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ABSTRACT: Soil moisture (SM) and evapotranspiration (ET) are key variables of the terrestrial water cycle with a strong
relationship. This study examines remotely sensed soil moisture and evapotranspiration data assimilation (DA) with the aim
of improving drought monitoring. Although numerous efforts have gone into assimilating satellite soil moisture observa-
tions into land surface models to improve their predictive skills, little attention has been given to the combined use of soil
moisture and evapotranspiration to better characterize hydrologic fluxes. In this study, we assimilate two remotely sensed
datasets, namely, Soil Moisture Operational Product System (SMOPS) and MODIS evapotranspiration (MODIS16 ET), at
1-km spatial resolution, into the VIC land surface model by means of an evolutionary particle filter method. To achieve
this, a fully parallelized framework based on model and domain decomposition using a parallel divide-and-conquer algo-
rithm was implemented. The findings show improvement in soil moisture predictions by multivariate assimilation of both
ET and SM as compared to univariate scenarios. In addition, monthly and weekly drought maps are produced using the
updated root-zone soil moisture percentiles over the Apalachicola—Chattahoochee-Flint basin in the southeastern United
States. The model-based estimates are then compared against the corresponding U.S. Drought Monitor (USDM) archive
maps. The results are consistent with the USDM maps during the winter and spring season considering the drought extents;
however, the drought severity was found to be slightly higher according to DA method. Comparing different assimilation
scenarios showed that ET assimilation results in wetter conditions comparing to open-loop and univariate SM DA. The

multivariate DA then combines the effects of the two variables and provides an in-between condition.
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1. Introduction

Climate extremes such as droughts and floods are becoming
more severe and frequent, causing unprecedented threats
to food and water security (Hameed et al. 2019; Alipour et al.
2020; Rammig et al. 2020). Drought is a natural climate ex-
treme occurring in virtually all climatic zones. Drought is
considered to be a complex phenomenon classified into four
major types including meteorological, agricultural, hydrologi-
cal, and socioeconomic drought. Among these four types, ag-
ricultural drought refers to a period of time with a deficit in soil
moisture (SM), which could consequently result in crop failure.
With the purpose of monitoring agricultural drought, several
indices have been proposed based on a combination of tem-
perature, precipitation, evapotranspiration (ET), and soil
moisture (Ahmadalipour et al. 2017; Vicente-Serrano et al. 2010
Mu et al. 2013; Almamalachy et al. 2020).

@ Denotes content that is immediately available upon publica-
tion as open access.

Corresponding author: Hamid Moradkhani, hmoradkhani@ua.edu

DOI: 10.1175/JHM-D-20-0057.1

Satellite data imagery for drought monitoring can be applied
for either gathering atmospheric data such as precipitation and
relative humidity, or land surface data acquisition such as SM
and ET. The latter can be indirectly assimilated into the land
surface models to achieve more accurate and reliable predic-
tions of hydrologic fluxes as well as for monitoring purposes
(Kumar et al. 2014; Pan and Wood 2006; Pipunic et al. 2008;
Reichle et al. 2014; Sawada et al. 2015; Xu et al. 2020). SM
prediction using land surface models driven by meteorological
forcing carries considerable uncertainty due to spatiotemporal
variability of forcing data. This uncertainty is magnified by
large spatial variability of the land surface processes such as
exchanges of energy, mass, and momentum. To improve the
model predictions, an accurate characterization of the uncer-
tainty in the model state, i.e., SM, is critical. This is particularly
important for highly dynamic systems and those with sensi-
tivity to initial conditions (Kumar et al. 2014; Mo et al. 2012).

As discussed earlier, land surface and hydrologic properties
can be simulated and predicted by land surface models which
provide a simplified representation of physical processes.
However, an accurate prediction of these components, such as
SM, ET, and streamflow, is highly dependent on the quality of
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model forcing data, the model parameters (measured or esti-
mated through calibration), initial and boundary conditions,
and model structure. For land surface and hydrologic models,
the integration of data assimilation (DA) techniques with these
models has been highly recommended because it improves
the accuracy of water and energy balance computations and
increases the model’s predictive skills (Reichle et al. 2014;
Sawada et al. 2015; Seo et al. 2003). Earth system DA seeks to
exploit real-time observations for more accurate hydrologic
forecasts (Kumar et al. 2014; Reichle et al. 2014). DA aims at
merging current and past observations with a dynamical model,
using the model’s prognostic equations to estimate more ac-
curate and reliable model state variables and parameters.
Additionally, it provides a mathematical framework through
which to optimally combine observations and model simula-
tions (usually considered as prior information) based on their
respective uncertainties (Moradkhani et al. 2018). For fore-
casting applications, it is used to characterize initial condition
from available observations, so that more accurate forecasts
can be generated (Yan et al. 2017; Davolio et al. 2017; Sahlaoui
et al. 2020; Poletti et al. 2019; Abbaszadeh et al. 2020). These
improvements are also dependent on the chosen variables to
be assimilated into the system and their temporal and spatial
relationships (Kumar et al. 2014).

