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Abstract-- The power flow computer program is fundamentally 

important for power system analysis and design.  Many textbooks 

teach the Newton-Raphson method of power flow solution.  The 

typical formulation of the Jacobian matrix in the NR method is 

cumbersome, inelegant, and laborious to program.  Recent papers 

have introduced a method for calculating the Jacobian matrix that 

is concise, elegant, and simple to program.  The concise 

formulation of the Jacobian matrix makes writing a power flow 

program more accessible to students.  However, its derivation in 

the research literature involves advanced manipulations using 

higher dimensional derivatives, which are challenging for dual 

level students.  This paper presents alternative derivations of the 

concise formulation that are suitable for undergraduate students, 

where some cases can be presented in lecture while other cases are 

assigned as exercises.  These derivations have been successfully 

taught in a dual level course on computational methods for power 

systems for about ten years.    

I.  INTRODUCTION 

The power flow computer program computes the voltage 

magnitude and angle at each bus in a balanced three-phase 

power system and is fundamentally important for power system 

analysis and design. This program yields information about the 

real and reactive power flows in equipment such as 

transmission lines and transformers as well as equipment losses 

[1]. Engineers use power flow solutions to plan how new 

generation and transmission can meet projected load growth.  

Many textbooks on power systems analysis and design and 

papers on power flow program improvements teach or use the 

Newton-Raphson method of power flow solution [1], [2], [3], 

[4], [5], [6]. The iterative Newton-Raphson method is necessary 

because the power-flow problem requires solving a set of 

nonlinear algebraic equations.  Starting with an initial guess for 

the unknown voltage magnitudes and phase angles, the power 

flows are calculated as, 

Pi = ∑    |YinViVn| cos(θin + δn - δi)                   (1) 

Qi = - ∑    |YinViVn| sin(θin + δn - δi)                            (2) 

and compared with their scheduled values. The independent 

voltage magnitudes and phase angles are then updated using 

Newton's method which involves a first-order approximation to 

the nonlinear equations. The first-order approximation requires 

calculating a Jacobian matrix and the associated linear 

equations can be solved by Gauss elimination and back 

substitution.  The procedure is iterated until the mismatches 

between the power flows and their scheduled values are 

acceptably small.       

The Jacobian matrix in [1] is calculated using eight 

equations derived from the partial derivatives of the real and 

reactive power with respect to δj and |Vj|. A simple variant 

described in [2] involves multiplying derivatives of power 

quantities with respect to voltage magnitude by the voltage 

magnitude.  Otherwise, the structure of the solution in [2] is 

essentially the same as in [1].  Texts [3], [5], and [6] use a 

formulation similar to [1] while [4] uses a formulation similar 

to [2]. 

Current textbook formulations of the Jacobian matrix for 

power flow solutions are cumbersome, inelegant, and laborious 

to program [1], [2], [3], [4], [5], [6].  Recent papers have 

introduced a method for calculating the Jacobian matrix that is 

concise, elegant, and simple to program [7], [8], [9].  The 

concise formulation of the Jacobian matrix makes writing a 

power flow program more accessible to students.  However, its 

derivation in the research literature involves advanced 

manipulations using higher dimensional derivatives, which are 

challenging for undergraduate students in engineering.  This 

paper presents alternative derivations of the concise 

formulation of the Jacobian that are suitable for undergraduate 

students.  The derivations presented in this paper use the real 

and reactive power flows in terms of trigonometric functions 

and only require knowledge of partial derivatives as taught in a 

standard undergraduate course on vector calculus.     

The derivation of the concise formulation presented in this 

paper includes several cases that are similar in structure but 

have different details.  Therefore, it is feasible to present some 

of the cases in lecture and assign other cases as homework.  

These derivations have been taught to dual (undergraduate and 

graduate) level students in a course on computational methods 

for power systems for ten years.  Students start by writing a 

short program for the power flow solution of a 2-bus network 

that calculates the Jacobian the traditional way in terms of 

trigonometric functions.  After working through derivations of 

the concise formulation of the Jacobian, students modify the 

power flow solution for the 2-bus network to use the concise 

formulation and observe the results are identical.  Finally, 

students write a short program for power flow solution of a 4-

bus network using the concise formulation of the Jacobian.   
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This paper begins with an introduction to Newton's method 

and its application to power flow solutions.  Then we present a 

typical formulation of the Jacobian for power flow solution that 

is cumbersome, inelegant and laborious to program.  Then we 

provide a concise formulation of the Jacobian and show how it 

is typically derived in research literature.  We present the 

mathematical details that would be required for an 

undergraduate student to follow one of the published 

derivations of the concise formulation.  The appendix presents 

alternative proofs of the concise formulations that are 

accessible to undergraduate students who know introductory 

vector calculus.  The paper concludes with an outline for 

teaching the concise formulation using the derivations in the 

appendix.   We have successfully taught this material in a dual 

(undergraduate and graduate) level course on computational 

methods for power systems for ten years.   

