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Abstract. Since its introduction over 50 years ago, the concept of Mosco convergence has
permeated through diverse areas of mathematics and applied sciences. These include applied analysis,
the theory of partial differential equations, numerical analysis, and infinite dimensional constrained
optimization, among others. In this paper we explore some of the consequences of Mosco convergence
on applied problems that involve moving sets, with some historical accounts, and modern trends and
features. In particular, we focus on connections with density of convex intersections, finite element
approximations, quasi-variational inequalities, and impulse problems.
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1. Introduction. The overwhelming success of Mosco convergence [64, 63] is
present in several areas of mathematics. The concept provided the right framework
for the study of problems involving moving convex sets in reflexive Banach spaces.
In fact, it made possible to study perturbation/stability properties for variational
inequalities and other nonlinear problems in calculus of variations, provided existence
results for quasi-variational inequalities (QVIs), and allowed the study of optimization
problems where control/design variables modify constraints.

Historically, set convergence notions in abstract spaces go back to Painlevé in the
beginning of the nineteenth century. They were, however, popularized by Kuratowski
[52] who remains as part of the name in the set limit names. In between the appearance
of the latter, and the one of the seminal paper by Di Giorgi and Franzoni [31] on Γ-
convergence (a full analysis of relationships between K− and Γ−limits can be found
in the monograph by Dal Maso [30]), Mosco published his foundational results [64,
63] associated to the convergence of sets. The initial results of Mosco are almost
simultaneous to the famous Lions and Stampacchia paper Variational Inequalities [55].
This is not coincidence, as in Mosco’s own words, it was Stampacchia “who suggested
this research”. Further, we direct the interested reader to Aubin and Frankowska [12]
for an historical account on the notions of set convergence.

There is a vast literature on Impulse Control Problems and their connections with
QVIs, the reader may check the books by Bensoussan and Lions [22] and Bensous-
san [20] for a self-contained account on the subject. In fact, QVIs were initially iden-
tified and treated by Bensoussan and Lions [21, 53] through impulse control problems.
Hamilton-Jacobi-Bellman equations take the form of QVIs in many applications to
(stochastic) control/design problems. Thus, the convergence of sets (which is relevant
in the setting of the problems itself) becomes very important in the approximation
and implementation of these models. A very short description is given later on, es-
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sentially, to alert the reader some other similar (yet different) type of QVIs, where
Mosco’s convergence has not been completely discussed and explored.

From a general perspective, QVIs are nonlinear, nonconvex, and nonsmooth prob-
lems with (in general) non-unique solutions. Specifically, a QVI can be seen as varia-
tional problem with an implicit (state dependent) constraint. This leads to the need
to approach these problems from the moving set perspective. This level of complexity
established QVIs as powerful physical models. It should be noted that QVIs have
been successfully applied to the magnetization of superconductors, Maxwell systems,
thermohydraulics, image processing, game theory, surface growth of granular (cohen-
sionless) materials, hydrology, and solid and continuum mechanics. For more details,
we refer the reader to [37, 48, 32, 40, 51, 54, 68, 71] and to the monographs [15, 50].

In this paper, in addition to providing an account of some basic sufficient condi-
tions for Mosco convergence for several types of sets, we focus on two main consequen-
tial aspects associated to Mosco convergence. Initially, we study its relationship with
density properties for convex sets, and provide application to finite element discretiza-
tion of problems involving convex sets. Subsequently, we focus on quasi-variational
inequalities, impulse problems, and some stability properties of the set of solutions to
the QVI.

As the notion of Mosco convergence can also be described via a functional con-
vergence related to Γ-convergence (this is detailed within the paper), the concept is
directly applicable to the study of regularized minimization problems in highly diverse
settings. Some of these that are not fully in the scope of this paper include viscosity
solutions of minimization problems [6, 7], derivation of variational models for granular
material accumulation [47, 27], Tikhonoff regularization for inverse problems [67, 66],
and posteriori error estimates for adaptive finite elements [78, 35] (and references
within [76]).

The paper is organized as follows. In section 2 we provide some common no-
tation used throughout the paper, and the famous definition of Mosco convergence
together with basic results involving general classes of convex sets. A short account on
necessary and sufficient conditions of Mosco convergence for unilateral sets are given
in section 3. The role of density properties for convex sets in Mosco convergence is
explored in section 4, and its subsequent application to finite element discretization
is provided on section 4.1. Quasi-Variational Inequalities are considered in section 5,
and a short, historical and modern account on impulse control problems is given next
on section 5.1. We finalize the paper with a short account on existence of QVIs and
stability results for multivalued problems in sections 5.2 and 5.3, respectively.

2. Notations and Preliminary Results. Throughout most of this paper we
assume (unless stated otherwise) that V is a reflexive real Banach space of (equiva-
lence) classes of maps of the type v : Ω → R for some Lipschitz domain Ω ⊂ Rd with
d ∈ N. For an arbitrary Banach space V we write ∥ · ∥V for its associated norm. The
topological dual is denoted as V ′, and by ⟨·, ·⟩V ′,V the associated duality pairing. For
a sequence {zn}n∈N in V we denote its strong convergence to z ∈ V by “zn → z” and
weak convergence by “zn ⇀ z”. Further, for two Banach spaces V1 and V2, we write
L (V1, V2) for the space of bounded linear operators from V1 to V2.

The typical function spaces under consideration are described next. For an open
domain Ω in Rd, we denote H1(Ω) to be the Sobolev space of L2(Ω) functions whose
weak gradients belong to L2(Ω), and by H1

0 (Ω) we denote the subset of H
1(Ω) whose

elements are zero in ∂Ω in the sense of the trace (provided that Ω is regular enough).
For functions in Lp(Ω) with gradients in Lp(Ω), we utilize W 1,p(Ω), and W 1,p

0 (Ω) for
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functions vanishing at ∂Ω.
We are now in position to establish the notion of Mosco convergence and some of

its basic consequences. The celebrated definition by Mosco [64, 63] is the following

Definition 2.1 (Mosco convergence). Let K and Kn, for each n ∈ N,
be non-empty, closed and convex subsets of V . Then the sequence {Kn} is said to
converge to K in the sense of Mosco as n→ ∞, denoted by

Kn
M−−→K,

if the following two conditions are fulfilled:
(I) For each w ∈ K, there exists {wn′} such that wn′ ∈ Kn′ for n′ ∈ N′ ⊂ N and

wn′ → w in V .
(II) If wn ∈ Kn and wn ⇀ w in V along a subsequence, then w ∈ K.

In general and in concrete applications, item (II) in Definition 2.1 is significantly
simpler to check than (I). In fact, (I) requires clever constructions that leads into
problem-tailored approaches.

The relevance of Mosco convergence can be explained by the fact that it provides
the right “topology” for the obtention of stability results to solutions of variational
inequalities when the constraint sets are perturbed. For this matter, consider K ⊂ V
non-empty, closed and convex and f ∈ V ′. We define S(f,K) as the unique solution
to the following variational inequality (VI):

Find y ∈ K : ⟨Ay − f, v − y⟩ ≥ 0, ∀v ∈ K, (2.1)

where

A : V → V ′ is linear, bounded, and strongly monotone, (2.2)

and we assume this about A throughout the paper. For a detailed account of problem
(2.1), we refer the author to [49] or [15]. Then, we have the following result by Mosco:
If fn → f in V ′, we have that

Kn
M−−→K implies S(fn,Kn) → S(f,K) in V ;

see [64] or [73].
In this paper we focus on two classes of problems that share similar difficulties with

“moving” sets and hence Mosco convergence becomes a crucial tool in their treatment.
Initially, we focus on optimization problems and their regularization/discretization
and limiting behavior. In particular, we deal with the issue of Mosco convergence via
properties of density of convex intersections. Secondly, we focus on some particular
classes of quasi-variational inequalities (variational problems with implicit obstacles),
and stability properties of the solution set.

