
Science of the Total Environment 782 (2021) 146927

Contents lists available at ScienceDirect

Science of the Total Environment

j ourna l homepage: www.e lsev ie r .com/ locate /sc i totenv
From local to regional compound flood mapping with deep learning and
data fusion techniques
David F. Muñoz a,b,⁎, Paul Muñoz c, Hamed Moftakhari a,b, Hamid Moradkhani a,b

a Department of Civil, Construction and Environmental Engineering, The University of Alabama, Tuscaloosa, AL 35487, United States
b Center for Complex Hydrosystems Research, The University of Alabama, Tuscaloosa, AL 35487, United States
c Departamento de Recursos Hídricos y Ciencias Ambientales, Universidad de Cuenca, Cuenca 010150, Ecuador
H I G H L I G H T S G R A P H I C A L A B S T R A C T
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used for large-scale compound flood
mapping.

• Compound flood maps agree well with
those of the Coastal Emergency Risk As-
sessment.

• The framework matches the location of
USGS – high water marks in coastal
counties.

• Transfer learning from local to large-
scale is suitable for compound flood
mapping.

• The framework can contribute to efforts
in calibration of hydrodynamic models.
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Compound flooding (CF), as a result of oceanic, hydrological, meteorological and anthropogenic drivers, is often
studied with hydrodynamic models that combine either successive or concurrent processes to simulate inunda-
tion dynamics. In recent years, convolutional neural networks (CNNs) and data fusion (DF) techniques have
emerged as effective alternatives for post-flood mapping and supported current efforts of complex physical
and dynamical modeling. Yet, those techniques have not been explored for large-scale (regional) compound
flood mapping. Here, we evaluate the performance of a CNN & DF framework for generating CF maps along the
southeast Atlantic coast of the U.S. as a result of Hurricane Matthew (October 2016). The framework fuses mul-
tispectral imagery from Landsat analysis ready data (ARD), dual-polarized synthetic aperture radar data (SAR),
and coastal digital elevation models (DEMs) to produce flood maps at moderate (30 m) spatial resolution. The
highest overall accuracy (97%) and f1-scores of permanent water/floodwater (99/100%) are achieved when
ARD, SAR and DEM datasets are readily available and fused. Moreover, the resulting CF maps agree well (80%)
with hindcast flood guidance maps of the Coastal Emergency Risk Assessment and can effectively match post-
flood high water marks of the U.S. Geological Survey distributed in coastal counties. We ultimately evaluate
the frameworkwith different DF alternatives and highlight their usefulness for large-scale compound floodmap-
ping as well as calibration of hydrodynamic models. The cost-effective approach proposed here enables efficient
estimation of exposure to compound coastal flooding and is particularly useful in data scarce regions.

© 2021 Elsevier B.V. All rights reserved.
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1. Introduction

Compound flooding (CF) is a natural hazard resulting from either
successive or concurrent flood drivers (e.g., storm surge, river discharge
and/or rainfall) with associated socio-economic and environmental im-
pacts that can be larger than those produced by each driver in isolation
(Bevacqua et al., 2020; Moftakhari et al., 2017; Wahl et al., 2015;
Zscheischler et al., 2020). CF poses a significant threat to life and assets
of people settled in low-lying coasts including riverine floodplains and
estuarine zones at local (Klerk et al., 2015; Olbert et al., 2017; Wang
et al., 2018), regional (Bevacqua et al., 2019; Fang et al., 2020; Hendry
et al., 2019; Wu et al., 2018), and global scale (Couasnon et al., 2020;
Eilander et al., 2020; Ward et al., 2018). In the East and Gulf coasts of
United States, CF is mainly triggered by tropical cyclones producing
wind-driven storm-surge and heavy rainfall (Gori et al., 2020; Muis
et al., 2019; Song et al., 2020), with inherent risks higher than those of
the Pacific coast (Wahl et al., 2015).

Among the costliest hurricanes that made landfall in the southeast
Atlantic coast of the U.S., Hurricane Matthew (October 2016) was re-
sponsible for 34 deaths and more than 3 million residents evacuated
from coastal areas (Stewart, 2017). Although minor damages to roofs,
pools and line utilities were associated to the direct wind force, storm-
surge caused severe structural damages with maximum inundation
depths greater than 2 m above ground from Florida to North Carolina.
Moreover, the compounding effects of pluvial and coastal flooding re-
sulted in electrical power outages, and approximately $10 billion of
wind- and water-related damages according to the National Centers
for Environmental Information (NCEI) of the National Oceanic and At-
mospheric Administration (NOAA). Compound flood inundation map-
ping is therefore of paramount importance for emergency planners
and stakeholders, as they require these maps for decision-making and
rapid coastal flood assessment.

Flood inundation maps are commonly obtained from advanced hy-
drodynamicmodels that simulate complex oceanic, hydrological, mete-
orological and anthropogenic processes with a robust numerical
scheme. The advanced circulation model (ADCIRC) (Luettich et al.,
1992) and DELFT3D (Roelvink and Van Banning, 1995) are among the
high-performance hydrodynamic models that have been used for
large-scale modeling studies in the U.S. (Dietrich et al., 2011; Martyr-
Koller et al., 2017; Muis et al., 2019; Thomas et al., 2019). Particularly,
ADCIRC provides real-time flood forecasts as well as hindcast flood
guidancemaps of the Atlantic and Gulf coast through the Coastal Emer-
gency Risk Assessment (CERA) web mapper (https://cera.coastalrisk.
live/). In spite of the growing access to powerful and low-cost computa-
tional resources, physically-basedmodeling approaches are still compu-
tationally intensive and often require model domain partitioning and
parallelization tasks to map flood extent at large-scale (Dietrich et al.,
2012, 2011).

