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Abstract—With the advent of real-time PMU data acquisition
technology, the possibility of solutions to several instability
problems in power system has increased. However, PMUs may
undergo different data quality issues like recording bad data
or missing data. Some paper mentions about 5-10% of missing
samples in some historical PMU’s dataset. This paper assumes
0-10% of missing phasor samples by randomly deleting mea-
surements and explores imputation methods of handling missing
data in real time. The simulation is carried out in a DT-based
stability prediction and one-shot control scheme of WECC’s
176-bus model. Several control performances are evaluated to
decide a useful method of missing data recovery for the response
based one shot control scheme. A PMU data quality issue is
not limited to missing samples only but also interference with
noises. Later part of this paper performs simulation considering
noisy phasor measurements. A 45 dB of Gaussian distributed
noise is deliberately added to phasor samples and simulation is
performed with different DT indices and thresholds for real time
stability prediction and control actuation.

Index Terms—Decision trees, one shot control, phasor mea-
surement units, power system transient stability, response based
system, wide area control

I. INTRODUCTION

A wide area monitoring system (WAMS) technology
involves several synchronized phasor measurement units
(PMUs) across the network that measure and collect phasor
samples to a central location. These samples serve important
role in monitoring and analyzing different characteristics of
a power system such as state estimation, fault detection, etc.
The concept of synchronized phasor measurements and their
application to improve monitoring, protection and control of
a power system is well explained in [1]. The advent of real-
time PMU data acquisition has provided solutions to various
instability problems, however, one cannot ignore several data
quality issues associated with this technology. Data quality
issues, for example, recording non-numeric data, bad data or
simply missing data might occur due to problems related to
synchronization signals, equipment errors and malfunction,
communication noises, etc [2]. Reference [3] mentions that
on an average, 5-10% of missing samples in some historical
PMUs data sets have been recorded.

Monitoring and analysis of phasor samples with missing
values has significant effect on the overall quality of the result
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and therefore should be handled properly. For a real time
power system control, general methods of missing data han-
dling like deletion technique, mean value method or maximum
frequency method are not likely to generate appropriate results
because they do not involve extrapolation of previous samples.
Methods that use extrapolation technique like zero order hold
(ZOH), first order hold (FOH) and Lagrange extrapolation
explained in [2], [4], [5], [6] could possibly be useful to
recover missing samples from PMUs.

Lately security assessment with missing phasor measure-
ments has been widely carried out using data mining al-
gorithms like ensemble decision trees (EDT) with bagging,
boosting, surrogate split, etc. [7], [8], [9], [10]. The surrogate-
split algorithm uses several alternate predictors with higher
association to the primary classifier to create a split in case
when primary predictor is missing. The methods of bagging
and boosting rather work more accurately with several full
grown DTs and mostly consume large memory space. Another
limitation of EDT is that it restricts the users to retrieve the
complete data-set and therefore gives lower flexibility to try
out different other methods for analysis of phasor samples. The
advantage of simulation-based imputation methods like ZOH,
FOH, or Lagrange polynomial method is that the imputation
phase and the analysis phase can be totally separated allowing
to work on a complete data-set [11]. The recovered data-set
can then be used for creating small DTs with one or two nodes
using limited predictors and low memory space.

The scope of this paper does not include training ensemble
decision trees using missing predictors, but uses imputation
techniques to recover missing values from 0-10% directly on
the test sets. The recovered phasor measurements and other
indices [12], [13] are fed to response based DTs [14] to
trigger one shot stabilizing control [15]. Preliminary methods
described in this paper first train predictors to create single
node DTs for instability control without event detection. Later
methods train another single node DT with an ability to detect
end of event that is augmented to the control DT to perform
control with event detection [13], [16]. The main purpose of
augmenting event detection DT with the control DT is to create
a less ‘trigger happy’ DT that actuates control for a limited
number of severe cases only, thereby reducing the number of
unnecessary controls. The notion of ‘trigger happy’ DTs is
explained in [13].



