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Abstract—Electrical disturbances in the power system can
threaten stability. One-shot control is an effective method for
stabilizing some events. In this paper, predetermined amounts
of loads are increased or decreased around the network. Deter-
mining the amounts of loads, and the location for shedding is
crucial. This paper is completed in two different sections. First,
finding the effective control combinations, and second, finding an
algorithm for applying different control combinations to different
contingencies in real time. The particle swarm optimization
(PSO) algorithm is used to find the effective control combinations.
Next, decision trees (DT) are trained to assess the benefits of
applying each of the three most effective control combinations
found by PSO method. The DT outputs are combined into an
algorithm for selecting the best control in real time. Finally, the
algorithm is evaluated using a test set of contingencies. The
results reveal a 46% improvement in comparison to previous
studies.

Index Terms—Decision tree (DT), phasor measurement unit
(PMU), particle swarm optimization (PSO), transient angle
stability, wide-area control.

I. INTRODUCTION

Providing reliable and stable electrical power is one of the
crucial subjects in the operation of the electrical systems.
Because of the electrical faults in power stations, damages to
electric transmission lines or loss of transmission equipment,
the power supply faces many difficulties. On occasion the
intensity of some disturbances are high enough to cause the
generators to lose their synchronization, so a black-out may
happen. In some situations, cascading outages may happen in
the electrical grid.

One of the important issues in the electrical system is how
to devise techniques for fault detection, and stabilizing them
using proper control method. Therefore, after fault detection,
selecting an effective combination of control actions and
applying it to the system is very important to avoid the spread
of faults through the electrical network. Numerous studies
have been done with the purpose of detecting disturbances
and applying a variety of control methods to stabilize them.
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Many authors used pattern recognition methods to address
the concerns related to electrical disturbances in the power
systems.

Pattern recognition method has been proposed in [1], [2] for
stability prediction. Rovnyak et al. in [1] used Decision Tree
(DT) as a pattern recognition method. The DT predictors in
[1] are R and Rdot, which are apparent resistance and its rate
of change measured near the electrical center of Pacific AC
Inter-tie. They created a DT that could be used for response
based control but control was not tested in the paper. In [2],
the real-time classification was done with Recurrent Neural
Networks (RNN), the long-term dependencies were resolved
by Long Short Term Memory (LSTM). The pattern recognition
methods in [1], [2], however, do not include any control action.
In some studies, pattern recognition methods are applied to
predict islanding in the power system [3]. Diao [3] used the
DTs and synchronized phasor measurement to detect loss of
synchronism and separate the network into pre-defined islands.
A different approach is used for training of the DT in [3]; in
fact, one DT is trained for each contingency instead of training
one DT for all of the contingencies. Diao [3] used the voltage
phase angle measurements of high voltage buses, and for each
phase angle variable, they defined six features.

Some of the studies proposed islanding control method
after instability prediction to maintain the frequency [4], [5].
The island management method proposed in [5] can maintain
synchronism within each island. The feasible islanding interval
is studied in [4] to apply island control method. The island
control method can be considered as a backup for the control
method in the current study.

In some other studies, pattern recognition is used to order
control that keeps synchronization and avoids the need for
islanding. Gao and Rovnyak [6] used two different approaches
for DT construction process, and one of the methods resulted
in a smaller region of feature space that is judged to be stable.
The smaller region of space that is stable results in earlier
detection of instability. Gao and Rovnyak [6] used 68 features
as predictors calculated or measured using the Phasor Mea-
surement Unit (PMU). One of the main contributions of [6]



is using the one-shot control to avoid the loss of synchronism
caused by the events rather than splitting the electrical grid
into islands. The algorithm in [6] orders control that keeps
synchronization and avoids the need for islanding. Mei et
al. [7] suggested a method to develop response-based DTs
to activate control combination for stabilizing the events. The
control used in [6], [7] is a fixed combination of power changes
in four buses, but in the current study, the algorithm can select
among multiple control options. In [8], the authors used phasor
measurements and the combination of separate event detection
and control DTs for transient stability control. Their control
actions included disconnection of costly generation and load.
Moreover, to train the DT, they applied some old and new
indices. The results show a higher rate of success stabilizing
events using one shot control than in [6].

