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Abstract-- The power flow computer program is fundamentally
important for power system analysis and design. Many textbooks
teach the Newton-Raphson method of power flow solution. The
typical formulation of the Jacobian matrix in the NR method is
cumbersome, inelegant, and laborious to program. Recent papers
have introduced a method for calculating the Jacobian matrix that
is concise, elegant, and simple to program. The concise
formulation of the Jacobian matrix makes writing a power flow
program more accessible to students. However, its derivation in
the research literature involves advanced manipulations using
higher dimensional derivatives, which are challenging for dual
level students. This paper presents alternative derivations of the
concise formulation that are suitable for undergraduate students,
where some cases can be presented in lecture while other cases are
assigned as exercises. These derivations have been successfully
taught in a dual level course on computational methods for power
systems for about ten years.

1. INTRODUCTION

The power flow computer program computes the voltage
magnitude and angle at each bus in a balanced three-phase
power system and is fundamentally important for power system
analysis and design. This program yields information about the
real and reactive power flows in equipment such as
transmission lines and transformers as well as equipment losses
[1]. Engineers use power flow solutions to plan how new
generation and transmission can meet projected load growth.

Many textbooks on power systems analysis and design and
papers on power flow program improvements teach or use the
Newton-Raphson method of power flow solution [1], [2], [3],
[4], [5], [6]- The iterative Newton-Raphson method is necessary
because the power-flow problem requires solving a set of
nonlinear algebraic equations. Starting with an initial guess for
the unknown voltage magnitudes and phase angles, the power
flows are calculated as,

Pi= ¥y [YinViVn| cos(Oin + n - 0i) (D
Qi = - Xn [YinViVi| sin(Oin + 0n - i) (2)
and compared with their scheduled values. The independent
voltage magnitudes and phase angles are then updated using
Newton's method which involves a first-order approximation to
the nonlinear equations. The first-order approximation requires
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calculating a Jacobian matrix and the associated linear
equations can be solved by Gauss elimination and back
substitution. The procedure is iterated until the mismatches
between the power flows and their scheduled values are
acceptably small.

The Jacobian matrix in [1] is calculated using eight
equations derived from the partial derivatives of the real and
reactive power with respect to J; and |Vj. A simple variant
described in [2] involves multiplying derivatives of power
quantities with respect to voltage magnitude by the voltage
magnitude. Otherwise, the structure of the solution in [2] is
essentially the same as in [1]. Texts [3], [S], and [6] use a
formulation similar to [1] while [4] uses a formulation similar
to [2].

Current textbook formulations of the Jacobian matrix for
power flow solutions are cumbersome, inelegant, and laborious
to program [1], [2], [3], [4], [5], [6]- Recent papers have
introduced a method for calculating the Jacobian matrix that is
concise, elegant, and simple to program [7], [8], [9]. The
concise formulation of the Jacobian matrix makes writing a
power flow program more accessible to students. However, its
derivation in the research literature involves advanced
manipulations using higher dimensional derivatives, which are
challenging for undergraduate students in engineering. This
paper presents alternative derivations of the concise
formulation of the Jacobian that are suitable for undergraduate
students. The derivations presented in this paper use the real
and reactive power flows in terms of trigonometric functions
and only require knowledge of partial derivatives as taught in a
standard undergraduate course on vector calculus.

The derivation of the concise formulation presented in this
paper includes several cases that are similar in structure but
have different details. Therefore, it is feasible to present some
of the cases in lecture and assign other cases as homework.
These derivations have been taught to dual (undergraduate and
graduate) level students in a course on computational methods
for power systems for ten years. Students start by writing a
short program for the power flow solution of a 2-bus network
that calculates the Jacobian the traditional way in terms of
trigonometric functions. After working through derivations of
the concise formulation of the Jacobian, students modify the
power flow solution for the 2-bus network to use the concise
formulation and observe the results are identical. Finally,
students write a short program for power flow solution of a 4-
bus network using the concise formulation of the Jacobian.