We consider a general structure of the sets of interest that is wide enough to
include pointwise bounds on function values, their gradient, curl or divergence, and
also nonlocal type constraints like the ones arising from linear integral operators. The
general structure of the sets of interest are of the form

K = {w ∈ V : ψ(Gw) ≤ ϕ}, (2.3)

where ϕ : Ω → R is a nonnegative measurable function and “v ≤ w” stands for
v(x) ≤ w(x) for almost all (f.a.a.) x ∈ Ω, or almost everywhere (a.e.), unless stated
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otherwise. We assume that G ∈ L (V,Lp(Ω)m) for some 1 < p < +∞ and m ∈ N, that
is, G : V → Lp(Ω)m is linear and bounded. Additionally, we suppose that ψ : Rm → R
is convex, ψ(0) = 0, ψ(tx) = tψ(x) for all x ∈ Rm and t > 0, and it is possibly
nonsmooth at the origin but smooth everywhere else. Note that the previous implies
that K is convex, and closed. Further, since ϕ ≥ 0 we have that K is nonempty as
well since 0 ∈ K.

A few words are in order to establish the generality of the structure of (2.3). The
class of spaces we have in mind are either of Lebesgue or Sobolev type. The possible
choice of G is contingent upon the choice of V ; for example, if V = H1

0 (Ω) then G
can be considered as the weak gradient ∇, and if H0(div; Ω), we can take G = div.
The function ψ commonly refers to a ℓp-norm in Rm, and the absolute value if m = 1,
or to just the identity, i.e., ψ(x) = x. The regularity of ϕ is not an issue for well-
posedness of variational problems over K, but additional properties will be required
for the obtention of stability results for perturbations of ϕ.

Note that the expression (2.3), for given functions ψ, G, and ϕ, determines a fixed
closed and convex set K. However, for problems like quasi-variational inequalities
(QVIs), the setK is actually a state-dependent quantity: This would lead to a problem
like 2.1 where y ↦→ K(y) is not constant. In terms of (2.3) and this setting, the
dependence of K(y) on y is determined by assuming that ϕ = Φ(y); this is discussed
later on. Based on the structure of (2.3), we have a general result under relatively
weak conditions for (II) in Definition 2.1 to hold.

Proposition 2.2. Suppose that ϕn → ϕ in L1(Ω). Then (II) in Definition 2.1
holds true for

Kn = {w ∈ V : ψ(Gw) ≤ ϕn}. (2.4)

Proof. For wn ∈ Kn, we have ψ(Gwn) ≤ ϕn, and if wn ⇀ w in V , it follows that

Gwn ⇀ Gw in Lp(Ω)d. By Mazur’s lemma, there exists zn =
∑︁N(n)
k=n αk(n)Gwk where∑︁N(n)

k=n αk(n) = 1 and αk(n) ≥ 0 such that zn → Gw in Lp(Ω)d. Since ψ : Rd → R is
convex,

ψ(zn) ≤
N(n)∑︂
k=n

αk(n)ψ(Gwk) ≤ ϕ+

N(n)∑︂
k=n

αk(n)|ϕk − ϕ|⏞ ⏟⏟ ⏞
ϵn

.

Since ϕn → ϕ in L1(Ω), then ϵn → 0 in L1(Ω). Therefore, we obtain w ∈ K by
taking the limit above (over some subsequence converging in the pointwise almost
everywhere sense).

On the other hand, the existence of the subsequence in (I) of Definition 2.1 requires
problem-specific constructions rendering it (in general) much harder to prove than the
condition in (II) . Perhaps the simplest situation in which (I) holds is the obstacle
case with ϕn → ϕ in V and where V ∋ z ↦→ min(0, z) ∈ V is continuous: Let w ≤ ϕ
be arbitrary and define wn := min(w, ϕn) so that wn ≤ ϕn. Since ϕn → ϕ in V , it
follows that wn → w in V . Consequently (I) holds true. The relaxation of “ ϕn → ϕ
in V ” is a complex task that we tackle in some simple cases. We provide now some
general constructions for (I) and for Mosco convergence.

Proposition 2.3. Let V be either W 1,p
0 (Ω) or W 1,p(Ω) with 1 ≤ p < +∞,

and ϕ, ϕn ∈ L∞(Ω) for n ∈ N. Suppose that for some ν ∈ [0,∞), ϕn ≥ ν a.e. for all
n ∈ N and

ϕn → ϕ in L∞(Ω).
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Then, if either one of the two conditions

(i) ν = 0, G = id and ψ(x) = |x| or ψ(x) = x

(ii) ν > 0, G = ∇ and ψ(x) = ∥x∥ℓq with 1 ≤ q ≤ +∞

hold true, we observe that

{w ∈ V : ψ(Gw) ≤ ϕn} M−−→{w ∈ V : ψ(Gw) ≤ ϕ}.

Proof. Suppose that ν > 0. Note that since ϕn → ϕ in L∞(Ω) by Proposition 2.2,
(II) in Definition 2.1 holds true. In order to prove (I), let w∗ ∈ V and ψ(Gw∗) ≤ ϕ
be arbitrary. Define wn := βnw

∗ where

βn :=

(︃
1 +

∥ϕn − ϕ∥L∞(Ω)

ν

)︃−1

.

It follows that wn → w∗ in W 1,p
0 (Ω) and ψ(Gwn) ≤ ϕn (cf. Hintermüller and Raut-

enberg [41]) which finishes the proof.
In the case ν = 0 for (i), consider

wn = Tn(w
∗) :=

{︄
(ψ(w∗)− ∥ϕ− ϕn∥L∞(Ω))

+ w∗

ψ(w∗) , if ψ(w∗) ̸= 0;

0, if ψ(w∗) = 0.

Note first that wn ∈ Lp(Ω) and clearly wn → w∗ in Lp(Ω). Further, note that
Tn(w

∗)(x) = hn(w
∗(x)) for some hn : R → R and for each n ∈ N. In this case, we

have that x ↦→ hn(x) is globally Lipschitz, hn(0) = 0, then it follows that Tn : V → V
is continuous (see Marcus and Mizel [56]). Hence ∇wn ∈ Lp(Ω) and further

∇wn = ∇w∗ T ′
n(w

∗) with T ′
n(x) :=

{︄
x/ψ(x), if ψ(x) ≥ ∥ϕ− ϕn∥L∞(Ω);

0, otherwise.

where we have used that ψ(x) = x or ψ(x) = |x|. Hence, ∇wn → ∇w∗ in Lp(Ω)
given that T ′

n(w) → x/ψ(x) in Lq(Ω) for any 1 ≤ q <∞, i.e., wn → w∗ in V . Finally,
for x ∈ Ω we observe

ψ(wn(x)) = |(ψ(w(x))− ∥ϕ− ϕn∥L∞(Ω))
+| ≤ |(ψ(w(x))− ϕ(x) + ϕn(x))

+| ≤ ϕn(x),

which completes the proof.
The case ν = 0 can also be handled in the gradient constraint case under addi-

tional assumptions on the regularity of the domain Ω. Indeed, if Ω is bounded with
∂Ω of class C2, then the result of the above theorem holds true in the (i) case, e.g.
see Azevedo and Santos [13].

3. Further sufficient and necessary conditions for unilateral sets. In
applications, it is common to encounter obstacle-type (or unilateral) constraints, i.e.,

K = {w ∈W 1,p
0 (Ω) : w ≤ ϕ}, and Kn = {w ∈W 1,p

0 (Ω) : w ≤ ϕn}, (3.1)

for 1 < p < +∞, and Ω open and bounded. As we have shown before, it is simple to
observe that if ϕn → ϕ in W 1,p

0 (Ω), then Kn
M−−→K. This, however, can be relaxed

significantly and still preserve the Mosco convergence as we briefly discuss next.
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The study of sufficient and of necessary conditions for convergence in the sense
of Mosco has been an active area of research for several decades. In the case of
unilateral sets and in W 1,p

0 (Ω), a complete answer was given by Dal Maso [29] where
the condition involves properties on the p−capacities of the sets {x ∈ Ω : ϕn(x) < t}
and {x ∈ Ω : min(ϕ(x), ϕn(x)) < t}. A similar capacitary approach was taken by
Attouch and Picard [9, 10, 8] and sufficient conditions were obtained under stronger
conditions than Dal Maso.