In addition to SM, ET is also a crucial component of the
terrestrial water cycle as a considerable amount of solar energy
alongside 60% of total precipitation is consumed by ET
(Trenberth et al. 2009). ET simulation is a complex task due to
its dependence on many land-atmosphere interaction pro-
cesses (Walker et al. 2019). The literature shows that ET var-
iation is highly dependent on SM (Berg and Sheffield 2018;
Jung et al. 2010; Purdy et al. 2018; Walker et al. 2019). Soil
moisture controls latent and sensible heat exchange between
land and atmosphere which causes feedback mechanisms in
land-atmosphere interactions (Brutsaert and Stricker 1979).
Several studies have shown that ET significantly contributes to
the improvements of SM estimations (Berg and Sheffield 2018,
Jung et al. 2010; Purdy et al. 2018; Walker et al. 2019) and
plays a crucial role in predicting flash droughts (Chen et al.
2019). This strong SM-ET relation stimulates interest in the
joint assimilation of observation of SM and ET into the land
surface models for more accurate and reliable prediction of
hydrologic fluxes and drought monitoring purposes.

The increasing availability of new types of satellite obser-
vations, in particular, SM and ET, provides the opportunity to
explore their synergistic use (Su et al. 2014). However, the
literature shows that the majority of efforts have gone into
individual assimilation of SM or ET into land surface models
and few evaluated the merits of dual assimilation of these
variables (see, e.g., Hain et al. 2012). Several studies have re-
ported the SM assimilation for improving drought monitoring
and forecasting purposes (Bolten et al. 2010; Kumar et al.,
2014; Yan et al. 2017; Yan et al. 2018). Kumar et al. (2014)
showed that shorter-time-scale drought estimation can be
improved by SM data assimilation. For ET assimilation,
many efforts have gone into univariate assimilation of this
prognostic variable to improve model simulations such as SM,
latent heat flux, and ET itself (Pan et al. 2008; Pipunic et al. 2008;
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Qin et al. 2008; Schuurmans et al. 2003). It is noted that most
of these studies provided results at relatively coarse spatial
resolutions (12.5-25 km) that do not capture local to finescale
spatial variations. Essentially, we need to downscale the
coarse-scale microwave SM retrievals because more de-
tailed information is required for improved drought moni-
toring and assessment at regional or local scales, especially
for agricultural applications (Yoon et al. 2012). Considering
that little attention has been given to multivariate DA in
land surface models in particular at high resolution, this study
investigates the benefits of joint assimilation of satellite ET
and SM at 1km and the framework is designed on a fully
parallelized system to cope with the computational complexity.
At this resolution, large-scale as well as local drought condi-
tions can be monitored, hence a more realistic assessment of
actual drought can be made.

Optimal assimilation methods are needed to maximize in-
formation content from observations and model simulations
(Abbaszadeh et al. 2019a). However, most assimilation algo-
rithms are suboptimal for complex real-world problems to
which they are applied. However, the sequential Monte Carlo
(SMC) methods based on particle filters (PF) do not rely on
some restrictive assumptions such as the form of the proba-
bility distributions and Gaussian error assumption in model
and observation, rather they propagate the full distribution of
variable of interest over time in a nonlinear dynamical system
(e.g., Moradkhani et al. 2018; Matgen et al. 2010; Sawada et al.
2015). As a successor version of SMC methods based on par-
ticle filter and Markov chain Monte Carlo (PF-MCMC),
Moradkhani et al. (2012) and Abbaszadeh et al. (2018) em-
bedded genetic algorithm in the PF-MCMC and developed
the evolutionary PF that shows improvement in the state and
parameter estimation in high dimensional systems. Therefore,
in this study, we use this approach to jointly assimilate soil
moisture and evapotranspiration data into a land surface
model with the aim of improving drought monitoring.

The remainder of the paper is organized as follows. Sections 2
and 3 describe the study area and datasets. This includes North
American Land Data Assimilation System (NLDAS), Soil
Moisture Operational Product System (SMOPS), and MODIS
evapotranspiration (MOD16A2) as well as datasets used for
downscaling SMOPS to 1-km resolution. Sections 4 and 5
briefly explain the land surface model used in this study and the
procedure for parallel joint DA. Section 6 assesses the per-
formance of the proposed methodology and section 7 discusses
the results of the DA performance and drought monitoring
over the study area. Finally, section 8 provides a summary
of the findings with the conclusion and potential for future
expansion of this work.

