Research Track Paper

KDD '20, August 23-27, 2020, Virtual Event, USA

ALO-NMF: Accelerated Locality-Optimized Non-negative Matrix
Factorization

Gordon E. Moon
Sandia National Laboratories
Albuquerque, NM, US.A
gemoon@sandia.gov

Srinivasan Parthasarathy
The Ohio State University
Columbus, OH, U.S.A
srini@cse.ohio-state.edu

ABSTRACT

Non-negative Matrix Factorization (NMF) is a key kernel for un-
supervised dimension reduction used in a wide range of applica-
tions, including graph mining, recommender systems and natural
language processing. Due to the compute-intensive nature of ap-
plications that must perform repeated NMF, several parallel im-
plementations have been developed. However, existing parallel
NMF algorithms have not addressed data locality optimizations,
which are critical for high performance since data movement costs
greatly exceed the cost of arithmetic/logic operations on current
computer systems. In this paper, we present a novel optimization
method for parallel NMF algorithm based on the HALS (Hierarchi-
cal Alternating Least Squares) scheme that incorporates algorithmic
transformations to enhance data locality. Efficient realizations of
the algorithm on multi-core CPUs and GPUs are developed, demon-
strating a new Accelerated Locality-Optimized NMF (ALO-NMF)
that obtains up to 2.29x lower data movement cost and up to 4.45x
speedup over existing state-of-the-art parallel NMF algorithms.

CCS CONCEPTS

« Computing methodologies — Shared memory algorithms;
Non-negative matrix factorization.

KEYWORDS

Parallel Non-negative Matrix Factorization; Dimensionality Reduc-
tion; Data Locality Optimization

ACM Reference Format:

Gordon E. Moon, J. Austin Ellis, Aravind Sukumaran-Rajam, Srinivasan
Parthasarathy, and P. Sadayappan. 2020. ALO-NMF: Accelerated Locality-
Optimized Non-negative Matrix Factorization. In Proceedings of the 26th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD
"20), August 23-27, 2020, Virtual Event, CA, USA. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3394486.3403227

ACM acknowledges that this contribution was authored or co-authored by an employee,
contractor, or affiliate of the United States government. As such, the United States
government retains a nonexclusive, royalty-free right to publish or reproduce this
article, or to allow others to do so, for government purposes only.

KDD °20, August 23-27, 2020, Virtual Event, CA, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7998-4/20/08....$15.00
https://doi.org/10.1145/3394486.3403227

J. Austin Ellis

Sandia National Laboratories
Albuquerque, NM, US.A
johelli@sandia.gov

1758

Aravind Sukumaran-Rajam
Washington State University
Pullman, WA, US.A
a.sukumaranrajam@wsu.edu

P. Sadayappan
University of Utah
Salt Lake City, UT, US.A
saday@cs.utah.edu

1 INTRODUCTION

Non-negative matrix factorization (NMF) has found renewed in-
terest within the core database systems community on problems
ranging from node embedding for graph mining [23, 28] to col-
laborative filtering for recommender systems [1, 11, 22] to topic
modeling for text mining [25, 27]. Furthermore, it is often used
as a key kernel or workload to evaluate new systems that blend
machine learning with databases.

Given a non-negative matrix A € RYXD and K<min(V, D), NMF
finds two non-negative rank-K matrices W € RV*K and H € RKXD,
such that the product of W and H approximates A [16]:

A~WH 1)
For example, when NMF is used for node embedding, given a node-
to-node adjacency matrix A in which each non-zero element repre-
sents a connection between the nodes through the edge information,
NMF generates dense node embeddings in low-dimensional factor
matrices W and H. The effectiveness of the NMF node embeddings
can be directly evaluated through applications such as node classi-
fication and link prediction tasks [10].

Several algorithms have been proposed for NMF. They all in-
volve repeated, alternating updates of some elements of W inter-
leaved with updates of some elements of H, with the constraint of
non-negativity on the elements, until a suitable error norm (either
Frobenius norm or Kullback-Leibler divergence) is lower than a
desired threshold. Previously developed algorithms for NMF differ
in the granularity of the number of elements of W that are up-
dated before switching to updating some elements of H. Prior work
compared the rates of convergence of alternate algorithms and the
parallelization of those algorithms. However, to the best of our
knowledge, the minimization of data movement through the mem-
ory hierarchy, using techniques like tiling, has not been previously
addressed. With costs of data movement from memory being sig-
nificantly higher than the cost of performing arithmetic operations
on current processors, data locality is an important consideration.

In this paper, we address the issue of data locality optimization
for NMF. An analysis of the computational components of the FAST-
HALS (Hierarchical Alternating Least Squares) algorithm for NMF
[3] is first performed to identify data movement overheads. The
associativity of addition is used to judiciously reorder additive con-
tributions in updating elements of W and H, to enable 3D tiling of
a computationally intensive component of the algorithm. The anal-
ysis of data movement overheads as a function of tile size leads to a

https://doi.org/10.1145/3394486.3403227
https://doi.org/10.1145/3394486.3403227

Research Track Paper

model for selection of effective tile sizes. Parallel implementations
of the new Accelerated Locality-Optimized NMF algorithm (called
ALO-NMF) are presented for both GPUs and multi-core CPUs. An
experimental evaluation with datasets used in prior studies demon-
strates significant performance improvement over state-of-the-art
alternatives available for parallel NMF.

The paper is organized as follows. In the next section, we present
background on NMF and related prior work. In Section 3, we present
a high-level overview of the ALO-NMF algorithm. Section 4 pro-
vides details of ALO-NMF for multi-core CPUs and GPUs. In Section
5, we compare the data movement cost for ALO-NMF and the orig-
inal FAST-HALS algorithm. Thereafter, we discuss the approach to
tile size selection based on data movement analysis. Section 6 com-
pares the performance of ALO-NMF with existing state-of-the-art
parallel implementations.

2 BACKGROUND AND RELATED WORK

2.1 Non-negative Matrix Factorization
Algorithms

NMF seeks to solve the optimization problem of minimizing re-
construction error between a matrix A and its approximation WH.
In order to measure the reconstruction error for NMF, Lee et al.
[16] adopted various objective functions, such as the Frobenius
norm given two matrices and Kullback-Leibler divergence given
two probability distributions. The objective functions D(A||WH)
based on the Frobenius norm is defined in Equation 2.

DRAIWH) = Z[lA-WHIE = 2 3 (Apa - WH,0 @)

%
To efficiently minimize the objective gmctions (above), several
variants of NMF algorithms have been developed: Multiplicative
Update (MU), Additive Update (AU), Hierarchical Alternating Least
Squares (HALS) and Alternating Non-negative Least Squares with
Block Principle Pivoting (ANLS-BPP). Table 1 describes the notations
used in this paper.

Table 1: Common notations for NMF algorithms

Notation Description
Non-negative matrix
Non-negative rank-K matrix factor
Non-negative rank-K matrix factor
Number of rows in A and W
Number of columns in A and H
Low rank

Cache size

S| ORI <= >

Tile size

Multiplicative update (MU) and additive update (AU) proposed by
Lee et al. [16] are the simplest NMF algorithms. The MU algorithm
updates two rank-K non-negative matrices W and H based on
multiplicative rules and ensures convergence. MU strictly conforms
to non-negativity constraints on W and H because the elements
of W and H that have zero value are not updated. Unlike the MU
algorithm, the AU algorithm updates W and H based on the gradient
descent method and avoids negative update values using a learning
rate. However, some studies have reported that the MU and AU
algorithms have weaknesses such as slow convergence and low
convergence rate [9, 13, 18].