An alternative for efficient post-event large-scale flood mapping is
the application of remote sensing techniques to multispectral imagery,
radar data and digital elevation models (DEMs). These datasets allow
for delineatingflood extent over large areas in near real-timedepending
on the satellite's revisit time and/or spatiotemporal resolution. Multi-
spectral imagery and DEM datasets have been successfully combined
for flood mapping in riverine and coastal floodplains with diverse tech-
niques including principal component analysis, logical filtering, decision
rules and image segmentation (Cohen et al., 2019; Gianinetto et al.,
2006; Wang et al., 2002). Contrary to multispectral imagery, the appli-
cability of backscattering radar data is not limited by adverse atmo-
spheric conditions (e.g., shadows or cloud formation) as the radar
antenna can emit and receive oscillating signals even during night-
time conditions (Flores-Anderson et al., 2019). This in turn makes
radar data a powerful resource for flood mapping in urban settings
and natural landscapes (Liang and Liu, 2020; Liu et al., 2019).

Integration of backscattering radar data with either multispectral
imagery or DEMs has been proposed for coastal flood monitoring and
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mappingwith different techniques including change detection analysis,
threshold-based and probabilistic approaches (Anusha and Bharathi,
2020; Chaouch et al., 2012; Clement et al., 2018; Martinis et al., 2013).
Among the machine learning techniques used for flood mapping, artifi-
cial neural networks (Singh and Singh, 2017; Tam et al., 2019; Tien Bui
et al., 2020), support vector machine (Dhara et al., 2020; Nandi et al.,
2017), and random forest (Feng et al., 2015; Kabir et al., 2020a) have
improved the accuracy of flood maps due to their ability to learn local
features from terrain, soil properties and spectral indices (Huang et al.,
2017; Rad et al., 2021; Zoka et al., 2018), radar intensity and interfero-
metric coherence properties (Canisius et al., 2019; Li et al., 2019), and
time series analysis (DeVries et al., 2020; Lin et al., 2019). More ad-
vanced techniques, such as convolutional neural networks (CNNs), use
a deep architecture allowing for optimal feature learning at low-, mid-
and high- levels of abstraction (e.g., edges, objects, and patterns) and
hence outperforming ‘shallow’machine learning techniques in a variety
of applications such as object detection and image segmentation
(Hoeser et al., 2020; Pi et al., 2020), land cover classification (Li et al.,
2018; Mahdianpari et al., 2018; Muñoz et al., 2021), and flood mapping
(Gebrehiwot et al., 2019; Li et al., 2019; Sarker et al., 2019).

Despite the benefits of the aforementioned techniques that focus on
binary classification, i.e., flood and non-flood areas, there are no studies
that integrate multi-source satellite-based data, hydrodynamic model-
ing, deep learning (DL) and data fusion (DF) techniques for large-scale
land cover classification and compound flood mapping. The advantage
of conducting multiclass land cover classification including flood inun-
dation mapping relies on the ability of DL models to learn complex spa-
tial patterns (Dalponte et al., 2008; Mahdianpari et al., 2018; Rezaee
et al., 2018), and therefore separate purely hurricane-induced and flu-
vial flooding from periodical flooding in coastal areas (e.g., wetlands,
salt marshes and mangroves). DL models such as CNNs can effectively
delineate permanent water bodies and non-inundated urban areas
(Hoeser et al., 2020; Xu et al., 2019), and hence expediting flood hazard
assessments and emergency responses in flood prone areas. In contrast,
binary classification of flood/non-flood areas require additional steps to
identify permanent water bodies based on existing land cover maps (if
available) as well as adequate threshold values that help discriminate
water from land features. This is turn compromises the accuracy of
flood maps since a single threshold value might not account for land
surface complexity and variability (Liang and Liu, 2020), and conse-
quently fail to effectively map CF.

In this context, we modified a previously developed CNN & DF
framework (Muñoz et al., 2021) to conduct multi-class land cover clas-
sification with floodwater samples obtained from a physically-based
model. The framework fuses multispectral Landsat analysis ready data
(ARD), dual-polarized synthetic aperture radar data (SAR) and light de-
tection and ranging (LiDAR) coastal DEMs to generate compound flood
maps withmoderate (30m) spatial resolution.We first train the CNN&
DF framework with official land cover maps as well as floodwater maps
generated with a calibrated Delft3D-FM model of the Savannah River
estuary (hereby referred as ‘training area’). Then, we conduct transfer
learning with conveniently stored model weights to further evaluate
the framework in the southeast Atlantic coast of the U.S.We select Hur-
ricane Matthew (October 2016) for training and evaluation purposes
since this extreme event led to considerable flood extent and inunda-
tion depths in several estuaries, islands and bays.

2. Local and regional datasets

2.1. Study area

The study area comprises multiple rivers, estuaries, bays and islands
located in the southeast Atlantic coast of the U.S. (Fig. 1a). From this
large-scale study area, we define a strategical and local scale ‘training
area’ along the Savannah River estuary that separates the states of
Georgia and South Carolina (Fig. 2a). The training area is characterized

https://cera.coastalrisk.live/
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by complex geomorphological features and presents vast wetland re-
gions of considerable ecological value as well as intense anthropogenic
intervention that together shape a unique riverine-estuarine system
(Reynolds, 2016; Seabrook, 2006). Another important aspect is that
the training area is frequently monitored, and so counts with multi-
source data including multispectral Landsat ARD imagery, SAR
data, LiDAR-derived coastal DEMs, and high water marks of the U.S.
Geological Survey (USGS) collected after extreme flooding events
(e.g., Hurricane Matthew). Furthermore, the training area has been
studied with a detailed and calibrated Delft3D-FM hydrodynamic
model for extreme/non-extreme events including hurricane-induced
(compound) flooding (Muñoz et al., 2020).
Fig. 1.Map of the southeast Atlantic coast of the U.S. and HurricaneMatthew (Oct/2016). (a) Flo
the CERA webmapper. Hurricane's best track (red solid line) and intervals (triangles) indicate
(training area). USGS – high water marks (yellow circles) and Delft3D-FM model domain (p
references to color in this figure legend, the reader is referred to the web version of this article

3

The path of Hurricane Matthew started along the southern coasts
of Florida as a category 3 in the Saffir-Simpson scale (2016/10/
07–06:00 UTC), and then weakened into category 2 and 1 along the
northern coasts of Florida (2016/10/08–00:00 UTC) and South Carolina
(2016/10/08–15:00 UTC), respectively (Fig. 1a). Furthermore, Hurricane
Matthew considerably impacted the Savannah River estuary leading to
the highest water surface level of the entire southeast Atlantic coast
with 2.58 m at Fort Pulaski station (Fig. 3a, NOAA ID: 8670870). We
thereby argue that the Savannah River estuary is a suitable study area
to train the CNN & DF framework. Eventually, the framework will be
evaluated in terms of compound flood mapping accuracy along the
southeast Atlantic coast of the U.S.
od extent andmaximum inundation depth above ground (blue color scale) obtained from
the proximity and timing of the hurricane to the coast. (b) Map of Savannah River estuary
urple dashed line) are used to train the CNN & DF framework. (For interpretation of the
.)