A novel Under Frequency Load Shedding (UFLS) algorithm
is used in [9]. In [9] the authors proposed a three stage scheme
as a new centralized adaptive load shedding. The first stage
includes analyzing the required data and sizing the reactive
power. In the second step, the optimal amount of loads and
their locations are specified. Finally, the third stage includes
determining the event type.

A new control strategy is proposed in [10], which can
choose between two sets of control rules. In addition to
DTs for event detection and instability prediction, the author
used a third DT to apply one of several one-shot control
combinations, so the number of stabilized cases was improved.
One of the drawbacks with this project is that they found the
control options by trial and error method.

One-shot controls include discontinuous actions such as
disconnection of generation and load. In contrast to [1]-[5], the
present method can sometimes prevent loss of synchronism
rather than just predicting loss of synchronism or allowing
the system to break up into islands that are not synchronized
with each other. In contrast to [6]-[8], this paper presents
a new method that can apply different control options to
different contingencies. In contrast to [10], the current method
uses numerical optimization methods to find different control
combinations that can be used on different contingencies
instead of finding the different control combinations by hand.

The present method uses Particle Swarm Optimization
(PSO) offline to find the most effective combination of one
shot controls for each of a large set of contingencies. MAT-
LAB programming is employed for developing the algorithm,
and TSAT is used for transient analysis. The second step is to
apply the best combination of controls for each contingency
to all the other contingencies. Based on these results, we
find that choosing one out of a small subset of the many
control combinations can stabilize almost as many of the
contingencies compared to applying the individually optimized
combination of controls to each contingency. In the last step, a
pattern recognition method has been applied to create decision
criteria for deciding to actuate control and select one of a
small subset of control combinations. Similar to the authors’
previous work, DTs are used as the pattern recognition method.

II. FEATURE EXTRACTION AND INDICES

A variety of indices or predictors can be used as inputs to
pattern recognition tools. Some of the previous studies used
only two predictors since using a two-dimensional feature
space that can be visualized like R-Rdot application in [7]is
helpful for explaining the method. In another study [6], voltage
angle, voltage magnitude and their rates of change are used
as the predictors. In this project, additional predictors are
calculated from the measurements.

The first set of variables are bus voltage magnitudes and
bus voltage angles that can be measured by PMU installed
on a subset of the buses in the network. For each PMU bus,
there are the voltage magnitude and angle variables plus the
derivative of each of them. If there are PMUs installed in
N buses, then 4N elements can be added to the input vector
of the classification method. In this study, N=17. Derivatives
of voltage angles and magnitudes can be calculated from
differences between successive samples.

The average and variance of bus magnitude are two other
indices that can be calculated using (1) and (2).

BMavg[k] =
∑
i

|Vi[k]|
17

(1)

BMvar[k] =
∑
i

(|Vi[k]| −BMavg[k])2

17
(2)

Then derivatives of BMavg and BMvar can be calculated
from point to point differences between samples 30 times per
second.

One of the effective indices that can be applied for the
classification objective is Integral Square Generator angle
(ISGA) [11]. This index is a coherency based index that can
be used to judge the severity of stable and unstable events in
the simulations.

In real time, it is not possible to measure generator angles
directly. Instead, this paper uses bus voltage angles from PMUs
so the new index is Integral Square Bus Angles (ISBA).
Indices like ISGA and ISBA represent the overall stress on
the system [8] calculated over a period of time. In this paper,
we do not perform the integration step and the index is Square
Bus Angle (SBA) (3).

SBA[k] =
∑
i

Mi(Θi[k]−Θcoa[k])2 (3)

where Mi is chosen to weight angles from different loca-
tions, Θi[k] represents the bus angles measured by PMUs and
Θcoa is weighted average of the all the bus angles. We set all
the Mi equal to one so the sum in (3) is just divided by 17.