1759

KDD '20, August 23-27, 2020, Virtual Event, USA

As an alternative to the MU and AU approaches, the Alternating
Least Squares (ALS) algorithm uses the gradients of two objective
functions with respect to W and H in order to update each of W and
H, one after the other at each epoch. Cichocki et al. [4] proposed Hi-
erarchical Alternating Least Squares (HALS), which hierarchically
updates only one k-th row vector of H € R{f XD at a time and then
uses it to update a corresponding k-th column vector of W € RKXK.
In other words, HALS minimizes K pairs of local objective functions
with respect to the K row vectors of H and K column vectors of W
at each epoch. A standard HALS algorithm iteratively updates each
row of H and each column of W in order within the innermost loop.
Based on the standard HALS algorithm, Cichocki et al. [3] further
proposed an extended version called the FAST-HALS algorithm as
described in Algorithm 1. H and W denote the k-th row of H
and the k-th column of W, respectively. FAST-HALS updates all
rows of H before starting the update to all columns of W, instead
of alternately updating each row of H and each column of W at a
time. Compared to the MU algorithm, the FAST-HALS algorithm
converges faster and produces a better solution, while maintaining
a similar computational costs as reported in [8, 14].

Alternating Non-negative Least Squares (ANLS) is a special type
of Alternating Least Squares (ALS) approach. Kim et al. [14] pro-
posed an Alternating Non-negative Least Squares based Block Prin-
cipal Pivoting (ANLS-BPP) algorithm. Under the Karush-Kuhn-
Tucker (KKT) conditions, the ANLS-BPP algorithm iteratively finds
the indices of non-zero elements (passive set) and zero elements
(active set) in the optimal matrices until the KKT conditions are
satisfied. The values of indices that correspond to the active set
become zero, and the values of passive set are approximated by
solving min||A—- WH| |12, which is a standard Least Squares problem.
Kim et al. [14] have shown that ANLS-BPP and FAST-HALS yield
comparable convergence rates. Interestingly, FAST-HALS has also
been found to converge faster than their ANLS-BPP implementa-
tion on real-word text datasets: 20 Newsgroups and TDT?2 (refer to
Figure 5.3 in Kim et al. [14]).

2.2 Related Work on Parallel NMF

Since most of the variations of NMF algorithm are highly compute-
intensive, many previous efforts have sought to parallelize the NMF
algorithms. Previous studies on parallelizing NMF can be broadly
categorized into two groups based on implementation for multi-core
CPUs [2,5, 7,12, 17,19] versus GPUs [15, 20, 21]. Furthermore, each
study used various NMF algorithms for parallel implementations.

Shared-Memory Multiprocessor. Battenberg et al. [2] introduced
parallel NMF using the MU algorithm for an audio source sepa-
ration task. Fairbanks et al. [7] adopted ANLS-BPP based NMF in
order to find the structure of temporal behavior in a dynamic graph
given vertex features. Both [2] and [7] developed the parallel NMF
implementations on shared-memory multi-core CPUs using the
Intel Math Kernel Library (MKL).

Distributed-Memory Systems. Dong et al. [5] demonstrated that
MU algorithm with shared-memory based parallel implementation
are limited by slow convergence. To overcome this problem, they de-
vised an MPI implementation of MU based NMF that improves over
Parallel NMF (PNMF) proposed by Robila et al. [24]. Different NMF
algorithms have previously used tiling/blocking to minimize data

Research Track Paper

movement. Dong et al. [5] partitioned the two factor matrices, W
and H, into smaller blocks and is distributed each block to different
threads. Each block simultaneously updates corresponding sub-
matrices of the W and H, and a reduction operation is performed
by collective communication operations using MPI. Similarly, Liu
et al. [19] proposed a matrix partition scheme that partitions the
two factor matrices along the shorter dimension (K dimension)
instead of the longer dimensions (V or D dimensions). Therefore,
each matrix is divided into more partitions compared to partition-
ing along the longer dimension, so that data locality is increased
and communication cost is decreased when performing the product
of two matrices. Kannan et al. [12] minimized the communication
cost by communicating only with the two factor matrices and other
partitioned matrices among parallel threads. Based on the ANLS-
BPP algorithm, their implementation also reduced the bandwidth
and data latency using MPI collective communication operations.
Given an input matrix A, they partitioned W and H into P multiple
blocks (tiles) across the V and D dimensions, which are the number
of rows in W and columns in H, respectively. In our tiling approach,
W and H are partitioned across the K dimension, and the sizes
of each block in W and H are VX(K/P) and (K/P)xD, respectively.
Therefore, the efficiency of our tiling strategy is associated with
the K dimension in the two rank-K factor matrices. Our key con-
tribution is not tiling/blocking itself, but converting matrix-vector
operations to matrix-matrix operations. Tiling enables us to do the
latter.

GPU Platform. Lopes et al. [20] propose several GPU-based paral-
lel NMF implementations that use both MU and AU algorithms, for
both Euclidean and KL divergence objective functions. Mejia-Roa et
al. [21] present NMF-mGPU that performs MU based NMF on either
a single GPU device or multiple GPU devices through MPI for a
large-scale biological dataset. Koitka et al. [15] present MU and ALS
based GPU implementations with binding for the R environment.
To our knowledge, our paper is the first to develop a FAST-HALS
based parallel NMF implementation for GPUs.

3 OVERVIEW OF APPROACH

In this section, we present a high-level overview of our approach
to optimize NMF for data locality. We begin by describing the
FAST-HALS algorithm [3], one of the fastest algorithms for NMF
as demonstrated by previous comparison studies [14]. We analyze
the data movement overheads from main memory, for different
components of that algorithm, and identify the main bottlenecks.
We then show how the algorithm can be adapted by exploiting the
associativity of addition to make the computation effectively tileable
to reduce data movement from memory, whereas the original form
is not tileable.

3.1 Overview of FAST-HALS Algorithm

Algorithm 1 shows pseudo-code for the FAST-HALS algorithm [3]
for NMF. It iteratively updates H and W, fully updating all entries in
H (lines 3-6) and then updating all entries in W (lines 7-11) during
each epoch, until convergence. While the updates to H and W are
slightly different (due to normalization of W), each of the updates
involves a pair of matrix-matrix products (lines 3/4 and 7/8 for
H and W, respectively) and a sequential loop that steps through

1760

KDD '20, August 23-27, 2020, Virtual Event, USA

Algorithm 1: FAST-HALS algorithm for NMF

Input: A € RY*P: non-negative matrix, €: machine epsilon, E: total
number of epochs
1 Initialize W € RY*K and H € REXP with random non-negative numbers
2 for epoch = 1to E do
> Updating H
R—ATW
S—wTw
fork=0to K — 1do
| Hi < max(e, Hi + Re — HT Sg)

o v R W

> Updating W
7 P« AHT

8 Q «— HHT

9 fork=0toK — 1do

Wi maX(E, Wkak + P — WQk)

Wy — &

TWell > Normalize Wy column vector with I, norm
k112

12 return W, H

features (k loop) to update one row (column) of H (W) at a time. The
computation within these k loops involves vector-vector operations
and matrix-vector operations. From a computational complexity
standpoint, the various matrix-matrix products and the sequential
(K times) matrix-vector products all have cubic complexity (O(N?)
if all matrices are square and of size N X N). But as we show by
analysis of data movement requirements in the next sub-section,
the collection of matrix-vector products in lines 6 and 10 dominate.
In the following sub-section, we present our approach to alleviate
this bottleneck by exploiting the flexibility of instruction reordering
via use of the associativity property of addition®.