Fig. 2. Publicly available data of the Savannah River estuary used to train the CNN & DF framework. (a, b) Landsat ARD imagery with red, blue, and green band composite, and (c, d) SAR
datawith dual polarizedVH, VV andVH/VHband composites showing pre- andpost-flood conditions. (e) LiDAR derived coastal DEMof Savannah, GA. (f) C-CAP coastal land covermap for
the period 2016–2017. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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2.2. Data availability

Training, validation and evaluation of the CNN & DF framework is
based on publicly available data fromdifferent sources. Landsat ARD im-
agery of moderate (30 m) spatial resolution is obtained from the Earth
Explorer website (https://earthexplorer.usgs.gov). The advantage of
using Landsat ARD over similar imagery products is that any effects of
4

atmospheric attenuation (e.g., scattering and absorption) on floodmap-
ping accuracy are already corrected in the former product (Dwyer et al.,
2018; Potapov et al., 2020).We use Landsat sceneswith less than 20% of
cloud cover and shadow as higher percentages might hinder the appli-
cability ofmultispectral imagery tomap CF (Fig. 2(a, b)). In addition, we
use both Sentinel-1A and 1B (C-band) missions with dual-polarized
radar data (e.g., vertical-horizontal (VH) and vertical-vertical (VV)

https://earthexplorer.usgs.gov


Fig. 3. Floodwater in Savannah River estuary above Mean higher-high water (MHHW) obtained from hydrodynamic simulations. (a)Water level time series (blue solid line) observed in
Fort Pulaski station (NOAA ID: 8670870) andMHHW(gray dashed line) relative to NAVD88. Acquisition dates of Landsat ARD imagery (red crosses) and SAR data (green asterisks) during
pre- and post-flooding conditions. (b) Floodwater delineation within the Delft3D-FMmodel domain (purple solid line). Flood extent depicts floodwater areas that match the date/time of
SAR and ARD data acquisition (cyan). USGS – high water marks (yellow circles) show verified flood locations during Hurricane Matthew. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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polarimetric channels), interferometric wide swath (IW) frames and
ground range detected (GRD) products (Fig. 2(c, d)). SAR datasets of
high (10 m) spatial resolution are obtained from archives of the Alaska
Satellite Facility (ASF) website (https://asf.alaska.edu/).

LiDAR-derived coastal DEM is another key dataset that improves the
classification accuracy and flood mapping when combined with
satellite-based and/or aerial imagery (Carranza-García et al., 2019; Feng
et al., 2019; Muñoz et al., 2021). The 2014 Continuously Updated Digital
ElevationModel (CUDEM) is a topographic and bathymetric (topobathy)
datasetwith a ninth arc-second spatial resolution (~3.4m) that spans the
southeast Atlantic coast of the U.S (Fig. 2e). The CUDEM topobathy is ob-
tained from the NOAA digital coast repository (https://coast.noaa.gov/
htdata/raster2/elevation/NCEI_ninth_Topobathy_2014_8483/). In addi-
tion to those datasets, the CNN & DF framework is trained with land
cover maps of the Coastal Change Analysis Program (C-CAP, Fig. 2f).
The program monitors changes of coastal intertidal areas, wetlands and
adjacent uplands with ancillary datasets as well as very high resolution
5

aerial imagery (1 m) of the National Agriculture Imagery Program
(NAIP). Likewise, C-CAP produces land cover products for coastal regions
of the U.S. every five years and can be obtained from the NOAA digital
coast repository (https://coast.noaa.gov/digitalcoast/tools/lca.html).
Lastly, we use USGS – high water marks of Hurricane Matthew to indi-
rectly verify flood areas delineated with the framework. These data are
available in the USGS – Flood event viewer platform (https://stn.wim.
usgs.gov/FEV/). A detailed summary of the data used in this study is
also presented in Table 1.

3. Integration of remote sensing data with hydrodynamic and deep
learning models

3.1. Data pre-processing

As thefirst step,we removed all remaining clouds and shadows from
Landsat ARD scenes (e.g., see Fig. 2a) with the fmask v4.0 tool (Qiu et al.,

https://asf.alaska.edu/
https://coast.noaa.gov/htdata/raster2/elevation/NCEI_ninth_Topobathy_2014_8483/
https://coast.noaa.gov/htdata/raster2/elevation/NCEI_ninth_Topobathy_2014_8483/
https://coast.noaa.gov/digitalcoast/tools/lca.html
https://stn.wim.usgs.gov/FEV/
https://stn.wim.usgs.gov/FEV/


Table 1
Datasets used for compound flood mapping with the CNN & DF framework in the south-
east Atlantic coast of the U.S.