This paper begins with an introduction to Newton's method
and its application to power flow solutions. Then we present a
typical formulation of the Jacobian for power flow solution that
is cumbersome, inelegant and laborious to program. Then we
provide a concise formulation of the Jacobian and show how it
is typically derived in research literature. We present the
mathematical details that would be required for an
undergraduate student to follow one of the published
derivations of the concise formulation. The appendix presents
alternative proofs of the concise formulations that are
accessible to undergraduate students who know introductory
vector calculus. The paper concludes with an outline for
teaching the concise formulation using the derivations in the
appendix. We have successfully taught this material in a dual
(undergraduate and graduate) level course on computational
methods for power systems for ten years.

II. NEWTON RAPHSON METHOD FOR POWER FLOW SOLUTION

The Newton-Raphson method for power flow solution is
based on Newton's method, which can be derived from the first-
order Taylor series expansion for functions of several variables.
Given M functions f1, f>,..., fu of N variables xi,x2, ...
, X v, define the vectors:

X1
l and f(x) —[ :
XN fu(x)

The first-order Taylor series expansion of f (x) around the

point x® is [10]:
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If we denote the Jacobian matrix compactly as:
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then the Taylor series can be written in matrix vector form:

fE) = f(x)+T(x®)(x-x®) (6)

When M = N, the update equation for Newton's method is
derived by setting f(x) =0 and solving the resulting equation
for x

J(x®) x = J(x®) x® - £(x®) ()
In practice, this equation is solved by Gauss elimination and

back substitution when J (x ® ) is invertible but the solution is
mathematically equivalent to:

x=x® - [J(xO) ] f(x®) ®)

The resulting value of x is denoted x**1) which leads to the
update equation for Newton's method:

X+ = B _

[J(x@)] 1 f (x®) (€))

After choosing an initial value for x©@ , the updated equation is
iterated until f (x®) is sufficiently small.

In order to perform a power flow solution, it is necessary to
identify which quantities have predetermined values and which
quantities are unknown prior to the solution. There are
generator buses that regulate their terminal voltage and load
buses that do not regulate their terminal voltage. Turbine
governors regulate the real power output of generators by
adjusting their mechanical driving force.

The amount of losses are unknown prior to the power flow
solution so the real power output of all the generators cannot be
predetermined. For this reason, one of the generator buses is
designated as the slack bus and its real power output is not one
of the pre-determined quantities. Since it is possible to choose
one of the phase angles as the reference, the angle of the slack
bus is predetermined to be zero. Assuming there are Ng
generator buses including the slack bus and the total number of
buses is N, then the quantities that are known and unknown
prior to the power flow solution are summarized in Table 1.

Table 1. Known and unknown quantities for different buses

Bus number| Type Predetermined Unknown
1 Slack V1], 1 P, O
2 Generator Py, |V 0, 02
Ng Genérator Png ,‘ [Vne] Ong ', ONg
Ng+1 Load Png+1, Ong+1 |V ng+1] 5 O Ng+1
N Load Py, Ox [Vl on

The predetermined values for P; and Q; are called Pisched

and Qi sched , Where "sched" means scheduled. The equations
and variables for Newton's method are:

PZ - PZ,sched [ 52 '|

Py — ‘PN,sched | 5N |
g(x)_lQNg+1 - QNg+1,sched|_0 > X7 ||VNg+1|| (10)

l QN - QN,sched J [ |VN J

III. STANDARD FORMULATION OF THE JACOBIAN MATRIX

The typical formulation of the Jacobian matrix used in the
Newton-Raphson method is cumbersome, inelegant, and
laborious to program. This is especially true because the
expressions for partial derivatives are different when the
derivative is taken with respect to a variable at the same bus as
the quantity being differentiated versus a variable at a different
bus than the quantity being differentiated.

