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Abstract. For a family of sets we consider elements that belong to the same sets within the family
as companions. The global dynamics of a reactions system (as introduced by Ehrenfeucht and
Rozenberg) can be represented by a directed graph, called a transition graph, which is uniquely
determined by a one-out subgraph, called the O-context graph. We consider the companion classes
of the outsets of a transition graph and introduce a directed multigraph, called an essential motion,
whose vertices are such companion classes. We show that all one-out graphs obtained from
an essential motion represent 0-context graphs of reactions systems with isomorphic transition
graphs. All such O-context graphs are obtained from one another by swapping the outgoing edges
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1. Introduction

A formal model of a system of reactions that depends on reactants and inhibitors, introduced by
Ehrenfeucht and Rozenberg, can be considered, both with and without environmental interference
[3, 1]. The dynamics of the system can be described by a directed graph. In the case when the states
of the system change without considering the environmental context, the directed graph is a one-out
graph, also called 0-context graph. The full dynamics of the system also includes changes introduced
by the environment, and this is represented by a so called transition graph. The transition graph of a
reaction system is of a specific form. The collection of all subsets of the background set (the set that
provides the environment) S forms the vertex set. The sets that are targets of edges starting at a vertex
consist of an element in 2° and all its supersets. The O-context graph is a subgraph of the transition
graph, and due to the specific form of the transition graph, the O-context graph uniquely determines
the transition graph. In order to better understand the dynamics of a reactions system, properties of
the O-context graphs have been of interest [2, 5] and its relationship to the transition graph has been
studied [4]. It turned out that drastically different O-context graphs can define isomorphic transition
graphs [4].

An isomorphism condition for directed graphs using outsets of the graph was introduced in [4].
The result is based on the notion of companion classes defined by a family of sets: two elements are
companions if they belong to the same sets of the family. The isomorphism condition was also applied
to characterize the 0-context graphs that correspond to reaction systems with isomorphic transition
graphs.

With this paper we present the central concept of companions tailored directly to the outsets of
transition graphs of reaction systems. We show a natural way to obtain the companion classes in a
family of subsets of 2°. A O-context graph of a reaction system defines a family of subsets of 2° and
hence it has associated classes of companions. These companion classes can be taken as vertices of a
multigraph, called here an essential motion. The essential motion has an edge from a class to another
if an edge of the O-context graph has a source and a target in the corresponding companion classes. We
observe that any reaction system whose 0-context graph is associated to a given essential motion has
a global dynamics with, up to isomorphism, unique transition graph.Therefore, the essential motion
captures the global dynamics of a class of reaction systems whose 0-context graphs can be obtained
from one another by swapping the targets of outgoing edges from companion vertices.

2. Companions for sets and subsets

For a family O of sets over a finite set V', two elements x, y of V' are companions (with respect to O)
if they belong to the same region in the Venn diagram of O, i.e., if they belong to the same sets in O.
More precisely:

Definition 2.1. Let V be a finite set and © C 2V be a family of subsets of V and let x,y € V. Then,
x,y are companions (with respect to Q) if and only if for each Z € O it holds that x € Z if and only
ifyeZ.
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Observe that the companion relation does not change if we change a family O to its intersec-
tion closure, the smallest family containing O and closed under intersection. Although this does not
change the companion classes, assuming the family to be intersection-closed will later simplify the
construction and representation of these classes.

In the context of reaction systems, our main application in this paper, the elements of V' that make
up the states of the system are sets, i.e., elements of 2°, for a finite (background context) set S. Thus,
O C 22° In addition, the sets in the family O are of a special form: an upset of A C .S, or the cone of
A defined with Up(A) = {X € S| A C X}. The minimal (by set inclusion) element A of the cone
Up(A) is called the apex of the cone.

Clearly, a cone is unequivocally represented by its apex, and more generally, a family of cones by
its family of apexes!. Thus, let A C 2° be a collection of apexes. This defines the family Up(A) =
{Up(4) | A € A}.

