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Although graph convolutional networks (GCNs) that extend the convolution operation from images to
graphs have led to competitive performance, the existing GCNs are still difficult to handle a variety of
applications, especially cheminformatics problems. Recently multiple GCNs are applied to chemical
compound structures which are represented by the hydrogen-depleted molecular graphs of different size.
GCNs built for a binary adjacency matrix that reflects the connectivity among nodes in a graph do not
account for the edge consistency in multiple molecular graphs, that is, chemical bonds (edges) in different
molecular graphs can be similar due to the similar enthalpy and interatomic distance. In this paper, we
propose a variant of GCN where a molecular graph is first decomposed into multiple views of the graph,
each comprising a specific type of edges. In each view, an edge consistency constraint is enforced so that
similar edges in different graphs can receive similar attention weights when passing information.
Similarly to prior work, we prove that in each layer, our method corresponds to a spectral filter derived
by the first order Chebyshev approximation of graph Laplacian. Extensive experiments demonstrate the
substantial advantages of the proposed technique in quantitative structure-activity relationship
prediction.

� 2021 Published by Elsevier B.V.
1. Introduction

Convolutional Neural Networks (CNNs) [1–3] have been
powerful tools to model data of a grid-like structure, e.g., image,
video, and speech. CNNs offer an efficient way to extract local sta-
tionary structures and features that are shared across the different
areas of an object (e.g., an image) [4]. However, a broad range of
scientific problems [5,6] generate data that naturally lie in irregu-
lar grids with non-Euclidean metrics, such as, those in computa-
tional chemistry, social studies and telecommunication networks,
which are in the form of graphs or networks. The generalization
of CNNs from images to graph inputs is not straightforward. Due
to the lack of global parameterization, a common system of coordi-
nates, vector space structure, or shift-invariance properties [7], the
classical convolutions which use fixed filter size and stride distance
cannot be applied directly to graphs that have arbitrary structures.
It has been successful to create Graph Convolutional Networks
(GCNs) [8,9] that can tackle tasks such as manifold analysis [10],
predictions of user preference and connectivity in social network
[11], and representations of network nodes [12–14].

In recent years, there has been a growing interest in incorporat-
ing deep learning approaches into chemoinformatics studies [8,15–
18]. For example, the quantitative structure–activity relationship
(QSAR) is a problem of predicting the activity, reactivity, or prop-
erty of an unknown set of molecules based on analysis of an equa-
tion connecting the structures of molecules to their respective
measured activity property [19]. Most QSAR studies have
employed certain hand-crafted molecular descriptors or finger-
prints [20]. In order to extract better representations for the chem-
ical structure and bonding, a chemical compound can be expressed
as a hydrogen-depleted molecular graph whose nodes correspond
to (non-hydrogen) atoms while edges with discrete attributes rep-
resent chemical bonds. Deep graph convolutional networks have
emerged recently to derive representations directly using molecu-
lar graphs [21–24]. However, current GCN methods have many
limitations when handling the molecular graphs.
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The key limitation is that existing approaches ignore the
general consistency of the bond energies (enthalpies) and bond
lengths (interatomic distances) in various molecules [25,26]. The
bond dissociation energy, also known as bond enthalpy, is defined
as the standard enthalpy change when a bond is cleaved by homol-
ysis. Thus, the bond energy is the amount of energy required to
break a bond. The equilibrium bond length is the average distance
between the nuclei of two bonded atoms in a molecule. The higher
the bond energy, the ‘‘stronger” the bond is between the two
atoms, and the length of bond is smaller. The bond energies and
bond lengths between two specific atoms are generally consistent
cross different molecules. The tables about bond lengths (inter-
atomic distances) [27] and bond energies [28] have been used in
some standard handbooks, which is consistent for all molecules.
For example, the bond length of the atom pair Carbon–Nitrogen
(C–N) is 147 pm and the bond length of Carbon–Carbon (C–C) is
154 pm. In addition, the bond length is also affected by other fac-
tors, such as bond order. For example, the bond length of C = C is
134 pm and the bond length of C�C is 120 pm. Overall, this means
that the edges in different molecular graphs present some consis-
tency, which we call ‘‘edge consistency”. We aim to design a new
GCN with a constraint to enforce that information passes along
similar edges with similar attention weights.