II.  NEWTON RAPHSON METHOD FOR POWER FLOW SOLUTION 

The Newton-Raphson method for power flow solution is 

based on Newton's method, which can be derived from the first-

order Taylor series expansion for functions of several variables.  

Given M  functions  f 1 ,  f 2 , ... ,  f M  of  N  variables  x 1 , x 2 , ... 

, x N , define the vectors: 

x = ⋮     and   f (x)  =  ()⋮()                   (3) 

The first-order Taylor series expansion of  f (x) around the 

point  x (k) is [10]: 

 

f 1 (x) ≈ f 1 ( x (k) ) + (x 1 - x 1
 (k))  ()  + ··· + (xN - xN

 (k))  ()  

 

   ⋮                                    (4) 

 

fM (x) ≈ fM ( x (k) ) + (x 1 - x 1
 (k))  ()  + ··· + (xN - xN

 (k))  ()  

 

If we denote the Jacobian matrix compactly as: 

 

J (x)  = D x  f (x)  =   M x N  =   

⎣⎢
⎢⎡

() ⋯ ()⋮ ⋱ ⋮() ⋯ () ⎦⎥
⎥⎤   (5) 

 

then the Taylor series can be written in matrix vector form: 

  

f (x)  ≈  f  ( x (k) ) + J ( x (k) ) ( x  -  x (k)  )        (6) 

 

When M = N, the update equation for Newton's method is 

derived by setting  f (x) = 0  and solving the resulting equation 

for  x :  

 

J ( x (k) )  x  =  J ( x (k) )  x (k)  -  f  ( x (k) )         (7) 

 

In practice, this equation is solved by Gauss elimination and 

back substitution when J ( x (k) ) is invertible but the solution is  

mathematically equivalent to: 

 

x  =  x (k)  -  [ J ( x (k) ) ] - 1 f  ( x (k) )                (8) 

 

The resulting value of  x  is denoted  x ( k + 1 ) which leads to the 

update equation for Newton's method:  

 

x ( k + 1 )  =  x (k)  -  [ J ( x (k) ) ] - 1 f  ( x (k) )                (9) 

 

After choosing an initial value for  x (0) , the updated equation is 

iterated until   f  ( x (k) )  is sufficiently small. 

In order to perform a power flow solution, it is necessary to 

identify which quantities have predetermined values and which 

quantities are unknown prior to the solution.  There are 

generator buses that regulate their terminal voltage and load 

buses that do not regulate their terminal voltage.  Turbine 

governors regulate the real power output of generators by 

adjusting their mechanical driving force.   

The amount of losses are unknown prior to the power flow 

solution so the real power output of all the generators cannot be 

predetermined.  For this reason, one of the generator buses is 

designated as the slack bus and its real power output is not one 

of the pre-determined quantities.  Since it is possible to choose 

one of the phase angles as the reference, the angle of the slack 

bus is predetermined to be zero.  Assuming there are  Ng 

generator buses including the slack bus and the total number of 

buses is  N , then the quantities that are known and unknown 

prior to the power flow solution are summarized in Table 1. 

 

Table 1. Known and unknown quantities for different buses  

Bus number Type Predetermined  Unknown 

1 Slack |V1| , δ1  P1 , Q1 

2 Generator P2 , |V2| Q2 , δ2 

⁝ ⁝ ⁝ ⁝ 

Ng Generator PNg , |VNg| QNg , δNg 

Ng+1 Load PNg +1 , QNg +1 |V Ng +1| , δ Ng +1 

⁝ ⁝ ⁝ ⁝ 

N Load PN , QN |VN| , δN 

  

The predetermined values for  Pi  and  Qi  are called Pi,sched  

and  Qi,sched  , where "sched" means scheduled. The equations 

and variables for Newton's method are:  

 

g (x) = 

⎣⎢
⎢⎢
⎢⎡

  −  ,⋮  −  ,  −  ,⋮  −  , ⎦⎥
⎥⎥
⎥⎤
 = 0  ,    x = 

⎣⎢
⎢⎢
⎢⎡ ⋮||⋮|| ⎦⎥

⎥⎥
⎥⎤
   (10) 

 

III.  STANDARD FORMULATION OF THE JACOBIAN MATRIX 

The typical formulation of the Jacobian matrix used in the 

Newton-Raphson method is cumbersome, inelegant, and 

laborious to program. This is especially true because the 

expressions for partial derivatives are different when the 

derivative is taken with respect to a variable at the same bus as 

the quantity being differentiated versus a variable at a different 

bus than the quantity being differentiated.  