If the family of sets is of the form © = Up(A) over 2°, then companionship can be rephrased as
follows.

Definition 2.2. Let A C 2% and let X,Y € 2°. Then X, Y are companions (with respect to Up(A))
if and only if for each A € A it holds that A C X ifandonlyif A C Y.

Observe that the intersection of two cones is again a cone: Up(A) N Up(B) = Up(A U B). Two
sets X and Y are companions (with respect to Up(A)) if and only if they belong to the same collection
of cones. Hence if and only if they belong to the same intersection of cones. It is convenient if the
intersection also belongs to the same family Up(A), i.e., Up(A) is intersection-closed. This does
not change the companion classes. Equivalently, we like to consider that A is union-closed. We also
assume that the empty set is an element in the closure under union (being the identity element for that
operation).

3) 1{177 2l§7,4})
{2,3,4} {1,2,3} {1,3,4} // .
) ; {1,3,4}  {2,3,4}
{2,3} S {1,3} SR S

oy || B2 ey 6y
£ {1,2} {1,4} L
R \11} {3) {4
B3 3.4

Figure 1. Companion sets, see Example 2.3

Example 2.3. LetS = {1,2,3,4} andlet A = {@, {1}, {2}, {1, 2},{1,3},{2,3},{1,2,3},{1,2,4}}.
In Figure 1 (left) we have depicted a Venn diagram for Up(A), with the elements of A highlighted. The

IThat is, apices for those appreciating Latin.
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regions of the diagram represent the companion sets. This family of sets will return, as the collection
of possible results from the reaction system considered in Example 3.2.

Constructing the explicit Venn representation to obtain the companion classes, as done in the
example above, may turn out to be a rather tedious process, but more importantly, there is not always
a nice “planar” representation in the sense that the companion classes can be represented as non-
intersecting regions in the plane. And although one might learn from doing this for small examples,
the final representation as a Venn diagram does not take explicitly into account the fact that the sets in
O are cones. In this paper, we present a better method to construct the companion sets using the partial
order structure of 2°. As a teaser to things to come, see Figure 1 (right) where A is superimposed on
the structure of 2°. The boxed elements belong to A and the dashed box denotes an element in the
closure of A, but not in A. The solid (—>) arrows represent immediate set inclusions of elements in
the closure of A. Dashed (- - -) lines indicate companions in the Hasse diagram. As companionship is
an equivalence relation, transitivity is applied.

When the family of cones is intersection-closed, every companion class can be represented by an
apex of one of the cones.

Lemma 2.4. Let A be a union-closed collection in 2°. Let X € 27, and set Ux = Uacaacx 4
Then Ux € A is the only apex companion to X .

Proof:

Since A is closed under union, the set Ux, as defined, is itself an element of A. Let A be an arbitrary
element of A. Then A C X if and only if A C Ux (by construction). In other words, X and Ux are
companions. The uniqueness of Ux follows from the fact that no two apexes are companions. a

By construction, the set Ux as defined in the lemma above, is the maximal element in A below
X. It is characteristic for the companion class containing X and Ux; it is the minimal element of the
class. We will call it the representative of the companion set containing X .

This leads to a natural bottom-up way to construct the companion sets, by assigning the represen-
tatives to each set.

Construction 2.5. Let A be a union-closed collection in 2°. We assign to each element Z in 27, the
representative of the companion class of Z.
(1) Every set Z in A is assigned itself as a representative.

Otherwise, let Z in 2° but not in A. Consider all its predecessors in the Hasse diagram of 25 ie.,
all sets Y C Z such that |Y| = |Z| — 1.
(2) If one of the predecessors of Z is in A, then we assign that predecessor as a representative of the
companion class containing Z.
(3) If none of the predecessors of Z is in A, then each of the predecessors must have the same rep-
resentative for the companion class containing that predecessor. We assign that set as a representative
to the companion class containing Z.

Proof:
First, we show that the procedure is well-defined.
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(2) Observe that it is not possible that two predecessors of the set can be in A, as otherwise, the
set itself would be in A since the family is union-closed. Thus, at most one of the predecessors of Z
isin A.