In this work, we propose a consistent Edge-Aware multi-view
spectral GCN (EAGCN) approach to enhance the molecular graph
property prediction (also corresponding to QSAR prediction) by
learning more accurate molecular representations. Our model
enforces an edge consistency constraint that similar edges should
have similar weights across all molecular graphs in a dataset. In
addition, our model provides a new way to take advantage of the
discrete edge attributes by creating multi-view graphs.

First, to design an edge consistency constraint, we explore the
attributes of edges in molecular graphs. As illustrated in Table 1,
these discrete attributes are important to describe an edge or bond
[29]. Each discrete value of an edge attribute is considered as an
edge type. For instance, an edge can be labeled in terms of whether
the bond is formed between the Carbon and Oxygen atoms (i.e., the
C-O bond) or whether the bond is aromatic. These attributes of
edges are highly related with the bond lengths and energies. In
the molecular graph, edges with the same attribute value have
similar bond lengths and energies.

Based on these edge attributes, we present a consistent edge
mapping (CEM) mechanism to learn the consistent attention
weights of edges in order to enforce the edges with the same type
to pass information using the same weight . The learned real-
valued attention matrix assigns a non-negative weight to an edge,
and assigns 0 when there is no edge between two nodes. Impor-
tantly, an effective way is provided to enforce consistent attention
weights by building edge mapping dictionaries shown in Sec-
tion 4.1. The same weight from the edge dictionary will be pro-
vided if two edges have the same edge attribute value. The
weights in these edge dictionaries, which are the parameters in
the GCN, are shared across different molecules, thus promoting
EAGCN to learn the inherently invariant properties in the graphs.
Table 1
Edge attributes commonly used in molecular graphs.

Attribute Description

Atom Pair

Type

Defined by the type of the atoms that a bond connects (e.g.,
C–C, C-O).

Bond Order Bond order (single bond, aromatic bond, double bond and
triple bond).

Aromaticity Is aromatic.
Conjugation Is conjugated.
Ring Status Is in a ring.
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In graph theory, graph invariant is defined as a property preserved
under any possible isomorphism of a graph, which includes the
order invariant, permutation invariant and pair order invariant
[24,30].

Second, because there are multiple attributes for each edge as
shown in Table 1 [29], we model a molecular graph as multi-
view graphs to utilize different edge attributes, where each attri-
bute including a group of discrete values corresponds to a separate
view. Hence, a molecular graph can be decomposed into multiple
graphs from different views according to each specific edge attri-
bute. The common GCNmethods predefine a single fixed adjacency
matrix A for a graph, which cannot catch the different edge attri-
butes. In this paper, the discrete values of one attribute are used
to create one edge mapping dictionary including attention weights
for the corresponding view. Each view will employ its own edge
(relation) consistent attention mechanism.

Furthermore, a new spectral filter is derived to rely on two coef-
ficients of the first order Chebyshev approximation rather than just

one as in the standard GCNs - the 0th order and 1st order coeffi-
cients (h0 and h1). These two coefficients are enforced to be
opposed to each other (h0 ¼ �h1) in all early spectral graph convo-
lution [13]. We relax this requirement, resulting in more general
and effective parameterization of the GCN network. To create a fin-
gerprint for a molecule, besides learning the node representation
(for each atom), learning a graph representation for the entire
molecule is also important. We apply and compare two ways
including simple sum and differential pooling [31] to integrate
node embeddings into a graph representation. Finally, EAGCN pro-
vides an alternative fingerprint for chemical compounds other than
hand-crafted ones, and prove to be useful in predicting the proper-
ties of the compounds in the experiments. Our code and data are
available at https://github.com/Luckick/EAGCN.

