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ABSTRACT: We introduce the package PhylogeneticTrees for Macaulay2, which allows users to com-
pute phylogenetic invariants for group-based tree models. We provide some background information on
phylogenetic algebraic geometry and show how the package PhylogeneticTrees can be used to calculate
a generating set for a phylogenetic ideal as well as a lower bound for its dimension. Finally, we show
how methods within the package can be used to compute a generating set for the join of any two ideals.

MOTIVATION. A central problem in phylogenetics is to describe the evolutionary history of n species
from their aligned DNA sequences. One way to do this is through a model-based approach. A phylo-
genetic model is a statistical model, specified parametrically, of molecular evolution at a single DNA
site. We can regard the aligned sequences as a collection of n-tuples of the four DNA bases, one from
each site. Each choice of parameters results in a probability distribution on the 4n possible n-tuples. The
goal of model-based reconstruction is to find a choice of parameters that yields a distribution close to the
empirical distribution. If we are able to do so then it is reasonable to assume that the model is an accurate
reflection of the underlying evolutionary process. Most significantly, we can infer that the underlying
tree parameter of the phylogenetic model is the evolutionary tree of the species under consideration.

MATHEMATICAL BACKGROUND. In phylogenetic algebraic geometry, the statistical models under con-
sideration are tree-based Markov models. This means that we assume a Markov process proceeds along
a tree with a transition matrix associated to each edge. A κ-state phylogenetic model on an n-leaf tree T
induces a polynomial map from the parameter space 2T ⊆ Rm to the probability simplex 1κ

n
−1,

ψT :2T →1κ
n
−1
⊂ Cκ

n
.

The image of this map is the set of all probability distributions we obtain by varying the entries of the
transition matrices; we refer to the image as the model MT . For phylogenetic applications, usually κ = 2
or κ = 4.

The Zariski closure of the model VT :=MT ⊆ Cκ
n

is an affine algebraic variety. For the models we
consider, the entries of ψT are homogeneous polynomials of uniform degree. Thus, VT can be viewed
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as the affine cone of a projective variety in Pκ
n
−1. The ideal IT := I (VT ) ⊆ C[x1, . . . , xκn ] of all

polynomials vanishing on VT is a homogeneous ideal called the ideal of phylogenetic invariants; this
ideal carries useful information about the model that can be used for determining model identifiability
and performing model selection [E. S. Allman and Sullivant 2011; Allman et al. 2012; Cavender and
Felsenstein 1987; Casanellas and Fernández-Sánchez 2006; A. 1987; Long and Sullivant 2015; Matsen
et al. 2008; Matsen and Steel 2007; Rhodes and Sullivant 2012; Rusinko and Hipp 2012].

Given two models, MT1 and MT2 , we define the mixture model MT1 ∗MT2 to be the image of the
map

ψT1,T2 :2T1 ×2T2 ×[0, 1] →1κ
n
−1
⊂ Cκ

n
;

ψT1,T2(θ1, θ2, π)= πψT1(θ1)+ (1−π)ψT2(θ2).
(1)

As before, we take the Zariski closure MT1 ∗MT2 ⊆ Cκ
n
, and now we obtain the algebraic variety

VT1∗T2 = VT1 ∗ VT2 , the join of VT1 and VT2 . The join of two algebraic varieties V and W embedded in a
common ambient space is the variety

V ∗W := {λv+ (1− λ)w | λ ∈ C, v ∈ V, w ∈W }.

In the special case when V =W, the join variety V ∗ V is called the secant variety of V . Similarly, given
two ideals I1, I2 ⊂ C[x1, . . . , xn], the ideal I1 ∗ I2 ⊂ C[x1, . . . , xn] is the join ideal. As for varieties, if
I1 = I2, the ideal I1 ∗ I2 is the secant ideal. We refer to [Sturmfels and Sullivant 2006, Section 2] for the
definition of I1 ∗ I2, but note the following important property:

IT1 ∗ IT2 = I (VT1 ∗ VT2). (2)

Our package provides a means of computing invariants for those working in phylogenetic algebraic
geometry. We handle a class of commonly used models called group-based models that have special
restrictions on the entries of the transition matrices. These entries are indexed by elements of a group
and thus are subject to the Fourier–Hadamard coordinate transformation, which makes the parametriza-
tion monomial and the ideals toric [Evans and Speed 1993; Székely et al. 1993]. We will refer to the
original coordinates, which represent leaf probabilities, as probability coordinates and the transformed
coordinates as Fourier coordinates; furthermore, following the literature, we will use p for probability
coordinates and q for Fourier coordinates. For these group-based models, we implement a theoretical
construction for inductively determining the ideal of phylogenetic invariants for any tree from the invari-
ants for claw trees [Sturmfels and Sullivant 2005]. We also handle the join and secant ideals formed
from these ideals, which allows for computations involving mixture models.

