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Abstract—The paper describes algorithms to screen real-
time frequency data for detecting nearby loss of generation
events. Results from Fourier calculation are combined with other
features to effectively distinguish a nearby loss of generation
from similar remote disturbances. Nearby in this context usually
refers to an event occurring around 50-100 miles from the
measurement location. The proposed algorithm can be trained
using pattern recognition tools like decision trees to enable smart
devices including appliances like residential air conditioners and
dryers to autonomously detect and estimate the source of large
frequency disturbances. An area of application of this strategy
is to actuate controls such as location targeted under frequency
load shedding (UFLS) so that loads closest to a tripped generator
are the most likely to shut down.

I. INTRODUCTION

A power system is a highly non-linear system. A small
disturbance such as step change in load at any operating condi-
tion mostly make the system oscillate around the equilibrium.
In the presence of enough damping, the system eventually
remains stable. However, large transmission level disturbances
like short circuit faults, line trips and re-closure, loss of
large load or generation, etc. excite prolonged oscillations
making one or more generators prone to losing stability. The
oscillations are typically anywhere in the order of 0.1 Hz to 2
Hz. A widely researched range for local modes is 0.7-2.0 Hz
while the whole interconnection mode ranges from 0.1-0.6 Hz
(11, [2].

In case of large disturbances like loss of generation, there
is an average decrease in electro-mechanical frequency. This
paper combines the average frequency drop with the results
from a Fourier calculation to detect a loss of generation event.
Pattern recognition tools like decision trees (DTs) can be
trained to distinguish nearby loss of generation events. Nearby
events here refer to events occurring around 50-100 miles
from the measurement location. An area of application of this
strategy is to actuate controls such as location-targeted under-
frequency load shedding (UFLS) using only local frequency
measurements. The UFLS strategy of disconnecting loads near
loss of generation events is intended to help prevent transmis-
sion line relays from tripping on overload by reducing phase
angle differences [3]. Many blackouts result from cascading
outages that involve generators and transmission lines tripping
off-line due to protective relaying. This proposed strategy is
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targeted towards making these failure modes less likely to
occur.

A widely used relay for UFLS is based on the rate of change
of frequency (df/dr) [4], [S]. But there are limitations to the
df/dt algorithm. First, the df/dt relay alone does not distinguish
between shared or location-targeted load-shedding. Secondly,
since df/dt is affected by the system’s inertial constant (H),
a high penetration of renewable energy such as wind-energy
farm will significantly affect the df/dt relay’s threshold [4].
Also, methods based on df/dt are susceptible to distortion by
local dynamics such as glitches. The algorithms used in this
paper are based on detecting the presence of local modes
and are better for distinguishing a small close event from
a large event. The proposed methods can accurately detect
transmission level disturbances that excite local modes on the
order of about 1 Hz without triggering falsely from glitches.

The results in this paper are obtained from recorded voltage
measurements sampled at 720 Hz from the authors’ own res-
idence wall-outlet. An industry grade data acquisition (DAQ)
card is used for continuous voltage measurement. Unlike wide-
area frequency monitoring network (FNET) [6], the measure-
ments here are captured from a single channel and no GPS
synchronization or central communication is required. The
authors are currently using event reports from FNET/GridEye
to train and validate the proposed UFLS scheme. In actual
operation, however, the trained UFLS scheme will only use
local measurements without relying on GPS synchronization
or central communication.

The following section discusses several indices that can be
used for pattern recognition to detect nearby loss of generation
events.

II. INDICES FOR DETECTING NEARBY LOSS OF
GENERATION

A. Average Change in Frequency Index (Jaf)

The index based on Af is equivalent to the Haar wavelet
coefficients discussed in [7], [8]. The equivalent wavelet can
be formulated as-

—1/N 0<ty <N,
U(ty) =< +1/N Ny<ty <N (1)
0 otherwise

where the number of samples (V) is assumed even and equal
to 2Vs.

The acceptability i.e. Zf\;o U(t;) = 0 is necessary to rightly
detect average change in frequency from their nominal value.