Let Pi, Qi, |Vil, O represent the real and reactive power



injections and the voltage magnitude and phase angle at bus i.
If elements of the bus admittance matrix are Yj;j = |Yjj| £ 0y,
then the equations for elements of the Jacobian matrix are given
as follows when i #; [1]:

J1jj = OPJdd; = |ViYy V)| sin(0i-07-0yj) , ij = 2,3,...N  (11)
J2ij = OPilo|Vj| = |ViYy| cos(di-0j-0y) , ij = 2.3,...N  (12)
J3ij = 0Qil05; = -|ViYijVj| cos(6i-0j-0y) , ij = 2,3,...,N (13)
JAij = 00i/0|Vj| = [ViYy| sin(6i-6j-0y) , ij = 2,3,...N  (14)

Equations for the Jacobian matrix elements when i = j are
calculated using different expressions [1]:

J1ii=0Pi/05; = -|Vl|2n 1 YinVn Sln(él On- em) (15)
n#i
J2ii = OPa|V
=|ViYii| cos(ii)+ Ym=1 YinVn cos(3i-0n-Oin) (16)
= 0Qi/06; = |Vil Yh=1 YinVu cos(Si-0n-Oin) (17)
n#i
J4ii = 0Qilo|Vi|
= -|ViYii|sin(0i)+XN_1 YinVn Sin(6i-0n-Oin) (18)

The expressions in [2] for a slight variant of the Jacobian matrix
are similarly cumbersome, inelegant, and laborious to program.
The equations in [2] are given as follows when i #:

J1jj = OPi/0; = |ViVjYy| sin(0y+0-07) , ij = 2.3,...N  (19)
J2ii=|Vj|oPilov; = |V;||ViYij|cos(0i+dj-6i) ,ij = 2.,3,...,N (20)
J3ij = 8Qildd) = -|ViV; Y| cos(0yj+05-64) , ij = 2,3,...N  (21)
J4ij = |Vj|00i/06; = -|Vj||ViYy| sin(@y+-0i), ij = 2.3,....N (22)

Equations for the Jacobian matrix elements when i = j are
calculated using different expressions in [2] as well:

J1ii = OPi{06i = Yn=1 |Yin Vi Va| sin(Oin+on-5:) (23)
nei

J2ii = |ViloPi|Vi| = P, + [V Real {Yii} (24)

J3ii = 0Qil0d;i = ZZ -1 |Yin Vi Va| cos(@int+6n=6) (25)

J4ii = |Vi|oQid|Vi| = Qi - [Vif* Imag {Yi} (26)

IV. CONCISE DERIVATION OF THE JACOBIAN MATRIX

Recent papers in the research literature have presented a
method for calculating the Jacobian matrix that is concise,
elegant, and simple to program [7], [8], [9]. Those papers use
[ V'] to denote a square matrix with vector V along the diagonal
and zeros elsewhere. This paper uses diag ( V') in place of [ V']
. If V is the vector of bus voltages, I is the vector of bus
current injections and Y is the bus admittance matrix then the
vector of bus power injections is:

S=diag (V) I*=diag(V)(YV)* 27
and the partial derivatives required for the Jacobian are
DsS = diag (I*)DsV+ diag (V) Ds (Y*V*) (28)
= diag (I*) [/ diag (V)]
+ diag (V) [Y* [jdiag (V) ]*] (29)
= jdiag (V) [diag (I*)- Y*diag (V*)] (30)

Dy S
= diag (I*)D v\ V+ diag (V) D v (Y*V*)(31)

= diag (I*) diag (V) [diag (| V[)]""
+ diag (V) Y*diag (V*) [diag (| V*])]"" (32)

= diag ( V) [diag( I* ) + Y* diag( V*)] [diag (| V|)]"' (33)

V. EXPLAINING THE CONCISE DERIVATION TO STUDENTS

One approach to teaching the concise formulation to students
is to explain the calculations involved in the concise derivation
with undergraduate level matrix math. To do this, several
derivations must be introduced starting with the derivative of a
Hadamard product.