Another index, which is used in this study is the derivative
of the SBA that is

SBAdot[k] = 30(SBA[k]− SBA[k − 1]) (4)



III. PARTICLE SWARM OPTIMIZATION METHOD FOR
ONE-SHOT CONTROL

Particle Swarm Optimization (PSO) is an optimization
technique for exploring the search space and minimiz-
ing/maximizing a particular objective [12]. The main idea
starts with initiating a random population of potential solutions
in the search space. Then the objective function is evaluated
for each agent, i.e. member of the population, and the best
value is selected among them. In this project, the objective
function used in the offline optimization is ISGA. After finding
the control combination with minimum ISGA, the rest of the
agents are trying to move toward the location of the best agent
in addition to movements that are random [13].

In each iteration of running the PSO algorithm, the popu-
lation is updating by a velocity vector that can be calculated
using the equation (5) [13].

Vi(t+ 1) = ωVi(t) + c1r1[X̂i(t)−Xi(t)] + c2r2[g(t)−Xi(t)]
(5)

The index of each particle at every iteration is represented
by i. Vi(t) is the velocity of particle i at time t and Xi(t) is
the position of particle i at time t. c1 and c2 are two constant
numbers between 0 and 2, and they are selected 2 in this
research. r1and r2 are two random number between 0 and 1.
X̂i(t) is the best solution in each iteration. In this project,
the solution related to the minimum ISGA in each iteration is
selected as X̂i(t). g(t) is the global best candidate solution up
to the iteration t. ω is a parameter decreasing by increment of
the number of iteration and it is calculated by 6 [13].

ω = 0.2 +
(0.9− 0.2)

(1− IM )
(IC − IM ) (6)

In 6, IM is the maximum number of the iteration, IC is the
current iteration number.

PSO was used to determine amounts of load changes on 27
buses, each having a load amount equal to 500 MW or greater.
ISGA is the objective function of the PSO algorithm. The
maximum value of the load change on each bus was selected
500 MW, and the minimum value was selected -500 MW. A
negative load change represents increasing the load on a bus
which could be accomplished by disconnecting generation or
using a braking resistor. The number of particles in the PSO
algorithm is also selected as 50. Therefore, the dimension
of the search space is a 50 × 27. The maximum number of
iterations is chosen as 20 since usually the algorithm could
return the solution in less than 6 iterations. The maximum
number of iterations is the only parameter that we tuned
and the remainder such as the parameters of the velocity
were selected from the previous publications in PSO, so they
are system-independent such as c1 and c2 [13]. Running the
PSO algorithm 100 different times for 100 unstable events
produces 100 different control combinations, each involving
different amounts of power changes on the 27 buses. From
these 100 events, 42 were successfully stabilized by the control
combination found by PSO.

IV. DECISION TREES FOR CONTROL SELECTION

The main idea of this section is to find an algorithm that
can select from different control combinations for stabilizing
various events rather than applying the same combination to
every event as in [6] - [8]. Different artificial intelligence meth-
ods can be employed for this purpose, like Neural Network
(NN), and DTs. The main advantage of DTs over other pattern
recognition tools is the training time. Another advantage is
that with a large number of predictor variables available, a
small subset of these variables is normally selected in the DT
training process [14].

A. Control Combinations

Previous studies applied the same combniation of one shot
controls to any event for which control was ordered [6]–[8].
This project applies different control combinations to different
events. Using the optimization results from Section III, three
control combinations are selected. The proper application of
one of these three control combinations can stabilize as many
of the events as applying the custom control combination
found by PSO to each event.

Control combination 1, for example, applies 500 MW fast
load power increases on two buses (MONTANA and CA230)
and 500 MW load shedding on three other buses: MIDWAY,
NAVAJO, and MOHAVE. A common feature of controls
combinations that can stabilize a transient event in progress is
that they reduce overall angle differences in the AC network
[6] and [8]. The process of selecting between three control
sets is done through decision tree algorithms.