3.2 Data Movement Analysis for FAST-HALS
Algorithm

The code regions with high data movement can be identified by
individually analyzing each line in Algorithm 1. Lines 3 and 4
perform matrix multiplication. Given two matrices AT, (D x V)
and W, (V x K), it is well known that 2DKV /VC is the highest
order term in the number of data elements moved (between main
memory and a cache of size C words) for efficient tiled matrix-
matrix multiplicationz. Thus, the data movement costs associated
with lines 3 and 4 are 2DKV /VC and 2KKV /V/C, respectively. The
loop in line 5 performs matrix-vector multiplication and has an
associated data movement cost of K(3D + DK +K). Similar to lines 3
and 4, the data movement costs for lines 7 and 8 are 2VKD/ V/C and
2KKD/C, respectively. The loop in line 9 has an associated data
movement cost of K(VK + K + 6V + 1). The total data movement
for Algorithm 1 is shown in Equation 3.

2 4VD
K(K(V+D)(l+ —) + — +6V+3D+2K+1)

Ve

NG ®)

The main data movement overhead is associated with loops in
lines 5 and 9. For example, the combined fractional data movement
overhead of lines 6 (within loop in line 5) and 10 (within loop in line
9) is 91% for the 20 Newsgroups dataset. If the operational intensity
(defined as the number of operations per data element moved) is
very low, the performance will be bounded by memory bandwidth

11-‘lc~ating-pcoint addition is of course not strictly associative, but as shown later by the experi-
mental results, the changed order does not adversely affect algorithm convergence.

2 An extensive discussion of both lower bounds and data movement volume for several tiling
schemes may be found in the work of Smith [26].

Research Track Paper

¢ original value k=0 g

Jo
_l\)
1o

KDD '20, August 23-27, 2020, Virtual Event, USA

* current value —
¢ updated value 0

w

| Wonew, oQy , +

|||

Replace W, , with
an updated value

Replace W ; with
an updated value
(a) Update of W

Replace W, , with
an updated value

w

(b) Updating a single element of W

L W_new,,Q,,+
W old, ,Qy, +
W_old,;Q;; +
W_old,,Q, , +
W_old, s Qs ;

(c) The contributions from W, , to other elements

Figure 1: The interaction between different columns of W in the original FAST-HALS algorithm

and thus we will not be able to achieve the peak compute capacity.
Due to its low operational intensity, the performance of Algorithm
11is limited by the memory bandwidth. Hence, the major motivation
for our algorithm adaptation is to achieve better performance by
reducing the required data movement.

3.3 Overview of ALO-NMF

In this sub-section, we describe how the FAST-HALS algorithm
is adapted by exploiting the flexibility of changing the order in
which additive contributions to a data element are made. Before
describing the adaptation, we first highlight the interaction between
different columns of W with iterative matrix-vector operations in
the original algorithm. Figure 1a depicts the update of W, which
corresponds to lines 9 to 11 in Algorithm 1. The red dot in Figures
1a, 1b, and 1c shows a single updated element produced by the
dot-product of a row vector of W and a column vector of Q. Each of
green arrows in Figures 1a, 1c, and 2 indicate that a single output
element/tile will be updated to the corresponding element/tile in
W before performing the next dot-product.

In Algorithm 1, the ¢* h column of W is updated as the product of
W with the t*# column of Q, i.e., a matrix-vector multiplication op-
eration. Since the update to the (¢ + 1) column requires the mod-
ified W after the ' column update, different columns (z: features)
are updated sequentially. Let W_old represent the values at the be-
ginning of the current epoch, and let W_new represent the values at
the end of current epoch (updated values). The relationship between
W_old and W_new is shown in Figure 1b, which depicts the con-
tributions from W_old and W_new to W_new; ;. W_new; ; can be
obtained by thé W_new; j X Qj + + Zfz_tl W _old; j x Qj, . Figure
1c shows the contributions of W_old; ; and W_new; ; to W_new; .
W _old; ; contributes to W_new; ;j Vj | j < t, and W_new; ; con-
tributes to W_new; j where Vj | j > t. In other words, the old value
of column t is used to update the columns to the left of ¢ (and
self), and the new/updated value of column t is used to update the
columns to the right of column t. If we partition W into a set of
column panels (tiles) of size T, the interactions between columns
can be expressed in terms of tiles as depicted in Figure 2. Similar to
individual columns, the old value of data-tile 7 is used to update
the columns to the left of 7 (phase 1), and the new/updated value
of data-tile 7 is used to update the data-tiles to the right of tile ¢
(phase 3). The updates to different columns within a data-tile (phase
2) are done sequentially.

1761

e original value
® current value
o updated value
tile_id =1 tile_id=1 tile_id=1
Phase 1 Phase 2 Phase 3

Figure 2: Overview of ALO-NMF for updating W.

The contributions to data-tiles to the left of current data-tile 7 can
be doneas W_new;,j -= W_old; rxT.((z+1)xT)-1XQexT:((r+1)XT)-1.j
where Vj | j < t X T. Similarly, contributions to data-tiles to the
right of current data-tile 7 can be done as the following equation.
W_new; j -= W_new; rxT.((r+1)xT)-1 X QexT:((r+1)xT)-1,j Where
Vj|j = (r+1)xT.Both phases 1 and 3 use matrix-matrix operations
which provide better performance and lower data movement than
matrix-vector operations. Note that the total number of operations
in both the original formulation and our formulation are exactly
the same (refer to Table 3 in Section A).

4 DETAILS OF ALO-NMF ON MULTICORE
CPUS AND GPUS

4.1 Parallel ALO-NMF CPU Implementation

Algorithm 2 shows ALO-NMF CPU pseudo-code for updating W.
We begin by computing AH” (line 1). Our algorithm does not dis-
tinguish between sparse matrix A and dense matrix A. The reason
is that the sparsity only appears at sparse matrix-dense matrix mul-
tiplications (SpMM) in lines 3 and 7 in Algorithm 1, which always
results in dense matrices R and P. Note that our key contribution is
to optimize the main bottleneck involving iterative matrix-vector
multiplications in lines 5 to 6 and lines 9 to 11 in Algorithm 1.
Hence, our optimization remains the same for both sparse and
dense matrix A. However, if A is sparse, then the actual implemen-
tation uses mkl_dcsrmmy() and cblas_dgemm() otherwise. In the
dense case, dense linear algebra libraries are used. It is possible to
use dense libraries even when A is sparse (with zero filling), but
is not beneficial for performance. Thereafter, line 2 in Algorithm
2 computes HH T (using cblas_dgemmy()). The values of W from
the previous epoch are kept in W_old. We maintain another data
structure called W_new which represents the updated values of W.