A. Preliminary Mathematical Results

The Hadamard product of two matrices is the entry-wise
product matrix defined by [11]. If

F=[fmn] uxyv  and G =[gpmn] uxn (34)
The Hadamard product of A and B is:
FoG= [fmngmn] MxN (35)
Result 1: Derivative of a Hadamard product of vectors.
If F=[f;,] ux1 and G =[g,,] mx1 are functions of
X= [xn] ~Nx1 then
f191
Dx(FOG)=Dx| : (36)
fudm
0(f 1 Im)
- 67
f m 99m
[ax + fm xn L ypan (38)
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Result 2: Derivative of the product of a constant matrix times
a variable vector. Let
A = [am] kxm be amatrix of constants and

F (X)=[fn] mx1 be a function of X = [x,] vx1
ai1fi + afo + o+ amfu g.l
e : o] 1)
aK1f1+ aK2f2+ et aKMfM gK
Then
91 ag
DX(AF) Dx axk (42)
NS KxN
N [ﬁ(aklfl + Qeofo + ot akaM)]K N )
X
of; 0f> ofm
“longet deget ot a4
= A Dy (F) (45)

Result 3: Derivative of a complex matrix with respect to phase
angle and magnitude. Let

Vi [V;|e/® o V1l
Y e R A T (46)
Vn |VN|ej5N Sy [Vnl

The matrix of derivatives of voltage with respect to angle can
be expressed as:

W
[651 aaN]
DsV = | - : | 47
%N .. 9N
laal aaNJ

However, since ¥V only depends on Jy, all off-diagonal
entries are zero:

jlvlle/51 0
DsV = : : l (48)
0 o jIvler
v, 0
= j[ P l—jdiag(V) (49)
0 VN
Similarly,
elf ... 0
DwV = : : ] (50)
0 I L
|Vl|€j61 0 |V1|_1 0
= : : : : l (5D
0 “es |VN|ej§N 0 o |VN|_1
= diag(V) [diag (| V'[)]" (52)

Result 4: Commutativity of Hadamard products and of
diagonal matrices.
If F=[f,] mx1 and G =[g;,] mx1 then
Fo G=[fngml ux1 = [gmfml ux1=GoF (53)
diag ( F) diag ( G') = diag ([fngm] sx1) (54)
= diag ([gmfm] mx1) = diag (G) diag (F) (55)

B. Application of Results to Explain Concise Proof to
Students

Then the concise proof can be explained to dual level
students by starting with the complex power equation:
S=Vol*=Vo(YV)* (56)
The derivative of the complex power with respect to the angle
can be found using Result 1:

DsS = diag (I*)DsV+ diag (V) Ds (Y*V*) (57)
The equation can be further simplified by using Result 2 and
Result 3:

DsS=diag (I*)[jdiag (V)]

+ diag (V) [ Y* [jdiag (V) ]* ] (58)
Diag ( V') can be placed at the front of the equation by using
Result 4:
DsS = jdiag (V) [diag (I*)-Y*diag(V*)] (59)
Likewise, the derivative of the complex power with respect to
the voltage magnitude can be found starting with Result 1:

D v S=diag (I*)D v V+diag(V)D v (Y* V*) (60)

The equation can be further simplified using Result 2 and
Result 3:

Dv| S = diag (I*) diag (V) [diag (| V])]!
+ diag (V) Y*diag (V*) [diag(|V*D] ! (61)

Diag ( V') can be placed at the front of the equation by using
Result 4:

DS = diag(V) [diag(I*) + Y* diag(V*)] [diag(IV])] "' (62)

C. Expressing Concise Formulation in Terms of Proofs in
Appendix

In order to express the concise formulation of the Jacobian
in terms that are suitable for undergraduate students, it is
necessary to define P =Real{S}, O =Imag{S} , anditis
helpful to define:

Sdiag = diag(S) (63)

A = diag(V) Y* diag(V*) = V VT o y* (64)



Then (59) and (62) become:

DsS = j(Sdiag-A4) (65)
(D S)diag(|V) = Sdiag + A (66)
which yield the equations derived in the appendix:
OPi/00; = - Imag { Sdiagij - Aij } (67)
0Qi/00j = Real { Sdiagij - Aij } (68)
[Vi|OPi/ 0|Vj| =Real { Sdiagjj + Aij } (69)
| Vi|0Qi/ 0|Vj|=1mag { Sdiagij + Aij } (70)

D. Calculating Concise Formulation in MATLAB

Matrix A can be calculated as the element by element
product of two matrices, namely the outer product * V' T and
the bus admittance matrix ¥. In MATLAB, the operator " . *"
performs element by element multiplication of vectors or
matrices. The MATLAB function "diag (S) " creates a matrix
with the elements of vector S on the diagonal. Matrices
containing all the partial derivatives required to construct the
Jacobian matrix as formulated in [2] can be calculated in
MATLAB with the following six lines of code:

Sdiag = diag ( V .* conj(Y*V) ) ;
A= (V * conj(V.") ) .* conj(Y) ;
DPDdelta = -imag(Sdiag-3);

VDPDV = real (Sdiag+i) ;

DQDdelta = real (Sdiag-3);

VDQDV = imag(Sdiag+a) ;

The Jacobian matrix in [2] can then be constructed from the
partial derivatives. For example, suppose a four-bus network
has generator buses 1, 2 and load buses 3, 4. The slack bus has
V1 =1 £ 0° and the voltage magnitude at the second bus |[V?2|
is also specified in advance because it is a voltage-controlled
bus. There are five nonlinear expressions for the mismatch
values of P2, P3, P4, 03,04, and five variables that must be

solved for include 2, d3, d4, |V3|, and |Va| . The Jacobian
matrix can be constructed from the matrices in the previous
section of code with the following four lines of MATLAB code:

J(1:3,1:3) = DPDdelta(2:4,2:4);
J(1:3,4:5) = VDPDV(2:4,3:4);
J(4:5,1:3) = DQDdelta(3:4,2:4);
J(4:5,4:5) = VDQDV (3:4,3:4);

VI. USE OF CONCISE FORMULATION IN TEACHING

Teaching the concise formulation of the Jacobian to lower-
level students has not been documented in the literature. The
derivations of the concise formulation in the appendix are

5

suitable for undergraduate students, where some cases can be
presented in lecture while other cases are assigned as exercises.
These derivations have been successfully taught in a dual
(undergraduate and graduate) level course on computational
methods for power systems for ten years.

A. Introducing Newton's Method With Traditional Jacobian
Students first learn to apply Newton's method to a
polynomial function of one variable such as:
g@)=x3-5x2+2x+8=0 (70)
Then students apply Newton's method to the power flow

equations for a 2-bus network with a generator connected to
bus 1. The equations and variable are:

PZ - PZSChEd] [52
= ’ =0 , = 71
o (x) [QZ - Qz,sched o |V2| ( )

The first time students apply Newton's method to the two bus
network they start with the power flow equations in terms of
trigonometric functions and calculate partial derivatives:

gix)= [Va| [Vi]|Ya|cos( 6+ 01-02)
T Va2l [ V2| [Ya2|cos(622) - Prschea=0 (72)

)= -|Va2| |Vi]|Y2a]|sin(On+381-02)

S| Va [ V2] [Yo|sin(62) - Qrschea =0 (73)

B. Deriving Concise Formulation of the Jacobian

Then we work through the proofs of the concise formulation
of the Jacobian with nearly equal participation by the students.
For example, we prove the following in class:

OPi/0d; = - Imag { Sdiagij - Ajj } (74)
and assign the proof of the following as homework:
d0i/d0; = Real { Sdiagj; - Aij } (75)

It helps to preface the class derivation of (74) by calculating the
partial derivatives for a 3 bus network with every term written
out similar to the expressions for g; (x) and g»(x) above.

After students complete the proof for (75) we derive:

| Vj| OPi/06; = Real { Sdiagij + Aij } (76)

in class and assign the proof of the following as homework:

| V| 0Qi/06; = Tmag { Sdiagij + Aij } (77)

By this point it is not necessary to preface the class derivation
of (76) by calculating the partial derivatives for a 3 bus network
with every term written out.