(3) The fact that the representatives for all predecessors of Z are equal, can be seen from the
following. Let X, X’ be two different representatives assigned to predecessors of Z. We may assume
these are of maximal size (among the representatives). Due to the union closure, also the union X U X’
is an element of A but larger than both X and X’. Thus, either Z equals X U X', which means Z
belongs to A, a contradiction with our assumption that Z ¢ A, or one of the predecessors of Z, say
Y, contains X U X’. Recall that the representative of a set is the maximal set in A contained in that
set. Since one of the predecessors of Z, namely Y, has a representative that contains X U X', which
is larger than each of X and X', this contradicts our assumption that both X and X’ are maximal.

Observe that for each set Z € 2°, the largest element in A below that set is defined as the rep-
resentative of the companion class containing Z. Indeed, the representative is either the set Z itself
(Case 1), or the largest set among the representatives of the predecessors Y of Z (Cases 2 and 3). O

Implicitly, the construction yields a representation of the companion classes that is straightforward
to obtain. In the Hasse diagram of 25 mark all elements of (the union closure of) A. Now work bottom
up. At each step of the procedure connect a set to the predecessors from which the representative was
inherited. This was either (1) none of the predecessors if the set itself belongs to A, (2) a single
predecessor if that predecessor is in A, or (3) all predecessors (otherwise).

Example 2.6. Let S = {1,2,3,4}. We consider two families of sets, and construct their companion
classes using the method given above.

{1,2,3,4) {1,2,3,4)
{1,2,3) /{124 {134} {2,34) {1,2,3} /1,2,4) {1,3,4) (2,34}

@) Ba 02

Loy

@3 .5

RC!

Figure 2. Construction of companions, see Example 2.6. Companion classes are connected by dashed (green)
paths. Their representative is the bottom (boxed) element of the class.

First consider the family {{1}, {1, 3}, {2,4}}. Closing this family under union, we add &, {1, 2,4},
and {1,2, 3,4} to obtain a set of apexes, depicted in the left diagram of Figure 2. The original sets in
the family are boxed and those added by closure are dashed. Their set inclusion relation is depicted
by solid (blue) arrows.
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The construction adds the dashed (green) lines in the diagram, bottom-up, assigning a companion-
representative to the companion class of each set in 2° by looking at the predecessors for each set,
inheriting their companion class representative.

The diagram on the right in Figure 2 shows the result of the construction for the family {{1}, {3},
{1,3},{2,4}}, where {3} is added to the original family depicted on the left.

3. Companions for reaction systems

Reaction systems [3] operate within a finite set of available objects. Starting with a subset of these
objects the systems evolves by applying rules called reactions.

Definition 3.1. A reaction system is a pair § = (S, A) where S is a finite set, the background set, and
A C 2% x 29 x 25 is a set of reactions in S. Given a reaction a = (R, I, P) in A, its components are
called the reactant, inhibitor, and product set of a, respectively.

Let X C S. We say that the reaction a = (R, I, P) is enabled in X if all of its reactants are
present in X, while none of its inhibitors is. In that case, the result of the reaction equals P. Thus,
res,(X) = Pifand only if R C X and I N X = ©&. Otherwise, a is not enabled in X and
res,(X) = @. Different reactions do not compete for resources, thus the result of X in 8 equals the
union of the individual results for all reactions, that is, resg(X) = (J,c 4 resa(X).

Example 3.2. We return to the example of [1]. Consider the following six reactions on background
set S ={1,2,3,4}:
ar = ({1}, {3},{2}) az = ({2}, {1},{1}) a3 =({2},{3},{3})
a4 = ({3}7 {17 2}7 {17 2, 4}) as = ({4}7 {3}7 {17 2}) ag = ({17 3}7 {27 4}7 {27 3})
In X = {1, 3}, reactions a1, ag, a3, as and a; are not enabled because one of their inhibitors is

present in X. Consequently only ag is enabled, and resg(X) = {2,3}. In X = {2} both ay and a3
are enabled and resg(X) = {1, 3}.