Dataset Resolution
[m]

Scene date, time (UTC)
ID/Row/Path

Bandsa

Landsat Analysis Ready Data
(ARD)

30 2016-Oct-13, 15:54:32
LC08_CU_026014/37/16

R, G, B,
Nir,
Swir1 and
Swir2

2016-Oct-13, 15:54:56
LC08_CU_026015/38/16
2016-Oct-13, 15:54:08
LC08_CU_027013/36/16

Dual-polarized synthetic
aperture radar (SAR)

10 2016-Oct-09, 23:29:00
S1A_IW_GRDH/94/48

VH and VV

2016-Oct-09, 23:29:25
S1A_IW_GRDH/99/48
2016-Oct-10, 23:20:33
S1B_IW_GRDH/100/150
2016-Oct-10, 23:20:58
S1B_IW_GRDH/105/150
2016-Oct-11, 23:13:41
S1A_IW_GRDH/108/77

LiDAR-derived Digital
Elevation Model (DEM)

3 2014
CUDEMb

Single
band

a Red (R), Green (G), Blue (B), Near-infrared (Nir), Shortwave infrared (SWIR) 1 and 2.
b Vertical (V) and horizontal (H) polarimetric channels. Continuously updated DEM –

topobathy dataset.
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2019b) and ArcGIS. The tool was initially set with default parameter
values and then fine-tuned to identify obscured and cloudy pixels.
Landsat ARD does not require any further atmospheric correction and
has been widely used in many applications including time series analy-
sis, land cover change assessment, and global land cover mapping
(Muñoz et al., 2019; Potapov et al., 2020; Qiu et al., 2019a). We then
prepare SAR data with the open-access Sentinel Application Platform
(SNAP v8.0) as suggested in similar flood mapping studies (Liu et al.,
2019; Uddin et al., 2019). For this purpose, we first import and
geo-code the radar datawith the ‘Apply-Orbit-File’ tool. The data is sub-
sequently masked with a pre-defined vector-file that comprises the
training and evaluation areas (see Section 2.1).We then radiometrically
calibrate themasked data to remove over-brightening effects due to the
radar sensor.

Next, we reduce the speckle noise effect, i.e., grainy appearance or
‘salt and pepper’ noise, to enable an unbiased analysis of SAR images.
Similarly, we account for geometric distortions (e.g., foreshortening,
layover and shadow) with the ‘Terrain-Correction’ tool and the high
resolution CUDEM topobathy data (Table 1). Also, we co-register the
SAR images of pre- and post-flood conditions (Fig. 2(c, d)) with 5000
ground control points. These SAR images are ultimately used to train
the CNN & DF framework. The SAR pre-processing steps are automated
with the ‘Graph Builder’ option of SNAP and runs in batchmode. Similar
to Muñoz et al. (2021), we resample all datasets to a pixel resolution of
5 × 5 m with the nearest neighbor method, and then re-scale the
Landsat ARD and DEM data values to a range of 0 to 1. SAR data is al-
ready transformed to the dB scale (Eq. (1)), and therefore no additional
scaling is done with this dataset.

3.2. Hydrodynamic modeling

We conduct model simulations with Delft3D-FM to identify flood-
water areas in the Savannah River estuary after the peak surge of Hurri-
cane Matthew (Fig. 3a). The hydrodynamic model was previously
calibrated and validated with extreme and non-extreme events includ-
ing compoundflooding events as a result of HurricaneMatthew (Muñoz
et al., 2020). Savannah floodplain consists of wetland and salt marsh
regions that are periodically inundated by local tidal dynamics
(i.e., M2-semidiurnal tidal cycle). Thus, we first define a threshold
value to distinguish purely hurricane-induced and/or fluvial flooding
from periodic inundation of wetlands and salt marsh areas. The mean
6

higher-high water (MHHW) referenced to the North American Vertical
Datum of 1988 (NAVD88) is here used as a threshold value (1.05 m) in
this regard (Fig. 3a). MHHW is obtained from the NOAA's Tide & Cur-
rents website (https://tidesandcurrents.noaa.gov/) and seen as a
proxy of inundation threshold according to the National Weather Ser-
vice (NWS). Furthermore, MHHW has been used as a reference for nui-
sance tidal flooding in others studies (Moftakhari et al., 2015, 2018;
Sweet et al., 2018).

Second, we generate flood maps with the hydrodynamic model that
match the date/time of SAR and Landsat ARD data acquisition (Fig. 2(b,
d)). Floodwater areas that spatially coincide in both flood maps are se-
lected and grouped into a new land cover class named ‘floodwater’.
The floodwater class will be eventually associated with multispectral,
backscattering and elevation features (above the MHHW threshold),
and thus differentiating them from those of open and/or permanent
water (Fig. 3b). Note that the maximum coastal water level at Fort Pu-
laski was ~1.5 m above MHHW. In that regard, we develop an alterna-
tive for compound flood mapping based on deep learning and/or
multi-class land cover classification with floodwater samples explicitly
derived from hydrodynamic modeling. The latter aims at improving
flood mapping strategies that commonly rely on binary classification
of flood/non-flood areas via multispectral and terrain indices, change
detection, thresholds and object-based approaches (Chini et al., 2017;
Huang et al., 2017; Liang and Liu, 2020; Munasinghe et al., 2018;
Uddin et al., 2019).

3.3. Convolutional neural network and data fusion framework

The CNN & DF framework is developed in TensorFlow (www.
tensorflow.org) and was used to analyze long-term wetland dynamics
in a previous study with satisfactory results (Muñoz et al., 2021). In
broad terms, the CNNmodel resembles the (winner) Fusion-FCN archi-
tecture of the 2018 IEEE GRSS Data Fusion Contest (Xu et al., 2019), and
integrates a novel adaptive feature-fusion approach for multisource
data (Feng et al., 2019). In this study, we extend the CNN & DF frame-
work to account for SAR data and flood maps derived from a calibrated
2D hydrodynamic modeling (Muñoz et al., 2020). The framework con-
sists of a tri-branch CNN architecture that simultaneously processes
Landsat ARD, DEM and NAIP data, and can additionally incorporate
other datasets in new or existing branches. Specifically, we adapt the
framework to process SAR data instead of NAIP imagery since the latter
is best suited for vegetation mapping (Maxwell et al., 2017). Likewise,
we train the framework with C-CAP and floodwater maps generated
with a detailed hydrodynamic model (see Section 3.2 for details). In
broad terms, the framework resembles a fully-connected CNN (Xu
et al., 2019) with an adaptive feature-fusion approach for optimal DF
(Feng et al., 2019). The left branch is initially devised to extract
spatial-spectral features from blue, green, red, near-infrared and short-
wave infrared (1 and 2) bands, and then optimized to process selected
band combinations reducing the computation burden (see Section 4.1
for details). The middle branch extracts spatial-elevation features from
LiDAR-derived DEM data of single bands whereas the right branch ex-
tracts spatial-backscattering features converted from a linear to decibel
(dB) scale (Eq. (1)).