Research Track Paper

Algorithm 2: Parallel CPU implementation of updating W

Input: A € RY*P: input matrix, W_old and W_new: V X K non-negative
matrix factor, H: K X D non-negative matrix factor, T tile size, €:
machine epsilon

1 P AHT
2 Q«— HHT
> Initialize W_new using W_old and Q
3 fori=0toV — 1do
4 forj=0to K — 1do
5 | W_newl[i][j] < W_old[i][j] x Q[j1Lj]
6 y « ceil(K/T) > y: total number of tiles
> Phase 1
7 for tile_id=0to y — 1do
8 W_new[0:V —1][0: tile_id X T — 1] -=
dgemm(W _old[0:V — 1][tile_id X T : (tile_id + 1) X T — 1],
Qltile_id X T : (tile_id + 1) x T — 1][0 : tile_id X T — 1])
> Phases 2 & 3
9 for tile_id=0toy — 1do
> Phase 2
for ¢t = tile_id X T to (tile_id+ 1) X T — 1do
sum_square <— 0
#pragma omp parallel for reduction(+:sum_square)
fori=0toV — 1do
sum <« 0
#pragma omp simd reduction(+:sum)
for j =tile idX T tot — 1do
17 ‘ sum « sum + W_newl[i][j] X O[¢][j]
#pragma omp simd reduction(+:sum)
for j =t to (tile_id+ 1) X T — 1do
20 ‘ sum « sum + W_old[i][j] x O[¢][j]
W_newl[i][t] « max(e, W_newl[i][t] + P[i][t] — sum)
sum_square «— sum_square + W_new[i][t]xW_new[i][t]
#pragma omp parallel for
fori=0toV — 1do
25 \ W_newl[i][t] « W_new[i][¢]/sqrt(sum_square)
> Phase 3

26 W_new([0:V —1][(tile_id + 1) X T : K = 1] -=
dgemm(W_new([0:V — 1](tile_id X T : (tile_id + 1) X T — 1],

Qltile_id X T : (tile_id + 1) x T — 1][(tile_id + 1) X T : K — 1])

W _new is initialized by the loop in line 3.
W_new[:,0:(r xT)—1]-=
W_old[:, (t XT): ((r + 1) x T) — 1]-
OlrxT):((r+1)XT)—-1,0:(r xT)-1]
By using Equation 4, phase 1 is done by the loop in line 7. Figure 3
illustrates the computations of tiled matrix-matrix multiplications
for three sequential phases, where 7 denotes the index of the current
tile and T is the size of each tile. For example, at current tile 7, phase
1 performs multiplication of the same colored/patterned two sub-
matrices (tiles) in W_old and Q to update the result matrix W_new.
W_new[:, (t XT): ((t +1)xXT)-1]-=
W[, e xT): (r +1)xT) - 1]
Oz xT): (t+1)XT)—1,(txXT): ((t+1)xT) - 1]
+P[:, (e xT): ((r+1)xT)-1]
The loop in line 10 performs phase 2 computations as formulated
in Equation 5. In order to take advantage of the vector units, the
loops in lines 16 and 19 are vectorized. Additionally, a column-wise
normalization for W_new is performed within phase 2 (lines 24 to
25).

©)

®)

W_new[:, (t+1)xT):K—-1]-=
W_new[:, (tXT): (r +1)xT)-1]
Qe xT): ((r+1)XT)-1, (r+1)XT): K- 1]

(6)

1762

KDD '20, August 23-27, 2020, Virtual Event, USA

tile_id 0
tile_id 1

A

| tile_id 0 |

tile_id 1
tile_id 2 T K tile_id 2

o fleid3 N] T tile_id 3 T
T l tite_id 40 2 tile_id 4 l

tile_id 0 HE

tile_id 1

tile_id 2 Il
tile_id 3

tile_id 4

%

N

7777777272

MRt
MM

N
7
N

7722227

%

W_old/W_new W_new
Phase 2

W_new W_new
Phase 3

Figure 3: Computations of three phases for updating W.

The matrix-matrix multiplication in line 26 corresponds to the phase
3 computations using Equation 6. As depicted in Figure 3, the tiles
involving phase 3 and phase 1 computations are different from
each other. Finally, ALO-NMF CPU implementation completely
substitutes lines 7 to 11 in Algorithm 1 for all lines in Algorithm
2. Similarly, H will be updated in the same fashion as updating W
except for the normalization.

4.2 Parallel ALO-NMF GPU Implementation

Algorithm 3: GPU implementation of updating W on host

Input: A € RY*P: input matrix, W_old and W_new: V x K non-negative
matrix factor, H: K X D non-negative matrix factor, T tile size, €:
machine epsilon

1 P—AHT
2 Q« HHT
> Initialize W_new using W_old and Q
> Refer to Algorithm 4 in Section A.1
> y: total number of tiles
> Phase 1

3 init_'W_new()
4y «—ceil(K/T)

5 for tile_id=0toy — 1do
6 W_new[0:V —1][0: tile id X T — 1] -=
cublasDgemm(W _old[0: V — 1][tile_id X T : (tile_id + 1) x T — 1],
Qltile_id X T : (tile_id + 1) X T — 1][0 : tile_id X T — 1])

> Phases 2 & 3
7 for tile_id=0toy — 1do

> Phase 2
8 for t = tile_id X T to (tile_id+ 1) X T — 1do
9 cudaMemset(sum_square, 0)
10 phase_2_W() > Refer to Algorithm 5 in Section A.1

__cudaDeviceSynchronize()
norm_W_new()
__cudaDeviceSynchronize()

> Refer to Algorithm 6 in Section A.1

> Phase 3
W_newl[0:V —1][(tile_id + 1) X T: K — 1] -=
cublasDgemm(W _new([0: V — 1][tile_id X T : (tile_id + 1) X T —1],
Qltile_id X T : (tile_id + 1) x T — 1][(tile_id + 1) x T : K — 1])

Similar to ALO-NMF CPU algorithm, ALO-NMF GPU algorithm
also tries to minimize the data movement. Algorithm 3 and Algo-
rithm 4, 5 and 6 in Section A.1 show the pseudo-code of ALO-NMF
GPU algorithm. Since the overall structure of the GPU algorithm
is similar to the CPU algorithm, this section only highlights the
differences. Algorithm 3 runs on the host which is responsible
for launching GPU kernels. The sparse matrix-dense matrix mul-
tiplication is implemented using cusparseDcsrmm(), and dense
matrix-dense matrix multiplication is implemented using cublas-
Dgemmy().

Research Track Paper

20 Newsgroups, K =256 TDT2, K=256

25.0 100

epochs (s)

Time for 100

2 4 8 16 32 64 128256 2202 4 g

16 32 64 128 256 2 4

MovieLens, K=256

8 16

KDD '20, August 23-27, 2020, Virtual Event, USA

p2p-Gnutella, K=256 PIE, K=256

32 64 128 256 16 32 64 128 256 '3'“_’ 18 16 32 64 128 256

Tile size (T')

Figure 4: The training time in seconds for 100 epochs when the tile size T is varied for K=256 on five datasets. X-axis: tile size;
Y-axis: elapsed time in seconds for 100 epochs. Each point is averaged over three executions.