II. PROPOSED MISSING DATA IMPUTATION TECHNIQUES

Data hold methods are simple extrapolation techniques
that can be used for recovering missing PMU’s samples. A
zero order hold (ZOH) technique holds a previous sample in
the missing place until the arrival of next sample. A first
order hold (FOH) method recovers the missing sample by
linear approximation of two recent available samples. Since
we are assuming a temporal correlation of phasor samples
from a particular channel, we also use Lagrange extrapolation
technique to recover missing PMU’s measurements [17].

A. Data Holds

Holding a data generates a continuous time signal g(t) from
a discrete-time sequence x(kT ) [5]. Let us consider a signal
g(t) during a time interval t such that kT ≤ t ≤ (k + 1)T ,
then g(t) can be approximated by a polynomial as-

g(kT + τ) = a0 + a1τ + ...+ an−1τ
n−1 + anτ

n

g(kT + τ) = x(kT ) + a1τ + ...+ an−1τ
n−1 + anτ

n
(1)

where 0 ≤ τ ≤ T.
It can be seen that at τ = 0, g(kT ) = x(kT ). An nth order

hold circuit uses (n+1) discrete data to generate g(kT + τ).
1) Zero Order Hold (ZOH): ZOH performs signal recon-

struction by holding a recent value until next sample arrives
[5]. In (1), if n=0, a zero-order hold is obtained such that

g(kT + τ) = x(kT ) (2)

where 0 ≤ τ ≤ T and k = 0, 1, 2, ...

2) First Order Hold (FOH): FOH performs signal recon-
struction by using (n + 1) = 2 recent discrete data [5].
Therefore, in (1) for n=1,

g(kT + τ) = x(kT ) + a1τ (3)

g(kT + τ) = x(kT ) +
x(kT )− x((k − 1)T )

T
τ (4)

Fig. 1. Data hold methods

Fig. 1 shows an example for measured data samples and
their corresponding ZOH and FOH signals.

B. Lagrange Polynomial Method

Lagrange polynomial method gives the lowest degree poly-
nomial passing through given set of points (xj , yj) where each
xj is different than the other such that 1 ≤ j ≤ (n+ 1).

Lagrange interpolating polynomial is described in [2][6][18]
and can be represented as follows:

L(x) =
n∑

j=1

yj lj(x) =
n∑

j=1

yj

n∏
k=1,k 6=j

x− xk
xj − xk

(5)

where xj 6= xk and lj(x) is the coefficient in the Lagrange
polynomial.

Considering n=3, the Lagrange polynomial can be expanded
as follows:

L(x) = y1
(x− x2)(x− x3)
(x1 − x2)(x1 − x3)

+ y2
(x− x1)(x− x3)
(x2 − x1)(x2 − x3)

+y3
(x− x1)(x− x2)
(x3 − x1)(x3 − x2)

(6)

If P1, P2, P3 denotes three recent preceding sample po-
sitions, then a missing point can be recovered by strict
extrapolation (SE-lag) of data points from these positions.

TABLE I
STRICT LAGRANGE EXTRAPOLATION (SE-LAG)

P3 P2 P1 Missing data
xk−3 xk−2 xk−1 xk

yk−3 yk−2 yk−1 yk

The xk’s are time domain samples at 30 Hz and the yk’s
are phasor measurements corresponding to kth sample.

III. CASE STUDY

The proposed methods for missing data recovery is experi-
mented in a 29-machine, 176 bus model of Western Electricity
Coordinating Council (WECC). PMUs are installed in 17
buses. For data obtained from 385 six-seconds of simulations,
decision trees are trained to detect end of events and generate
one shot control criteria. This training set is same as the one
used in [12]. The one shot control combination used in this
research is same as in [13] which is 500 MW of generator
tripping on two AC buses and corresponding 500 MW of load
shedding on other two buses.