Let Pi, Qi, |Vi|, δi represent the real and reactive power 
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injections and the voltage magnitude and phase angle at bus i. 

If elements of the bus admittance matrix are   Yij = |Yij| ∠ θij, 

then the equations for elements of the Jacobian matrix are given 

as follows when i ≠ j [1]:  

 

J1ij = ∂Pi/∂δj = |ViYijVj| sin(δi-δj-θij) , i,j = 2,3,…,N   (11) 

 

J2ij = ∂Pi/∂|Vj| = |ViYij| cos(δi-δj-θij) , i,j = 2,3,…,N    (12) 

 

J3ij = ∂Qi/∂δj = -|ViYijVj| cos(δi-δj-θij) , i,j = 2,3,…,N   (13) 

 

J4ij = ∂Qi/∂|Vj| = |ViYij| sin(δi-δj-θij) , i,j = 2,3,…,N      (14) 

 

Equations for the Jacobian matrix elements when i = j are 

calculated using different expressions [1]:  

 

J1ii = ∂Pi/∂δi = -|Vi| ∑    YinVn sin(δi-δn-θin)               (15) 

 

     J2ii = ∂Pi/∂|Vi|  

    = |ViYii| cos(θii)+ ∑   YinVn cos(δi-δn-θin)             (16) 

 

J3ii = ∂Qi/∂δi = |Vi| ∑    YinVn cos(δi-δn-θin)              (17) 

 

      J4ii = ∂Qi/∂|Vi|  
= -|ViYii|sin(θii)+∑   YinVn sin(δi-δn-θin)           (18) 

 

The expressions in [2] for a slight variant of the Jacobian matrix 

are similarly cumbersome, inelegant, and laborious to program. 

The equations in [2] are given as follows when i ≠ j: 

 

J1ij = ∂Pi/∂δj = |ViVjYij| sin(θij+δj-δi) , i,j = 2,3,…,N       (19) 

 

J2ij = |Vj|∂Pi/∂Vj = |Vj||ViYij|cos(θij+δj-δi) ,i,j = 2,3,…,N (20) 

 

J3ij = ∂Qi/∂δj = -|ViVjYij| cos(θij+δj-δi) , i,j = 2,3,…,N  (21) 

 

J4ij = |Vj|∂Qi/∂δj = -|Vj||ViYij| sin(θij+δj-δi), i,j = 2,3,…,N (22) 

 

Equations for the Jacobian matrix elements when i = j are 

calculated using different expressions in [2] as well:  

 

J1ii = ∂Pi/∂δi = ∑     |Yin Vi Vn| sin(θin+δn-δi)               (23) 

 

J2ii = |Vi|∂Pi/∂|Vi| = Pi + |Vi|2  Real {Yii}                         (24) 

 

J3ii = ∂Qi/∂δi =  ∑    |Yin Vi Vn| cos(θin+δn-δi)              (25) 

 

J4ii = |Vi|∂Qi/∂|Vi| = Qi - |Vi|2 Imag {Yii}                         (26) 

IV.  CONCISE DERIVATION OF THE JACOBIAN MATRIX 

Recent papers in the research literature have presented a 

method for calculating the Jacobian matrix that is concise, 

elegant, and simple to program [7], [8], [9].  Those papers use  

[ V ] to denote a square matrix with vector  V  along the diagonal 

and zeros elsewhere.  This paper uses diag ( V ) in place of [ V ] 

.  If  V  is the vector of bus voltages,  I  is the vector of bus 

current injections and  Y  is the bus admittance matrix then the 

vector of bus power injections is:  

 

S = diag ( V ) I* = diag ( V ) ( Y V )*                              (27) 

 

and the partial derivatives required for the Jacobian are 

 

Dδ S =  diag ( I* ) Dδ V +  diag ( V )  Dδ  ( Y* V* )        (28) 

  

  =  diag ( I* ) [ j diag ( V ) ]  

                       +  diag ( V )  [ Y*  [ j diag ( V ) ]* ]         (29) 

 

  =  j diag ( V ) [ diag ( I* ) - Y* diag ( V* ) ]           (30) 

 

D | V | S  

       =  diag ( I* ) D | V | V +  diag ( V )  D | V | ( Y* V* ) (31) 

 

          =  diag ( I* ) diag ( V ) [ diag ( | V | ) ] - 1  

          +  diag ( V )  Y* diag ( V* )  [ diag (| V* |) ] - 1   (32)    

 

=  diag ( V ) [diag( I* ) + Y* diag( V* )] [diag (| V |)] - 1 (33) 

 

V.  EXPLAINING THE CONCISE DERIVATION TO STUDENTS 

One approach to teaching the concise formulation to students 

is to explain the calculations involved in the concise derivation 

with undergraduate level matrix math. To do this, several 

derivations must be introduced starting with the derivative of a 

Hadamard product.  