As an isolated system, the result function resg describes the step-by-step evaluation of the system
8 from state X to its successor state resg(X). In general, however, the system operates within an
environment. At each step, this environment may add new elements to the state, and thus, the system
may evolve from state X to any state that includes resg(X) as a subset.

These two viewpoints, the isolated system and the system in context, lead to two graphs repre-
senting the step-wise behaviour of a reaction system. Recall that a one-out graph is a (directed) graph
where each vertex has a unique outgoing edge.

Definition 3.3. The O-context graph of a reaction system 8§ = (S, A) is the one-out graph GY =
(25, E) with edge set E = { (v, resg(v)) |v € 2% }.

The (global) transition graph of 8 is the graph Gs = (27, E) with edge set E = { (v,w) | v €
25 resg(v) C w }.
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In these two graphs the nodes are sets, and as such, they have a clear identity. Using this identity
the transition graph of a system can be obtained directly from its O-context graph: Gg = 1Gg, where
for a one-out graph G with node set 2°, its extension |G contains all edges (u,w) with v C w for
which (u, v) is an edge in G.

Two transition graphs can be isomorphic, even when the O-context graphs for their reaction sys-
tems are non-isomorphic. A critical tool to describe this is the collection of all possible sets that are
the result of the system for some subset of .5, i.e, the range of the result function resg. We denote this
collection by RESs.

Example 3.4. The 0-context graph Gg of the system 8 from Example 3.2 is depicted in Figure 3.

In this example, RESg = {@, {1},{2},{1,2},{1,3},{2,3},{1,2,3},{1,2,4}}. These are the
nodes of Gg with incoming edges.

{1, 2,3, 4}
oo @ %/ 2y
/ (Z)n23)_ 34
wo D N\

{2,3,4} {2} {1,3,4} {3}

Figure 3. The zero-context graph GY for the reaction system from Example 3.2

Note that in most papers on reaction systems, the reactant and inhibitor sets are postulated to be
non-empty. In our paper, this technical requirement is not essential.

If we allow ourselves this generality, every suitable one-out graph is a O-context graph: for each
one-out graph G on 2° there is a reaction system 8 such that G is the O-context graph of 8. The reason
is that we can ‘program° the edges of G by choosing a single reaction for each edge, cf. [1]. For edge
(X,Y) we set the reaction (X, S \ X,Y) that is only enabled in X, and hence res(X) = Y. Such
systems are called maximally inhibited reaction systems in [6]. The only difference with reaction
systems in the restricted sense is that (&, @) and (S, @) are edges in G g, as no reactions are enabled
in either the empty set or the full background set, when we assume that each reaction needs both a
reactant and an inhibitor.

Reaction systems can be designed such that their behaviour exhibits certain properties. One of the
examples is the design of a Gray code by Kleijn et al. [5]. We use these systems as a case study.

Example 3.5. The two element Gray code 00 — 01 — 11 — 10 — 00 is implemented in a reaction
system (see Example 2.1 in [5]) with background set {1, 2, 3,4} and the three reactions:

a= ({4}7 {3}7 {4}) b= ({17 4}7 {3}7 {2}) c= ({4}7 {27 3}7 {1})

The symbols 3, 4 act as a universal inhibitor and universal reactant respectively. They are ‘dummy’
symbols added to satisfy the requirement that the first two components are nonempty. The four sets



194 D. Genova et al. | Companions and an Essential Motion

that contain 4 but not 3 form the required Gray code, with 1 and 2 representing the two bits of the
code. In all twelve remaining sets, none of the reactions is enabled, so each will yield the empty set.
The resulting 0-context graph is depicted below.

{4} {1,4} {1}
ol

{2, 43)—{1,2,4}) {1,2,3,4}

Computing the companion classes, see Figure 4 (left), we observe that all sets without 4 form a
large companion class with a representative &. Each of the four sets with 4 but without 3 is companion
to its copy with 3 added.