FUNCTIONALITY FOR TORIC PHYLOGENETIC VARIETIES. As an example, let T be the four-leaf tree
illustrated in Figure 1 and consider the Cavender–Farris–Neyman (CFN) model, a two-state group-based
model, on T . Then the toric ideal IT is generated in degree 2. Using our package, we can compute a
generating set for IT using two different methods, phyloToric42 and phyloToricFP.
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Figure 1. Four leaf tree

The first method phyloToric42 calls FourTiTwo.m2, the [Macaulay2] interface to [4ti2], a software
package with functionality for computing generating sets of toric ideals. We input T by its set of non-
trivial splits. In this instance, 01|23 is the only nontrivial split of T , which we can enter as either {0, 1}
or {2, 3}. The indices on the q’s correspond to two-state labelings of the four leaves of T :

Macaulay2, version 1.7

i1: load "PhylogeneticTrees.m2"

i2: n = 4; T = {{0,1}}; M = CFNmodel;

i5: toString phyloToric42(n,T,M)

o5: = ideal(-q_(0,1,1,0)*q_(1,0,0,1)+q_(0,1,0,1)*q_(1,0,1,0),
-q_(0,0,1,1)*q_(1,1,0,0)+q_(0,0,0,0)*q_(1,1,1,1))

The second method phyloToricFP computes generators of IT using Theorem 24 in [Sturmfels and
Sullivant 2005]; the “FP” in the method name stands for fiber product [Sullivant 2007]. For this example,
this theorem allows us to explicitly construct a generating set of IT from generators of IK1,3 , the ideal
associated to the CFN model on the claw tree K1,3. While our example here is binary, we note that this
method is implemented for all trees, binary or not.

i6: = toString phyloToricFP(n,T,M)

o6: = ideal(-q_(0,0,1,1)*q_(1,1,0,0)+q_(0,0,0,0)*q_(1,1,1,1),
q_(0,0,1,1)*q_(1,1,0,0)-q_(0,0,0,0)*q_(1,1,1,1),
q_(0,0,1,1)*q_(1,1,0,0)-q_(0,0,0,0)*q_(1,1,1,1),

-q_(0,0,1,1)*q_(1,1,0,0)+q_(0,0,0,0)*q_(1,1,1,1),
-q_(0,1,1,0)*q_(1,0,0,1)+q_(0,1,0,1)*q_(1,0,1,0),
q_(0,1,1,0)*q_(1,0,0,1)-q_(0,1,0,1)*q_(1,0,1,0),
q_(0,1,1,0)*q_(1,0,0,1)-q_(0,1,0,1)*q_(1,0,1,0),

-q_(0,1,1,0)*q_(1,0,0,1)+q_(0,1,0,1)*q_(1,0,1,0))

The algorithm used by phyloToricFP returns more polynomials than are required to generate the
ideal. If we wish to directly compare this ideal to that returned by phyloToric42 we must reconstruct
both ideals in the same ring. Thus, we use the function qRing to define the ring of Fourier coordinates
and use the option of specifying the ring for our ideals:

i7: R = qRing(n,M)

i8: = phyloToric42(n,T,M,QRing=>R) == phyloToricFP(n,T,M,QRing=>R)

o8: = true



4 Baños, Bushek, Davidson, Gross, Harris, Krone, Long, Stewart and Walker :::: Phylogenetic trees

In our experiments, for most cases, phyloToric42 runs much faster than phyloToricFP. This is
likely because we have implemented a naive version of the toric fiber product algorithm from [Sturmfels
and Sullivant 2005] with no attempt to avoid producing redundant polynomials. It would be worth
investigating if there is a faster implementation of this algorithm. Still, one advantage offered by the
fiber product method is the ability to inductively construct a single invariant when computing the entire
ideal is infeasible. The method phyloToricRandom returns such a randomly constructed invariant.