2. Study area

The Apalachicola-Chattahoochee—Flint (ACF) basin, located
in the southeastern United States, encompasses the three states
of Alabama, Georgia, and Florida. The total area of the basin is
50 800 km?* most of which is located in western Georgia (Fig. 1).
The Chattahoochee and Flint are the two major rivers in this
basin originating from the north of Lake Sidney Lanier and
south of Atlanta, respectively. These two rivers merge at Lake
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FIG. 1. The location of the ACF basin in the southeastern United States alongside the land use land cover of the basin. Data from the
USGS National Land Cover Database (NLCD).

Seminole to form the Apalachicola River, which drains into the
Apalachicola Bay and the Gulf of Mexico. The region has
undergone extensive irrigation expansion between the 1970s
and 1980s (Singh et al. 2017). Irrigated farmlands make up 452 000
acres within the region, making the area susceptible to huge
economical losses during drought periods. The average annual
precipitation is about 1400 mm which results in about 38-1020 mm
annual runoff. Despite high average rainfall and runoff, the basin
has experienced three extensive multiyear droughts be-
tween 2000 and 2015 (2000-01, 2007-08, and 2011-12). In
2011-12, the exceptional drought condition prevailed which
led to significant ecosystem and economic losses (Leitman
et al. 2016).

3. Datasets
a. Forcing data

The meteorological forcing data are acquired from phase
2 of the North American Land Data Assimilation System
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(NLDAS-2; Xia et al. 2012b). More specifically, this study uses
the NLDAS_FORAO0125_H_002 dataset, which covers data
from 1979 to present with spatial resolution of 1/8° and tem-
poral resolution of 1h. The land surface model used in this
study is Variable Infiltration Capacity (VIC) model (Liang
et al. 1994; Wood et al. 1992). VIC is forced with the air
temperature at a height of 2m above ground, total precipi-
tation, incoming shortwave and longwave radiation at the
surface, atmospheric pressure, vapor pressure and wind
speed. The entire forcing data are available through the
North American Land Data Assimilation System (NLDAS;
Xia et al. 2012a).

b. Soil Moisture Operational Products System

The SMOPS developed by NOAA NESDIS (https://
www.ospo.noaa.gov/Products/land/smops/index.html) is a
combination product of multiple satellites and sensors
providing global SM maps generated in 6-h and daily intervals
with 0.25° X 0.25° spatial resolution (Zhan et al. 2011). SMOPS
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TABLE 1. Downscaled and original SMOPS statistics against
66 SCAN and USCRN stations, randomly selected across the
CONUS as test stations.

Product R Bias ubRMSE
Downscaled SMOPS product 0.91 —0.007 0.042
Original SMOPS at 25 km 0.73 0.016 0.098

uses retrievals from six satellites including GPM, SMAP,
GCOM-WI1, SMOS, MetOp-A, and MetOp-B. The output
product includes volumetric SM of the top surface layer (1-5cm)
alongside with quality information and metadata. Some ex-
amples of SMOPS applications in SM assimilation into land
surface models include Nair and Indu (2016) and Yin et al.
(2015, 2019).

The focus of agricultural drought monitoring has been
mainly on broadscale conditions whereas more detailed in-
formation is required for improved drought monitoring and
assessment at the small regional or local scale (Yoon et al.
2012). For this, SM products at finer resolutions (usually kilo-
meter to subkilometer) are needed to better capture the spatial
variability of the drought impacts, especially for agricul-
tural applications. Original SMOPS images are available at
0.25° spatial resolution across the conterminous United States
(CONUS). This resolution is too coarse to be applied over
the ACF basin and to estimate the finescale drought extent
over the area. Therefore, spatial downscaling can be applied
to provide finescale regional drought information. Using a
method proposed by Abbaszadeh et al. (2019b), the SMOPS
product is downscaled to 1-km spatial resolution. In this
method, high-resolution remotely sensed satellite imagery includ-
ing MODIS NDVI (MOD13A2), MODIS LST (MOD11A2),
Integrated Multisatellite Retrievals for GPM (IMERG) pre-
cipitation data, digital elevation maps (DEM), and ground-
based soil moisture observation networks [i.e., U.S. Climate
Reference Network (USCRN) and Soil Climate Analysis
Network (SCAN)] are used to train a random forest (RF)
machine learning algorithm (Abbaszadeh et al. 2019b). Out
of 313 SCAN and USCRN stations, 66 stations were chosen to
be included in the test set to evaluate the performance of the
downscaling algorithm. Table 1 shows some statistics of the
downscaled and the original SMOPS product over these sta-
tions. Figure 2 shows the spatial variability of the proposed
product comparing it with the original SMOPS data.

