Zα, Zβ and the 95-residue linker between the two domains (Zα–Zβ) are markedly different compared to Zα alone. Here 
we present the solution NMR backbone assignment of Zα–Zβ from H. Sapiens ADAR1. The predicted secondary structure 
of Zα–Zβ based on chemical shifts is in agreement with previously determined structures of Zα and Zβ in isolation, and 
indicates that the linker is intrinsically disordered. Comparison of the chemical shifts between the individual Zα and Zβ 
domains to the full Zα–Zβ construct suggests that Zβ may interact with the linker, the function of which is currently unknown.

Keywords  ADAR1 · Editing · Z-RNA · Protein structure and dynamics · Protein domains · Backbone chemical shift 
assignment

Biological context

Distinguishing between self and non-self RNA is critical 
in controlling the innate immune response. In humans, self 
RNAs are edited by an adenosine deaminase that acts on 
RNA (ADAR1), which converts adenosines to inosines 
(Bass and Weintraub 1988; Wagner et al. 1989; Nishikura 
2016). ADAR1 is constitutively expressed in most cells as 
a stable p110 isoform localized in the nucleus (O’Connell 
and Keller 1994; O’Connell et al. 1995; Patterson and Sam-
ual 1995). Upon invasion by a pathogen, the cell launches 
an interferon (IFN) response, resulting in the expression of 
a longer p150 isoform, which contributes to resisting the 

infection by editing self RNAs in the cytoplasm (O’Connell 
and Keller 1994; O’Connell et al. 1995; Patterson and Sam-
ual 1995; George and Samuel 1999) (Fig. 1a). A-to-I editing 
is therefore augmented during the IFN response, primarily 
through the action of ADAR1p150 (Chung et al. 2018). In 
addition to becoming cytoplasmic, ADAR1p150 is also dis-
tinct from ADAR1p110 due to the presence of a N-terminal 
Zα domain, which is a member of a family of helix-turn-
helix domains that recognize the unusual geometry of the 
Z-conformation in DNA or RNA, and binds to five base pairs 
in a symmetrical fashion (Herbert et al. 1998; Schwartz et al. 
1999b; Brown et al. 2000; Placido et al. 2007) (Fig. 1b).

The Zβ domain of ADAR1, which is located C-termi-
nal to Zα and separated by a flexible 95-residue linker, is 
structurally homologous to Zα (Athanasiadis et al. 2018) 
but lacks the critical Z-recognizing residues required for 
adoption of Z-DNA/RNA and B-Z/A-Z junctions (Athana-
siadis 2012). In the following, we refer to the Zα-linker-Zβ 
segment as Zα–Zβ. While Zβ does not bind to DNA/RNA 
in isolation, Zα–Zβ is characterized by markedly different 
Z-DNA/RNA binding kinetics (Schwartz et al. 1999a). Zβ 
is resistant to proteolysis only in the context of Zα–Zβ and 
the flexible linker between the two folded domains becomes 
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resistant to proteolysis when bound to Z-DNA (Schwartz 
et al. 1999a). These findings led to the proposal that Zα–Zβ 
may undergo a large structural rearrangement when bound to 
Z-DNA/Z-RNA or that Zα–Zβ functions as a bipartite bind-
ing domain with Zβ gaining the ability to bind nucleic acid 
only in the context of Zα–Zβ (Schwartz et al. 1999a). Based 
on its crystal structure as a dimer with a cadmium ion at the 
interface, it was also proposed that Zβ may act as a dimeri-
zation domain (Athanasiadis et al. 2018). The exact role of 
Zβ thus remains elusive, although it is clear that Zα, Zβ, and 
the linker region in between the two domains act in concert.

Here we report the NH/Cα/Cβ/CO solution NMR 
backbone assignments of Zα–Zβ as well as the NH/Cα/
Cβ chemical shifts for the individual Zα and Zβ domains 
from ADAR1. While the assignments of the Zα–Zβ and Zβ 
domains from ADAR1 are novel, the Zα domain has been 
characterized by NMR previously (Schade et al. 1999a, b), 
however, the chemical shifts for ADAR1 Zα have not been 
deposited to the BMRB until now.