As a sufficient condition for Mosco convergence, ϕn → ϕ inW 1,p
0 (Ω) can be relaxed

also substantially by means of the compactness result in Murat [65] for Lipschitz
domains that states: If Fn ⇀ F in H−1(Ω) with Fn ≥ 0 for all n ∈ N, then Fn → F
in W−1,q(Ω) with q < 2. Here, Fn ≥ 0 refers to ⟨Fn, σ⟩ ≥ 0 for all σ ∈ H1

0 (Ω)
with σ ≥ 0. Moreover, the Lipschitz regularity of ∂Ω can be dropped and the result
still remains intact; see Brézis [28]. In our setting, this result leads to the following
useful assertion; see Boccardo and Murat [26, 25]: If ϕn ⇀ ϕ in W 1,q(Ω) or W 1,q

0 (Ω)
for some q > p, then Kn

M−−→ K. In summary, Mosco convergence is maintained
when switching from strong into weak convergence of the obstacles, provided that the
gradients of the obstacles possess an ϵ > 0 extra amount of integral regularity.

Analogous results to the one of Boccardo and Murat and of Dal Maso [29] were
unknown for fractional spaces W s,p

0 (Ω) for s ∈ (0, 1) until recently (see [4]). Appli-
cations for these kind of problems can be seen in Antil and Rautenberg [3]. In the
same vein, it is an open question whether it is possible to extend the above result of
Boccardo and Murat [26, 25] to weighted Sobolev spaces W 1,p

0 (Ω;w) for some w in a
Muckenhoupt class.

4. The role of density in Mosco convergence. This section entails a dis-
cussion on how density properties are related to Mosco convergence in regulariza-
tion/discretization of optimization problems; we follow closely [45].

In variational problems with constraints, one seeks the solution in a given convex,
closed and nonempty feasible set K of a certain Banach space (V, ∥ · ∥) not necessarily
reflexive. To start the discussion in this section, let us consider the following abstract
class of optimization problems:

minF (u) over u ∈ K, (4.1)

where assume that F : V → R is continuous, coercive and sequentially weakly lower
semicontinuous (not necessarily convex).

Problem (4.1) admits a solution provided V is reflexive: Let {un} be an infimizing
sequence. Since F is coercive and there is a feasible point, {un} is bounded. Since V
is reflexive, un ⇀ u∗ along a subsequence for some u∗ ∈ V . Since K is convex and
closed, it is weakly closed, and hence u∗ ∈ K. Finally, since F is sequentially weakly
lower semicontinuous, we have

F (u∗) ≤ lim inf F (un) = inf
u∈K

F (u),

i.e., u∗ is a minimizer, and a subsequence of {un} is not only a infimizing sequence
but a minimizing one as well.

The problem class (4.1) is general enough to encompass numerous fields, such
as variational inequality problems of potential type, and optimal control of partial
differential equations with constraints on the state and/or control among others. The
study of (4.1) and the design of solution algorithms involve concepts of perturbation
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or dualization methods comprising regularization, penalization or discretization ap-
proaches (or a combination thereof). The stability properties of (4.1) with respect to
a large class of perturbations is contingent upon the following density property: For
a particular dense subspace Y of V , it holds true that

{u ∈ Y : u ∈ K}
V
= K, (4.2)

or in short K ∩ Y V = K. Note that K ∩ Y V refers to the closure in the V -norm of
the set K ∩ Y . In order to prove this, we start with the definition of Γ-convergence
and its relation to Mosco convergence.

Definition 4.1. Let Gn : V → R∪{+∞} for n ∈ N. We define the Γ-upper and
-lower limit at u of Gn as

Γ- lim sup
n→+∞

Gn(u) := sup
U∈N (u)

lim sup
n→+∞

inf
w∈U

Gn(w),

and

Γ- lim inf
n→+∞

Gn(u) := sup
U∈N (u)

lim inf
n→+∞

inf
w∈U

Gn(w),

respectively, where N (u) denotes the set of all open neighborhoods in the norm of
V . Analogously, we denote the weak versions of the above Γw- lim supGn(u) and
Γw- lim inf Gn(u) where open neighborhoods are considered in the weak topology. Pro-
vided the limits exists and are identical, we write

Γ- lim
n→+∞

Gn(u) := Γ- lim sup
n→+∞

Gn(u) = Γ- lim inf
n→+∞

Gn(u),

and say the quantity above is the (norm) Γ-limit of Gn at u. Similarly, in the weak
topology case, we define

Γw- lim
n→+∞

Gn(u) := Γw- lim sup
n→+∞

Gn(u) = Γw- lim inf
n→+∞

Gn(u),

provided the limits exist and are equal.
The connection of Γ-convergence and Mosco convergence is immediate. Consider

the sequence {iKn
} of indicator functions iK : V → R ∪ {+∞} for the sequence of

convex closed and non-empty sets {Kn}. Then, Kn
M−−→ K if and only if for each

sequence un ⇀ u in V with un ∈ Kn, we have

lim inf
n→+∞

iKn
(un) ≥ iK(u),

and for each u ∈ K, there exists a sequence such un ∈ Kn such that un → u and

lim sup
n→+∞

iKn
(un) ≤ iK(u).

We consider the above concepts applied to a general class of problems. For this
matter, we define the sequence of perturbed problems

inf F (u) +Rn(u), over u ∈ V, (4.3)

defined by given perturbations Rn : V → R ∪ {+∞} of the indicator function iK :
V → R ∪ {+∞} such that there exist functions Rn : X → R ∪ {+∞} and Rn : X →
R ∪ {+∞} where

0 ≤ Rn ≤ Rn ≤ Rn ∀n ∈ N,
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and the additional properties hold

Rn ≤ Rn+1 ∀n ∈ N, lim
n→+∞

Rn(u) = iK(u) ∀u ∈ V,

Rn sequentially weakly lower semicontinuous ∀n ∈ N,
(4.4)

i.e., if vk ⇀ v then Rn(v) ≤ lim infk Rn(vk), and

Rn ≥ Rn+1, ∀n ∈ N, lim
n→+∞

Rn(u) = iK∩Y (u) ∀u ∈ V. (4.5)

Mappings Rn that share the above features are usually called quasi-monotone per-
turbations of the indicator function iK with respect to the (dense) subspace Y . We
assume no additional assumptions for Rn itself. In the stability analysis of (4.3),
the condition (4.2) appears immediately if using the theory of Γ-convergence ([30]):
Under mild assumptions on V , the density property (4.2) ensures that F + iK is the
Γ-limit of F +Rn in both, the weak and strong topology. In this setting, the problem
(4.3) admits a minimizer u, and each weak cluster point of any sequence of minimizers
{un} is a minimizer of (4.1); see Dal Maso [30, Corollary 7.20].

We are now in position to establish the relation between Γ-convergence (and
Mosco convergence) to the density property (4.2)

Theorem 4.2. Let {Rn} be a sequence of quasi-monotone perturbations of iK
with respect to the dense subspace Y . Let the Banach space V be reflexive or assume
that V ∗ is separable. If the density property (4.2) holds true, then F+iK is the Γ-limit
of F +Rn in both, the weak and strong topology.

Proof. Denote by sc−G to the lower semicontinuous envelope of G : V → R ∪
{+∞}. From the relationship between Γ- and pointwise convergence [30, Chapter 5],
with (4.5) and the continuity of F , we observe

Γw- lim sup(F +Rn) ≤ Γ- lim sup(F +Rn)

≤ Γ- lim sup(F +Rn)

= sc−(F + iK∩Y )

= F + iK∩Y ,

where we use [30, Prop. 6.3, Prop. 6.7, Prop. 5.7, Prop. 3.7].

Analogously, (4.4) together with [30, Prop. 6.7, Prop. 5.4] leads to

Γw lim inf(F +Rn) ≥ Γw lim inf(F +Rn) = lim
n→+∞

sc−w(F +Rn) (4.6)

where sc−w(F +Rn) denotes the lower semicontinuous envelope of F +Rn in the weak
topology of V . In addition, note that the coercivity and the sequential weak lower
semicontinuity of F + Rn imply that the level sets {u ∈ V : F (u) + Rn(u) ≤ t} are
bounded and sequentially weakly closed. Since V is reflexive or it has a separable
dual V ∗, then the sequential weak closure of bounded subsets coincides with the
weak closure, see [30, Prop. 8.7, Prop. 8.14]. Further, F + Rn is weakly lower
semicontinuous which determines

Γw- lim inf(F +Rn) ≥ lim
n→+∞

(F +Rn) = F + iK,
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by (4.6). Therefore, we observe that

F + iK ≤ Γw- lim inf(F +Rn)

≤ Γw- lim sup(F +Rn)

≤ Γ- lim sup(F +Rn)

≤ F + iK∩Y ,

such that Γ- lim(F +Rn) = Γw- lim(F +Rn) = F + iK if (4.2) holds true.
In what follows, we provide a selection of approximation/regularization methods

which fit into the general class of perturbations given by (4.3) and which are used
very frequently in practice.