c. MODIS evapotranspiration

The MODIS global evapotranspiration product MOD16 is a
500-m gridded land surface ET dataset for global land areas
available at 8-day, monthly, and annual intervals (Mu et al.
2007, 2011). The output variables of the MOD16 product in-
clude 8-day, monthly, and annual ET, AE (latent heat flux),
PET (potential ET), PAE (potential AE), and ET_QC (quality
control). The data used in this study are the MOD16A2 ET
product, which is produced at 500-m spatial resolution and
8-day compositing periods in the Sinusoidal projection (Running
et al. 2017). Given the temporal and spatial scale mismatch
between the MODIS and SMOPS data, different scenarios
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FIG. 2. Comparison between SMOPS satellite data observation and
the downscaled product at 1-km spatial resolution.

for DA can be considered. For instance, to improve the SM
estimation, the assimilation of SMOPS can be done at a
daily time scale, and then the MODIS ET is assimilated
every 8 days. Another scenario could be the decomposition
of 8-day ET data into daily maps by filtering the maps with
the day of the year (DOY) map provided with the product.
In the latter scenario, the resulting daily maps contain only a
small number of pixels with data, resulting in limited coverage
of the area, especially in the winter period. Thus, in this study,
the first approach is chosen. To cope with the spatial reso-
lution discrepancy between the observation (MODIS ET)
and model prediction, the MODIS ET at 500 m was upscaled
to 1-km spatial resolution using the mean aggregation tech-
nique. Figure 3 shows the annual average of the datasets used
in this study.

4. VIC land surface model

To predict the terrestrial water, energy, and biogeochemical
processes, land surface models (LSMs) are used where the
governing equations of the soil-vegetation-snowpack medium
are solved (Mo et al. 2012). An accurate representation of land
surface processes is critical for improving the coupling of land
and atmosphere at various spatial and temporal scales and over
heterogeneous areas. The driving components of a typical land
surface model are the initial conditions (states), boundary
conditions including forcings and fluxes or states, and the soil,
vegetation, and other surface parameters. In this study, we
used Variable Infiltration Capacity version 5 (VIC-5) model
(Liang et al. 1994) as the LSM. VIC is a semidistributed hy-
drologic model used in many applications including dataset
construction (Nijssen et al. 2001), historic trend analysis, data
evaluation, data assimilation, drought monitoring and fore-
casting (Nijssen et al. 2014; Shukla et al. 2011), and climate
change impact analysis (Hamman et al. 2018). Unlike previous
versions, VIC-5 supports parallel processing by utilizing the
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FIG. 3. The annual average of the three datasets used in this study.

MPI standard and shared memory threading via OpenMP. This
new feature enables us to implement the VIC model on the high-
performance computing (HPC) system, which significantly
improves the run time of the modeling. For more detailed
information about the VIC algorithm, its main governing
equations, and model state variables and parameters, we
refer the interested readers to Gao et al. (2010).

5. Methodology

a. Sequential Bayesian theory

Following the work by Moradkhani et al. (2018), Egs. (1)
and (2) describe a generic state-space form of a nonlinear dy-
namic system:

Xt :f(xt—l’ “t’ 0) + wt’ (1)
Y. = h(xt) + Yp» (2)

where x; € R” and u, are the vectors of the uncertain state
variables and forcing data at time step ¢, respectively. The
terms @ € R? and y, € R” represent the vectors of model pa-
rameters and observation data while w, and v, denote model
structural and measurement errors, respectively. These errors
are generally assumed to be independent white noises with
mean zero and covariance

P(yt|xt)p(xt|y1~t—l)
=pX YY) = — o~
( t|y1.t 1 yt) p(yt|y1:[71)

_ p(y,lXt)p(X,|y1;,,1)
Jp(y, x)p(X,[y,,_) dx,

p(x,ly;,)

®)
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where p(y,|x;) denotes the likelihood at time step ¢ and
p(X/|y1.—1) is the prior distribution. The term p(y,|y;.,—1) is the
normalization factor, and p(y;,) is the marginal likelihood
function, both of which can be determined using Egs. (5) and (6):

() =o)L pGily,, ). ©)

Py, )= jp(y,, Xy, )dx, = jp(y,\x»p(x,m,,l) dx,.
©)

Solving Eq. (3) analytically is only available for special cases
such as linear systems with Gaussian assumption of noises in
the system (i.e., the Kalman filter). Thus, for practical reasons
this equation is generally approximated using a set of random
replicates with associated weights:

N
p(xly,)~ ; wB(x, — X)), ™)

where w'* is the posterior weight of the ith particle. Parameters
6 and N are the Dirac delta function and the number of particles,
respectively. The normalized weights are determined by

) i— i’ai
e w0 ©

N
Z{ w'p(y,Ix;, 6))
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In which, w'~ is the prior weight of the ith particle. The term
p(y,|xi, 07) can be calculated using the likelihood L(y,|xi, 6')
as follows:

L(y,[x;, 6) =

1 1 Tt i
Wexp{ 31, HGOT'R, Ty~ )
©)

According to the posterior weights, the sequential importance
resampling (SIR) is used to resample the state variables and
parameters. Afterward, the proposal parameter distribution is
generated using Eq. (10):

0/? =0" +¢l, & ~ N[0,s5,Var(0,)]. (10)
In this equation, 8~ and 6" are the parameters before and
after SIR implementation and s, is a small tuning factor. To

accept or reject the proposal parameter samples Gf"’ , a me-
tropolis acceptance ratio « is calculated:

ip oi.p
o = min {l,pi(& ! |y“):| s

St (11)
P, 0,7y,

where p(xi”, 07|y, is the proposed joint probability
distribution:

P, 071y,) o p(y,, X7 0 ) (7 107y, (0],
(12)

(13)

where x/” is a sample from the state proposal distribution and
u'* is the resampled forcing data at time step ¢ The tuning
factor s, is a time-variant unknown variable that can be esti-
mated using the variable variance multiplier (VVM) method

(Leisenring and Moradkhani 2011).

X/ =f(x w7, 0),

EVOLUTIONARY PARTICLE FILTER

The evolutionary PF-MCMC (hereafter EPFM) is a formal
Bayesian DA technique that is implemented by a combination
of sequential Monte Carlo technique genetic algorithm and
MCMC that provides a full probability distribution of state
variables and parameters and consequently their predictive
uncertainty. The EPFM DA utilizes the MCMC technique
twice in a sequential framework, once before resampling, in
order to crossover and mutate the particles, and consequently
produce a more informative prior distribution for state vari-
ables, and a second time after resampling to generate proposal
parameter. While improving DA performance, EPFM signifi-
cantly precludes the particle degeneracy and sample impov-
erishment problems that had been the main concerns in using
the particle filter method. Here, we only summarize the four
main steps of EPFM DA approach, and refer the readers to
Abbaszadeh et al. (2018) for more detailed information.

1) Particles are selected for crossover operation from the
original ensemble pool. To select these particles, we use
the roulette wheel selection approach. Then we assign a fitness
value to each ensemble member. The values of weights are
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representative of the quality of each particle; therefore, they
can be directly used as the fitness value.

2) For crossover operation, we use the arithmetic crossover
procedure to linearly combine the pair of selected particles.
This process is shown by the following equations:

K=+ (1- ¢, (14)

o =(1-&.x+&x, (15)
where x! and x} are the parent particles and x! and x{’ are the
pair of newly generated offspring particles. Parameter £ is a
uniform random value ranging from 0O to 1.

3) To further intensify the diversity of the newly generated
particles, we use GA mutation operator as follows:

X =xf+m, xfe{x,x}, n~N[0,@Var(xf )], (16)

where 7 is a random sample from the Gaussian distribution
with zero mean and variance @ Var(xX~). The term Var(x ™)
is the variance of the prior states at the time ¢, and ¢ is a
small tuning parameter.

4) Finally, we implement the MCMC approach to accept or
reject the new ensemble members generated by GA cross-
over and mutation operators.

b. Performance measures

In this study, we use two deterministic performance measures
including Kling—Gupta efficiency (KGE; Gupta et al. 2009) and
unbiased root-mean-square error (ubRMSE; Entekhabi et al.
2010), as well as reliability (Renard et al. 2010), as a probabilistic
measure, to assess the performance of the EPFM data assimila-
tion approach. These measures are defined in Egs. (17)-(19) as
follows:

17)
WbRMSE = \/ E({[y, = EG)] ~ [y, — E0)IP). (18)
reliability = 1 — %ZT‘, % -Uj|, (19)

where y, and y, are observations and model predictions, re-
spectively. Covy,,, denotes the covariance calculated between
the observations and model predictions. Parameters o and o’
are the standard deviations of observations and model pre-
dictions, and u and ' denote the average of observations and
model predictions, respectively, and E[.] is the expectation
operator. Parameter Z, is the score that represents the quantile
of every observation time step, and U, is the uniform distri-
bution between 0 and 1. For more information, we refer the
readers to Renard et al. (2010).