Methods and experiments

Protein expression and purification

The N-terminal Zα domain of Homo sapiens ADAR1 in the 
pet-28a(+) plasmid (N-terminal 6 × His-tag and thrombin 
cleavage site between His tag and the Zα sequence) was a 
gift from Drs. Peter Dröge and Alekos Athanasiadis. Zα–Zβ 

and Zβ were ordered from GenScript (cloned into the same 
expression vector, pet-28a(+)) and prepared in the same 
way as Zα, which was expressed and purified similarly to 
(Placido et al. 2007; Kruse et al. 2020). Briefly, the plasmids 
were transformed and expressed in BL21(DE3) E. coli. The 
cell cultures were grown in M9 minimal media with 1 g/L 
15N ammonium chloride and 1.5 g/L 13C glucose (Millipore-
Sigma, Burlington, MA) to an optical density at 600 nm of 
0.6, induced with IPTG at a final concentration of 1 mM, and 
allowed to express Zα, Zβ, or Zα–Zβ for 4 h at 37 °C, then 
centrifuged to collect the cell pellets. Pellets were resus-
pended in lysis buffer (50 mM Tris–HCl (pH 8.0), 300 mM 
NaCl, 10 mM Imidazole, 5 mM β-Mercaptoethanol (BME)) 
and sonicated. Lysate was centrifuged and the supernatant 
was applied to a His-trap column, washed with 40 mL of 
lysis buffer, 80 mL of wash buffer (50 mM Tris–HCl (pH 
8.0), 1 M NaCl, 10 mM Imidazole, 5 mM BME), and eluted 
in 20 mL of elution buffer (50 mM Tris–HCl (pH 8.0), 
300 mM NaCl, 500 mM Imidazole, 1 mM BME). The elu-
ents were concentrated to ~ 2 mL and applied to a Hiload 
16/600 Superdex 75 Gel Filtration Column (GE Healthcare) 
and the peak corresponding to pure protein was collected 
and concentrated using an Amicon 3 kDa cutoff centrifu-
gal filter (Millipore-Sigma, Burlington, MA). At this step, 
Zα–Zβ and to a lesser extent also Zβ showed concentration- 
and salt-dependent oligomerization. To prevent aggregation, 
more NaCl was added (to a final concentration of 100 mM 
for NMR measurements), with the concentration of NaCl 
being dependent upon the concentration of protein. The 
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Fig. 1   The Zα and Zβ domains of ADAR1p150. a Domain organiza-
tion of ADAR1: Zα and Zβ are structurally homologous helix-turn-
helix DNA/RNA-binding domains, RBD stands for double-stranded 
RNA binding domain. Both isoforms are indicated. b Crystal struc-
ture of (CpG)3 RNA bound to Zα from ADAR1 (PDB ID: 2GXB, 

(Placido et  al. 2007)). c Structural alignment of the Zα (PDB ID: 
2GXB) and Zβ (PDB ID: 1XMK, (Athanasiadis et al. 2018)) domains 
of ADAR1. The backbone RMSD between the two structures is 0.9 Å 
(excluding the termini)



Solution NMR backbone assignments of the N‑terminal Zα‑linker‑Zβ segment from Homo sapiens…

1 3

proteins were dialyzed and concentrated into the following 
buffers for NMR: 20 mM potassium phosphate (pH 6.4), 
25 mM or 100 mM NaCl for Zα (2 mM protein), 20 mM 
potassium phosphate (pH 6.4), 25 mM NaCl or 100 mM 
NaCl for Zβ (2 mM protein), 20 mM potassium phosphate 
(pH 6.4), 100 mM NaCl for Zα–Zβ (680 µM protein). D2O 
was added to 5%. See Table 1 for specifics on which buffer 
was used for which NMR experiments.