Example 4.1 (Tikhonov-Regularization). Let (Y, ∥ · ∥Y ) be a Banach space,
and suppose that Y is densely and continuously embedded into V . For a sequence of
positive non-decreasing numbers {γn} with γn → +∞ and fixed α > 0, consider in
(4.3) the Tikhonov regularization

Rn(u) = iK(u) + 1
2γn

∥u∥αY . (4.7)

We assume that Rn(u) = +∞ if u /∈ Y . Then, set

Rn := iK, and Rn := Rn,

for all n ∈ N, and (4.4) and (4.5) are satisfied so that Rn is in the context of (4.3).
Example 4.2 (Conformal discretization). Let V be a separable Banach space.

Assume that (4.1) is approximated by a Galerkin approach using nested and conformal
finite-dimensional subspaces Vn, i.e., we have Vn ⊂ V and Vn ⊂ Vn+1 for all n ∈ N
with the Galerkin approximation property:⋃︂

n∈N
Vn

V

= V.

Therefore, problem (4.1) is replaced by (4.3) by the discretized counterpart defined by
Rn(u) = iK∩Vn

. In this setting, define

Rn := iK, and Rn = Rn.

It follows that (4.4) is satisfied, and if Y :=
⋃︁
n∈N Vn, then (4.5) is fulfilled as well.

Example 4.3 (Combined Moreau-Yosida-Tikhonov-Regularization). Let V
be a Hilbert space and (Y, ∥ · ∥Y ) a Banach space with Y densely and continuously
embedded into V . For two sequences of positive non-decreasing numbers {γn}, {γ′n}
with γn, γ

′
n → +∞ and fixed α > 0, consider the simultaneous Moreau-Yosida and

Tikhonov regularization:

Rn(u) =
γn
2 inf
v∈K

∥u− v∥2 + 1
2γ′

n
∥u∥αY , (4.8)

with α > 0 fixed. We assume that Rn(u) = +∞ if u /∈ Y , and define

Rn(u) =
γn
2 inf
v∈K

∥u− v∥2 and Rn(u) = iK(u) + 1
2γn

∥u∥αY .

It is well-known from the theory of Moreau-Yosida regularizations that Rn satisfies
(4.4), and (4.5) it is also directly verified.
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Example 4.4 (Conformal discretization and Moreau-Yosida regularization).
Let V be a separable Hilbert space and {γn} a sequence of positive non-decreasing
numbers with γn → +∞. The simultaneous regularization and discretization leads to

Rn(u) =
γn
2 inf
v∈K

∥u− v∥2 + iVn(u), (4.9)

where the sequence of spaces {Vn} is defined as in the previous examples. Defining

Rn = γn
2 inf
v∈K

∥u− v∥2 and Rn = iK∩Vn ,

(4.4) and (4.5) are fulfilled with Y =
⋃︁
n∈N Vn and the framework of (4.3) applies.

From Theorem 4.2, the perturbations defined in the above examples are stable
with respect to (4.1) provided the density result (4.2) holds. Moreover, the density
property (4.2) is also a necessary condition for the stability of perturbation schemes in
the following sense: Firstly, note that the Γ-limit of the approximation schemes defined
in Example 4.1 and Example 4.2 can be calculated using similar arguments as in the
proof of Theorem 4.2. Under the same conditions on V , namely that V is reflexive or
with separable dual, one infers that F + iK∩Y is the weak and strong Γ-limit in both
examples. Secondly, in the approaches of Example 4.3 and Example 4.4, Theorem 4.2
guarantees that F + iK is obtained as the weak-strong Γ-limit for any coupling of
regularization (parameter) pairs [γn, γ

′
n] and [Vn, γn], respectively. Further, in the

combined Galerkin-Moreau-Yosida approach (Example 4.4), it is possible to prove
the existence of a combination of n and γn to recover F + iK in the Γ-limit without
resorting to the density property (4.2), see [62, Prop. 2.46]. However, the proof is
non-constructive! Hence, it is not applicable for the design of solvers. Moreover, if
(4.2) is violated, one may construct for any w ∈ K \K ∩ Y a sequence γn such that
no recovery sequence exists for the element w. The analogous statement is valid for
the case of combined Moreau-Yosida-Tikhonov regularizations. Let us now rigorously
establish the preceding statements.

Theorem 4.3. Let the assumptions of Example 4.4 be satisfied. Further suppose
that

K ∩ Y ⊊ K.

Then for each w ∈ K \K ∩ Y there exists a strictly increasing sequence of numbers
{γn} with γn → ∞ such that there exists no strong recovery sequence at w, i.e.,

F (yn) +Rn(yn) ↛ F (w)

for all {yn} in V with yn → w, where Rn is given by (4.9).
Proof. Let w ∈ K \ K ∩ Y and ρ > 0 such that Bρ(w) ∩ K ∩ Y = ∅ where

Bρ(w) := {y ∈ V : ∥w − y∥ < ρ}.
(a) We first prove the following result:

∀n ∈ N, ∃γn > 0 :
[︂
y ∈ Y ∧ dist(y,K ∩Bρ(w))2 < 1

γn
=⇒ y /∈ Vn

]︂
. (4.10)

Assume the opposite, i.e.,

∃n0 ∈ N :
[︂
∀n ∈ N,∃wn ∈ Vn0

, vn ∈ (K ∩Bρ(w)) : ∥wn − vn∥2 ≤ 1
n

]︂
.
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Since vn ∈ Bρ(w)∩K for all n ∈ N and Bρ(w)∩K is convex, bounded and closed, there

exists a subsequence {vnk
} of {vn} with vnk

⇀ v and v ∈ Bρ(w)∩K. As wn−vn → 0,

one also obtains wnk
⇀ v and thus v ∈ Vn0

. Hence, v ∈ Vn0
∩K ∩Bρ(w) = ∅, which

is a contradiction.

(b) Non-existence of a strong recovery sequence: Choose γn according to (4.10)
and suppose there exists a recovery sequence yn to w, i.e., yn → w and F (yn) +
γn
2 dist(yn,K)2 + iVn

(yn) → F (w). The continuity of F implies that yn ∈ Vn and
γn
2 dist(yn,K)2 → 0. Consequently, using yn → w and w ∈ K, there exists n1 ∈ N
such that

dist(yn,K)2 = dist(yn,K ∩Bρ(w))2 ≤ 1
γn

for all n ≥ n1. With the help of part (a), we conclude that yn /∈ Vn for all n ≥ n1
which is a contradiction.

4.1. Applications to Finite Element approximations. We now concentrate
efforts in how the previously described ideas permeate through their finite dimensional
approximation. In this section we assume that Ω ⊂ Rd is a Lipschitz polyhedral
domain. We start with a small generalization of item (I) in Definition 2.1 for the
finite dimensional case. In some textbooks on finite-dimensional approximations of
variational inequalities, cf., e.g. Glowinski [38], Han and Reddy [39], condition (I) is
commonly replaced by the following criterion:

(i) There exists a dense subset K̃ ⊂ K and an operator rn : K̃ → V , such that for
all v ∈ K̃ it holds rnv → v in V and there exists n0 ∈ N such that rnv ∈ Kn for
all n ≥ n0.

It is easy to show that (i) implies (I) in Definition 2.1. In fact, let v ∈ K and
denote by πKn

v its (not necessarily uniquely determined) projection onto Kn. By
density, for ϵ > 0, there exists vϵ ∈ K̃ such that ||vϵ − v|| ≤ ϵ. Thus, we have

||v − πKn
v|| = inf

vn∈Kn

||v − vn|| ≤ ||v − rnv
ϵ|| ≤ ϵ+ ||vϵ − rnv

ϵ||

for sufficiently large n such that limn→∞ ||v − πKnv|| ≤ ϵ where ϵ was arbitrary.

Condition (i) is more convenient in the context of finite-dimensional approxima-
tions, where rn is given by interpolation operators that are only defined on a dense
subset of V . Thus, giving rise to sets K̃ of the type K ∩ C∞

c (Ω). in fact, this is
precisely where the density results of the previous sections are required. For practical
relevance, we consider the perturbation of variational inequalities.