The performance index can be found using an inner product
with frequency measurements-

JAf(tN) =< f(tN),\I/(tN) >

Using (1), the inner product can be expanded as-
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B. Discrete Fourier Transform Index (Jppr)

A local generator trip causes intra-area swings among
nearby generators causing a prominent 0.8 Hz oscillations.
This property is combined with results from Jay index to
detect a nearby loss of generation. The presence of 0.8 Hz
oscillations can be found by inspecting the correlation of the
input sequence with sine and cosine coefficients. This is simi-
lar to the 1 Hz oscillation analysis for detecting unintentional
islanding in [9]. Assuming 60 samples per second, the period is
75 samples which can be rounded to N, = 74 for convenience.
If we define vectors V., Vi, Vgo and the most recent input
vector V (ty) as follows:

cos(1m /37) sin(1lmw/37)
V. — cos(2m/37) V= sin(2m/37)
cos(Tdr /37) sin(7dr /37)
60 u(ty — T4/60)
Voo = 150 a) = [Pten = 73/60)
60 oty — 1/60)

the 0.8 Hz sine and cosine components Y and Y. of the
normalized signal can be calculated using the inner product
as:
YYS(tN) = (2/74) < V(tN) — Vo, Vs >

Ye(tn) = (2/74) <V (tn) = Voo, Ve >
The magnitude of the 0.8 Hz index is then
Jprr(ty) = VY2(tn) + Y2(tn)

C. Sinc Function Index (Jgin.)

Owing to the assumption that a nearby loss of generation
possibly has a set of local modes instead of just the 0.8
Hz oscillations, we use a perfect sinc bandpass filter that
retains frequency within the band 4 < |w| < 6 rad/sec. The
continuous-time function for the band pass filtering is defined
as-

_.sin(6t) sin(4t)

1O =6~ 3

If we define vectors V., Vgo and V(¢ ) for a 16 seconds
window as follows:
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the output of the bandpass filter Vz p can be calculated using
the inner product of sinc coefficients with normalized input-

Vep(tn) =< V(tn) — Vo, Vaine >

Voo =

The sinc index (Jgn.) is then obtained as root mean square
average of Vpp over 2.5 seconds.
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D. The Composite Index (Jeomyp)

Our preliminary investigations used a composite index
(Jeomp), Which is a linear combination of Jay and Jppr,
to search recorded data for nearby loss of generation events.

Jcomp =aJprr — BJAf (5)

Through experimentation, we found that a combination of
parameters such as & = 0.5 and 3 = 1 worked reasonably well
for identifying events with the characteristic features of nearby
loss of generation events. A large value of the Jay index
indicates a loss of generation and a large value of the Jprr
index indicates 0.8 Hz oscillation. Since we were interested in
finding loss of generation events with and without oscillations,
we adjusted the coefficients so that the maximum values
of SJay were somewhat larger than the maximum values
of aJppr. Section III-C illustrates some issues involved in
choosing parameter values for the composite index. While the
composite index was useful for searching large amounts of
recorded data before we had access to event reports from
FNET/GridEye, the linear combination coefficients will be
less important going forward because DTs will eventually be
trained to apply separate thresholds to the Jay and Jprr
indices.

III. CASE STUDY
A. Loss of generation: nearby versus remote events

Previous work has shown that changes in steady-state fre-
quency can be used to detect events involving loss of gener-
ation [10]. As the authors of [10] pointed out, an index such
as Jay does not indicate the disconnection of a transmission
line the way it indicates a loss of generation. The objective
of the present work is to distinguish between nearby and
remote loss of generation events by detecting the presence
of local oscillation modes during a loss of generation event.
The eventual aim of the present work is to use the detection of
nearby loss of generation events for location-targeted UFLS.

A loss of 500 MW is simulated in a simplified 29-machine
model of WECC and rotor frequencies are observed for nearby
and remote generator buses. The nearby buses are selected
from the same cluster where the generation loss has occurred
while the remote buses are chosen from other clusters [11].
Fig. 1 shows presence of strong local modes of oscillations



Oscillations in nearby vs remote buses
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Fig. 1: Simulated loss of generation seen from nearby vs
remote buses

for the nearby buses and relatively slow oscillations for the
remote buses.