A.  Preliminary Mathematical Results  

The Hadamard product of two matrices is the entry-wise 

product matrix defined by [11].  If 

 

F =  M x N      and   G =  M x N                (34) 

 

The Hadamard product of A and B is: 

  ○  =  M x N          (35) 

 

Result 1: Derivative of a Hadamard product of vectors. 

If  F =  M x 1  and   G =  M x 1  are functions of  

X =  N x 1   then         

Dx ( ○ ) = Dx  ⋮
                                             (36) 

 

  = (  )                                       (37) 

  =   +                          (38) 
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  =   +                  (39) 

  = diag ( G )  DX F + diag ( F ) DX G         (40) 

 

Result 2: Derivative of the product of a constant matrix times 

a variable vector.  Let 

 A =  K x M  be a matrix of constants and  

F (X) =  M x 1    be a function of  X =  N x 1  

 

   A F =   +  + ⋯ +  ⋮ +  + ⋯ +  
    ≜ ⋮       (41)

  

Then 

DX (A F) = DX ⋮ =                                        (42) 

=   ( +   + ⋯ +  )     (43) 

=   +   +  ⋯ +          (44) 

 = A DX (F)                                                        (45) 

 

Result 3: Derivative of a complex matrix with respect to phase 

angle and magnitude.  Let  

 

V =  ⋮
 =   ||⋮||

 ,   δ =  ⋮
  ,   |V | =  ||⋮||        (46) 

 

The matrix of derivatives of voltage with respect to angle can 

be expressed as: 

 

Dδ V   =   

⎣⎢
⎢⎡

 ⋯ ⋮ ⋱ ⋮ ⋯ ⎦⎥
⎥⎤                          (47) 

 

However, since  V k  only depends on  δ k , all off-diagonal 

entries are zero: 

 

Dδ V  =    |1| 1 ⋯ 0⋮ ⋱ ⋮0 ⋯ || 
                         (48) 

 

          =    1 ⋯ 0⋮ ⋱ ⋮0 ⋯ 
  =  j diag (V )                  (49) 

 

   Similarly,  

D |V| V  =     1 ⋯ 0⋮ ⋱ ⋮0 ⋯  
                                       (50) 

 

  =   |1| 1 ⋯ 0⋮ ⋱ ⋮0 ⋯ || 
  |1| ⋯ 0⋮ ⋱ ⋮0 ⋯ ||       (51) 

 
   = diag(V) [ diag ( | V | ) ] -1                              (52) 

 

Result 4: Commutativity of Hadamard products and of 

diagonal matrices. 

 

 If  F =  M x 1  and   G =  M x 1  then              

 

F ○ G =  M x 1  =   M x 1 = G ○ F            (53) 

 

diag ( F ) diag ( G ) = diag (  M x 1 )             (54) 

 

= diag (  M x 1 ) = diag ( G ) diag ( F )            (55) 

B.  Application of Results to Explain Concise Proof to 

Students  

Then the concise proof can be explained to dual level 

students by starting with the complex power equation: 

 

S = V ○ I* =  V ○ ( Y V )*                                (56) 

 

The derivative of the complex power with respect to the angle 

can be found using Result 1: 

 

Dδ S =  diag ( I* ) Dδ V +  diag ( V )  Dδ  ( Y* V* )   (57) 

 

The equation can be further simplified by using Result 2 and 

Result 3: 

Dδ S = diag ( I* ) [ j diag ( V ) ]  

+  diag ( V )  [ Y*  [ j diag ( V ) ]* ]       (58)

   

Diag ( V ) can be placed at the front of the equation by using 

Result 4: 

 

Dδ S  =  j diag ( V ) [ diag ( I* ) - Y* diag ( V* ) ]   (59) 

 

Likewise, the derivative of the complex power with respect to 

the voltage magnitude can be found starting with Result 1: 

 

D | V | S = diag ( I* ) D | V | V + diag ( V ) D | V | ( Y* V* ) (60) 

 

The equation can be further simplified using Result 2 and 

Result 3: 

 

D | V | S  =  diag ( I* ) diag ( V ) [ diag ( | V | ) ] - 1  

             +  diag ( V )  Y* diag ( V* )  [ diag (| V* |) ] – 1  (61) 

 

Diag ( V ) can be placed at the front of the equation by using 

Result 4: 

 

D| V |S = diag(V) [diag(I*) + Y* diag(V*)] [diag(|V|)] – 1 (62) 