C. Updating Power Flow Solution to use Concise Jacobian

We show students how to calculate matrices Sdiag, A,
DPDdelta, VDPDV, DQDdelta, VDQDV using the six



lines of code in the previous section of this paper. We point out
that the first row of the Jacobian can be calculated as:

J(1,1)
J(1,2)

DPDdelta(2,2) ;
VDPDV (2,2) /V(2) ;

and let students figure out how to calculate the second row of
the Jacobian. Then students use Newton's method to solve the
2 bus network a second time using the new (concise)
formulation of the Jacobian and see that they get the same
answer as before. Then we make a slight variation in the power
flow calculation to use the update equations in [2] which
eliminates the need to divide by V(2) in the expression for
J(1,2) above.

Then we explain which equations and variables are used in
power flow solutions for larger networks and use the concise
Jacobian to calculate the power flow solution for a network with
4 buses and 2 generators such as shown in Fig. 1. There are five
nonlinear expressions for the mismatch values of P>, P3, P4,

03, 04, and five unknown variables 02, J3, d4, |V3|, and |V4] .
We show students how to assign values to a submatrix of the
Jacobian with the following line of code:

J(1:3,1:3) = DPDdelta(2:4,2:4);

and require students to figure out how to complete the Jacobian
with the remaining three lines of code:

J(1:3,4:5) = VDPDV(2:4,3:4);

J(4:5,1:3) = DQDdelta(3:4,2:4);

J(4:5,4:5) = VDQDV (3:4,3:4);

3) jr70 Y P1HIQ 0 (D 1400 go1 @)
MY AN

/L ‘L-SOj -80j‘L ‘]‘-95j -95j —/L
; [T ]

P3 + -90j -90j= = =-85j -85j P4 +

ja3 | ) 'T T T |
J/GOW‘(Z) j/ 80

Fig 1: 4-bus network for power flow solution.

We provide values for all the predetermined quantities and
an initial starting point such as the following:

(Pasch, P3sch, Pasch, Q3sch, Qasch )

:(85_87_87_45_4) (78)
81=0 and |Vi|= | V2| =1 (79)
x®=70,0,0,1,1]". (80)

and students adapt the power flow program they wrote for the
2-bus network to calculate the power flow for the 4-bus network
in Fig. 1 using the concise formulation of the Jacobian. Finally,
we ask students to consider how the concise formulation of the
Jacobian matrix facilitated writing a power flow solution for the
4 bus network.

VII. CONCLUSIONS

The power flow program is an essential part of power
systems analysis and design. An iterative solution method such
as Newton-Raphson is necessary because the power flow
equations are nonlinear. Common formulations of the Jacobian
matrix in the NR calculation are cumbersome, inelegant, and
laborious to program. Recent literature provides a concise
formulation of the Jacobian matrix but its derivation requires
mathematical manipulations that are more advanced than what
most undergraduate students know. While the proofs in the
research literature are difficult for students, the concise
formulation is elegant and easy to program which facilitates
teaching the NR power flow solution method to undergraduates.

This paper presents two methods for teaching the derivation
of the concise formulation of the Jacobian to dual level
(undergraduate and graduate) students. The first method
involves explaining Hadamard products and higher order
derivatives at an undergraduate level in order to fill in the
details of derivations in the research literature. The second
method only requires undergraduate vector calculus and
focuses more on keeping track of which terms in the power flow
expressions contain which variables. While the first method
has advantages such as introducing higher dimensional
derivatives, the proofs of most of the details are going to require
an instructor to present details that the students are unlikely to
figure out on their own. The second method, in contrast,
involves several different cases where the instructor can prove
some cases in class and assign others as exercises. Using the
second method, students learn to work through all the details of
all the cases from start to finish with an amount of repetition
that is effective for teaching dual level students.