6. Research framework
The schematic view of the proposed framework is presented
in Fig. 4. As is shown in this figure, first, the VIC model is
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FIG. 4. Schematic view of the framework of this study.

driven with an ensemble of NLDAS-2 forcing data. To gen-
erate this ensemble, we use lognormal error distributions
with a relative error of 25% for precipitation, and for tem-
perature, the error is assumed to be homoscedastic and nor-
mally distributed with mean zero and standard deviation
of 5°C. It is assumed that uncertainty in other forcing data
including incoming shortwave and longwave radiation, spe-
cific humidity, surface pressure, near-surface wind in u and
v components are negligible. To characterize uncertainty in
the initial condition, we assume a normal error distribution
with a relative error of 4% (0.04m>m ) for the entire soil
column with three layers. Having the model ensemble for ET
and SM, the downscaled SMOPS satellite data and MODIS
ET are assimilated into the VIC model using the EPFM al-
gorithm. It is also assumed that the MODIS ET observation
and the downscaled SMOPS SM errors follow a normal dis-
tribution with a relative error of 10% and 4%, respectively.
The choice of the 4% for observed SM is based on the
ubRMSE of the downscaled product over the test stations. In
real case experiments, the remaining errors arise from the
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model structural uncertainty, which herein is represented by
adding white noise with a relative error of 25% to the SM at
three layers and ET model outputs. The error value assump-
tions for forcings, ET observations, and model outputs are
based on multiple trial-and-error experiments and our previ-
ous study (Abbaszadeh et al. 2018).

The main challenge in applying the particle filter data as-
similation is the computational intensity. A great percentage
of these computations are carried out inside the model, and
fortunately, this provides a fertile ground for parallelization
schemas such as model or domain decomposition (Yan et al.
2018). Although parallelization will significantly improve the
framework performance, inefficient implementation of the
assimilation could result in the run time being dominated by
the assimilation part instead of the model. To overcome this
issue, we propose a framework that incorporates both model
and domain decomposition in two steps. First, each ensemble
member is assigned to one core and the VIC model is run
in parallel to provide an ensemble of model results (model
decomposition). Then, having the state variables and model
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FIG. 5. Parallelization steps embedded in the EPFM algorithm to improve assimilation run time.

outputs of the entire ensemble, a particle tracking system
tracks the index of each particle before and after the resam-
pling (earlier discussed in section 5) step and stores the infor-
mation of the prevailing particles in memory to be used in the
next time step. At the same time, it will recursively partition
the domain into smaller pieces and performs EPFM calcula-
tions (i.e., likelihood function evaluation, crossover, mutation,
kernel density estimation, etc.) on each piece and then merge
all the sections results using a divide-and-conquer parallel
algorithm (domain decomposition) (Bentley 1980; Blanes
et al. 2012; Prasad and Bruce 2011). The approach signifi-
cantly improves model performance in terms of model run
time. Figure 5 shows a schematic view of the parallelization
framework used in this study.

7. Results and discussion

a. Performance of the data assimilation approaches

The spatial distribution of the performance measures over
the study area is shown in Fig. 6. The top panel compares the
KGE of predicted versus observed soil moisture for four dif-
ferent cases of open loop (OL), univariate assimilation of ET
(ET-DA), univariate assimilation of SM (SM-DA), and mul-
tivariate assimilation of ET and soil moisture. In the OL run,
the VIC model is run without assimilation whereas univariate
and multivariate DA correspond to individual and joint as-
similation of ET and SM, respectively. This figure shows that
the OL run has an average KGE of 0.5 or less over the study
area, and it has a low value of less than 0.10 in the shoreline. In
the ET-DA scenario, MODIS ET observations were inde-
pendently assimilated into the VIC model. Univariate SM-DA
corresponds to the scenario in which only SMOPS downscaled
data at 1km are assimilated into the VIC model. As can be
seen in Fig. 6, ET assimilation improved the top soil layer SM
based on the downscaled SMOPS data as compared to the OL
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run, especially in the east and northeast of the region. In the
SM-DA scenario the results were significantly improved that,
on average, more than 78% of the study area has a KGE of
0.70 or higher. Further improvement is achieved by multivar-
iate assimilation of ET and SM observations into the VIC
model. The performance measures corresponding to the mul-
tivariate assimilation are provided under the multivariate
column of Fig. 6. It is seen that the multivariate DA outper-
forms the OL, ET-DA, and SM-DA according to all three
performance measures. Except for a small area near the outlet
of the basin, the ubRMSE is less than 0.04m>m > over the
entire study area. While this is true for both SM-DA and
multivariate DA, the later performance shows some im-
provements. Comparing the reliability of the three cases shows
the superiority of the multivariate DA as compared to OL and
univariate DA assimilations as well.