{1,2,3,4} {1,2,3 4}

(1,23 | {1 2 4} }“{1','3,4} ““"{2,3,4} [{1,2.,3}] [{1,274}] (1,34}, 12,34},

(1,2} {1 3} @ (2,3} '{3",4}

oy

Figure 4. Companion classes for Example 3.5 and Example 3.6.

Example 3.6. Example 2.3 from [5] implements a reaction system that mimics the forward and back-
ward generation of Gray code. Its six reactions are as follows.

a= ({4}7 {2’ 3}’ {17 4}) b= ({17 4}7 {3}7 {27 4}) c= ({27 3}’ {4}7 {1})
= ({2}7{1}7{273}) €= ({173}7{4}7{3}) f= ({3}7{172}7{4})
We depict its O-context graph below. The central eight node loop is the desired feature. It consists
of all sets that contain exactly one of 4 (‘forward’) or 3 (‘backward’).

/»1 (1,2, 4—({2, 4 {1,2} {1,3,4)
‘
{234
(33—(11,3)—{1.2, 3}}—[{2,3}]\{2} {1} {1,2,3,4}

We again compute the companion classes, see Figure 4 (right). Unlike in the previous example,
several sets have to be added to the resulting sets of the reaction system to make the family union-
closed (dashed boxes in the diagram). Since the number of out-sets (and their closure) is rather large,
there is only a single non-singleton companion class, consisting of all sets containing neither 3 nor 4.
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4. Essential motion

In this section, we associate the notion of companion sets with the notion of companion one-out
graphs. In [4], it was shown that the companions of the one-out graph G% uniquely determine the
isomorphism class of Gg. Here, we present how a graph structure obtained from the equivalence
classes of companion sets can intrinsically contain all companion one-out zero context graphs. We
call this structure the essential motion of a reaction system.

Edges of a one-out graph define a function from vertices to vertices. We identify a function
f 'V — V with the one-out graph G's that has edges (z, f(x)) forallz € V.

Above we have introduced the O-context graph G(S) of a reaction system § as the one-out graph
representing the function resg. If, as in this case, the nodes of the graph are, in fact, sets (V = 25),
then we can use the set structure to extend the graph Gy to |G ¢, and study when Gy and G define
isomorphic graphs |G and 1Gy.

The following concept is central to our considerations cf. [4].

Definition 4.1. We say that two functions f, g : 2° — 25 are companions if there is a bijection 1 on
29 such that, if n(X) = X', then n(Up(f(X))) = Up(g(X")) foreach X C S.

n p =
e
°—>\ . U X/
bl g(X" p(9(X"))

We call one-out graphs Gy and G4 companions whenever their functions f and g are. The follow-
ing theorem is a direct consequence of Theorem 3.6 in [4].

Theorem 4.2. Let f,g : 2° — 2°. Then |G ¢ and 1G, are isomorphic if and only if f and g are
companions.

This has an immediate implication for reaction systems and the graphs representing their be-
haviour, without and with context.

Corollary 4.3. (Theorem 5.6 in [4])
For reaction systems 8 and §’, their transition graphs G's and G/ are isomorphic if and only if the 0-
context graphs Gg and Gg, are companions (if and only if the functions resg and resgs are companions).

A generic way of obtaining pairs of functions that are companions is by swapping the targets of
the outgoing edges of a pair of companion nodes.

Definition 4.4. Let f : 25 — 25 be a function, and let X, Y € 2° be companions with respect to
range(f). The X,Y-swap of f, denoted fx y, is the function that equals f, except that fx y (X) =

f(Y)and fxy(Y) = f(X).
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Lemma4.5. Let f : 29 — 29 be a function, and let X,Y in 2° be companions with respect to
range(f). Then f and fx y are companions.

Proof:
Consider the bijection on 2° that is the identity on 2°, except that the elements X and Y are swapped:
n(X) =Y and n(Y’) = X. We will show that the upsets of f and fx y are related via 7.