σ0
dB ¼ 10 log 10 σ0� � ð1Þ

where, σ0 and σ0
dB are the raw amplitude values and log-transformed

backscattering SAR data, respectively.
The branches extract feature information from patch images of 30 ×

30 pixels via two-dimensional convolution, rectified linear unit and av-
erage pooling operations. The resulting pooling layers are merged
through point-wise addition to integrate low-, mid- and high- levels
of abstraction, and hence benefit from multi-scale properties along
each branch. Feng et al. (2019) proposed a novel alternative for DF of
multisource hyperspectral imagery and LiDAR data based on

https://tidesandcurrents.noaa.gov/
http://www.tensorflow.org
http://www.tensorflow.org
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“Squeeze-and-Excitation Networks” (Hu et al., 2018). The alternative
consists in an adaptive feature-fusion approach that computes the con-
tribution of each feature to the classification task, and thereby fusing
multisource features in a more intelligent fashion than simply feature
stacking. The adaptive feature-fusion approach requires a two-
Fig. 4. Land cover and flood mapping model based on convolutional neural networks (CNN
dimensional (2D) convolution (Conv), rectified linear unit (ReLU) and average (Avg) pooli
addition (+), while the adaptive feature-fusion module is implemented for optimal DF. Featu
and subsequently concatenated (C) and flatten. The classification task is ultimately conducted

7

dimensional global average pooling layer, two fully connected layers
and a “sigmoid” function (Feng et al., 2019; Muñoz et al., 2021), and
produces an output tensor containing the global contribution (or fea-
ture weights) of Landsat imagery, SAR data and LiDAR-derived DEM to
the land cover classification and compound flood mapping task. The
) and multisource data fusion (DF). The model consists of a tri-branch CNN with two-
ng operations. Avg2D pooling layers are merged into a single layer through point-wise
re weights are assigned to the Avg2D pooling layers through the point-wise product (X),
with a fully connected (FC) layer, dropout and ‘Softmax’ function.
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featureweights are assigned to these layers through point-wise product
(or scalar multiplication), and subsequently concatenated and flatten
for optimal DF. Lastly, we add a fully connected layer with dropout
rate set to 0.2 and a ‘Softmax’ function for final land cover classification
(Fig. 4). The C-CAP establishes 17 land cover classes in the U.S, but we
grouped similar classes into 7 general categories to avoid unnecessary
specificity and improve interpretability as suggested in similar studies
(Pouliot et al., 2019; Spruce et al., 2014). In addition, we have included
the ‘floodwater’ class derived from hydrodynamic simulations as indi-
cated in the previous section. The resulting land cover and compound
flood map has a spatial resolution of 30 m by setting an overlap (or
stride) of 6 pixels in x- and y-direction. Note that we explicitly train
the CNN & DF framework to separate floodwater from permanent
water. Further details of the layers used in the CNN architecture are ex-
plained in Muñoz et al. (2021).

3.4. Model training /validation and evaluation of the CNN & DF framework

The land cover and flood mappingmodel can be trained with single,
double and triple dataset combinations depending on data availability.
The Savannah River estuary counts with all three input datasets
(e.g., Landsat ARD, DEM and SAR), and is therefore suitable for training
the frameworkwith any possible dataset combinations in the southeast
Atlantic coast. The sampling process consists of extracting patch images
of 30× 30 pixels (or 150 × 150m) frompre- and post-flood imagery ac-
cording to the C-CAP land cover and flood maps. Since some land cover
classes are scarce in the training area (e.g., grass/bare land, shore and
floodwater), we deal with unbalanced data with data augmentation,
i.e., rotating the sample patches, and class weight computation prior
to the sampling process. Moreover, we randomly separate training
(80% or 17,980) and validation (20% or 4496) patches with a fixed
seed value to ensure reproducibility.

The selected model optimizer and loss function are the stochastic
gradient descent algorithm (SGD) with exponential decay and the
sparse categorical cross-entropy, respectively. To avoid overfitting, we
use 100 epochs with a callback ‘early stopping’ monitoring accuracy
values and ‘patience’ option set to 10 epochs. The initial learning rate
is set to 0.01 for all input datasets. The number of training epochs as
well as the initial learning rate are selected from trial-and-error tests
with randomly selected values ranging from 50 to 200 and 1e-4 to 0.1,
respectively. In addition, we conducted fine-tuning of the CNN architec-
turewith a smaller learning rate (1e-3) and identical model settings de-
scribed above. Model weights resulting from the training process with
dataset combinations and/or DF alternatives are conveniently stored
for further transfer learning in the southeast Atlantic coast. The CNN &
DF framework ultimately classifies patch images of 30 × 30 pixels
Table 2
Accuracy assessment of data fusion alternatives for land cover classification and flood mappin

Dataset Band composite Overall accur
(%)

ARD All bandsa 95.73
R, G and B 87.28
R, G and Nir 91.10
Nir, Swir1 and Swir2 92.37

SAR VH and VVb 86.48
DEM Single band 77.45
ARD+SAR All bands + VH and VV 96.37

Nir, Swir1 and Swir2 + VH and VV 95.71
ARD+DEM All bands + Single band 97.09

Nir, Swir1 and Swir2 + Single band 96.62
SAR + DEM VH and VV + single band 95.97
ARD+SAR + DEM All bands + VH and VV + Single band 97.55

Nir, Swir1 and Swir2 + VH and VV + Single band 97.24

Text with italic letters indicates the benchmark among the data fusion alternatives when all b
Text with bold letters highlights the (cost-effective) band composite that achieves the highest

a Red (R), Green (G), Blue (B), Near-infrared (Nir), Shortwave infrared (SWIR) 1 and 2.
b Vertical (V) and horizontal (H) polarizations.
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with a patch-based approach centered on a single pixel. Contrary to
pixel-based approaches, patch-based analysis allows the CNN to learn
contextual information from local spatial features of neighboring pixels
(Carranza-García et al., 2019; Chen et al., 2017). Misclassification errors
that may arise from patches located at the edge of two or more land
cover classes are controlled by allowing the patch images to contain
less than 10% (or < 90 pixels) of other land cover classes as suggested
inMuñoz et al. (2021).Model validation is conductedwith patch images
of identical size obtained from C-CAP (2016–2017) and flood maps
derived from hydrodynamic simulations of the Delft3D-FM model
(Figs. 2f and 3b).