The polynomials that are returned by both methods are in Fourier coordinates, however, they can be
converted to probability coordinates using the function fourierToProbability. To do so, we must first
construct the ring of probability coordinates using pRing. Then the method fourierToProbability
returns a ring map that converts polynomials in Fourier coordinates to probability coordinates:

i9: = S = pRing(n,M);

i10: = phi = fourierToProbability(S,R,4,M);

i11: = f = (vars R)_(0,0)

o11: = q_(0,0,0,0)

i12: = phi(f)

o12: = (1/2)*p_(0,0,0,0)+(1/2)*p_(0,0,0,1)+(1/2)*p_(0,0,1,0)+(1/2)*p_(0,0,1,1)
+(1/2)*p_(0,1,0,0)+(1/2)*p_(0,1,0,1)+(1/2)*p_(0,1,1,0)+(1/2)*p_(0,1,1,1)
+(1/2)*p_(1,0,0,0)+(1/2)*p_(1,0,0,1)+(1/2)*p_(1,0,1,0)+(1/2)*p_(1,0,1,1)
+(1/2)*p_(1,1,0,0)+(1/2)*p_(1,1,0,1)+(1/2)*p_(1,1,1,0)+(1/2)*p_(1,1,1,1)

FUNCTIONALITY FOR SECANT VARIETIES. Mixtures of group-based phylogenetic models correspond
to secants and joins of toric ideals, objects that are of interest in combinatorial commutative algebra,
but are notoriously hard to compute. In the methods joinIdeal and secant, we implement the elim-
ination method described in [Sturmfels and Sullivant 2006, Section 2] for computing the join of two
homogeneous ideals or the secant of one homogeneous ideal.

Consider now the Jukes–Cantor model on T from Figure 1. The phylogenetic ideal for the mixture of
MT with itself is the second secant ideal of the homogeneous ideal IT , denoted IT ∗IT . For secants, the
method secant takes as input a homogenous ideal and an integer k and returns a generating set for the
k-th secant ideal. The method also accepts the optional argument DegreeLimit=>{l}, which computes
generators of the ideal only up to degree l. Thus, we can obtain generators of degree 3 or less of IT ∗ IT
with the following commands. The minimal generating set of SecI3 contains 49 linear invariants; we
only print the generators with degree greater than one:

i13: = I = phyloToric42(n,T,JCmodel);

i14: SecI3 = secant(I,2,DegreeLimit={3});

i15: toString for i in flatten entries mingens SecI3
list (if (degree i)#0 == 1 then continue; i)

o15 = {q_(0,3,3,0)*q_(3,0,2,1)*q_(3,2,0,1)-q_(0,3,2,1)*q_(3,0,3,0)*q_(3,2,0,1)
+q_(0,3,2,1)*q_(3,0,0,3)*q_(3,2,1,0)-q_(0,3,0,3)*q_(3,0,2,1)*q_(3,2,1,0)
-q_(0,3,3,0)*q_(3,0,0,3)*q_(3,2,3,2)+q_(0,3,0,3)*q_(3,0,3,0)*q_(3,2,3,2)}
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The degree bound allows for the possibility of obtaining some invariants when computing a generating
set for the secant ideal is infeasible. Let (IT ∗ IT )l be the ideal generated by the elements of IT ∗ IT of
degree less than or equal to l. In some instances (IT ∗ IT )l may be equal to IT ∗ IT . To prove this, we
must verify that dim((IT ∗ IT )l) = dim(IT ∗ IT ) and that (IT ∗ IT )l is prime. Assuming we are able
to compute (IT ∗ IT )l , we can compute its dimension and verify that it is prime. We then know that
dim((IT ∗ IT )l) ≥ dim(IT ∗ IT ), leaving the inequality dim((IT ∗ IT )l) ≤ dim(IT ∗ IT ) to show. The
method toricSecantDim enables us to do this using a probabilistic method based on Terracini’s lemma
[1911] to compute a lower bound on dim(IT ∗ IT ).

Using this method, we can show that the secant of the ideal from the previous example is in fact
generated in degree less than three:

i16: = dim(SecI3)

o16: = 12

i17: = isPrime(SecI3)

o17: = true

i18: = toricSecantDim(phyloToricAMatrix(4,{{0,1}},JCmodel),2))

o18: = 12

In the code above, we used phyloToricAMatrix(n,T,JCmodel) to construct the defining integral
matrix of the toric ideal. For more details, see the documentation and [Sturmfels 1996]. In this instance,
the method outlined is substantially faster than using the secant method without a degree bound.

ADDITIONAL FUNCTIONALITY. Although this package was developed with toric ideals from phyloge-
netics in mind, the methods secant and joinIdeal can be used for any homogeneous ideals. Thus,
these can be employed for computations outside of phylogenetic algebraic geometry.

The following models are loaded with the package: the Cavender–Farris–Neyman model, the Jukes–
Cantor model, the Kimura 2-parameter model, and the Kimura 3-parameter model. Additionally, some
functionality for working with trees is available in this package, which includes the methods edgeCut,
vertexCut, edgeContract, internalEdges, internalVertices.
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