Algorithm 5 in Section A.1 shows the pseudo-code for phase
2. In GPUs, the reduction across V (for normalization of W) can
be performed using global memory atomic operations which are
expensive. Hence, ALO-NMF GPU uses efficient hierarchical reduc-
tion. The reduction within a thread block is done in four steps: (i)
in line 14 in Algorithm 5, the reduction across the threads within a
warp is done using efficient warp shuffling primitives, (ii) all the
threads with lane id 0 write the reduced value to shared memory
(line 15), (iii) in line 18, the first warp of the thread block loads
the previously written values from shared memory and (iv) all the
threads in the first warp again performs warp reduction (line 20).
In order to perform reduction across multiple thread blocks, we
use atomic operations which is shown in line 22. Algorithm 6 in
Section A.1 shows the pseudo-code for normalization.

5 MODELING: DETERMINATION OF THE
TILE SIZE

In this section, we first compare the data movement cost of ALO-

NMF with the original FAST-HALS algorithm. Then the data move-

ment of ALO-NMF as a function of T is optimized to select effective
tile sizes.

K

) 'VT2(1+ 2) VT2(1+ 2)(K2_KT) @)
i -+ —| = -+ —|[————

2

£ T Ve T yo/\ ot
1 K
ZT(VT+T+V)=?T(VT+T+V) (8)
i=0

In ALO-NMF, W is updated in three phases. Phases 1 and 3 can be
implemented using matrix-multiplication, and the corresponding
cost is shown in Equation 7, where T represents the tile size and C
is the cache size. Phase 2 can be implemented using matrix-vector
multiplication and the associated cost is shown in Equation 8. Since
loading matrix W dominates the data movement cost in phase 2,
the cost of loading vectors can be ignored.

vol(T) = V(% + %)(K2 _KT)+ %(T(VT))

Equation 9 shows the total data movement required for updating W
in ALO-NMF . The cost of updating H is similar to updating W, but
updating H does not require accessing Q. In addition, since H is not
normalized, the cost associated with normalization is not present.
The data movement cost of the original loop in line 9 in Algorithm
1is K(VK + K + 6V + 1). Hence, for the dense PIE dataset (V=11,554)
with low rank K=256 on a machine with 33 MB cache, the data

1763

movement cost of original scheme is 775,015,680 bytes. However,
in our scheme based on Equation 9, the cost is only 338,840,256
bytes which is 2.29%x lower than the original scheme (when T=16 is
selected for K=256).

The tile size T affects the data movement volume and hence
the performance. Given the data movement of our algorithm as a
function of T (Equation 9), consider the case when there is only one
tile (T=K). In this case, there is no work associated with phase 1
(contributions to left) and phase 3 (contributions to the right) as the
first term of Equation 9 will become zero. The total data movement
of phase 2 is VK? which is very high. Thus, when T is high, the
total data movements required for phases 1 and 3 are low, but phase
2 has high data movement. Now consider the other extreme where
the tile size is 1 (T=1). When T is low, the total data movements
for phases 1 and 3 are high, but phase 2 has low data movement.
Hence, we expect the combined data movement for all the phases
to decrease as T increases from 1 to some point and then the data
movement will increase again as T approaches K. Figure 4 shows
the performance results across different tile sizes for K=256 on five
datasets. Since performance is correlated with data movement, the
performance as a function of tile size T should show a similar trend
with the performance shown in Figure 4.

d(vol(T)) ., 2 B
d—T_T(\/E l)+K—0 (10)
KVC (1)

VC -2
In order to build a model to determine the best tile size for a
given K, the derivative of Equation 9 with respect to T is set it to
zero as shown in Equation 10. The solution to Equation 10 is shown
in Equation 11. As a result, for a machine with cache size of 33 MB,
the predicted tile size computed by our model (Equation 11) is 19.82
for K=256. As shown in Figure 4, tile size selected by our model is
optimal/near optimal. For example, when K=256, evaluation shows
that the best performance is achieved for T=16, which is very close
to our model predicted tile size of T=19.82.

6 EXPERIMENTAL EVALUATION

This section compares the time to convergence and convergence
rate of ALO-NMF with various state-of-the-art NMF algorithms.
All the CPU experiments were run on a 24-core Intel(R) Xeon(R)
Platinum 8160 CPU running at 2.10 GHz. The GPU experiments
were run on an NVIDIA Tesla P100 SXM2 GPU with 16 GB global

Research Track Paper

—— ALO-NMF CPU —— ALO-NMF GPU
20 Newsgroups TDT2

PLANC-BPP C

‘PU
MovieLens

u.ulL __
0.8 1 08\ memmmmooo e

KDD '20, August 23-27, 2020, Virtual Event, USA

PLANC-HALS CPU PLANC-MU CPU ==~

p2p-Gnutella

BIONMF-MU GPU
PIE

0.4

0.3
0 40 60

0.8p

R0.6
o

0.9
0.1

o5
i 0.5
0.4

Relative error

0.3
0 20 10

0.8

0.6

o5

0.4

2

0.3 X
) 60 0

20

40

20

Time

0.0
0.0

0.9
0.1

0.0
0.0 2.5

0.8

40 0 5

(s)

15

5.0 7.5

Figure 5: Relative objective value over training time on five datasets. Grey and red backgrounds indicate sparse and dense
datasets, respectively. According to current model, the T values for K=64, 256 and 1024 are set to 8, 16 and 64, respectively.

X-axis: elapsed time in seconds; Y-axis: relative error.

memory. Table 4 in Section A.2 details the benchmarking machine
configurations in the experiments.

For experimental evaluations we used two publicly available
real-world text datasets - 20 Newsgroups® and TDT2®. In addition,
we used a real-world directed graph dataset — p2p-Gnutella* and
a rating dataset — MovieLens®. In order to represent the audio-
visual context analysis in social media platforms, we used an image
dataset - PIE3. 20 Newsgroups, TDT2, MovieLens and p2p-Gnutella
are sparse matrices, and PIE is a dense matrix (more details on the
datasets are provided in Section A.3). In order to evaluate the accu-
racy of different NMF models, we measured the relative objective
function v/ pq(Agg — (WH)pq)?/ S oq(Agg)? suggested by Kim
et al. [14], where A, 4 and (WH),,4 denote the values of each ele-
ment in an input matrix A € RKXD and an approximated matrix
(WH) € RYXD , respectively. The capability of each NMF model in
minimizing the objective function can be obtained by measuring
relative changes of objective value over epochs.

6.1 NMF Implementations Compared

We compared ALO-NMF on CPUs and GPUs with the state-of-the-
art parallel NMF implementations such as PLANC® by Kannan et
al. [7, 12] and BIONMF’ by Mejia-Roa et al. [21]. The four imple-
mentations used in our comparisons are as follows:

e PLANC-BPP CPU: PLANC’s OpenMP-based ANLS-BPP

e PLANC-HALS CPU: PLANC’s OpenMP-based HALS

3 http://www.cad.zju.edu.cn/home/dengcai/Data/data.html
4http://snapAstanford,edu/data/p2p*Gnutella30Ahtml

5 https://grouplens.org/datasets/movielens/

6 https://github.com/ramkikannan/planc
7https://github.com/hioinfo-cnb/hionmf-gpu

1764

e PLANC-MU CPU: PLANC’s OpenMP-based MU

¢ BIONMF-MU GPU: BIONMF’s GPU-based MU
All CPU implementations, including PLANC-BPP CPU, PLANC-
HALS CPU and PLANC-MU CPU, and our ALO-NMF CPU, used In-
tel’s Math Kernel Library (MKL) for all BLAS (Basic Linear Algebra
Subprograms) operations. Similarly, all GPU implementations, in-
cluding BIONMF-MU GPU and our ALO-NMF GPU, used NVIDIA’s
cuBLAS library.