Perdeuterated Zα–Zβ was prepared in the same way as 
non-perdeuterated Zα–Zβ except that the M9 minimal media 
culture contained 99.8% D2O instead of water and had uni-
formly deuterated 13C glucose (Cambridge Isotope Labora-
tories, Tewksbury, MA). Additionally, the E. coli were D2O 
adapted before expression following the protocol from (Cai 
et al. 2016).

NMR spectroscopy

The TROSY backbone experiments for the assignment of 
Zα–Zβ and the HNCACB for the isolated Zα domain were 
carried out on a Bruker 600 MHz spectrometer equipped 
with a 5/3 mm triple resonance 1H/13C/15N/19F cryoprobe 
(CP2.1 TCI). All other experiments were done on a Varian 
900 MHz spectrometer equipped with a 5 mm triple reso-
nance 1H/13C/15N cold probe with a Z-axis gradient.

15N-HSQC spectra of the individual Zα and Zβ domains 
were recorded both at 25 °C and with 25 mM NaCl, and 
at 35 °C with 100 mM NaCl. The 15N-HSQC of Zα–Zβ 
was recorded at 35 °C with 100 mM NaCl. All 15N-HSQC 
spectra were collected with 1024 (1H) × 120 (15N) complex 
points, a 1.6 s recycle delay, and 16 scans. The spectral 
widths were 16 and 35 ppm for the 1H and 15N dimensions, 
respectively.

Assignment of the individual Zα and Zβ domains was 
achieved through HNCACB experiments measured at 25 °C 
and 25 mM NaCl with 1024 (1H) × 96 (13C) × 80 (15N) com-
plex points (2306 of the points were collected following a 
30% non-uniform sampling scheme from the Wagner web-
site: http://​gwagn​er.​med.​harva​rd.​edu/​intra​net/​hmsIST/​gensc​
hed_​new.​html, (Hyberts et al. 2012)), a 1 s recycle delay, and 
8 scans. The spectral widths were 15.6, 70, and 35 ppm for 
the 1H, 13C, and 15N dimensions, respectively.

Assignment of Zα–Zβ was achieved by measurement of 
3D TROSY-HNCACB, 3D TROSY-HN(CO)CACB, 3D 
TROSY-HN(CA)CO, 3D TROSY-HNCO, and 3D HNN 
experiments on a perdeuterated sample. The four TROSY 
experiments were measured with 1024 (1H) × 96 (13C) × 80 
(15N) complex points (1274 of the points were collected fol-
lowing a 16% sampling scheme from the Wagner site), a 
1.9 s recycle delay (except for the TROSY-HNCO, which 
had a delay of 1  s), and 16 scans. The spectral widths 
were 18 (1H), 80 (13C), and 35 (15N) ppm for the TROSY-
HNCACB and TROSY-HN(CO)CACB experiments, and 18 
(1H), 14 (13C), and 35 (15N) ppm for the TROSY-HN(CA)
CO and TROSY-HNCO experiments. The HNN experiment 
was measured with 1024 (1H) × 96 (15N) × 80 (15N) com-
plex points (1927 of the points were collected following a 
25% NUS sampling scheme from the Wagner site), a 1 s 
recycle delay, and 16 scans. The spectral widths were 15.6 
and 70 & 35 ppm for the 1H, 13C, and 15N dimensions. The 
HNN experiment, which correlates 15N and 1HN of residue 
i with the 15N of residues of i + 1 and i − 1, was helpful for 
assigning overlapped regions of which there were many in 
the linker region of Zα–Zβ. Residues 205–212 have chemi-
cal shifts identical to those of residues 253–260, as they are 
part of a repeat sequence within the linker region (with the 
sequence NQHSGVVRP).