Lastly, we evaluate compound flood maps obtained from the CNN &
DF framework with respect to two datasets: (i) USGS – high water
marks, and (ii) maximum flood extent map of the CERA web mapper.
Those maps and high water marks are conveniently masked with
geospatial tools in order to span coastal counties of interest where flood
inundation is evident (Fig. 1a). Although high water marks are indicative
of flood inundation depth, we use point coordinates of those marks as a
proxy of ‘ground truth’ flood areas within the coastal counties. We then
conduct a pixel-based spatial analysis (30 × 30m) to determinewhether
the floodmaps of the CNN & DF framework and CERAmatch those point
coordinates or not. Furthermore, we compare flood/non-flood areas in
the coastal counties by measuring the agreement between the maps of
the CNN & DF framework and CERA (Eq. (2)). The advanced fitness
index (AFI) was first developed to compare inundated areas simulated
with hydrodynamic models versus observed inundated areas of aerial
imagery and SAR data (Bates and Roo, 2000), and eventually modified
to compare both non-inundated and inundated areas (Munasinghe
et al., 2018).

AFI ¼ FAobs ∩ FAmod þ NFAobs ∩NFAmod

Aobs ∪ Amod
x 100 ð2Þ

where, FAobs is flood area from observed imagery (e.g., floodwater class
obtained from the CNN & DF framework), FAmod is flood area simulated
with large-scale hydrodynamic modeling (e.g., CERA map derived from
ADCIRC model), NFA is non-flood area and A is the total area under
analysis.

4. Results

4.1. Accuracy assessment

We evaluate the CNN & DF framework in terms of overall accuracy,
Cohen's kappa coefficient, f1-score (macro) and f1-score per class
(Table 2). Regarding the Landsat ARD imagery, the highest accuracies
g in the Savannah River estuary.

acy Cohen's kappa
(%)

f1-score (macro)
(%)

f1-score permanent water/floodwater
(%)

95.09 95.57 97.85/100
85.38 86.06 96.10/100
89.79 90.39 97.91/99.91
91.23 91.82 97.31/94.99
84.47 86.00 98.25/83.73
74.03 74.96 98.70/85.51
95.84 96.31 98.38/100
95.07 95.49 99.39/99.82
96.65 96.97 98.25/100
96.12 96.49 99.18/100
95.38 95.92 99.18/100
97.19 97.48 99.39/100
96.83 97.13 99.39/100

ands are included.
accuracy as compared to the other composites.
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are observed when all six spectral bands are used in the framework.
Nevertheless, this implies a heavy computation burden that might in-
crease evenmorewhen implementingmulti-source DF. To reduce com-
putation burden and overcome graphics-processing-unit (GPU)
memory usage limitation, we select the last band combination for fur-
ther transfer learning in the southeast Atlantic coast. The rationale be-
hind this selection is that Nir, Swir1 and Swir2 achieve the highest
accuracies in both land cover and flood mapping (bold letters) as com-
pared to the other band combinations (Table 2), and also allow for a rel-
ative easier interpretability of non-physical parameters. Note that we
report the accuracies associated with all spectral bands and DF alterna-
tives as a benchmark (italic letters).

Among the DF alternatives, the highest overall accuracy and f1-
scores of permanent/flood water classes are achieved when ARD, SAR
andDEMdatasets are readily available and adequately fused. In absence
of Landsat ARD imagery, or equivalently having scenes with cloud
cover/shadow percentages above 20%, SAR and DEM datasets are a
Fig. 5. Land cover classification and compound flood mapping in the southeast Atlantic coast of t
discriminate permanent (dark-blue) and floodwater (cyan) classes. (For interpretation of the refe
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suitable DF alternative as they achieve satisfactorily results with less
than 1% differencewith respect to the former alternative. The same per-
centage is obtained when ARD and DEM datasets are fused together.
ARD and SAR dataset combination is less accurate (2%) than ARD, SAR
and DEM together. The higher accuracy of the latter combination high-
lights the role of DEM data in the fusion process as elevation features
combined with spectral and/or backscattering features help overcome
misclassification errors associated with land cover classes having simi-
lar spectral or backscattering signatures. Nonetheless, in absence of
highly detailed DEMs, the ARD and SAR dataset combination can still
lead to comparable accuracies with respect to the ideal DF alternative
(all datasets). Moreover, high overall accuracy results (> 95%) obtained
from all DF alternatives suggest that the CNN & DF framework can
perform satisfactorily in other remote areas with limited data availabil-
ity. It is noted that the proposed band selection (Nir, Swir1 and Swir2)
and all six spectral bands achieve identical f1-scores in permanent
water and floodwater classes.
he U.S. Scale bar corresponds to the colored circles. Note that the CNN & DF model is able to
rences to color in this figure legend, the reader is referred to the web version of this article.)
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4.2. Land cover and compound flood mapping

We use a transfer learning approach (e.g., model weights ob-
tained from the pre-trained CNN & DF framework) to conduct land
cover classification and compound flood mapping in the south east
Atlantic coast based on available datasets (Table 1). Particularly, we
focus our analysis on the most flood-impacted zones of the study
area including coastal counties of northern Florida, Georgia, South
Carolina and southern North Carolina (Fig. 5). The framework can ef-
ficiently separate permanent water from floodwater even though
minor misclassification errors are observed among (dry) land cover
classes. This is also noticeable in the confusion matrix of the training
area (validation patches); specifically, the palustrine wetland class
achieves the lowest producer's and user's accuracies (Table A1 in
the Appendix).
Fig. 6. Comparison offloodmaps between the CNN&DF framework and theCERA. Red areas ind
Scale bar corresponds to the colored circles. (For interpretation of the references to color in th
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In addition, we evaluate the performance of the CNN & DF frame-
work with respect to hindcast flood guidance maps of CERA (Fig. 6). In
thefigure, red color highlights flood areas thatmatch both our proposed
framework and CERA maps. Flood areas obtained exclusively from the
framework and CERA are shown with cyan and dark-blue, respectively.
Note that the floodwater class is correctly delineated at most of the
high water marks (yellow circles) in the southeast Atlantic coast.
Specifically, we conduct a pixel-based spatial analysis to determine
the number of high water marks that are correctly delineated with
maps of the CNN & DF framework and CERA. Those results are re-
ported as relative percentages with respect to the total number of
marks available at each location (Table 3). Overall, the CNN & DF
framework captures 39% of all USGS – high water marks distributed
along the coastal counties (e.g., 393 marks). Note that this percent-
age is higher than the one calculated with the CERA map by a factor
icate agreement between bothmaps, while cyan and dark-blue areas indicate the opposite.
is figure legend, the reader is referred to the web version of this article.)