6.2 Performance Evaluation

Convergence. Figure 5 shows the relative error as a function of
elapsed time for various NMF implementations for different K val-
ues. We used 48 (24 cores X 2 threads per core) threads for all CPU
experiments. The tile size T was varied for each K, where T < K. For
each dataset, the same randomly initialized non-negative matrices
were used to evaluate all CPU and GPU implementations. Since the
BIONMF-MU GPU implementation does not allow the input matrix
to be sparse, we only compared ALO-NMF GPU with BIONMF-MU
GPU on the dense PIE image dataset. In addition, BIONMF-MU
GPU failed to execute when K > 512. ALO-NMF CPU and ALO-
NMF GPU consistently outperformed existing state-of-the-art CPU
and GPU implementations on all datasets. As reported in previous
studies, FAST-HALS produced a better convergence rate than other
NMEF variants. MU and ANLS-BPP algorithms suffered from a lower
convergence rate on both sparse and dense matrices. As shown in
Figure 6, PLANC-HALS CPU was the only implementation which
was able to maintain the same solution quality as ALO-NMF. How-
ever, ALO-NMF converged faster as shown in Figure 5. Although
the same initialization was used for all NMF variants, convergence
rates vary even among different implementations of the same NMF

Research Track Paper

—— ALO-NMF CPU —— ALO-NMF GPU
20 Newsgroups, K=256

TDT2, K=256

o N

Relative error

=W = wt

()

60 80

PLANC-BPP CPU

MovieLens, K=256

KDD '20, August 23-27, 2020, Virtual Event, USA

PLANC-HALS CPU PLANC-MU CPU ==
p2p-Gnutella, K=256

BIONMF-MU GPU

Epochs

Figure 6: Comparison of convergence over epochs on five datasets, K=256 and T=16. X-axis: number of epochs; Y-axis: relative

error.

algorithm. The differences in Figure 6 are due to differences in the
processing order of elements by the different CPU/GPU paralleliza-
tion schemes.

Speedup. Compared to the PLANC-HALS CPU, ALO-NMF CPU
achieved 3.17x, 3.26X%, 3.48X%, 5.59%, and 4.45X speedup per epoch
on the 20 Newsgroups, TDT2, MovieLens, p2p-Gnutella, and PIE
datasets with K=256, respectively. As the relative error reduction
per epoch is vastly different between MU and FAST-HALS algo-
rithms, measuring the speedup per epoch between BIONMF-MU
GPU and ALO-NMF GPU is not a fair comparison. Hence, the
speedup of ALO-NMF GPU over all NMF variants to reach the same
relative error is shown in Figure 7.

—— ALO-NMF CPU
PLANC-BPP CPU

20 Newsgroups, K=256
107 x 10°%

PLANC-HALS CPU=+= BIONMF-MU GPU
PLANC-MU CPU

PIE, K=256

Speedup of ALO-NMF GPU

Relative error

Figure 7: Speedup of ALO-NMF GPU over all CPU and GPU
implementations on two datasets, K=256 and T=16.

Since the MU and ANLS-BPP algorithms perform different up-
dates, the speedup of ALO-NMF GPU to obtain the same relative
error value differs for different error values. However, when we only
compare ALO-NMF GPU with HALS-based CPU implementations
(ALO-NMF CPU and PLANC-HALS CPU), our ALO-NMF GPU
maintains the same speedup over all the relative error values. In
addition, all of the points in Figure 7 are greater than one, indicating
that ALO-NMF GPU is the fastest of all competing implementa-
tions. For example, when the compared models, i.e., ALO-NMF CPU,
PLANC-HALS CPU, BIONMF-MU GPU and PLANC-MU CPU, con-
verge to the same 0.12 relative error, ALO-NMF GPU achieves 1.88X,
7.75%, 18.91x and 123.16X speedup on the PIE dataset, respectively.

Table 2 shows the elapsed time breakdown for each step in
updating W. Both the original FAST-HALS based NMF® and ALO-
NMF CPU use the same sparse and dense libraries for SpMM and

8We selected PLANC-HALS CPU as the baseline FAST-HALS NMF since it implements the
FAST-HALS algorithm without blocking/tiling optimizations.

1765

Table 2: Breakdown of elapsed time in seconds for updating
a matrix W on the 20 Newsgroups dataset, K=256 and T=16.
SpMM is the AHT in line 7 in Algorithm 1 and line 1 in Al-
gorithm 2. Similarly, DMM corresponds to the HH' in line 8
in Algorithm 1 and line 2 in Algorithm 2.

elapsed time (s) elapsed time (s)
SpMM 4.6e-2 SpMM 4.6e-2
DMM 1.2e-3 DMM 1.2e-3
) Phase 1 2.0e-3
Iterative DMV 2.1e-1 Phases 2 & 3 3102

(a) FAST-HALS based NMF (b) ALO-NMF CPU

DMM operations, respectively. The difference in updating W is
that ALO-NMF CPU performs phases 1, 2 and 3 instead of itera-
tively computing DMV (dense matrix-vector multiplications). In
the original FAST-HALS, the execution time is dominated by it-
erative DMV operations as shown in Table 2a. As expected, the
total update time of W is significantly reduced by 68.76% in the
ALO-NMF CPU algorithm. After applying our optimization, Sp)MM
becomes the bottleneck. This indicates that the reformulation of
the core-computations to matrix-matrix multiplication has yielded
significant benefit.

ALO-NMF CPU
TDT2 PIE

10x

of ALO-NMF CPU

512 128

)

Size of K

Figure 8: Speedup of ALO-NMF CPU over PLANC-HALS
CPU when the sizes of K are varied on two datasets.

Figure 8 shows the scalability of ALO-NMF CPU against PLANC-
HALS CPU for different values of K. Based on Equation 11, we used
the tile sizes T={16, 16, 32} for K={128, 256, 512}, respectively. As
K increases, our speedup also increases. For the TDT2 dataset, ALO-
NMF CPU achieved approximately 3.07X, 3.26X, and 8.81X speedup
over PLANC-HALS CPU when K=128, 256, and 512, respectively.

Research Track Paper

Achieved Peak Performance. Table 3 in Section A shows the
total number of floating point operations required for the original
FAST-HALS® and ALO-NMF algorithms. Given any tile size T, both
equations in Table 3 produce exactly the same number of opera-
tions because ALO-NMF does not affect the required number of
operations in HALS-based NMF. However, in terms of the achieved
peak flops, ALO-NMF provides significant improvement. For the
20 Newsgroups dataset (V'=26,214 and D=11,314) with K=256 and
T=16, based on the equations in Table 3, the achieved peak flops of
the original FAST-HALS is total floating points/ elapsed time(s)x10~°
=3.1e11/0.66(s)x 10~ =480 GFLOPs, whereas that of ALO-NMF CPU
is 3.1e11/0.24(s)x10~?=1300 GFLOPs which is approximately 2.7x
higher than the original algorithm.