Table 1   NMR experiments and sample information

Construct identity Measured NMR experiments Field strength Sample 
concentra-
tion

Sample 
temperature 
(°C)

Buffer conditions Molecular 
weight (kDa)

Zα 15N-HSQC
HNCACB

900 MHz
600 MHz

2 mM 25  20 mM potassium phosphate 
(pH 6.4), 25 mM NaCl

9.2 

Zα 15N-HSQC 900 MHz 2 mM 35  20 mM potassium phosphate 
(pH 6.4), 100 mM NaCl

9.2 

Zβ 15N-HSQC
HNCACB

900 MHz
900 MHz

2 mM 25  20 mM potassium phosphate 
(pH 6.4), 25 mM NaCl

10.9 

Zβ 15N-HSQC 900 MHz 2 mM 35  20 mM potassium phosphate 
(pH 6.4), 100 mM NaCl

10.9 

Zα–Zβ 15N-HSQC
TROSY-HNCACB
TROSY-HN(CO)CACB
TROSY-HN(CA)CO
TROSY-HNCO
HNN

900 MHz
600 MHz
600 MHz
600 MHz
600 MHz
900 MHz

680 µM 35  20 mM potassium phosphate 
(pH 6.4), 100 mM NaCl

27.2 

http://gwagner.med.harvard.edu/intranet/hmsIST/gensched_new.html
http://gwagner.med.harvard.edu/intranet/hmsIST/gensched_new.html
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The 3D NUS-spectra were constructed using the 
hmsIST software (Hyberts et al. 2012), and the linearly 
acquired 2D spectra were subject to NUS zero-filling as 
an alternative to linear prediction. A solvent subtraction 
function was applied in the direct dimension. Further data 
processing and visualization were performed using NMR-
Pipe/NMRDraw (Delaglio et  al. 1995) and NMRFAM 
Sparky (Lee et al. 2015). Resonance assignment was per-
formed using the CCPNmr analysis software version 2.4.2 
(Vranken et al. 2005).

Assignment and data deposition

Initial 3D experiments on 15N, 13C isotopically enriched 
Zα–Zβ at 25 °C only resolved peaks from the linker region 
and the flexible termini. Thus, we turned to 2H, 15 N, 13C 
isotope labeling and measured TROSY versions of the 
standard suite of backbone experiments (Cavanagh 2007) 
at 35 °C, which had enough signal to be able to assign 98% 
of the entire Zα–Zβ construct (Table 2). The assignments 
of the Zα and Zβ domains in isolation were helpful in nar-
rowing down the search area of the peaks within the full 
construct. While the backbone assignments of the Zα and 
Zβ domains were done at 25 °C, we were able to assign the 
15N-1H HSQC spectra measured at 35 °C through nearest 
neighbor assignment. The 15N–1H HSQC of the three con-
structs and the peak assignments are shown (Fig. 2). We 
have deposited the chemical shifts for Zα, Zβ and Zα–Zβ 
under BMRB accession numbers: 50,714, 50,713, and 
50,715 respectively.

Chemical shift analysis

Several conclusions could immediately be drawn from 
the spectra and assignments of Zα–Zβ. First, the linker 
between the Zα and Zβ domains is intrinsically disor-
dered, as determined by its low chemical shift dispersion 
and favorable relaxation properties (Fig. 2). The Second-
ary Structure Propensity Score (SSP) (Marsh et al. 2006) 
of the linker region mostly fluctuates between 0 and 0.2 
(a score of 1 indicates a fully formed α-helix, while -1 

indicates a β-sheet), confirming that the linker is indeed 
intrinsically disordered with some potential α-helical 
propensity (Fig. 3). In addition, the SSP score shows 
that the secondary structure of the Zα and Zβ domains 
is well-folded and in agreement with the structures of 
the isolated domains (Zα PDB IDs: 2GXB (Placido et al. 
2007), 1QGP (Schade et al. 1999a); Zβ PDB ID: 1XMK 
(Athanasiadis et al. 2018)) (Fig. 3). This suggests that 
the Zα and Zβ domains within the context of the larger 
Zα–Zβ construct adopt a similar structure as they do in 
isolation.