C.  Expressing Concise Formulation in Terms of Proofs in 

Appendix  

In order to express the concise formulation of the Jacobian 

in terms that are suitable for undergraduate students, it is 

necessary to define  P = Real{S} , Q = Imag{S} , and it is 

helpful to define:  

 

Sdiag = diag(S)                                       (63) 

 

A = diag(V) Y* diag(V*) = V V*T ○ Y*               (64) 
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Then (59) and (62) become: 

 

Dδ S  =  j ( Sdiag - A )                                (65) 

 

( D |V | S ) diag(|V|)  =  Sdiag + A                          (66) 

 

which yield the equations derived in the appendix: 

 

 ∂Pi/∂δj = - Imag { Sdiagij - Aij }                        (67) 

  

 ∂Qi/∂δj = Real { Sdiagij - Aij }                         (68) 

 

    |V j | ∂Pi / ∂ |V j |  = Real { Sdiagij + Aij }                (69) 

 

    | V j | ∂Qi / ∂ |V j | = Imag { Sdiagij + Aij }                   (70) 

 

 

D.  Calculating Concise Formulation in MATLAB  

Matrix A can be calculated as the element by element 

product of two matrices, namely the outer product V* V T and 

the bus admittance matrix Y .  In MATLAB, the operator ".*" 

performs element by element multiplication of vectors or 

matrices.  The MATLAB function "diag(S)" creates a matrix 

with the elements of vector S on the diagonal. Matrices 

containing all the partial derivatives required to construct the 

Jacobian matrix as formulated in [2] can be calculated in 

MATLAB with the following six lines of code: 

 
  Sdiag = diag ( V .* conj(Y*V) ) ; 

  A = ( V * conj(V.') ) .* conj(Y) ; 

  DPDdelta = -imag(Sdiag-A); 

  VDPDV = real(Sdiag+A); 

  DQDdelta = real(Sdiag-A); 

  VDQDV = imag(Sdiag+A);   

 

The Jacobian matrix in [2] can then be constructed from the 

partial derivatives.  For example, suppose a four-bus network 

has generator buses 1, 2 and load buses 3, 4.   The slack bus has  

V1 = 1 ∠ 0° and the voltage magnitude at the second bus  |V2|  

is also specified in advance because it is a voltage-controlled 

bus.  There are five nonlinear expressions for the mismatch 

values of  P2 , P3 , P4 , Q3 , Q4 , and five variables that must be 

solved for include  δ2, δ3, δ4, |V3|, and |V4| .  The Jacobian 

matrix can be constructed from the matrices in the previous 

section of code with the following four lines of MATLAB code:  

 

J(1:3,1:3) = DPDdelta(2:4,2:4); 

J(1:3,4:5) = VDPDV(2:4,3:4); 

J(4:5,1:3) = DQDdelta(3:4,2:4);  

J(4:5,4:5) = VDQDV(3:4,3:4); 

VI.  USE OF CONCISE FORMULATION IN TEACHING 

Teaching the concise formulation of the Jacobian to lower-

level students has not been documented in the literature. The 

derivations of the concise formulation in the appendix are 

suitable for undergraduate students, where some cases can be 

presented in lecture while other cases are assigned as exercises.  

These derivations have been successfully taught in a dual 

(undergraduate and graduate) level course on computational 

methods for power systems for ten years.     

A.  Introducing Newton's Method With Traditional Jacobian  

  Students first learn to apply Newton's method to a 

polynomial function of one variable such as: 

  

g (x) = x 3 - 5 x 2 + 2 x + 8  = 0                           (70) 

 

Then students apply Newton's method to the power flow 

equations for a 2-bus network with a generator connected to 

bus 1.  The equations and variable are:  

 

g (x) =    −  ,  −  , =  0   ,   x =   ||               (71) 

The first time students apply Newton's method to the two bus 

network they start with the power flow equations in terms of 

trigonometric functions and calculate partial derivatives:  

 

          g1 (x) =   | V 2 |  | V 1 |  | Y 21 | cos ( θ 21 + δ 1 - δ 2  )  

          +  | V 2 |  | V 2 |  | Y 22 | cos ( θ 22 )  -  P2,sched = 0    (72) 

  

          g2 (x) =  - | V 2 |  | V 1 |  | Y 21 | sin ( θ 21 + δ 1 - δ 2  )  

            -  | V 2 |  | V 2 |  | Y 22 | sin ( θ 22 )  -  Q2,sched = 0     (73) 

 

B.  Deriving Concise Formulation of the Jacobian 

Then we work through the proofs of the concise formulation 

of the Jacobian with nearly equal participation by the students.  