B. Data Sets

Our DTs are created offline from training data sets where
each data point consists of an input vector along with a
target value, which represents the class of that sample. For
the combination of DTs that select between the three control
combinations, the target is one of the following: Control 1,
Control 2, Control 3. The training set includes data from 385
six-second simulations on a 176 bus model of the WECC. The
events include short circuit to ground faults on 40 transmission
lines in the WECC model. The test set includes 960 events
containing 480 1-phase short circuit faults and 480 3-phase
short circuit faults.

To obtain the data sets, TSAT software is run many times by
a MATLAB script which compiles the resulting data. In each
time step for every event, TSAT software provides bus voltage
angles and magnitudes recorded at 17 locations where PMUs
are located. Then bus frequencies, bus magnitude variation,
SBA, and derivatives of the composite indices are calculated.
From 17 PMUs there are a total of 77 features. Using the same
stability condition applied in [6] and [8], an event is unstable
if it has a maximum generator angle difference greater than
300 degrees.

We train a separate DT for each control combination. The
target value for each individual DT is determined by applying
its associated control to the event. If an event can be stabilized
by control combination 1, the target value in the training set



for DT 1 is set to 1, otherwise, the target value is 0. Therefore,
the input vectors of the training sets for the three separate DTs
are identical but the target values are different. Test data is also
evaluated using the same method for training data. Figure 1
represents the scattering plot for two features related to Test
data for control combination 1, 2, and 3.

(a) Control combination 1. (b) Control combination 2.

(c) Control combination 3.

Fig. 1: Testing data.

C. Implementation of the DT method

The problem for training the algorithm of each control
combinations is a Boolean classification problem since the
output is stable/unstable or 1/0. Every node in the DT can
be represented by a variable or a feature. Eventually, the leaf
nodes show the target value of the input vectors.

The classification algorithm used in this study consists of
several steps. The root node receives the entire training data
set as input. Usually, all nodes are asking a true-false question
about one of the features. Two types of question can be asked
based on the type of features in the data set greater equal >=
or less equal <=. Greater equal >= is used for the questions
asked in this project. In response to this question, the data
set is split or divided into two subsets. The new subsets are
the input to the two child nodes. The goal of the questions
is dividing the labels as far as possible. The tree grows down
to find the purest possible distribution of the labels at each
node, or when there is no uncertainty about the type of the
label. To quantify how much a question unmixed the labels
a metric called Gini impurity is used in the current project
[15]. To evaluate how much a question reduces the amount
of uncertainty, a concept called information gain was used.
There are many types of equations for calculating the Gini
impurity and information gain. In this project, 7 shows the
Gini function, and equation 8 shows the Impurity gain.

Gini = 1−
∑
i

P 2
i (7)

IG = CU −Pleft ∗Gini(Left)−Pright ∗Gini(right) (8)

In (7), Pi is the probability of the labels. As we only
have two labels, the maximum of i is equal to 2. In (8), IG
shows the information gain, CU shows the current uncertainty,
Pleft and Pright show the probability of the left and right
node respectively in each iteration. Current uncertainty in
the root node equals the Gini impurity of that node and as
the tree proceed the uncertainty of the DT in each iteration
is calculated using (8). Using Gini impurity function and
information gain, the best question can be selected at each
node. Then we continue recursively to build the tree on each
of the new nodes. The data is continuously dividing until there
is no question to ask.

V. RESULTS

The study model in this project is a simplified representation
of the Western Electricity Coordinating Council (WECC). Dif-
ferent types of 1-phase and 3-phase disturbances are simulated
using TSAT software, and the data are analyzed using MAT-
LAB. Various types of features are calculated as described
above. Separate DTs are trained for detecting that an event
has occurred and for deciding whether to apply one of the
three control combinations. In addition, two sets of Training
and Test events are are simulated to train and test the control
algorithm technique.