The presence of significant local modes for nearby events
is verified from the ratio of the proposed Jprr to Jay. Four
loss of generation events estimated by FNET/GridEye server
[6] are identified and the ratio of the maximum value of the
indices versus the event location are plotted in Fig. 2.

o Estimated loss of 880 MW in St. Louis, MO on 02/07/2021

o Estimated loss of 630 MW in Brillant, OH on 02/09/2021

o Estimated loss of 1400 MW in Louisville, KY on
02/16/2021

o Estimated loss of 1000 MW in Monroe, MI on 02/17/2021

Variation of Jmaxratio with distance of the generation
loss
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Fig. 2: Inverse correlation of the ratio of proposed indices
with distance from generation losses

The effectiveness of the proposed indices to distinguish a
nearby event is evident from the fact that their ratio tends
to have an inverse correlation with the distance of the event
location as seen in Fig. 2.

B. Illustration of indices during an event

The nearest event identified from the author’s measurement
location is the estimated 1400 MW loss of generation in
Louisville, KY on Feb 16, 2021 which is plotted in Fig. 3. The
index values are calculated every time stamp for the available
measurements. Fig. 4 shows how the proposed Ja s measures
the average change in frequency and the Jppr measures the
presence of 0.8 Hz oscillations. The indices reflect the loss
of generation event around 8 seconds after it has occurred
which is acceptable for the kind of UFLS scheme that we are
proposing. For better visualization, Fig. 5 shows a time-aligned
frequency and indices plots for 60 seconds of measurements.
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Fig. 3: Estimated 1400MW generator trip near Louisville
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Fig. 4: Actual indices plot for the Louisville’s trip

Fig. 6 shows normalized frequency and indices plot for an
event with a marked decrease in frequency but lacking a pro-
nounced oscillation around 0.8 Hz which probably corresponds
to a loss of generation event far away from the measurement
location.
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Fig. 5: Time-aligned indices plot for the Louisville’s trip
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Fig. 6: Indices plot for remote generator trip

The DFT index-plot so far seems to precisely detect the 0.8
Hz oscillations but a much smoother curve is obtained using
the Jg;ne index. In Fig. 7, the Jg;p. plot is scaled down to
make it comparable with the Jppr plot for the same event in
Fig. 3.

C. Avoiding Detection of Frequency Impulses

The goal of this work is to detect loss of generation events
rather than impulses or glitches such as shown in Fig. 8(a).
This goal affects the choice of weights in a composite index
such as Jcomp = aJprr — BJay. When oo =2 and 5 =1
then the event shown in Fig. 8(a) has the highest value of
Jcomp during one particular 24 hour period. If the weight
given to Jppr is reduced to 0.5, the event shown in Fig.
8(b) has the highest composite index value in the same 24
hour period. As the work progresses, we are moving away
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Fig. 7: Jsine and Jppr for the event in Fig.3

from applying a threshold to a single composite index such
as Jcomp in favor of applying multiple thresholds to multiple
indices.
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Fig. 8: Events detected using different values of weights in a
composite index



IV. TRAINING DECISION TREES

Training decision trees requires a large amount of data in the
form of input-output pairs. The authors have been collecting
data from frequency measurements at Indianapolis during loss
of generation events on the US eastern interconnection for
years. Indices calculated from the measured data will be
included in the input vector. More recently, the authors have
acquired access to identifying information about grid events
from FNET/GridEye to determine the output or target value
of each input-output pair.

The input vector contains maximum values of indices calcu-
lated during a 120 second window of measurements containing
an event reported by FNET/GridEye. The target assigned to
each input vector in the training data is set to ‘1’ if the event
is a nearby loss of generation and ‘0’ otherwise. For example,
we set the target to ‘1’ if the event report from FNET/GridEye
estimates an amount of generation loss greater than 400 MW
and the location to be within about 100 miles of Indianapolis.