For example, we prove the following in class: 

 

  ∂Pi/∂δj = - Imag { Sdiagij - Aij }                     (74) 

 

and assign the proof of the following as homework: 

 

 ∂Qi/∂δj = Real { Sdiagij - Aij }                      (75) 

 

It helps to preface the class derivation of (74) by calculating the 

partial derivatives for a 3 bus network with every term written 

out similar to the expressions for  g1 (x)  and  g2 (x) above. 

 

After students complete the proof for (75) we derive:  

 

    | V j | ∂Pi /∂δj = Real { Sdiagij + Aij }              (76) 

 

in class and assign the proof of the following as homework: 

 

    | V j | ∂Qi /∂δj = Imag { Sdiagij + Aij }              (77) 

 

By this point it is not necessary to preface the class derivation 

of (76) by calculating the partial derivatives for a 3 bus network 

with every term written out. 

C.  Updating Power Flow Solution to use Concise Jacobian  

We show students how to calculate matrices Sdiag, A,  

DPDdelta, VDPDV, DQDdelta, VDQDV  using the six 
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lines of code in the previous section of this paper.  We point out 

that the first row of the Jacobian can be calculated as: 

 
J(1,1) = DPDdelta(2,2) ; 

J(1,2) = VDPDV(2,2)/V(2) ; 

 

and let students figure out how to calculate the second row of 

the Jacobian.  Then students use Newton's method to solve the 

2 bus network a second time using the new (concise) 

formulation of the Jacobian and see that they get the same 

answer as before.  Then we make a slight variation in the power 

flow calculation to use the update equations in [2] which 

eliminates the need to divide by  V(2) in the expression for  

J(1,2) above.   

Then we explain which equations and variables are used in 

power flow solutions for larger networks and use the concise 

Jacobian to calculate the power flow solution for a network with 

4 buses and 2 generators such as shown in Fig. 1.  There are five 

nonlinear expressions for the mismatch values of  P2 , P3 , P4 , 

Q3 , Q4 , and five unknown variables  δ2, δ3, δ4, |V3|, and |V4| .  

We show students how to assign values to a submatrix of the 

Jacobian with the following line of code: 

 
J(1:3,1:3) = DPDdelta(2:4,2:4); 

 

and require students to figure out how to complete the Jacobian 

with the remaining three lines of code:  

 

J(1:3,4:5) = VDPDV(2:4,3:4); 

J(4:5,1:3) = DQDdelta(3:4,2:4);  

J(4:5,4:5) = VDQDV(3:4,3:4); 

 

 
 

Fig 1: 4-bus network for power flow solution. 

 

We provide values for all the predetermined quantities and 

an initial starting point such as the following: 

 

                     ( P 2Sch , P 3Sch , P 4Sch , Q 3Sch , Q 4Sch )  

= ( 8 , - 8 , - 8 , - 4 , - 4 )                 (78) 

 

δ 1 = 0  and  | V1 | =  | V2 |  = 1                 (79) 

 

x (0) = [ 0 , 0 , 0 , 1 , 1 ] T .               (80) 

 

and students adapt the power flow program they wrote for the 

2-bus network to calculate the power flow for the 4-bus network 

in Fig. 1 using the concise formulation of the Jacobian.  Finally, 

we ask students to consider how the concise formulation of the 

Jacobian matrix facilitated writing a power flow solution for the 

4 bus network.    

VII.  CONCLUSIONS 

The power flow program is an essential part of power 

systems analysis and design.  An iterative solution method such 

as Newton-Raphson is necessary because the power flow 

equations are nonlinear.  Common formulations of the Jacobian 

matrix in the NR calculation are cumbersome, inelegant, and 

laborious to program.  Recent literature provides a concise 

formulation of the Jacobian matrix but its derivation requires 

mathematical manipulations that are more advanced than what 

most undergraduate students know.  While the proofs in the 

research literature are difficult for students, the concise 

formulation is elegant and easy to program which facilitates 

teaching the NR power flow solution method to undergraduates.   

This paper presents two methods for teaching the derivation 

of the concise formulation of the Jacobian to dual level 

(undergraduate and graduate) students.  The first method 

involves explaining Hadamard products and higher order 

derivatives at an undergraduate level in order to fill in the 

details of derivations in the research literature.  The second 

method only requires undergraduate vector calculus and 

focuses more on keeping track of which terms in the power flow 

expressions contain which variables.  While the first method 

has advantages such as introducing higher dimensional 

derivatives, the proofs of most of the details are going to require 

an instructor to present details that the students are unlikely to 

figure out on their own.  The second method, in contrast, 

involves several different cases where the instructor can prove 

some cases in class and assign others as exercises.  Using the 

second method, students learn to work through all the details of 

all the cases from start to finish with an amount of repetition 

that is effective for teaching dual level students.   