First, see Lemma 3.1 in [4], observe that X and Y are elements of the same upsets of f: X &
Up(f(U)) if and only if f(U) C X, but this is equivalent to f(U) C Y, as X and Y are companions
for range(f), hence Y € Up(f(U)). Let U € 2°. If U differs from X,Y, then n(U) = U, and
f(U) = fxy(U). Now n is a bijection on f(U) as it is the identity on 2° except that X,Y are
swapped. However, whenever one of X,Y isin f(U), they both are.

Now consider U = X. Then n(X) = Y, and fxy(Y) = f(X). Again 7 is a bijection on
Up(f(X)). The case U =Y is symmetric. O

Swaps can be composed. Given a sequence of (distinct) sets X1, ... X, all in the same compan-
ion class, and a sequence Z1,...,Z, such that f(X;) = Z;, successive swaps can implement any
permutation 7 = (7(i),...,m(n)) of 1,...,n and define a new function with f(X;) = Z(; (and
f(X) = fr(X) unchanged for other values). The resulting function is companion to the original, by
successive application of Lemma 4.5.

Example 4.6. Consider the reaction system from Example 3.2, the O-context graph of which was
given in Figure 3. The relevant companion classes are depicted in Figure 1.

The pair {1, 3}, {1, 3,4} are companions and we may swap their out-edges. Moreover, the triple
@,{4},{3,4} consists of companions, so again, we can cyclically shift their outgoing edges. In this
way, we obtain a new one-out graph, the 0-context graph of a new reaction system, see Figure 5.

{1,2,3,4}‘
(2,4}
{3,4}
{1,2,4}

!

Figure 5. Zero context graph G{ for the reaction system from Example 3.2 with swaps

Note that a bijection 77 : 2° — 29 as in the definition of companion functions is a set to set map-
ping. It is not necessarily an extension of a bijection £ : S — S, i.e., an element to element mapping.

Example 4.7. In the diagram illustrated below, {2} and {3} are companions, so when we switch their
outgoing edge targets, {2} — {1,3} and {3} — {1,2,3}. Thus, n({2}) = {3} and n({3}) = {2},
whereas (X )= X forall X € {{2},{3}}. Now, f({2})={1,2,3}and g(n({2}))=9({3}) ={1,2, 3}.
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Thus, n(Up({1,2,3}) = n({{1,2,3}}) = {{1,2,3}} = Up({1,2,3}) = Up(g({3}). However, if
£(2) = 3 and £(3) = 2, this would lead to {1,3} — {1, 2}, which is clearly not the case as {1, 3} has
two incoming edges and {1, 2} has one.

{1,2,3}
{2y {2 !
_ ~ {L2) ({L3) ({23}
{3} {1.2.3)
{2,3} {1} {1\ [ {2y / {3}

The importance of the swap operation is indicated by the following result, which shows that the
swap of function values at companion sets (with respect to the range of the function) leads to isomor-
phic graph extensions. The result below is a special case of Theorem 4.2.

Corollary 4.8. Let f : 25 — 25 be a function, and let X, Y in 2° be two companions with respect to
range(f). Then | f and | fx y are isomorphic.

We introduce a convenient abstraction of one-out graphs on 2%, such that all graphs obtained
by edge swaps on companion nodes are represented by the same object. This is done by defining a
multigraph, where nodes represent the companion classes, and every edge from a set in one companion
class to a set in another is represented by a separate edge from the first companion class to the second.

For a family of sets A over 2° we use A(X) to denote the companion class of X € 25 with respect
to A.

Definition 4.9. Let f : 2% — 25 and let A be the union closure of range(f). The essential motion
of f is the multigraph with vertices {A(X) | X € A} and edges (A(X), A(f(X))) forall X € 2°.

Example 4.10. Consider the reaction system & from Example 3.2, the 0-context graph of which was
depicted in Figure 3. Its companion sets are given in Figure 1.