To provide an independent measure of performance for the
root-zone SM predictions we compared the multivariate DA
results with the in situ measurements of two stations inside the
ACF region. Two of the USCRN and one of the SCAN stations
are located inside the ACF basin, although only one of the
USCRN stations provided data for the analysis period of the
current study. The comparison is shown in Fig. 7. As shown in
this figure, SM predictions are consistent with the in situ
measurements at both sites. The correlation coefficient for
SCAN and USCRN stations are 0.629 and 0.631 and the
ubRMSEs are 0.065 and 0.010, respectively, for both sites.
Table 2 compares the performance metrics against all four
scenarios in these two stations. The table shows that the mul-
tivariate DA outperforms all other scenarios. Comparing the
ET-DA with the SM-DA, univariate assimilation of SM
presumably results in better performance in SM estimation.
Both univariate and multivariate scenarios significantly im-
prove the OL results at the top soil layer and root-zone SM.
This indicates that the developed framework is successful in
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region. The third column compares the empirical cumulative distribution functions (CDFs).

representing the SM conditions at different soil layers which will
be used later for drought monitoring over the ACF basin.

b. Drought monitoring over the ACF basin

A typical approach to characterize drought is through nor-
malized indices that represent the deficit of hydrologic vari-
ables, such as precipitation, soil moisture, or streamflow. A
variety of metrics have been developed for quantifying drought
(Heim 2002). In this section, we evaluate the impact of multi-
variate DA using EPFM on categorizing drought through
percentile-based drought indices that have been used in the
NLDAS drought monitoring system (Sheffield et al. 2012). Using a
method described by Kumar et al. (2014), we calculate the daily
percentile values of SM using NLDAS data from 1979 to 2018.

The U.S. Drought Monitor (USDM) has been providing
weekly estimates of drought conditions since 1999 (Svoboda
et al. 2002). USDM depicts the drought intensity by classifying
it into five categories: abnormally dry for percentile below
30% (DO0), moderate drought, percentile = 20% (D1), se-
vere drought, percentile = 10% (D2), extreme drought,
percentile < 5% (D3), and exceptional drought, percentile = 2%
(D4). In this section, we compare the drought conditions deter-
mined from the SM percentiles of multivariate DA against
USDM archives (http:/droughtmonitor.unl.edu/MapsAndData/
MapArchive.aspx) during the period of 2018-19.

Root-zone SM is one of the leading indicators of agricultural
drought, especially in warm seasons and climates (Bolten and
Crow 2012). Figure 8 shows the monthly drought extent, based

TABLE 2. Performance comparison between assimilation scenarios at two SCAN and USCRN stations for top-soil layer and
root-zone SM.

Top-soil SM Root-zone SM

SCAN USCRN SCAN USCRN

OL R 0.594 0.612 0.481 0.493
Bias —0.005 0.003 —0.009 0.003

ubRMSE 0.058 0.051 0.011 0.018

ET-DA R 0.610 0.642 0.553 0.598
Bias 0.004 —0.003 0.004 —0.002

ubRMSE 0.051 0.048 0.099 0.012

SM-DA R 0.712 0.631 0.581 0.584
Bias 0.000 0.002 0.008 0.003

ubRMSE 0.029 0.023 0.078 0.015

Multivariate DA R 0.741 0.750 0.629 0.631
Bias —0.001 0.002 —0.005 0.001

ubRMSE 0.031 0.024 0.065 0.010
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on estimated root-zone SM percentiles derived from multi-
variate DA results over the ACF basin. The first row shows
that the drought is the most severe during the winter of 2018.
After the winter, the drought extent shrinks and the severity
decreases, from south to north, and then again increases during
summer. After that, the conditions become completely normal
during fall. One reason to explain this could be Hurricane
Michael, which made landfall early and brought rainfall to
Florida and Georgia, but not really to Alabama. Hence, the
patterns in October show normal conditions for the eastern
part of the basin but the western and northwestern parts show
small areas with DO drought categories.