This paper describes how we have successfully taught NR 

power flow solution to dual level students for 10 years at 

Indiana University-Purdue University Indianapolis.  We start 

using Newton's method to find the roots of a polynomial 

function of a single variable.  Then we apply Newton's method 

to a two-dimensional problem arising from a 2-bus network.  

The first time we solve the 2-bus power flow, students calculate 

partial derivatives of the power flow equations in terms of 

trigonometric functions with all of the terms written out 

explicitly, that is, without summation notation.  Then we derive 

the concise formulation of the Jacobian for an arbitrary number 

of variables by dividing the proofs into several cases and 

assigning proofs of some of the cases as exercises.  Then 

students modify the 2-bus power flow solution to use the 

concise formulation of the Jacobian and see that the code is 

much simpler than using trigonometric functions while the 

numerical results are the same.  Finally, students use the concise 

formulation of the Jacobian to calculate the power flow solution 

for a 4-bus network with two generators.  We have successfully 

used this method to teach a total of about 130 dual level 

students, mostly undergraduates, to program the Newton-

Raphson power flow solution for small networks.   
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IX.  APPENDIX 

Equations (67) through (70) are derived starting from the 

expressions for Pi and Qi. 

 

Pi = ∑    | YinViVn | cos(θin + δn - δi)                  (81) 

 

     Qi = - ∑    | YinViVn | sin(θin + δn - δi)                                (82) 

 

The proof of each equation involves separate cases for i = j 

and i ≠ j and using A defined in equation (64). The results show 

that each equation is valid for both cases.    

A.  Partial Derivatives of Pi With Respect to δ j  

 For the case where i ≠ j, only the j’th term contains a δj so: 

 

∂Pi/∂δj = - | YijViVj | sin(θij + δj - δi)                                 (83) 

 

For i ≠ j, Sdiag i j = 0 and  

 

Imag { – Sdiagij + Aij } = Imag { Aij }           (84) 

                                   = Imag { | ViVjYij |∠(θij+δj-δi) } (85) 

= | YijViVj | sin(θij + δj - δi)          (86) 

      = ∂Pi/∂δj                                   (87) 

 

For the case where i = j , start by pulling out the i’th term of 

equation (81): 

 

Pi = | YiiVi
2 | cos(θii + δi - δi) 

 + ∑    | YinViVn | cos(θin + δn - δi)            (88) 

 

The partial with respect to the i’th term is zero. After 

differentiating the summation, it is convenient to include two 

additional terms that add up to zero so that they do not change 

the partial but do allow for further manipulation of the 

summation. 

 

∂Pi/∂δi = | YiiVi
2 | sin(θii + δi - δi)           

     - | YiiVi
2 | sin(θii + δi - δi) 

 + ∑    | YinViVn | sin(θin + δn - δi)            (89) 

 

∂Pi/∂δi = ∑    | YinViVn | sin(θin + δn - δi)  

    - | YiiVi
2 | sin(θii + δi - δi)                       (90) 

 

Notice that the first half of ∂Pi/∂δi is equal to the negative 

reactive power: 

 

 ∂Pi/∂δi = -Qi + Imag { Aii }              (91) 

 ∂Pi/∂δi = Imag { - Si + Aii }                  (92) 

∂Pi/∂δi = Imag { - Sdiagii + Aii }                 (93) 

 

In summary, the following is valid for both i ≠ j,  and for i = j : 

 

∂Pi/∂δj = - Imag { Sdiagij - Aij }               (94) 

 

END OF PROOF 

B.  Partial Derivatives of  Pi  With Respect to  | Vj | 

 For the case where i ≠ j, only the j’th term of equation (81) 

contains a | Vj | so: 

 

 ∂Pi/∂| Vj | = | YijVi | cos(θij + δj - δi)                                  (95) 

 

Equation (95) is then multiplied by | Vj | to obtain: 

 

| Vj | ∂Pi/∂| Vj | = | YijVjVi | cos(θij + δj - δi)                       (96) 

 

For i ≠ j, Sdiagij = 0 and  

 

Real { Sdiagij + Aij } = Real { Aij }                                 (97) 

                                = Real { | ViVjYij | ∠( θij+δj - δi) } (98) 

= | YijViVj | cos(θij + δj - δi)            (99) 

       = | Vj | ∂Pi/∂| Vj |                         (100) 

 

For the case where i = j, again start by pulling out the i’th term 

of equation (81) to get equation (88) and take the partial with 

respect to | Vi |: 

  

∂Pi/∂| Vi | = 2 | YiiVi | cos(θii + δi - δi)           

    + ∑    | YinVn | cos(θin + δn - δi)                   (101)  

                       

Multiply by | Vi | and put half of the first term back into the 

summation: 