In what follows, the sequence of approximating sets is assumed to be originating
from a finite-dimensional approximation Kn = Khn of the set K in the framework
of classical Finite Element methods: The parameter n is associated with a sequence
of mesh sizes {hn} converging to zero. Concerning the literature and in the context
of approximation of variational inequalities, Falk [34]’s a priori estimate for elliptic
variational inequalities shows that it is sufficient to tailor the sets Kn with respect to
the VI solution u: This gives rise to the class of adaptive Finite Elements methods.
Rigorous convergence proofs for adaptive discretizations of variational inequalities are
restricted to special cases and usually require strong assumptions. See for example,
in the case of the obstacle problem with a piecewise affine obstacle, the article Siebert
and Veeser [78]. Furthermore, density results may still be useful in the analysis of
adaptive schemes utilizing interpolation operators, cf. Siebert [77].
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Consider a sequence of geometrically conformal affine simplicial meshes {Th}h>0

of Ω of mesh size h, i.e.,

h := max
T∈Th

diam (T ),

where diam(T ) = maxx,y∈T |x − y| denotes the diameter of T . We call Th, a trian-
gulation of Ω. The Lebesgue measure of an element T ∈ Th is denoted by λ(T ). We
further assume that the sequence {Th} is shape-regular, that is

∃c > 0 : diam(T )
ρT

≤ c ∀h, ∀T ∈ Th, (4.11)

where ρT is the diameter of the largest ball that is contained in T . Additionally, we
write xT for the (barycentric) midpoint of an element T , andMh = {xT : T ∈ Th}, Nh

and Eh for the set of element midpoints, triangulation nodes, and edges with respect
to Th, respectively. Abusing notation, we write |Mh| and |Nh| for the cardinality of
the respective sets. Let χT : Ω → R be the characteristic function of T :

χT (x) = 0 ∀x /∈ T, and χT (x) = 1 ∀x ∈ T.

The standard H1(Ω)-conformal Finite Element space of globally continuous piecewise
affine functions associated to Th is given by

Hh := {u ∈ C(Ω) : u|T ∈ P1 ∀ T ∈ Th}.

Here, P1 denotes the space of polynomials of degree less than or equal to one. As-
sociated to Hh and its standard nodal basis {ϕx : x ∈ Nh}, we define the global
interpolation operator

Ih : C(Ω) → Hh, Ihu :=
∑︂
x∈Nh

u(x)ϕx. (4.12)

Note that Ih is only defined on a dense subspace of H1(Ω).
We define the Hilbert space H(div,Ω) := {v ∈ L2(Ω)N : div v ∈ L2(Ω)} endowed

with the inner product

(v, w)H(div) := (v, w)L2(Ω)N + (div v,divw)L2(Ω).

The closure of C∞
c (Ω)N with respect to the H(div,Ω)-norm is denoted by H0(div,Ω)

and in the case Ω has a Lipschitz boundary it is equivalent to

H0(div,Ω) = {v ∈ H(div,Ω) : γv := v · ν|∂Ω = 0}, (4.13)

where ν denotes the outer normal vector. The operator γ can be proven to be contin-
uous from H(div,Ω) to H1/2(∂Ω). For the discretization of variational problems in
H(Ω; div), it is usual to consider the H(Ω; div)-conforming space of Raviart-Thomas
Finite Elements of lowest order:

RTh = {w ∈ L2(Ω)d : w|T ∈ RT ∀T ∈ Th, [w · ν]|E = 0 ∀E ∈ Eh ∩ Ω}, (4.14)

where RT = {w ∈ Pd
1 : ∃a ∈ Rd, b ∈ R, for which w(x) = a + bx} and ν denotes the

unit outer normal to T . The incorporation of zero boundary conditions in the normal
direction requires the use of the H0(div,Ω)-conforming subspace

RT0,h := RTh ∩H0(div,Ω).
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Suitable edge-based basis functions {ϕE : E ∈ Eh} can be found in the literature,
cf., for instance, Bahriawati and Carstensen [14]. Finally, the global Raviart-Thomas
interpolation operator is given by

IRTh :W 1,1(Ω)d → RTh, IRTh w :=
∑︂
E∈Eh

(︃∫︂
E

w · ν dHd−1

)︃
ϕE . (4.15)

We are now in shape to present the pertinent Mosco convergence results associated
to finite element discretizations.

Theorem 1. Suppose that α ∈ C(Ω) satisfies infx∈Ω α(x) > 0, and that N ∈ N
is given. Then the sets

K1
h := {w ∈ (Hh)

N : |w(xT )|ℓp ≤ α(xT ) for all T ∈ Th},
K2
h := {w ∈ (Hh)

N : |w(x)|ℓp ≤ α(x) for all x ∈ Nh},

for 1 ≤ p ≤ +∞, Mosco-converge for h→ 0 to the set

K = {w ∈ H1(Ω)N : |w|ℓp ≤ α}

in H1(Ω).
Proof. We concentrate on K1

h as the proof for K2
h follows analogously, and we

separate the proof into two steps.
Step 1: We prove first that (II) in Definition (2.1) holds true. That is, suppose

wh ∈ K1
h and wh ⇀ w in H1(Ω) along a subsequence, then we prove that w ∈ K. It

suffices to show that iK(w) = 0. Furthermore, it holds iK = j∗ where j∗ denotes the
Fenchel-Legendre conjugate

j∗(v∗) := sup
v∈L2(Ω)

{(v∗, v)− j(v)},

of the map j : L2(Ω) → R, defined as

j(v) :=

∫︂
Ω

α|v|ℓq dx,

with 1/p+ 1/q = 1 , and where we use the duality relation between ℓp and ℓq norms,
i.e.,

|v∗|ℓp = sup
v∈R\{0}

v∗ · v/|v|ℓq .

From the definition of j∗, we obtain that iK(w) = 0 is equivalent to

(w, v) ≤
∫︂
Ω

α|v|ℓq ∀ v ∈ L2(Ω). (4.16)

Via density, it is enough to prove this result for all v ∈ Cc(Ω). Define

αh :=
∑︂
T∈Th

α(xT )χT , and vh :=
∑︂
T∈Th

v(xT )χT (4.17)

the piecewise constant interpolants of α and v, respectively. Since α and v are uni-
formly continuous, then αh → α and vh → v in L∞(Ω). By the weak convergence of
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wh, and the strong convergence of αh and vh, we have∫︂
Ω

wh · vh dx
h↓0−−→

∫︂
Ω

w · v dx, (4.18)∫︂
Ω

αh|vh|ℓq dx
h↓0−−→

∫︂
Ω

α|v|ℓq dx. (4.19)

Further, by the midpoint quadrature rule, and that |wh(xT )|ℓp ≤ α(xT ), we observe
that ∫︂

Ω

wh · vh dx =
∑︂
T∈Th

∫︂
T

wh · vh dx

=
∑︂
T∈Th

λ(T )wh(xT ) · vh|T dx

≤
∑︂
T∈Th

λ(T ) |wh(xT )|ℓp |vh|T |ℓq dx

≤
∑︂
T∈Th

λ(T ) α(xT ) |vh|T |ℓq dx

=

∫︂
Ω

αh|vh|ℓq dx,

which by (4.18) and (4.19) proves (4.16).
Step 2: We prove that (I) in Definition (2.1) holds true. Note that the assump-

tions on α imply that

K ∩ C∞
c (Ω)N

H1(Ω)N

= K,

that is, the set K ∩ C∞
c (Ω)N is dense, with respect to the H1(Ω)N -norm, in K; see

Hintermüller and Rautenberg [43]. This further implies that the set

K̃ := {ϕ ∈ C∞(Ω)N : |ϕ(x)|ℓp < α(x) for all x ∈ Ω}, (4.20)

is also dense in K w.r.t. the H1(Ω)N -norm. For the global interpolation operator Ih
defined in (4.12) we have the classical estimate,

||u− Ihu||L∞(Ω) ≤ ch2||u||W 2,∞(Ω) ∀ u ∈W 2,∞(Ω). (4.21)

Here, c denotes a constant independent of h on account of the shape-regularity of the
triangulation (4.11); see Ern and Guermond [33].