The proposed scheme is tested on 960 additional contingen-
cies simulated on the 176 bus model of the WECC. The results
for the prediction accuracy of the three DTs used for control
selection are shown in Table I. Each sample of measurements
from each of the 960 contingencies is classified by each of
the three DTs and compared to the target output values for
the respective DTs. The accuracy was evaluated by counting
the number of samples that were correctly classified divided
by the number of samples.

TABLE I: The Accuracy results for learning and testing of the DTs.

Control combination Test (%) Train (%)
1 88.71 93.94
2 86.22 89.39
3 93.94 93.59

The control scheme requires two separate types of DTs.
One DT is trained to detect that an event has occurred and
its details are described in [8]. After an event is detected,
five subsequent samples are processed by the three DTs that
decide which if any of the three controls should be applied.
As mentioned earlier, the output value 1 means the event is
predicted to be stabilized by the control. A score is calculated
for each DT by adding the five output values for each DT to
obtain a number between 0 - 5. The control with the largest
score that exceeds a threshold is applied to the event. If all
the scores are equal and over the threshold, for example 5,5,5,
the control combination 1 is selected.

Table II illustrates the results after applying the new al-
gorithm for the 960 events. The results in Table II require
every event for which control is ordered to be simulated again
with the control action occurring 0.1 second after the control
was ordered by the DT. This means we are not just training
DTs on 960 simulations and reporting their accuracy. We are



performing additional time domain simulation to determine the
effect of the control scheme. In contrast to results presented
in Table II, the results in Table I do not require running the
simulation over again with the control ordered by the DTs.

The columns of Table II show the number of events con-
trolled, the number of events that were controlled unnecessar-
ily, the number of events stabilized by applying the control,
average control time in seconds, and SR is the success rate
of the algorithm. Every contingency in the training and test
sets included a fault that was cleared at 0.67 seconds so an
average control time of 0.77 seconds indicates the DTs ordered
control, on average, 0.1 second after the fault clearing time.
TABLE II: Performance of 3 DTs for control selection for 1 phase and 3
phase faults.

Test set Controlled Unnecessary Stabilized Tavg (s) SR
1-phase 96 6 36 0.77 0.375
3-phase 113 13 36 0.91 0.318
Total 209 19 72 0.85 0.3465

Figure 2(a) shows the generator rotor angles for 29 gen-
erators of the model during a transient event for 6 seconds.
A 3 phase fault occurred at 0.55 second on the line between
Hanford and John Day buses and cleared at 0.67 seconds.
Figure 2(b) shows the simulation of generator rotor angles
for the same fault after applying the algorithm. This event
is stabilized by control combination 2. The algorithm can
effectively identify the appropriate control combination and
stabilize it using 3 DTs.

The corresponding results in [8] for the same test set have
the total number of stabilized events as 49, and the success
rate as 0.236. Therefore, the method in this paper successfully
stabilizes 46 percent more events than the method in [8], and
its success rate is 46 percent higher than the method in [8].

The results in this paper are significant for two reasons.
One reason is that our method provides an improvement over
the status quo, which is essentially not having any wide-
area response-based one-shot control scheme to stabilize an
unstable transient angle swing in progress. The other reason is
that when the proposed scheme is not successful at stabilizing
a transient event in progress then it almost never causes any
harm.

VI. CONCLUSION

In this project, the Particle Swarm Optimization (PSO)
algorithm is used to find the best combination of controls
for a large set of contingencies. A subset of three of those
controls are selected and three DTs are trained based on
them. In the final step, an algorithm is developed with the
ability to decide between the three control combinations and
choose one of them in real-time. The final results showed the
algorithm stabilizes 46% more events that the method in [8]
and 30% more events than the method in [10]. These results
are significant because of the enormous cost of blackouts,
which can be billions of dollars, and the fact that there is
no comparable wide-area response-based, one-shot control
scheme that is currently deployed.

(a)

(b)

Fig. 2: Generator rotor angles during a 3 phase event (a) before applying
the algorithm (b) after applying the control selection algorithm and selecting
control combination 2.
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