A. Training the Control DT

Reference [13] deduces that use of bus angle velocities
yields better success rates in predicting if an event needs
control or no control. Therefore, the input vectors used for
training the control DT in our case is bus angle velocities
of 17 PMU buses obtained from 385 six-second simulations
of the model. A binary target is used to classify each time
sample of the events as ‘CONTROL’ for unstable events and
‘NO CONTROL’ for stable events. An unstable event is the
one whose maximum generator angle difference is greater than
a certain threshold value like 300 degrees explained in [19],
otherwise we classify them as stable.



This paper uses a rule-set derived in [13] that if the bus
angle velocity of 9th bus at any time sample is greater than or
equal to 80 i.e. (θdot9 >= 80). the event is set to ‘CONTROL’.

B. Training the Event Detection DT

Whenever a severe short circuit fault occurs in a transmis-
sion system, some of the bus voltage magnitudes reduce below
1 per unit (pu) as shown in Fig. 2. This gives rise to large
variance of bus voltage magnitudes. As soon as the faulty line
is removed, the voltages tend to return to 1 pu and hence the
variance decreases. The derivative of bus voltage magnitude
variance (bmvardot) thus has a large positive spike during the
fault and large negative spike right after the fault is cleared
which makes it a good indicator for short circuit faults. The
nature of bmvardot can be seen in Fig. 8. The variance here
is infact standard deviation. The mathematics of bmvardot
index is explained in [13].

Fig. 2. Bus voltage magnitudes during a fault

Reference [13] experiments that the DT trained using
bmvardot better detect end of faults when its value is less than
or equal to a threshold of -0.03 pu (bmvardot <= −0.03).
This event detection DT is combined to one of the control
DTs to actuate control with event detection as shown in the
Fig. 3. The timer to actuate control is set to maximum of 5
samples i.e. 0.167 seconds after detection of an event.

IV. TEST RESULTS AND ANALYSIS

All missing data handling techniques are tested in a set of
480 single line to ground (SLG) fault test contingencies [13]
for six seconds simulation in TSAT (Transient Security Assess-
ment Tool). Pseudo-random number generators like rand()
function in MATLAB is used to randomly delete samples of
bus voltage magnitudes and bus voltage angles from 0-10%.
With the recovered phasor measurements, simulations are then
performed to actuate one shot control with or without event
detection. When the control DT is satisfied, a 100 milliseconds
actuation delay is applied before triggering the one shot control
combination.

A. Test Results without Event Detection

Table II shows the number of events controlled by each
imputation method subjected to 0-10% of missing phasor
measurements. It can be observed that the number of events
controlled for ZOH and SE-Lag is increasing gradually while

Fig. 3. Control methodology with event detection

for FOH, it remains lesser and almost constant. The success
rate of any method is higher only if, for the same number
of events controlled, the method stabilizes more number of
events. Fig. 4 shows the comparison of success rates. The FOH
method has almost the same success rate for higher percentage
of data missed, while for other methods, the success rate
decreases gradually.

TABLE II
EVENTS CONTROLLED WITHOUT EVENT DETECTION

% Miss 0 1 2 3 4 5 6 7 8 9 10
ZOH 195 212 224 230 240 249 253 260 264 269 270
FOH 195 195 194 194 194 195 195 195 195 197 197

SE-Lag 195 335 388 407 423 436 448 449 461 468 471

Fig. 4. Success rates without event detection

The reason that ZOH method did not give better success
rate than FOH is because of its nature of holding the exact
previous measurement in the missing place until the arrival of
next sample. For ZOH, the difference between two samples at
the point of recovery becomes zero followed by a difference
almost twice as large as it should be. This large derivative
value causes the DT to actuate control for more number of
events. This can be illustrated from Fig. 5. We consider a
missing sample from 9th PMU bus at around 0.78 seconds



and recover it using ZOH and FOH. Due to previous sample
held by ZOH, the value of bus angle velocity at the recovery
point is very low around 4.5 deg/s. There is a spike in the
velocity right after the recovery point up to 52 deg/s thereby
crossing the threshold of θdot9 > 50 and actuating control
at around 0.82 seconds. This situation occurs frequently with
increase in percentage missing and worsens when consecutive
samples are missing in the data-set. The behavior of FOH
tends to reduce this error.