Figure 9 shows a comparison between the USDM and the
drought categories derived from root-zone SM percentiles af-
ter multivariate DA for four different weeks and scenarios. Itis
noted that the spatial resolution of multivariate DA is 1km
providing a more detailed depiction of the drought extension
over the ACF region. This could help capture local drought
conditions, whereas the USDM focuses on broadscale condi-
tions only. The findings of this study are consistent with the
USDM maps during the winter and fall season in terms of
drought extension, however, DA results indicate a slightly
more severe drought. In Fig. 9, the week of 6-13 February
shows the most severe drought status of the year 2018. The
drought extends almost over the entire domain, however, ex-
cept for ET-DA, all the other scenarios extend the categories
to D4 showing that the conditions are more severe based on
these scenarios. The ET-DA results show normal conditions
in the southern and northwestern portion of the region while
other areas exhibit DO-D1 drought categories. The OL follows
a somewhat similar pattern but with more severe conditions.
This means that the ET assimilation results in wetter condi-
tions comparing to the OL whereas the SM assimilation
shows a dryer soil condition. This may be due to the fact that
SMOPS shows lower values for SM comparing to the VIC
predictions. Hence, the drought pattern leans toward D3-D4
categories in the SM-DA scenario. The multivariate DA
combines the ET-DA and SM-DA conditions and is showing
an in-between pattern, although the SM assimilation effect is
more dominant. The second row of this figure shows the last
week of March in which the conditions were normal in the
southern and northern part of the region but D0O-D1 cate-
gories in the central portion. However, the OL results indi-
cate drought conditions all over the region. The drought
extent significantly shrinks after ET assimilation and further
expands in the SM-DA scenario. After the joint assimilation
of both variables, the patterns are more consistent with the
USDM map, although more severe drought is identified. This
may be attributed to the coarser resolution information that
the USDM is using to characterize drought. Also, USDM
does not strictly map SM rather it considers streamflow and
precipitation at different time scales, local experts, etc.
(Svoboda et al. 2002). However, the findings of this paper rely
only upon SM percentiles.

To further investigate the impact of torrential rainfall of
Hurricane Michael on drought propagation, Fig. 10 compares
the USDM maps and multivariate DA results for five weeks
from 18 September to 16 October, four weeks prior, and during
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Hurricane Michael.

the Hurricane. It is shown in the top panel of this figure that a
moderate drought is propagating throughout the region even
after the occurrence of this hurricane on the 7 October and
shrinks a week after with a one week delay. The multivariate
DA, on the other hand, immediately detects the termination of
drought due to the heavy rainfall of Hurricane Michael as it is
shown in the week of 9 October the region is completely
drought-free because of the early landfall of this hurricane.

8. Concluding remarks

This study examines the advantage of multivariate assimila-
tion of SM and ET into the VIC land surface model to improve
drought monitoring over the ACF region. The proposed frame-
work efficiently performs this task by using a fully parallelized
algorithm to account for the computational intensity of the
multivariate DA in the high spatial resolution of 1 km. The
study is conducted over the ACF region using the NLDAS-2
datasets as the forcing variables. SMOPS and MODIS ET
are used as SM and evapotranspiration observations. The
original SMOPS data are downscaled to 1-km resolution and
then alongside ET, are assimilated into the VIC land surface
model using the EPFM data assimilation scheme to improve
root-zone SM predictions.

To examine the added value of multivariate assimilation,
its performance was compared with that of the univariate
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assimilation of ET and SM. Both the probabilistic (i.e., reli-
ability) and deterministic (i.e., KGE and ubRMSE) measures
confirmed that the multivariate assimilation of ET and SM
contributes more to improving drought prediction than any
other univariate assimilation configuration. The posterior soil
moisture estimates provided by the multivariate DA and
NLDAS soil moisture data from 1979 to 2018 were used to
calculate the daily soil moisture percentile over the ACF re-
gion for the year 2018. These values were transformed into
five drought categories defined by the USDM that depicts
the drought severity from abnormally dry (DO) to exceptional
drought (D4). The generated drought maps were compared with
those reported by the USDM. The findings of this study also
revealed that the univariate assimilation of ET results in higher
SM values, hence the wetter conditions compared to the OL,
SM-DA, and multivariate DA. However, the SM-DA results in
the driest condition most likely due to the soil moisture values of
SMOPS, which are generally less than that of the model pre-
dictions. The multivariate DA, which simultaneously incorpo-
rates the ET and SM observations into the model, results in a
more realistic soil moisture condition that is corroborated with
in situ data and USDM maps. Since the USDM uses multiple
indicators along with expert knowledge for drought monitoring,
it is therefore not expected that our single-variable-based
drought estimation perfectly matches with its drought maps.
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This study applies a DA framework for drought monitoring
over the ACF basin in the southeastern United States. Future
studies will extend the geospatial scale of the study region and
apply this framework over the southeastern United States and
CONUS. Furthermore, in this study, it is assumed the model
and observation errors are independent at each grid cell. To
further enhance this multivariate assimilation experiment,
future studies can include the cross correlations among the
neighboring grids. Although this might improve the data
assimilation effectiveness, it will dramatically increase the
computational complexity making the data assimilation less
favorable in large-scale studies. It is also worthy to investigate
the impact of ET frequency in improving the performance of
the data assimilation.
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