An overlay of the Zα, Zβ, and Zα–Zβ 15N-1H HSQC 
shows that for the most part, the peaks from the Zα and 
Zβ domains in isolation match well to those within the 
context of Zα–Zβ (Fig. 4a). However, there are deviations 
between the constructs, especially in the Zβ domain. In 
order to investigate this in greater depth, we calculated 
Chemical Shift Perturbations (CSPs) (Montaville et al. 
2008; Williamson 2013) between the isolated domains 
and the full construct (Fig. 4b) according to the follow-
ing equation:

For the Zα domain, five residues showed CSPs above 
the noise level (we took the noise level to be at ~ 0.19) 
which included Lys154, Thr157, Thr167, Leu185, and 
Ser200 (Fig. 4b). The Zβ domain showed significantly 
more CSPs above the noise, with 15 residues includ-
ing Glu297, Lys301, Asp304, Phe307, Ser310, Ile321, 
Leu323, Thr324, Ala326, Arg 327, Ile329, Asp330, Ile334, 
Arg338, and Thr347 (Fig. 4b). Plotting these residues on 
the structures of Zα and Zβ revealed that while their loca-
tion on Zα appears to be random (and therefore difficult 
to determine whether they are of functional importance), 
on Zβ, they collectively form a belt that stretches almost 
360° around the protein (Fig. 4c). Such an interface sug-
gests that Zβ may interact with the linker region of Zα–Zβ 
in some way, a hypothesis which we are planning to test 
in the near future.

CSP =

√

(

�H,free − �H,bound

)2
+ 0.2

(

�N,free − �N,bound

)2

Table 2   Backbone assignment statistics of Zα, Zβ, and Zα–Zβ

a All constructs have 20 extra non-relevant residues from cloning and the His-tag
b Backbone assignment % as extracted from CCPNmr (Vranken et al. 2005)

Construct identity with numbering 
of relevant residues

Total number of relevant 
residuesa

Total number of relevant non-
proline residues

% backbone resonances assigned (number 
of backbone atoms assigned)b

Zα (139–202) 64 61 97.6% (61 15N, 63 Cα, 57 Cβ)
Zβ (290–365) 76 75 98.7% (74 15N, 75 Cα, 72 Cβ)
Zα–Zβ (139–365) 227 212 98.2% (208 15N, 221 Cα, 205 Cβ, 220 CO)
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Fig. 2   Assigned 1H–15N HSQC spectra of Zα, Zβ, and Zα–Zβ. 
Shown are the 1H–15N HSQC spectra of Zα (green, a), Zβ (blue, b), 
and Zα–Zβ (purple, c and d) measured at 900  MHz, 35  °C, and in 
20 mM potassium phosphate (pH 6.4), 100 mM NaCl. The spectrum 
of Zα–Zβ in c has a low contour level cutoff, where only the Zα and 

Zβ domain assignments are shown in green and blue, respectively, 
and a high contour level cutoff in d to highlight the linker residues. e 
and f Blown-up regions from (c) and (d), respectively, to more clearly 
show the assignments within the crowded region of the spectra
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Fig. 3   Secondary Structure 
Propensity Score of Zα–Zβ of 
ADAR1. The Secondary Struc-
ture Propensity score (SSP) 
calculated from the assigned 
HN, N, Cα, Cβ, and CO chemi-
cal shifts (Marsh et al. 2006) for 
Zα–Zβ is shown. The residue # 
is on the x-axis while SSP score 
is on the y-axis
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Fig. 4   Chemical shift perturbations between Zα and Zβ in isolation 
versus Zα–Zβ. a Overlay of the 1H–15N HSQC spectra of Zα, Zβ and 
Zα–Zβ in green, blue, and purple, respectively. b Chemical shift per-
turbations (CSPs) (Montaville et al. 2008; Williamson 2013) between 
the isolated Zα and Zβ domains versus the domains within the con-

text of Zα–Zβ. Residues which showed CSP values above 0.19 were 
considered to be significant. c Residues which showed significant 
CSPs from b are plotted (residues colored red) onto the structures of 
Zα (green, PDB ID: 2GXB, (Placido et al. 2007)) and Zβ (blue, PDB 
ID: 1XMK, (Athanasiadis et al. 2018))
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