Fig. 5. ZOH behavior to trigger more controls

The fact of controlling a large number of events allows
ZOH to stabilize few additional events but trigger substantially
higher unnecessary controls. Unnecessary controls are those
simulations where control is actuated to a self-recovering
event and are not desired. Simulation result shows even larger
unnecessary controls for SE-Lag method as shown in Fig. 6.

Fig. 6. Unnecessary controls without event detection

B. Test Results with Event Detection

Table III shows the number of events controlled with event
detection for different percent of data missed. The result is
similar to Table II but with lower number of events controlled.
This is expected because with the augmentation of event
detection DT, the control DT is checked within a specified
timer only. This modification also results in lower number of
unnecessary controls and higher success rates. Table IV shows
the number of unnecessary controls for 0-10% of data missed

which is substantially lower than the results obtained from
control without event detection.

Fig. 7 shows the success rates for different methods.

TABLE III
EVENTS CONTROLLED WITH EVENT DETECTION

% Miss 0 1 2 3 4 5 6 7 8 9 10
ZOH 96 97 98 100 102 103 104 105 105 106 108
FOH 96 98 99 98 98 98 97 97 98 102 103

SE-Lag 96 104 113 124 133 143 152 158 163 173 184

TABLE IV
UNNECESSARY CONTROLS WITH EVENT DETECTION

% Miss 0 1 2 3 4 5 6 7 8 9 10
ZOH 6 6 7 9 10 11 12 12 13 14 15
FOH 6 7 7 6 6 6 5 5 5 7 8

SE-Lag 6 13 20 29 37 47 55 59 61 68 78

Fig. 7. Success rates with event detection

C. Test Results with Addition of Noise

The probability distribution of PMU noise and its quantifica-
tion has been studied in [20] which generalizes that Gaussian
distributed noise with Signal-Noise ratio (SNR) of 45 dB is
realistic for simulating purposes. We perform addition of white
Gaussian noise with zero mean and unity variance to our
phasor samples like in [16, p. 38] and find new thresholds
for event detection and control rule.

After addition of noise, the calculated indices will also
contain noise as shown in the Fig. 8. The initial rule for
event detection such as bmvardot <= −0.03 causes the
DT to detect event way earlier in the simulation than the
actual occurrence of fault. Adjusting the threshold value to
more negative values like less than -0.10 or -0.12 eliminates
the chance of early event detection as shown in Fig. 9 and
improves the control performance. Other indices like derivative
of average of bus voltage magnitudes (bmavgdot) [13] plotted
in Fig. 8 can also be used for event detection as it filters out
the noise and proves equally useful as bmvardot.

Different values for event detection threshold were adjusted
with control rule of θdot9 >= 80 to find performance for 480
SLG test faults as in Table V. It shows results for number of
events stabilized, events controlled, unnecessary controls and
success rate respectively.



Fig. 8. Indices for event detection with noise

Fig. 9. Adjusting new threshold for bmvardot

V. CONCLUSION

Previous work done for missing data handling in [17][21]
mentions about coding error due to which the ZOH results are
expected to be more accurate for smaller percent missing only.
Similarly, the work done in [17] mentions about an unrealistic
approach of using future values for real time missing data
recovery. The work done in this paper corrects these mistakes
and deduces that First Order Hold (FOH) is more useful in
recovering missing values for a response based scheme as in
[12], [13], [14]. The success rate with 10% missing data for
FOH method is almost 23% while for ZOH, it is 18% only.
The reason that ZOH method does not prove better than FOH
is because it contributes to sufficiently higher unnecessary con-
trols and lower success rate. This paper in addition performs
simulation with noisy phasor measurements which show that
the control combination used here is robust enough to handle
at least 45 dB of Gaussian noise in PMUs’ measurements.
The performance shows a success rate of around 16-18%. A
future enhancement of this work could be using data mining
algorithms like ensemble DTs with missing predictors like in
[7], [8], [9], [10] and comparing the results with imputation
methods described in this paper.
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