 

| Vi | ∂Pi/∂| Vi | = | YiiViVi | cos(θii + δi - δi)           

       + ∑    | YinVnVi | cos(θin + δn - δi)           (102)   

 

Notice that the second half of equation (102) is equal to the 

real power: 

 

 | Vi | ∂Pi/∂| Vi | = Pi + Real { Aii }             (103) 

 | Vi | ∂Pi/∂| Vi | = Real { Si + Aii }                    (104) 
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| Vi | ∂Pi/∂| Vi | = Real { Sdiagii + Aii }          (105) 

 

In summary, the following is valid for both i ≠ j, and for i = j : 

 

| Vj | ∂Pi/∂| Vj | = Real { Sdiagij + Aij }         (106) 

 

END OF PROOF 

C.  Partial Derivatives of Qi With Respect to δ j  

 The proof of the reactive power partials will be formulated 

similarly to the real power partials. For the case where i ≠ j, 

only the j’th term contains a δj so: 

 

∂Qi/∂δj = - | ViVjYij | cos(θij + δj - δi)                 (107) 

 

For i ≠ j, Sdiag i j = 0 and  

 

Real { Sdiagij -Aij } = Real { -Aij }               (108) 

             = Real { -| ViVjYij | ∠(θij+δj - δi) } (109) 

     = -| YijViVj | cos(θij + δj - δi)           (110) 

      = ∂Qi/∂δj                                      (111) 

 

For the case where i = j, start by pulling out the i’th term of 

equation (82): 

 

Qi = - | YiiVi
2 |sin(θii + δi - δi)  

- ∑    | YinViVn |sin(θin + δn - δi)           (112) 

 

The partial with respect to the i’th term is zero. After 

differentiating the summation, it is convenient to include two 

additional terms that add up to zero so that they do not change 

the partial but do allow for further manipulation of the 

summation. 

 

∂Qi/∂δi = | YiiVi
2 | cos(θii + δi - δi)           

 - | YiiVi
2 | cos(θii + δi - δi) 

 + ∑    | YinViVn | cos(θin + δn - δi)       (113) 
 

∂Qi/∂δi = ∑    | YinViVn | cos(θin + δn - δi)  

 - | YiiVi
2 | cos(θii + δi - δi)                  (114) 

 

Notice that the first half of ∂Qi/∂δi is equal to the real power: 

 

∂Qi/∂δi = Pi + Real { -Aii }               (115) 

 ∂Qi/∂δi = Real { Si - Aii }                     (116) 

∂Qi/∂δi = Real { Sdiagii - Aii }                        (117) 

 

In summary, the following is valid for both i ≠ j,  and for i = j : 

 

 ∂Qi/∂δj = Real { Sdiagij - Aij }                  (118) 

 

END OF PROOF 

D.  Partial Derivatives of  Qi  With Respect to  | Vj | 

For the case where i ≠ j, only the j’th term contains a | Vj | so: 

 

 ∂Qi/∂| Vj | = - | YijVi | sin(θij + δj - δi)                             (119) 

 

Equation (119) is then multiplied by | Vj | to obtain: 

 

| Vj | ∂Qi/∂| Vj | = - | YijVjVi | sin(θij + δj - δi)                   (120) 

 

For i ≠ j, Sdiagij = 0 and  

 

 Imag { Sdiagij + Aij } = Imag { Aij }          (121) 

                                 = Imag { | ViVjYij |∠(θij+δj - δi) }(122) 

= | YijViVj | sin(θij + δj - δi)           (123) 

   = | Vj | ∂Qi/∂| Vj |          (124) 

 

For the case where i = j, again start by pulling out the i’th term 

of equation (82) to get equation (112) and take the partial with 

respect to | Vi |: 

  

∂Qi/∂| Vi | = - 2 | YiiVi | sin(θii + δi - δi)          

              - ∑    | YinVn | sin(θin + δn - δi)                     (125)  

                        

Multiply by | Vi | and put half of the first term back into the 

summation: 

 

| Vi | ∂Qi/∂| Vi | = - | YiiViVi | sin(θii + δi - δi)               

     - ∑    | YinVnVi | sin(θin + δn - δi)           (126)   

 

Notice that the second half of equation (126) is equal to the 

reactive power: 

 

 | Vi | ∂Qi/∂| Vi | = Qi + Imag { Aii }                   (127) 

 | Vi | ∂Qi/∂| Vi | = Imag { Si + Aii }                      (128) 

| Vi | ∂Qi/∂| Vi | = Imag { Sdiagii + Aii }                  (129) 

 

In summary, the following is valid for both i ≠ j,  and for i = j : 

 

| Vj | ∂Qi/∂| Vj | = Imag { Sdiagij + Aij }                        (130) 

 

END OF PROOF 
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