7 CONCLUSION

In this paper, we developed a HALS-based parallel ALO-NMF algo-
rithm for multi-core CPUs and GPUs. The data movement overhead
is a critical factor that affects performance. This paper does a sys-
tematic analysis of data movement overheads associated with NMF
algorithm to determine the bottlenecks. ALO-NMF alleviates the
data movement overheads by enhancing data locality. ALO-NMF
achieved 2.29x lower data movement cost compared to the origi-
nal FAST-HALS algorithm. Since efficiency of our tiling strategy
is correlated to the K dimension in the factor matrices W and
H, ALO-NMF provides significant performance improvement as
the K size increases. Furthermore, our optimization technique can
be applied to many other scientific computations not limited to
machine learning kernels. Experimental results demonstrate ALO-
NMEF converged 4.45% faster than existing state-of-the-art parallel
implementations while maintaining evaluation quality. We plan to
extend this work by using these ideas in a semi-supervised setting
[22], adding a performance portable distributed implementation
[6], and handling massive database cases.

ACKNOWLEDGMENTS

We thank the ASC Advanced Architectures test-bed team at Sandia
National Laboratories (SNL) for supplying and supporting the sys-
tems used in this paper. This work was supported in part by the U.S.
National Science Foundation (NSF) through awards EAR-1520870,
CCF-2018016, and SES-1949037. The findings expressed in this ar-
ticle are those of the author(s) and do not necessarily reflect the
views of the NSF or SNL.

REFERENCES

[1] Mehdi Hosseinzadeh Aghdam, Morteza Analoui, and Peyman Kabiri. 2015. A
Novel Non-negative Matrix Factorization Method for Recommender Systems.
Applied Mathematics & Information Sciences 9, 5 (2015), 2721.

Eric Battenberg and David Wessel. 2009. Accelerating Non-Negative Matrix
Factorization for Audio Source Separation on Multi-Core and Many-Core Archi-
tectures.. In ISMIR. 501-506.

Andrzej Cichocki and Anh-Huy Phan. 2009. Fast Local Algorithms for Large
Scale Nonnegative Matrix and Tensor Factorizations. IEICE Transactions on
Fundamentals of Electronics, Communications and Computer Sciences 92, 3 (2009),
708-721.

Andrzej Cichocki, Rafal Zdunek, and Shun-ichi Amari. 2007. Hierarchical ALS
Algorithms for Nonnegative Matrix and 3D Tensor Factorization. In International
Conference on Independent Component Analysis and Signal Separation. Springer,
169-176.

Chao Dong, Huijie Zhao, and Wei Wang. 2010. Parallel Nonnegative Matrix
Factorization Algorithm on the Distributed Memory Platform. International

[2

[

1766

[6

[7]

[8

[

[10]

[11

[12

(13

[14]

jpory
&

[16]

[17]

(18

[19

[21

[22

(23]

S
=)

[25

[26

[27

KDD '20, August 23-27, 2020, Virtual Event, USA

Journal of Parallel Proirammin 38, 2 (2010), 117-137.

H. Carter Edwards, Christian R. Trott, and Daniel Sunderland. 2014. Kokkos:
Enabling manycore performance portability through polymorphic memory access
patterns. J. Parallel and Distrib. Comput. 74, 12 (2014), 3202 - 3216. https:
//doi.org/10.1016/].jpdc.2014.07.003 Domain-Specific Languages and High-Level
Frameworks for High-Performance Computing.

James P Fairbanks, Ramakrishnan Kannan, Haesun Park, and David A Bader.
2015. Behavioral Clusters in Dynamic Graphs. Parallel Comput. 47 (2015), 38-50.
Nicolas Gillis. 2014. The Why and How of Nonnegative Matrix Factorization.
Regularization, Optimization, Kernels, and Support Vector Machines 12, 257 (2014).
Edward F Gonzalez and Yin Zhang. 2005. Accelerating the Lee-Seung Algorithm
for Nonnegative Matrix Factorization. Technical Report.

Saket Gurukar, Priyesh Vijayan, Aakash Srinivasan, Goonmeet Bajaj, Chen Cai,
Moniba Keymanesh, Saravana Kumar, Pranav Maneriker, Anasua Mitra, Vedang
Patel, Balaraman Ravindran, and Srinivasan Parthasarathy. 2019. Network
Representation Learning: Consolidation and renewed bearing. arXiv preprint
arXiv:1905.00987 (2019).

Antonio Hernando, Jesus Bobadilla, and Fernando Ortega. 2016. A Non Negative
Matrix Factorization for Collaborative Filtering Recommender Systems based on
a Bayesian Probabilistic Model. Knowledge-Based Systems 97 (2016), 188-202.
Ramakrishnan Kannan, Grey Ballard, and Haesun Park. 2016. A High-
Performance Parallel Algorithm for Nonnegative Matrix Factorization. ACM
SIGPLAN Notices 51, 8 (2016), 1-11.

Hyunsoo Kim and Haesun Park. 2008. Nonnegative Matrix Factorization based
on Alternating Nonnegativity Constrained Least Squares and Active Set Method.
SIAM J. Matrix Anal. Appl. 30, 2 (2008), 713-730.

Jingu Kim and Haesun Park. 2011. Fast Nonnegative Matrix Factorization: An
active-set-like method and comparisons. SIAM Journal on Scientific Computing
33, 6 (2011), 3261-3281.

Sven Koitka and Christoph M Friedrich. 2016. nmfgpu4R: GPU-accelerated
computation of the non-negative matrix factorization (NMF) using CUDA capable
hardware. The R Journal 8, 2 (2016), 382-392.

Daniel D Lee and H Sebastian Seung. 2001. Algorithms for Non-negative Matrix
Factorization. In Advances in Neural Information Processing Systems. 556—562.
Ruigi Liao, Yifan Zhang, Jihong Guan, and Shuigeng Zhou. 2014. CloudNMF: A
MapReduce implementation of nonnegative matrix factorization for large-scale
biological datasets. Genomics, Proteomics & Bioinformatics 12, 1 (2014), 48-51.
Chih-Jen Lin. 2007. Projected Gradient Methods for Nonnegative Matrix Factor-
ization. Neural Computation 19, 10 (2007), 2756-2779.

Chao Liu, Hung-chih Yang, Jinliang Fan, Li-Wei He, and Yi-Min Wang. 2010. Dis-
tributed Nonnegative Matrix Factorization for Web-Scale Dyadic Data Analysis
on MapReduce. In Proceedings of the 19th International Conference on World Wide
Web. ACM, 681-690.

Noel Lopes and Bernardete Ribeiro. 2010. Non-negative Matrix Factorization
Implementation using Graphic Processing Units. In International Conference on
Intelligent Data Engineering and Automated Learning. Springer, 275-283.
Edgardo Mejia-Roa, Daniel Tabas-Madrid, Javier Setoain, Carlos Garcia, Francisco
Tirado, and Alberto Pascual-Montano. 2015. NMF-mGPU: Non-negative matrix
factorization on multi-GPU systems. BMC Bioinformatics 16, 1 (2015), 43.
Anasua Mitra, Priyesh Vijayan, Srinivasan Parthasarathy, and Balaraman Ravin-
dran. 2020. A Unified Non-Negative Matrix Factorization Framework for Semi
Supervised Learning on Graphs. In Proceedings of the 2020 SIAM International
Conference on Data Mining, SDM 2020, Carlotta Demeniconi and Nitesh V. Chawla
(Eds.). 487-495.

]iezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang. 2018.
Network Embedding as Matrix Factorization: Unifying deepwalk, line, pte, and
node2vec. In Proceedings of the Eleventh ACM International Conference on Web
Search and Data Mining. 459-467.

Stefan A Robila and Lukasz G Maciak. 2006. A Parallel Unmixing Algorithm for
Hyperspectral Images. In Intelligent Robots and Computer Vision XXIV: Algorithms,
Techniques, and Active Vision, Vol. 6384. International Society for Optics and
Photonics, 63840F.

Tian Shi, Kyeongpil Kang, Jaegul Choo, and Chandan K Reddy. 2018. Short-Text
Topic Modeling via Non-negative Matrix Factorization Enriched with Local Word-
Context Correlations. In Proceedings of the 2018 World Wide Web Conference on
World Wide Web. International World Wide Web Conferences Steering Committee,
1105-1114.

Tyler Michael Smith et al. 2018. Theory and Practice of Classical Matrix-Matrix
Multiplication for Hierarchical Memory Architectures. Ph.D. Dissertation.
Sangho Suh, Jaegul Choo, Joonseok Lee, and Chandan K Reddy. 2017. Local
Topic Discovery via Boosted Ensemble of Nonnegative Matrix Factorization. In
Proceedings of the 26th International Joint Conference on Artificial Intelligence.
AAAI Press, 4944-4948.

Xiao Wang, Peng Cui, Jing Wang, Jian Pei, Wenwu Zhu, and Shiqiang Yang. 2017.
Community Preserving Network Embedding. In Thirty-first AAAI Conference on
Artificial Intelligence.

https://doi.org/10.1016/j.jpdc.2014.07.003
https://doi.org/10.1016/j.jpdc.2014.07.003

Research Track Paper

A APPENDIX

Table 3 lists the total number of floating point operations used to
measure the achieved peak flops of the original FAST-HALS and
ALO-NMF CPU implementations in Section 6.2.

Table 3: The total number of floating point operations

Floating point operations
2DVK + 2KVK + 2KDK + 3KD + 2VDK + 2KDK + 2KVK + 5KV + 2KV

K
'eorin + 31 (ZDTT +3DT + 2DT(§ . i)T)+
K

FAST-HALS

LS
2DVK +2KVK + 3.1

ALO-NMF

K_ K
2VDK + 2KDK + Y10 @vTiT) + £ (ZVTT +5VT +2VT + 2VT(§ - i)T)

A.1 Pseudo-codes for ALO-NMF GPU
implementation

Algorithm 4, 5 and 6 show the pseudo-code for the initialization,
phase 2 operation and normalization in ALO-NMF GPU implemen-
tation, respectively.

Algorithm 4: init W_new() kernel on GPUs

Input: W_old, W_new, Q,V,K
1 vId < blockIdx.x X blockDim.x + threadldx.x
2 if vIld < V then
3 forj=0to K — 1do
4 | W_new[vld + jx V]« W_old[vld + j x V] x Q[j + j X K]

> thread ID

Algorithm 5: phase_2_W() kernel on GPUs

Input: W_old, W_new, P, Q, sum_square, ¢, tile_ id, T, V, K, €
vld < blockldx.x X blockDim.x + threadldx.x > thread ID
__shared_ SHARED_SUM][1024/32]
sum_reduce « 0.0f
if vId < V then
sum < 0
for j = tile_id X T to (tile_id + 1) X T — 1do
if j < t then
sum < sum + W_new[vld + j X V] X Q[t + j X K]

else
‘ sum < sum + W_old[vld + j X V] X Q[t + j X K]
W_new([vild + t X V] « max(e, W_new[vld + t X V] + P[vld +
t X V] — sum)
sum_reduce «— W_new([vld + t X V]
sum_reduce «— sum_reduce X sum_reduce

[I Y e I S

= 3

> Warp-level reduction
sum_reduce «— warp_reduce(sum_reduce)
> Block-level reduction
if threadldx.x % 32 == 0 then
16 | SHARED_SU M(threadldx.x / 32] < sum_reduce
__syncthreads()
if threadldx.x | 32 == 0 then
sum_reduce «— SHARED_SU M [threadldx.x]
sum_reduce «— warp_reduce(sum_reduce)
if threadldx.x == 0 then
atomicAdd (sum_square, sum_reduce)

1767

KDD '20, August 23-27, 2020, Virtual Event, USA

Algorithm 6: norm_W_new() kernel on GPUs
Input: W_new, sum_square, ¢, V'
1 vId < blockldx.x X blockDim.x + threadldx.x

2 if vId < V then
3 \ W_new[vld + t X V] « W_new[vld + t X V]/sqrt(sum_square)

> thread ID

A.2 Benchmarking Machines

Table 4 shows the configuration of the benchmarking machines
used for experiments.

Table 4: Machine configuration

Details
Intel(R) Xeon(R) Platinum 8160 CPU
(24 CPU cores, 2 threads per core)
ICC version 19.5.281
Tesla P100 SXM2
(16 GB Global Memory, 56 SMs, 4 MB L2 cache)
CUDA version 9.2.88

Machine

CPU

GPU

A.3 Datasets

The 20 Newsgroups dataset contains a document-term matrix in
bag-of-words representation associated with 20 topics. TDT2 (Topic
Detection and Tracking 2) dataset is a collection of text documents
from CNN, ABC, NYT, APW, VOA and PRI. MovieLens dataset
contains 10,000,054 movie ratings from the web-based movie rec-
ommender service called MovieLens. p2p-Gnutella is a sequence
of snapshots from the Gnutella peer-to-peer file sharing network.
Each node represents a Gnutella host. The directed graph encodes
connections between the hosts. PIE dataset contains images of faces
in dense matrix format. The size of each image in PIE dataset is
64x64 pixels. Table 5 shows the characteristics of each dataset.

Table 5: Statistics of datasets used in the experiments. V is
the number of rows and D is the number of columns in non-
negative matrix A. For the text datasets, V is the vocabulary
size and D is the number of documents.

Dataset 14 D Total NNZ
20 Newsgroups | 26,214 | 11,314 1,018,191
TDT2 36,771 | 10,212 1,323,869
MovieLens 71,567 | 10,677 | 10,000,054
p2p-Gnutella | 36,682 | 36,682 88,328
PIE 11,554 | 4,096 | 47,321,408

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Non-negative Matrix Factorization Algorithms
	2.2 Related Work on Parallel NMF

	3 Overview of Approach
	3.1 Overview of FAST-HALS Algorithm
	3.2 Data Movement Analysis for FAST-HALS Algorithm
	3.3 Overview of ALO-NMF

	4 Details of ALO-NMF on Multicore CPUs and GPUs
	4.1 Parallel ALO-NMF CPU Implementation
	4.2 Parallel ALO-NMF GPU Implementation

	5 Modeling: Determination of the tile size
	6 Experimental Evaluation
	6.1 NMF Implementations Compared
	6.2 Performance Evaluation

	7 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 Pseudo-codes for ALO-NMF GPU implementation
	A.2 Benchmarking Machines
	A.3 Datasets