We set rh : K̃ → (Hh)
N to be defined by rhw = {Ihwi}Ni=1 and it follows that

rhw → w as h→ 0 in H1(Ω)N for all w ∈ K̃. Hence,

|| |w − rhw|ℓp ||L∞(Ω) ≤ c̃h2||w||W 2,∞(Ω)N , (4.22)

for some c̃ > 0, which implies

|rhw(x)|ℓp ≤ |w(x)|ℓp + ch2||w||W 2,∞(Ω)N ∀ x ∈ Ω. (4.23)

Thus for w ∈ K̃, there exists h0 = h0(w) such that rhw ∈ K1
h for all h ≤ h0 which

implies (i).
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The role of density properties can also be seen in the following result involving
other kinds of constraints. The proof carries over mutandis mutatis from the previous
proof.

Theorem 2. Let 1 ≤ p ≤ +∞, and assume that α ∈ C(Ω) satisfies infx∈Ω α(x) >
0. Then the set

Ki
h := {w ∈ Hh : |∇w|T |ℓp ≤ α(xT ) for all T ∈ Th},

Mosco-converges for h→ 0 to the set

Ki = {w ∈ H1(Ω) : |∇w|ℓp ≤ α},

in H1(Ω). Further, the sets

Kii
h := {w ∈ RT0,h : |w(xT )|ℓp ≤ α(xT ) for all T ∈ Th},

Kiii
h := {w ∈ RT0,h : |div w|T | ≤ α(xT ) for all T ∈ Th},

Mosco-converge for h→ 0 to the sets

Kii = {w ∈ H0(div,Ω) : |w|ℓp ≤ α},
Kiii = {w ∈ H0(div,Ω) : |div w| ≤ α},

in H0(div,Ω).

5. Quasi-variational inequalities. The structure (2.3) of K is adapted to VIs,
where the convex set K is part of the fixed data. However, to treat Quasi-Variational
Inequalities (QVIs) we need to consider the convex set as unknown a-priori. Therefore,
instead of a convex K we have a map K : V → 2V written as v ↦→ K(v) with the
following difference with respect to (2.3), the function ϕ is contingent upon the state y
as well. Indeed, in the unilateral case, there is an operator Φ such that Φ(v) : Ω → R
is measurable function for each v ∈ V , and

K(v) := {w ∈ V : w ≤ Φ(v)}. (5.1)

Thus, if K(·) is as above and f ∈ V ′ is given, then

Find y ∈ K(y) : ⟨Ay − f, v − y⟩ ≥ 0, ∀v ∈ K(y), (PQVI)

is referred to as a QVI. This kind of problems arose initially from the work of Bensous-
san and Lions [21, 53] (see also the monographs [20, 22]) on impulse control problems,
and later found application modeling a wide variety of non-convex and non-smooth
phenomena in applied sciences. Specifically, areas including superconductivity (Kunze
and Rodrigues [51], Rodrigues and Santos [74, 75], Barrett and Prigozhin [16, 19],
Prigozhin [71], Hintermüller and Rautenberg [44, 42, 41, 46]), continuum mechanics
(Friedman [36]), growth of sandpiles (Barrett and Prigozhin [17, 18, 19], Prigozhin [69,
70, 72]), and the determination of rivers/lakes networks (Barrett and Prigozhin [18],
Prigozhin [70, 72]), among others. For a complete and classical account on QVIs, we
refer the reader to the text of Baiocchi and Capelo [15].

5.1. Impulse Control Problems and QVIs. Because this is an application
in stochastic control problems, the proper description of the impulse control involves
diffusion processes as the state of the system to be controlled, and a complete setting
can be found, for instance, in most of the quoted references below.
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In the simplest case, impulse control (or control by interventions) refers to a
sequential choices of parameters that modify the free evolution of the system, e.g.,
beginning at time θ0 = 0 and a state x0 ∈ Rd, the state {x(t) : t ≥ θ0} system
is allowed to evolve with a running cost given by f(x(t))e−αt (assuming a0(x) = α,
constant) until a time θ1, where the controller intervenes and changes the state and/or
evolution of the system, e.g., if the current state is x(θ1) then immediately, the state
is moved to the state x(θ1) + ξ1, ξ1 ≥ 0 and the evolution continues with a similar
law. For instance, in finance, the state x(t) may represent the inventory at time t and
ξ1 the order placed at time t = θ1. Iterating this, a control policy {(θi, ξi) : i ≥ 1} is
obtained, and the control problem could be properly defined.

In the context described above and subsequently, the dynamic programming is
applied to obtain the so-called Hamilton-Jacobi-Bellman equation, which takes the
form of a QVI. In particular, if y is the optimal cost, then at any given time the
controller has to decide whether to continue the (free) evolution, i.e., following the
equation Ay = f , or to make an impulse (intervention), which has a cost (and changes
y into My). This can be accounted as

(a) Ay ≤ f, (b) y ≤My, (c) (Ay − f)(y −My) = 0,

where A is a second order elliptic operator with Lipschitz continuous and bounded
coefficients in a smooth domain Ω of Rd, i.e.,

Ay = −
d∑︂

i,j=1

aij(x)∂ijy(x) +

d∑︂
i=1

ai(x)∂iy(x) + a0(x)y(x),

where (aij) and (ai) are related with the diffusion and drift terms and the operator
M takes the form

My(x) = inf
{︁
y(x+ ξ) + k(ξ) : ξ ≥ 0

}︁
,

for a suitable function k(ξ) ≥ k0 > 0 representing the cost-per-impulse. Usually, there
may be more that one solution of these inequalities, even the complementary condition
(c) is not enough to ensure uniqueness in a general setting. Moreover, adding those
other conditions, a minimum (minimal or maximal, depending on the setting) solution
satisfying (a) and (b) is found. In variational form, this is equivalent to (PQVI), and
the perturbation of extremal solutions thereof is treated on §5.3.

The expression of the operator M can be modified to deal with more complex
settings, e.g., if a fixed time delay τ is imposed (i.e., θi+1 ≥ θi + τ) then

My(x) = inf
{︁
Ex{y(x(τ) + ξ) + k(ξ)} : ξ ≥ 0

}︁
,

where Ex is the expectation given x(0) = x. In general, the region {ξ ≥ 0} may
be replaced by a subset Γ(x) ⊂ Ω depending on the given x. Moreover, the whole
state space Ω can be divided into three regions, where (1) impulses are not allowed,
(2) impulses are allowed, and (3) impulses are required; e.g., (3) is a piece Γ0 of
the boundary of Ω, (2) is the interior of Ω and (1) is the complement of Γ0 (or
empty). In this case, the expression of M changes considerable, but some of the
essential properties (e.g., like its monotone character) are retained. This last example
is included in the so-called hybrid models, where discrete and continuous type variables
are used, e.g., examples of this situation can be found in Bensoussan and Menaldi [23,
24], as well as particular cases in more recent papers Menaldi and Robin [58, 61],
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among others. For degenerate problems the reader may check [57], and applications
to Navier-Stokes are considered by Menaldi and Sritharan [60].

A vector form goes under the name of switching control, the coefficients of the
diffusion depend on a parameter i = 1, 2, . . . , n̄, i.e., the operator A becomes Ai and
a simple expression for M takes the form

Mv(x, i) = inf
{︁
v(x, j) + k(i, j)} : j ̸= i

}︁
, k(i, j) ≥ 0,

which can be combined with previous forms of M . There is a vast literature on these
problems, as recent books, the reader may consult Arapostathis et al. [5], Yin and
Zhu [80], among others; and for instance, a relative complex situations is discussed in
Menaldi and Robin [59].

5.2. Elementary Existence Theory. For the study of existence of solutions,
we define the map

T (v) := S(f,K(v)), (5.2)

where S is the solution map associated to the variational inequality (2.1), relative to
f and K(v). Thus, solutions to (PQVI) are equivalently defined as fixed points of the
map T , i.e., v solves (PQVI) iff

T (v) = v.