This paper describes how we have successfully taught NR
power flow solution to dual level students for 10 years at
Indiana University-Purdue University Indianapolis. We start
using Newton's method to find the roots of a polynomial
function of a single variable. Then we apply Newton's method
to a two-dimensional problem arising from a 2-bus network.
The first time we solve the 2-bus power flow, students calculate
partial derivatives of the power flow equations in terms of
trigonometric functions with all of the terms written out
explicitly, that is, without summation notation. Then we derive
the concise formulation of the Jacobian for an arbitrary number
of variables by dividing the proofs into several cases and
assigning proofs of some of the cases as exercises. Then
students modify the 2-bus power flow solution to use the
concise formulation of the Jacobian and see that the code is
much simpler than using trigonometric functions while the
numerical results are the same. Finally, students use the concise
formulation of the Jacobian to calculate the power flow solution
for a 4-bus network with two generators. We have successfully
used this method to teach a total of about 130 dual level
students, mostly undergraduates, to program the Newton-
Raphson power flow solution for small networks.
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IX. APPENDIX

Equations (67) through (70) are derived starting from the
expressions for P; and Q;.

Pi:Zn | YinViVn | COS(Hin + 511 - 51) (81)

Qi=-Yu | YinViVn | sin(6in + On - 6i) (82)

The proof of each equation involves separate cases for i =
and 7 #j and using A4 defined in equation (64). The results show
that each equation is valid for both cases.

A. Partial Derivatives of P; With Respect to 0
For the case where i # j, only the j’th term contains a J; so:

OPi/06j = - | YijViVj| sin(0jj + J; - 6i) (83)
Fori+#j, Sdiagij=0and
Imag { — Sdiagijj + Aij } =Imag { 4 } (84)

=Imag { | ViV;Yij|£(0ij+6;-6i) } (85)
= | YyiViVj| sin(0jj + 6; - 6i) (86)
= OPi/00; (87)

For the case where i = , start by pulling out the i’th term of
equation (81):

Pi=|YiiVi*| cos(Bii + i - di)

+ Dnzi | YinViVa | cos(Oin + n - 6i) (88)
The partial with respect to the i’th term is zero. After
differentiating the summation, it is convenient to include two
additional terms that add up to zero so that they do not change
the partial but do allow for further manipulation of the
summation.

OP;i/06; = | YiiVi* | sin(bii + i - 5i)
- YiiVi2| sin(6;; + d; - 6i)

+ Znii | YinViVn | Sin(gin + Op - 51') (89)
OPil06i =Y. | YinViVn | sin(@in + 6y - 5i)
- | YiiVi? | sin(0ii + 6i - 6i) (90)
Notice that the first half of OPi/0d; is equal to the negative
reactive power:
OP06; = -Q; + Imag { 4} oD
OP/06; =Tmag { - S; + Aii} 92)
OPi/00; = Imag { - Sdiagi; + Aii } (93)

In summary, the following is valid for both i #/, and fori=; :

OPi/0dj = - Tmag { Sdiagjj - Ajj } (%94)

END OF PROOF

B. Partial Derivatives of Pi With Respectto | Vj|
For the case where i # j, only the j’th term of equation (81)
contains a | V| so:

OPi/o| V| = | YiiVi| cos(8jj + Jj - 6i) 95)
Equation (95) is then multiplied by | ¥;| to obtain:

| Vj| OPil0| Vi | = | YijV;Vi| cos(Bj + dj - 6i) (96)
For i #j, Sdiagij = 0 and

Real { Sdiagijj + Ajj } = Real { 4j; } 97)

=Real { | ViV;Yj| Z( 0jj+6j- i) } (98)
=| YyViVi| cos(6ij + J; - 6i) 99)
=| V| 8Pi/d| Vj| (100)

For the case where i =j, again start by pulling out the i’th term
of equation (81) to get equation (88) and take the partial with

respect to | Vi |:

OPi/0| Vi| =2 | YiiVi| cos(bii + 6i - 6i)

+ an’ | YinVn | COS(ein +On - 51’) (101)