The resulting DTs will be used to shed load in response
to nearby loss of generation events, and so far we only
have one event in this category which is the estimated 1400
MW generation trip around Louisville. The composite index
Jmazratio plotted in Fig. 2 is defined as the ratio of
time-aligned indices (2Jprr)/|Jay| calculated at the time
when the maximum value of J.,pm, occurs. The value of
Jmaxratio for the event estimated by FNET/GridEye to have
occurred near Louisville is greater than 0.7 while the value of
Jmaxratio for other events is less than 0.3. The maximum
value of —.Jay for this event is about 0.18 which means the
maximum value of —Ja ¢ for a 400 MW generation trip would
be about 0.18x400,/1400 = 0.05. Based on this limited set of
observations the criteria for detecting nearby loss of generation
events greater than 400 MW could be Jmazxratio > 0.5
and Jay < —0.05 as in Fig. 9. Eventually, the authors
will accumulate a training set of event data where the input
vector contains maximum values of several indices and use
DT training software to determine the criteria for detecting
nearby loss of generation events. Training decision trees for
detecting loss of nearby generation is similar to previous work
by authors using DTs for response based control in [12], [13].

1

Fig. 9: An example DT to detect a nearby loss of generation

V. RECURSIVE ALGORITHM FOR MICRO-CONTROLLER
IMPLEMENTATION

The indices in the previous section require large amounts
of memory which makes them unsuitable for microcontroller
implementation. In order to use microcontrollers for event
detection we have derived recursive approximations to the
indices [14].

A. Recursive approximation for Ja

A recursive form for Ja ¢ index is obtained as follows.

Iap(tns1) =0.9999 * Jap(tn) + [f(Ens1) — 2f(ENt1-ns)
+f(tN+1-2ns)]/Ns

The old index is multiplied by 0.9999 to ensure numerical
stability. For the same event in Fig. 3, the recursive Jay
closely follows the non-recursive one as shown in Fig. 10.
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Fig. 10: Recursive approximation of Ja ¢

B. Recursive approximation to Jgin.

The recursive form for J;, is approximated using a second
order resonant transfer function. In order to approximate an
ideal bandpass filter that passes frequencies in the range of
4rad/s < w < 6 rad/s, we choose pole locations close to
jw =57 on the imaginary axis:

p1 = —0.5 — b7, p2 = —0.5+ 575
The transfer function 22235 is a band pass filter whose

frequency response is plotted in Fig. 11. The magnitude
is within 3 dB of its peak value between approximately
4.55 rad/s and 5.55 rad/s. The output of the transfer function
is calculated by solving the following linear system using
Euler’s method:

zh 0 1 T 0
[mﬂ = [—25.25 —1} ij t [25.25} f ©)

The output of the bandpass filter is obtained from the second
state variable, Vgp = x5. The linear system in (6) has low
damping and is designed to resonate in response to small
deviations of frequency around 60 Hz. The resonant linear
system experiences large, undesirable transients when there is



a large change in frequency which could occur during startup
or any interruption of the frequency calculation. Therefore, it
is necessary to limit the range of the values that are input to
the linear system to a small range of interest:

60.1 ; f(tn)>60.1
fltn) = fln) 5 59.9 < f(ty) <60.1 @)
59.9 ; f(tn) <59.9

The recursive sinc index Jyipnc rec 1 then obtained as root
mean square average of Vpp over 2.5 seconds.

Yren 110 VBP(t)?
Jsinc,rec(tN) = h=N 11420 (8)

The recursively calculated Jgipc rec for the event in Fig. 3
is shown in Fig. 12.
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Fig. 12: Recursive approximation of Jg;y.

VI. CONCLUSION

The paper proposes several indices to detect nearby loss of

generation events useful for location targeted UFLS scheme.
Pattern recognition tools like decision trees can continuously

monitor these indices and decide whether a nearby loss of

generation event has just occurred. Such a supervised learn-
ing requires a large amount of data from known events or
computer simulations.

The proposed UFLS strategy of detecting nearby loss of
generation and disconnecting loads near loss of generation
events is expected to minimize change in inter-area power
flows and sometimes prevent relay’s misoperation. The algo-
rithms derived in this paper can be used by relatively non-
critical standalone devices such as residential air conditioners
and dryers to autonomously detect and temporarily shut them-
selves down for self-healing the grid. They do not require any
communication with the utility. The length of the time for
which the load is disconnected can be set around 10 minutes
to allow independent system operators (ISOs) enough time
to re-dispatch generation. Misoperation of the UFLS control
is unlikely to cause harm to the power system because only
a fraction of the loads would be controlled by the proposed
relays. Noisy or missing phasor samples for real-time control
can be handled using techniques described in the previous
work in [15].
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