A direct approach to determine existence of fixed points is the following. The
coercivity of the operator A implies that T (V ) ⊂ BR(0;V ) for some R > 0. Hence, any
sequence {vn} in BR(0;V ) contains a subsequence such that vn ⇀ v and T (vn)⇀ z in
V for some v and z. Hence, provided that K(vn)

M−−→K(v) then T (vn) → T (v) in V ,
i.e., the map T is compact and a fixed point exists due to the theorem of Schauder. In
summary, a sufficient condition for the existence of solutions to (PQVI) is that vn ⇀ v
in V implies that K(vn)

M−−→K(v).
While the above is suitable to understand the problem of existence, it is not

enough to understand the behavior of the set of all solutions Q(f) to (PQVI) with
respect to perturbations of f . For this, we consider an ordering approach.

5.3. Exploiting order and cone structure. We consider an approach based
on order that was pioneered by Tartar; see [79], [11, Chapter 15, §15.2], and we follow
closely a simplified version of [2, 1]. In particular, we focus on existence and stability
properties of the solution set.

Let (V,H, V ′) be a Gelfand triple of Hilbert spaces, that is, we have V ↪→ H ↪→ V ′,
where the embedding V ↪→ H is dense and continuous, and H is identified with its
topological dual H ′ so that the embedding H ↪→ V ′ is also dense and continuous.
Within this section, (·, ·) denotes the inner product in H.

We assume that H+ ⊂ H is a convex cone satisfying

H+ = {v ∈ H : (v, y) ≥ 0 for all y ∈ H+}.

Note that H+ defines the cone of non-negative elements inducing the vector ordering:

x ≤ y if and only if y − x ∈ H+.

Given x ∈ H, let x+ denote the orthogonal projection of x onto H+, and define
x− := x+ − x. Clearly, one has the decomposition x = x+ − x− ∈ H+ − H+ for
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every x ∈ H, and (x+, x−) = 0. Further, the infimum and supremum of two elements
x, y ∈ H are defined as sup(x, y) := x + (y − x)+ and inf(x, y) := x − (x − y)+,
respectively. The supremum of an arbitrary completely ordered subset R of H that is
bounded (in the order) above is also properly defined: R can be written as {xi}i∈J ,
where J is completely ordered, and it follows that {xi}i∈J is a generalized Cauchy
sequence in H (e.g., see Aubin [11, Chapter 15, §15.2, Proposition 1]); its limit is the
upper bound of the original set. Additionally, we have that that norm convergence
preserves order, i.e., if zn → z and yn → y in H, then zn ≤ yn (yn − zn ∈ H+)
implies z ≤ y, since H+ is closed.

We further assume that

y ∈ V ⇒ y+ ∈ V and ∃µ > 0 : ∥y+∥V ≤ µ∥y∥V , ∀y ∈ V.

Then the order in H induces one in V ′, as well. In fact, for f, g ∈ V ′, we write f ≤ g
if ⟨f, ϕ⟩ ≤ ⟨g, ϕ⟩ for all ϕ ∈ V + := V ∩H+.

Finally, V and H are assumed to be spaces of maps h : Ω → R over some open
set Ω ⊂ RN with the following dense and continuous embedding: L∞(Ω) ↪→ H such
that L∞(Ω) ↪→ V ′, as well. Additionally, we assume that H ↪→ L1(Ω).

A common example of Gelfand triple (V,H, V ′) and cone H+ that satisfies all
conditions is given by (V,H, V ′) = (H1

0 (Ω), L
2(Ω), H−1(Ω)) with H+ = L2(Ω)+, the

set of almost everywhere (a.e.) non-negative functions, and v ≤ w in the a.e. sense.

5.3.1. Minimal and Maximal Solutions. We start this section with the def-
inition of an increasing map, and existence of fixed points thereof under rather weak
conditions. Subsequently, we provide conditions for the map T to be increasing.

Definition 5.1. A map R : H → H is said to be increasing if for y, z ∈ V we
have that

y ≤ z implies R(y) ≤ R(z).

A general result concerning existence of fixed points for increasing maps is avail-
able as we see next (its proof can be found on [11]). This provides a fundamental tool
to prove existence of solutions to problem (PQVI) under very weak assumptions.

Theorem 3 (Birkhoff-Tartar). Suppose R : H → H is an increasing map
and let y be a sub-solution and y be a super-solution of the map R, that is:

y ≤ R(y) and R(y) ≤ y.

If y ≤ y, then the set of fixed points of the map R in the interval [y, y] is non-empty
and has a smallest and a largest element.

The above theorem mainly states that if a map is increasing, has a subsolution y1
and a supersolution y2, then it has a fixed point between (with respect to the order
induced in H) y1 and y2. Moreover, there are minimal and maximal fixed points in
[y1, y2].

For the map T : H → H defined as T (v) = S(f,K(v)) to be increasing, some
assumptions are required on the structure of K and on the operator A. For this
purpose, in addition to A : V → V ′ satisfying (2.2) ( i.e., A is linear, continuous, and
strongly monotone), we assume it is strictly T-monotone, i.e.,

⟨Ay−, y+⟩ ≤ 0, ∀y ∈ V. (5.3)
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Further, we assume that

Φ: H → H ∩ [ν,+∞) is increasing, (5.4)

for some ν > 0, and that 0 ≤ f ≤ fmax for some fmax ∈ V ′. Then, it follows that

y = A−10 = 0 and y = A−1fmax

are sub- and supersolutions, respectively, of T , and all assumptions of the previous
theorem are satisfied: In fact, we have that

(f, v) ↦→ S(f,K(v)) is increasing,

see Rodrigues [73, Section 4:5, Theorem 5.1]. Hence, defining Aad = {g ∈ V ′ : 0 ≤
g ≤ fmax}, we have the operators

m : Aad → V and M : Aad → V

that take elements of Aad to minimal and maximal solutions to (PQVI) in the interval
[y, y] = [0, A−1fmax].

5.3.2. A class of QVIs . Consider the following class of compliant obstacle
problems where the obstacle is given implicitly by solving a PDE, thus coupling a VI
and a PDE. It consists in finding (y,Φ, z) ∈ V ×H ×W such that

y ≤ Φ, ⟨A(y)− f, y − v⟩ ≤ 0, ∀v ∈ V : v ≤ Φ, (5.5)

⟨Bz +G(Φ, y)− g, w⟩ = 0 ∀w ∈W, (5.6)

Φ = Lz, in H. (5.7)

Here, V ↪→ W ↪→ H ↪→ W ′ ↪→ V ′, f, g ∈ H+, G : H × H → H is continuous and
bounded, i.e., for some MG > 0, ∥G(Φ, y)∥H ≤ MG(∥Φ∥H + ∥y∥H), for all (Φ, y) ∈
H × H. Further, L : W → H is an increasing affine linear continuous map with
L(0) ≥ ν > 0. Additionally, B ∈ L(W,W ′) is coercive and satisfies ⟨Bz−, z+⟩ = 0 for
all z ∈W (i.e., B is T-monotone).

Under mild conditions, the above problem can be cast into the form of (PQVI) as
follows. Let v ∈ H, and consider the problem of finding z ∈W such that

⟨Bz +G(ϕ, v)− g, w⟩ = 0, ∀w ∈W, (5.8)

ϕ = Lz, in H. (5.9)

Assuming that for each v ∈ H, z ↦→ G(Lz, v) is monotone, one can show the existence
of a unique solution z(v) ∈W of (5.8)–(5.9). Now set Φ(v) := ϕ. Suppose additionally
that (G(Lz, y), z−) ≤ 0 for all z ∈ W and y ∈ H+. Hence, z(v) ≥ 0 and Φ(v) =
Lz(v) ≥ ν for all v ∈ H. In addition, if v1 ≤ v2 implies

(G(Lv, v1)−G(Lw, v2), (v − w)+)≥0,

for all w, v, then z(v1) ≤ z(v2) and Φ(v1) ≤ Φ(v2), as L is increasing. This finally
shows that (5.5)–(5.7) has the form (PQVI) with Φ as an increasing operator and K(v)
given as K(v) := {v′ ∈ V : v′ ≤ Φ(v)}, where Φ(v) = ϕ ∈W , and the pair (z, ϕ) is as
given by (5.8)–(5.9).

Finally, assuming that f ∈ Aad = {h ∈ V ′ : 0 ≤ h ≤ fmax}, we have that the
operators m : Aad → V and M : Aad → V are well-defined: They map elements in Aad

to minimal and maximal solutions to (PQVI) in the interval [y, y] = [0, A−1fmax].
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5.3.3. A useful Mosco convergence result. The obstacle operator Φ arising
from (5.5)-(5.7), can be written as Φ(v) = C−1(Lv)+g̃ where C is a (nonlinear) partial
differential operator, and g̃ is some fixed element in V . In particular, this generates
the need to consider Mosco convergence results when obstacles have specific structure.
In this vein, we consider the following result.