Table 3
Evaluation of the CNN & DF framework with USGS – high water marks (HWMs) and the advanced fitness index (AFI).

Location of main rivers, estuaries and islands HWMs – CNN & DF
(%)

HWMs – CERA
(%)

AFI
(%)

St. Johns River and Amelia Island, FL 31.58 5.26 82.16
St. Marys River and Cumberland Sound, GA 52.63 5.26 84.00
St. Andrew/St. Simons Sounds and Satilla River, GAa 16.67 27.78 66.56
Altamaha River and Sapelo Island, GAa 0.00 0.00 73.07
Ogeechee River and Ossabaw Islands, GAa 0.00 33.33 61.24
Wassaw Sound and Savannah River estuary, GA-SCa 7.14 42.86 68.08
St. Helena Sound and Coosaw River, SC 51.16 32.56 73.53
Hunting and St. Edisto Islands, SC 54.55 18.18 75.48
Charleston Harbor, Ashley/Cooper/Wando Rivers, SC 22.22 20.37 74.44
North/South Santee Rivers and Winyah Bay, SC 6.67 20.00 80.83
Waccamaw River, Long Bay and Myrtle Beach, SC 0.00 0.00 69.70
Atlantic Beach and North Myrtle Beach, SC 56.00 6.00 82.95
Little River, Bird Island and Ocean Isle Beach, NC 69.57 17.39 95.29
Oak/Bald Head Islands and Cape Fear River, NC 61.90 14.29 95.02
Zekes Island and Kure/Carolina Beach, NC 22.22 44.44 95.36
Masonboro Island and Wrightsville Beach, NC 9.09 9.09 92.51
Figure Eight Island and Topsail Beach, NC 22.22 22.22 91.97
North Topsail Beach and New River 10.00 0.00 96.34
Global 38.93 19.08 80.38

a Landsat ARD, SAR and DEM datasets.
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of 2. Comparisons of flood/non-flood areas betweenmaps of the CNN
& DF framework and CERA indicate an overall agreement of 80%
(Table 3). All locations shown in the table count with SAR and
DEM datasets except those marked with an asterisk that include
Landsat ARD dataset with clouds and shadows less than 20% (see
Section 2.2 for details). AFI ranges from 61% to 96% at selected rivers,
estuaries and islands suggesting that the transfer learning approach
with the CNN & DF framework is an efficient alternative for com-
pound flood mapping at large-scale.

5. Discussion

5.1. Large-scale compound flood mapping

Advanced hydrodynamic modeling is a common approach for simu-
lating physically-based processes such as compound flooding at large-
scale (Dietrich et al., 2011; Muis et al., 2019; Vousdoukas et al., 2016;
Wing et al., 2017). However, such an approach requires an adequate
mesh resolution (e.g., order of meters) and a thorough model calibra-
tion to accurately represent CF in coastal to inland transition zones
where flooding drivers interact (Bilskie and Hagen, 2018; Santiago-
Collazo et al., 2019). An effective alternative that can complement cur-
rent efforts in complex physical and dynamical modeling consists in
leveraging DL models and transfer learning for post-event flood map-
ping. Transfer learning is an emerging and powerful technique for com-
pound flood mapping and can help in flood hazard assessment of data
scarce regions with only satellite-based data. In addition, DL and DF
techniques can potentially aid in model parameter calibration and un-
certainty reduction of flood hazard maps (Gude et al., 2020; Kabir
et al., 2020b).

In this study, we propose a compound flood mapping strategy via
multiclass land cover classification with CNNs and an adaptive DF ap-
proach (Fig. 4). The CNN & DF framework aims at reducing misclassifi-
cation errors associated with land cover heterogeneities and
underlying complexity. The f1-scores of permanentwater and floodwa-
ter slightly improve according to the DF alternatives with maximum
values of 99.39 and 100% for permanent water and floodwater, respec-
tively (Table 2).Weargue that such high accuracies result froma correct
classification of the entire set of land cover classes as opposite to com-
mon approaches that rely on decision rules or threshold values for bi-
nary classification of flood/non-flood areas. In this regard, we ensure
the framework correctly delineates floodwater areas without requiring
11
global or localized thresholds thatmay lead to over- or underestimation
of flood extent and overfitting in the classification process (Liang and
Liu, 2020). The selection of MHHW as ‘floodwater threshold’ in
Delft3D-FM model simulations helps identify purely hurricane-
induced and fluvial flooding from periodical flooding in wetlands and
salt marshes, which are present inmost estuaries and bays of the south-
east Atlantic coast (Fig. 5). Particularly, the MHHW (referenced to the
NAVD88) adds a physical meaning to the compound flood mapping
process (e.g., floodwater training samples) and complements ‘abstract’
feature information extracted frommultispectral, backscattering and el-
evation properties of the input datasets (Fig. 4).