Figure 6. The essential motion of the reaction system from Figure 3.
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The vertices of the essential motion for S, or rather resg, are the nine companion classes of resg.

The companion class containing & contains four elements: &, {3}, {4} and {3,4}. The result
function resg maps these sets to &, {1,2,4}, {1,2}, and {1, 2,4}, respectively. This implies that
the vertex representing this class has four outgoing edges, to the vertices representing the respective
classes of these four sets. Among these edges, there is one loop and a pair of parallel edges. For the
final multigraph, see Figure 6.

Corollary 4.11. If g is obtained by a finite sequence of edge swaps from a function f : 2% — 25 then
f and g define the same essential motion.

Proof:

Consider the swaps at each companion class C' separately. Assume that C' = {X;,..., X, } is a
companion class of range(f) and let f(X;) = Z; fori = 1,...,n. All edges (X;, Z;) in the one-out
graph G; representing f, are mapped to edges starting at C' in the essential motion. Permuting the
order of the Z; does not change the resulting multi-graph. a

We can reverse the process and obtain any function g that results from swapping companion edges
given function g : 25 — 29 starting at the essential motion graph and for each companion class C'
associate the outgoing edges to the elements of C.

Example 4.12. In Figure 6, consider the vertex corresponding to the companion class of the set {1, 3},
which also contains the set {1, 3, 4}. Since this class contains two sets, the vertex corresponding to this
class has two outgoing edges, namely, to the classes of & and {2, 3}. Thus, we have two possibilities
for the function g that defines this essential motion. Either g({1,3}) = @ and ¢g({1, 3,4}) = {2, 3},
as done in Figure 5, or g({1,3}) = {2,3} and g({1, 3,4}) = @, as in Figure 3. Similar choices apply
to the other classes.

Note that the only two outgoing edges from the vertex with companions {2, 3} and {2, 3,4} are
parallel. Hence, swapping those two edges will not change the function at all.

Any two reaction systems that have O-context graphs that can be derived from an essential motion
are related by a series of swaps and by Corollary 4.8 have isomorphic transition graphs.

Acknowledgements

The authors thank the referees for their time and their constructive remarks.

NI is partially supported by the grants NSF DMS-1800443/1764366 and the Southeast Center for
Mathematics and Biology, an NSF-Simons Research Center for Mathematics of Complex Biological
Systems, under National Science Foundation Grant No. DMS-1764406 and Simons Foundation Grant
No. 594594. DG is partially supported by the 2019-2020 UNF COAS Research/Creative Activities
Travel Grant.



D. Genova et al. | Companions and an Essential Motion 199

References

(1]

(2]

(3]

(4]

(5]

(6]

R. Brijder, A. Ehrenfeucht, M. Main, G. Rozenberg: A Tour of Reaction Systems. International Journal of
Foundations of Computer Science 22 (2011) 1499-1517. doi:10.1142/S0129054111008842

A. Dennunzio, E. Formenti, L. Manzoni, A.E. Porreca: Reachability in Resource-Bounded Reaction Sys-
tems. Language and Automata Theory and Applications (LATA 2016), Lecture Notes in Computer Science
Volume 9618 (2016) 592-602. doi:10.1007/978-3-319-30000-9_45

A. Ehrenfeucht, G. Rozenberg: Reaction systems. Fundamenta Informaticae 75 (2007) 263-280.

D. Genova, H.J. Hoogeboom, N. Jonoska: A Graph Isomorphism Condition and Equivalence of Reaction
Systems. Theoretical Computer Science 701 (2017) 109—-119. doi:10.1016/j.tcs.2017.05.019

J. Kleijn, M. Koutny, L. Mikulski: Reaction Systems and Enabling Equivalence. Fundamenta Informaticae
171 (2020) 261-277. doi:10.3233/FI-2020-1882

A. Salomaa: On State Sequences Defined by Reaction Systems. Kozen Festschrift, Lecture Notes in Com-
puter Science Volume 7230 (2012) 271-282. doi:10.1007/978-3-642-29485-3_17