Theorem 5.2. Let ϕn, ϕ ∈ V for n ∈ N. Suppose that ϕn → ϕ in H, and

Qϕn ≥ 0 in V for all n ∈ N,

for some strongly monotone Q ∈ L (V, V ′), such that ⟨Qv−, v+⟩ ≤ 0 for all v ∈ V .
Then,

{w ∈ V : w ≤ ϕn} M−−→{w ∈ V : w ≤ ϕ}.

holds true.
Proof. First note that since H ↪→ L1(Ω), then ϕn → ϕ in H also implies strong

convergence in L1(Ω). It follows by Proposition 2.2 that (II) in Definition 2.1 holds
true. In order to prove (I) in Definition 2.1 we consider the following construction
based on singular perturbations.

Let w ∈ V such that w ≤ ϕ be arbitrary and let wn for n ∈ N be defined by

⟨rnQwn + wn, v⟩ = (w̃n, v), for all v ∈ V, (5.10)

where rn := ∥w̃n − w∥H and w̃n := min(w, ϕn), and note that w̃n → w in H and
w ∈ V . Then, we can prove that wn → w in V . Since Q is linear, bounded, and
⟨Qv, v⟩ ≥ c∥v∥2V for all v ∈ V , from the definition of wn we have

rnc∥wn − w∥2V + ∥wn − w∥2H ≤ ⟨(rnQ+ I)(wn − w), wn − w⟩
≤ ⟨w̃n − w,wn − w⟩ − rn⟨Qw,wn − w⟩ (5.11)

≤ rn(Cp + ∥Qw∥V ′)∥wn − w∥V ,

where Cp is the constant for the embedding V ↪→ H. This implies that, {wn} is
bounded in V , so that wn ⇀ w∗ (along a subsequence) for some w∗ ∈ V . By taking
the limit in (5.10), it is shown that w∗ = w and that wn ⇀ w in V not only along a
subsequence. It further follows that wn → w in H, and since from (5.11) we observe

rnc∥wn − w∥2V + ∥wn − w∥2H ≤ rn(∥wn − w∥H + ⟨Qw,w − wn⟩), (5.12)

we have that wn → w in V .
Next we prove that wn ≤ ϕn. Consider v = (wn − ϕn)

+ and let us subtract
⟨rnQϕn + ϕn, v⟩ from both sides of (5.10). Then, we get

rn
⟨︁
Q(wn − ϕn), (wn − ϕn)

+
⟩︁
+ ∥(wn − ϕn)

+∥2H =

− rn
⟨︁
Qϕn, (wn − ϕn)

+
⟩︁
+ (min(w, ϕn)− ϕn, (wn − ϕn)

+).

Note that min(w, ϕn) − ϕn ≤ 0 and by assumption Qϕn ≥ 0. Therefore the right
hand side is less or equal to zero. Additionally, since Q is linear, ⟨Qv−, v+⟩ ≤ 0, and
⟨Qv, v⟩ ≥ c∥v∥2V for all v ∈ V , we observe that

rnc∥(wn − ϕn)
+∥2V + ∥(wn − ϕn)

+∥2H ≤
≤ rn

⟨︁
Q(wn − ϕn)

+, (wn − ϕn)
+
⟩︁
+ ∥(wn − ϕn)

+∥2H ≤ 0.
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This yields wn ≤ ϕn, i.e., (I) in Definition 2.1 holds true. This completes the proof.
In view of the previous result, we assume throughout the rest of this section the

following continuity assumption on the obstacle map Φ.

Assumption 1. If vn ⇀ v in V , then Φ: H → H ∩ [ν,+∞) satisfies one of the
following conditions:

(a) Φ(vn) → Φ(v) in L∞(Ω), or Φ(vn) → Φ(v) in V .
(a) Φ(vn) → Φ(v) in H and if v ∈ V ∩H+, then Φ(v) ∈ V and QΦ(v) ≥ 0 in V ,

for some strongly monotone Q ∈ L (V, V ′), such that ⟨Qv−, v+⟩ ≤ 0 for all
v ∈ V .

Hence, by Proposition 2.3, and Theorem 5.2, we assume that Φ satisfies conditions
to guarantee Mosco convergence of the sets K(vn), provided that vn ⇀ v in V , to
K(v).

5.3.4. Perturbation of minimal and maximal solutions. Existence of so-
lutions to the QVI of interest is established if the following property holds

vn ⇀ v implies that K(vn)
M−−→K(v).

However, we are interested in the stability properties of the maps

Aad ∋ f ↦→ m(f) and Aad ∋ f ↦→ M(f),

where

Aad = {g ∈ V ′ : 0 ≤ g ≤ fmax},

and hence additional assumptions are needed. In what follows, we establish our
fundamental result concerning the behavior of the maps f ↦→ m(f) and f ↦→ M(f).
As in the previous section we assume that [y, y] = [0, A−1fmax].

Theorem 4. Let {fn} ⊂ L∞(Ω) ∩Aad be such that fn ≥ c for some constant
c > 0, and limn→∞ fn = f∗ in L∞(Ω). Suppose that the upper bound mapping Φ
satisfies Assumption 1 (page 21), and that

λΦ(y) ≥ Φ(λy) for any λ > 1, y ∈ H. (5.13)

Then the assertions
(i) The sequence of minimal solutions satisfy

m(fn) → m(f∗) in H, and m(fn)⇀ m(f∗) in V. (5.14)

(ii) The sequence of maximal solutions satisfy

M(fn) → M(f∗) in H, and M(fn)⇀ M(f∗) in V. (5.15)

hold true.
A few words are in order concerning the previous result. Note that if Φ satisfies

Assumption 1 (page 21), but not necessarily (5.13). Then, it is possible to prove
that m(fn) (and M(fn)) converge to solutions, elements of Q(f∗), but not necessarily
to m(f∗) (and M(f∗)). Assumption (5.13) provides the stability of extremal points.
Structurally speaking, if Φ is a superposition operator, it states that Φ(x) ≃ (x+)1/p

for some p.
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[33] A. Ern and J.-L. Guermond. Theory and Practice of Finite Elements. Springer, 2004.
[34] R. Falk. Error estimates for the approximation of a class of variational inequalities. Mathematics

of Computation, 28(128):963–971, 1974.
[35] M. Feischl, M. Page, and D. Praetorius. Convergence and quasi-optimality of adaptive fem

with inhomogeneous dirichlet data. Journal of computational and applied mathematics,
255:481–501, 2014.

[36] A. Friedman. Variational Principles and Free-Boundary Problems. Wiley-Interscience, 1982.
[37] T. Fukao and N. Kenmochi. A thermohydraulics model with temperature dependent constraint

on velocity fields. Discrete Contin. Dyn. Syst. Ser. S, 7(1):17–34, 2014.
[38] R. Glowinski. Numerical Methods for Nonlinear Variational Problems. Springer, 1982.
[39] W. Han and B. Reddy. Plasticity: Mathematical Theory and Numerical Analysis. Springer,

New York, 2nd edition, 2013.
[40] P. T. Harker. Generalized Nash games and quasi-variational inequalities. European Journal of

Operational Research, 54:81–94, 1991.
[41] M. Hintermüller and C. N. Rautenberg. A sequential minimization technique for elliptic quasi-

variational inequalities with gradient constraints. SIAM J. Optim., 22(4):1224–1257, 2012.
[42] M. Hintermüller and C. N. Rautenberg. Parabolic quasi-variational inequalities with gradient-

type constraints. SIAM J. Optim., 23(4):2090–2123, 2013.
[43] M. Hintermüller and C. N. Rautenberg. On the density of classes of closed convex sets with

pointwise constraints in Sobolev spaces. J. Math. Anal. Appl., 426(1):585–593, 2015.
[44] M. Hintermüller and C. N. Rautenberg. On the uniqueness and numerical approximation of

solutions to certain parabolic quasi-variational inequalities. Port. Math., 74(1):1–35, 2017.
[45] M. Hintermüller, C. N. Rautenberg, and S. Rösel. Density of convex intersections and applica-
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