Multiply by | Vi | and put half of the first term back into the
summation:

| Vi| 0Pi/0| Vi|=| YiiViVi| cos(8ii + i- i)

+ Y0 | YinVaVi| cos(0in + On - 6i) (102)

Notice that the second half of equation (102) is equal to the
real power:

| Vi| OPi/0| Vi|=P; +Real { A;i }
| Vi| OPi/0| Vi|=Real { S; + Aj; }

(103)
(104)



| Vi| OPi/0] Vi|=Real { Sdiagi;i + Aii } (105)

In summary, the following is valid for both i #, and fori = :

| V| &Pi/d| V| = Real { Sdiagi; + A } (106)

END OF PROOF

C. Partial Derivatives of Qi With Respect to

The proof of the reactive power partials will be formulated
similarly to the real power partials. For the case where i # J,
only the j’th term contains a J; so:

0Qildd; = - | ViV;Yij | cos(ij + 6 - 5i) (107)
Fori+#j, Sdiagij=0and
Real { Sdiagjj -Aij } = Real { -4j; } (108)

=Real { -| ViV;Yiji| Z(04+5;- 6i) } (109)
=-| YiiViV;| cos(s + Jj - 9i) (110)
= 0Qildd; (111)

For the case where i =, start by pulling out the i’th term of
equation (82):

Qi = - | YiVi* |sin(Gii + 0i - 6i)

- Xnzi | YinViVn |sin(Oin + 0n - 1) (112)
The partial with respect to the i’th term is zero. After
differentiating the summation, it is convenient to include two
additional terms that add up to zero so that they do not change
the partial but do allow for further manipulation of the
summation.

00i/06; = | YiiVi*| cos(Bii + Ji - 5i)
- YiiVi2| cos(Bi; + 0i - i)

+ Ynzi | YinViVa | cos(Oin + On - i) (113)
0Qil00i =Y.y | YinViVn| cos(@in + n - i)
- | YiVi? | cos(8ii + i - i) (114)

Notice that the first half of 0Qi/0d; is equal to the real power:

0Q/05; = P; + Real { -4;; } (115)
00i/05;=Real { S;- Aii} (116)
00i/05; = Real { Sdiagi - A } (117)

In summary, the following is valid for both i #/, and fori= :

0Qi/0d; = Real { Sdiagjj - Ajj } (118)

END OF PROOF
D. Partial Derivatives of Q; With Respectto | V|

For the case where i #j, only the j’th term contains a | V| so:

0Qi/0| V| = -| YijVi| sin(6jj + 6; - o) (119)

Equation (119) is then multiplied by | ¥;| to obtain:

| V318001 ¥j| =~ | Yy¥iVi sin(@5 + 5~ 6) (120)
For i #j, Sdiagij = 0 and
Imag { Sdiagjj + Ajj } = Imag { 4jj } (121)

=1Imag { | ViV;Yij | £(0i+0; - 0i) }(122)
— | YViVy|sin(0y + G- 6)  (123)
=|Vj60ild| Vj | (124)

For the case where i =/, again start by pulling out the i’th term
of equation (82) to get equation (112) and take the partial with

respectto | Vi|:

20ild| Vi| = -2 | YiVi| sin(0si + di - 67)
- Ynzi | YinVn | sin(@in + 0n - i) (125)

Multiply by | Vi | and put half of the first term back into the
summation:

| Vi|aQi/a| Vi|: - | Y11V1V1| Sin(@ii-i- i - 51’)

S | YinVaVi| Sin(@in + On - 5i) (126)

Notice that the second half of equation (126) is equal to the
reactive power:

| Vi| 0Qi/0| Vi| = Qi+ Imag { 4ii } (127)
| Vi| 0Qild| Vi|=1Imag { Si+ Aii } (128)
| Vi| 0Qil0| Vi|=Tmag { Sdiagii + Aii } (129)

In summary, the following is valid for both i #/, and fori= :

| V1 60i/6) V| = Imag { Sdiagij + Ay } (130)

END OF PROOF
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