5.2. Data fusion alternatives and limitations of the framework

The acquisition dates of SAR data are a few days later than the date/
time of Hurricane Matthew's best track, and up to 5 days later in the
case of Landsat ARD (Fig. 1a and Table 1). Flood recession is therefore
of consideration as it may start a few hours later than the local peak
storm surge, and so reduce the ability of the framework to delineate
maximum flood extent and/or match post-flood high water marks col-
lected in coastal counties (Table 3). Nonetheless, the compound effects
of flood drivers do not necessarily coincide with the occurrence of the
dominant flood driver (e.g., storm-surge), but usually with lag times
of up to 7 days according to local-scale and global studies (Klerk et al.,
2015; Moftakhari et al., 2017; Ward et al., 2018). In this regard, we ex-
pect fewer USGS – high water marks correctly identified with maps of
the CNN&DF framework aswell as an underestimation offlood inunda-
tion extent; especially at locations where the Landsat ARD dataset is
available and fused (see rows with an asterisk in Table 3). This might
also help explain the relatively low AFI values at locations that count
with this lagged dataset. In contrast, we observe relatively high AFI
values at locationswhere SAR and DEM datasets are fused since the for-
mer dataset is closer to the peak surge of Hurricane Matthew (Fig. 3a).
Hindcast flood guidancemaps derived from a large-scale hydrodynamic
model (ADCIRC) and available via the CERA web mapper may also
contain uncertainties leading to over- and underestimation of maxi-
mum flood extent. Particularly, these uncertainties in hydrodynamic
modeling may have led to a lower global percentage of high water
marks correctly matched (~19%) as compared to the proposed frame-
work (~39%).

Although we could have used the CERA map as an additional input
dataset of the CNN & DF framework, we intentionally left this map out
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of the training process and used it for validation purposes instead. We
therefore evaluate the performance of the framework without the
help from a large-scale ADCIRC model, but focus our efforts on a local-
scale hydrodynamic modeling (Delft3D-FM) of relatively shorter simu-
lation time and transfer learning approach with pre-trained model
weights. We show the CNN & DF framework achieves moderate-high
accuracies overall in terms of high water marks and AFI percentages
(Table 3) even with floodwater samples derived from the Savannah
River estuary, GA. Hurricane Matthew considerably impacted this
study area and led to the highest water surface level of the entire south-
east Atlantic coast. Transfer learning from local to large-scale study
areas is seen as a promising alternative for compound flood mapping
given the complexity and computation burden associated with ad-
vanced hydrodynamic models at large-scale.

Limitations of the CNN & DF framework include the selection of a
suitable deep learning architecture as well as analyses of the associ-
ated sources of uncertainty. In general, uncertainty from input data
(satellite sensor's calibration and/or associated noise, data heteroge-
neity, and class-conditional distributions), model structure (deep
learning architecture and/or number of ‘deep’ layers), and model pa-
rameters (loss function, learning rate, dropout rate, initial bias, num-
ber of epochs, etc.) can lead to misclassification and/or prediction
errors. To overcome such limitations, we conduct pre-processing of
input data (Section 3.1) as well as trial-and-error tests to find ‘opti-
mal’ values for patch and kernel sizes, number of epochs and learn-
ing rate as suggested in several studies (Section 3.4). A thorough
uncertainty analysis would demand a full study by itself given sev-
eral sources of uncertainty and is therefore left for future studies.
Moreover, the main goal of this study is to propose a framework
based on DL and present it comprehensively.

6. Conclusion

The Atlantic hurricane season in the U.S. coasts is responsible for
multiple deaths, severe damages to infrastructure and environmental
impacts associated to compound flooding. Flood emergency managers
and stakeholders are thus in need of real-time detailed flood maps for
decision-making, prompt emergency response and coastal flood assess-
ment. In this study, we presented a modified CNN & DF framework that
integratesmulti-source remotely sensed data and hydrodynamicmodel
results tomap compoundflooding in the southeast Atlantic coasts of the
U.S. The framework was trained in the Savannah River estuary, GA and
achieved the highest accuracy results for all land cover classes when
D
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fusing Landsat ARD, SAR and DEM datasets. In absence of Landsat ARD
imagery, or equivalently having scenes with too many shadows and
cloudy pixels, fusing SAR and DEM datasets emerged as a suitable alter-
native for compound flood mapping with accuracies of less than 1% dif-
ferencewith respect to the former alternative. Themodelweights of the
pre-trained framework were used for transfer learning in coastal
counties of the southeast Atlantic coast, and hence allowing for com-
pound flood mapping at large-scale. Comparison of flood maps at loca-
tions with available USGS – high water marks resulted in a higher
accuracy of the CNN & DF framework than hindcast flood guidance
maps of CERA (factor of 2). Nevertheless, both maps showed an overall
agreement greater than 80% in flood/non-flood areas suggesting that
the framework can efficiently discriminate floodwater from permanent
water classes. We highlight the usefulness of the CNN & DF framework
for large-scale compound flood mapping, and its potential use for a
thorough calibration of hydrodynamic models and uncertainty reduc-
tion in coastal flood hazard assessment. Future work is envisioned to-
ward a comprehensive framework that provides not only accurate
flood extentmaps, but also inundation depth based on both deep learn-
ing andmulti-source data fusion techniques. Likewise, uncertainty anal-
ysis of the proposed framework would demand a full study by itself
given several sources of uncertainty and is therefore left for future
studies.
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Appendix A
Table A1

Confusion matrix of validation patches (20% of the dataset) resulting from Landsat ARD, SAR and DEM data fusion in the Savannah River estuary.
Class
 Developed
 Grass/Bare land
 Upland trees/Shrub
 Palustrine wetland
 Estuarine wetland
 Shore
 Permanent water
 Floodwater
 User's acc. (%)
eveloped
 421
 1
 0
 0
 0
 0
 0
 0
 99.76

rass/Bare land
 1
 540
 0
 0
 0
 0
 0
 0
 99.82

pland trees/Shrub
 0
 3
 687
 22
 0
 0
 0
 0
 96.49

alustrine wetland
 0
 3
 30
 416
 19
 0
 0
 0
 88.89

stuarine wetland
 0
 0
 1
 9
 589
 0
 0
 0
 98.33

hore
 1
 3
 0
 2
 20
 439
 6
 0
 93.21

ermanent water
 0
 0
 0
 3
 0
 0
 729
 0
 99.59

loodwater
 0
 0
 0
 0
 0
 0
 0
 551
 100

roducer's acc. (%)
 99.53
 98.18
 95.68
 92.04
 93.79
 100
 99.18
 100
 OA (%): 97.24
P
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