Major contributions are summarized as follows:

1. We propose a consistent edge-aware multi-view spectral GCN
model, namely, EAGCN, that preserves the edge (bond) consis-
tency in molecular graphs. The proposed CEM mechanism in
EAGCN learns the consistent edge attention weights cross mole-
cules by building global edge dictionaries.

2. Multi-view graphs have been employed in our EAGCN model to
take advantage of the discrete edge attributes. Here each edge
attribute is characterized in a view of the molecular graph to
explore the different attributes of edges in molecular graphs.

3. A new spectral filter derived from the Chebyshev approxima-
tion is designed for the spectral graph convolution. This spectral
convolution operation allows more flexible and general net-
work parameterization.
2. Related work

In a similar spirit to CNNs, GCN methods aggregate neighboring
information based on the connectivity of the graph through filters.
GCN methods [32] are classified into two categories according to
the way of aggregating neighbor information: spatial methods
[21,33,34] and spectral methods [35,36,13,37,38]. In the spatial
way, the convolution at a graph node is carried out by summing
up the embeddings of adjacent nodes according to weights pro-
vided by a filter. In spectral GCNs, node attributes are viewed as
graph signals, and the convolution operation is defined through
the Fourier transform which is derived from graph Laplacian and
its eigen-space. The localized convolutional filters extracted local
features independently of the spatial locations motivate the spatial
graph convolutional architecture via first-order approximation of
spectral graph convolutions.

https://github.com/Luckick/EAGCN
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2.1. Spectral graph convolutions

GCNs were first proposed in [35] where graph convolution
operations were defined in the Fourier domain. Since the eigende-
composition of the graph Laplacian was needed, it required intense
computation. To tackle this issue, smooth parametric spectral fil-
ters [39] were introduced to achieve localization in the spatial
domain and the computational efficiency. In particular, Chebyshev
polynomials [36] and Cayley polynomials [40] were utilized in
these convolutional architectures to efficiently produce localized
filters. Recently, Kipf et al. [13] simplified these spectral methods
by a first-order approximation of the Chebyshev polynomials. Their
derivation finally led to localization of one-step neighbors and
achieved state-of-the-art performance.

However, the spectral filters learned by the above methods
depend on the Laplacian eigenbasis which is linked to a fixed graph
structure. Thus these models can only be trained on a single graph,
and cannot be directly used to model a set of graphs with different
structures.

Recently graph attention networks [41] were proposed to deal
with arbitrary graphs when the graph structures were not fully
known. The attention mechanisms allowed the model to deal with
input graphs of varying size by assigning different weights to dif-
ferent nodes within a neighborhood while dealing with various
sized neighborhoods. It determined the attention weight between
any two nodes by calculating the similarity of the embeddings (or
feature vectors) of the two nodes. It has not considered the case
where edge attentions themselves are learnable. We design a
new edge attention mechanism to understand which types of
edges (bonds) are important for the target molecular property.
Because even two nodes (atoms) are not similar, their edge (bond)
can be important for a QSAR property, and should receive high
attention weight without relying on node similarity as done in
[41].

2.2. Non-spectral graph convolutions

The spatial graph convolution approaches [12,21,42] define
convolutions directly on graph, which sum up node features over
all spatially close neighbors by multiplying an adjacency matrix
which is pre-defined rather than learnable. The varying sizes of
the neighborhoods impose challenge on sharing the weights across
graphs. Duvenaud [21] presented a CNN that operated directly on
raw molecular graphs, and learned a specific weighted matrix for
each node degree. Another approach [33] selected fixed-size neigh-
bors and normalized these nodes to enable the traditional CNNs to
be applied to graph inputs directly. In order to handle graphs of
varying size and connectivity, Simonovsky et al. [43] proposed
the edge convolutional network (ECC) for point cloud classification.
Their model defined several node feature filters based on the edge
label. Recently Hamilton et al. [12] introduced the task of inductive
node classification, where the goal was to classify nodes that have
not been seen during training. This approach sampled a fixed-size
neighborhood for each node and achieved state-of-the-art perfor-
mance on several datasets.

Recently, there has been an increasing interest in applying dif-
ferent attention mechanisms to GCN models [32,44]. The graph
attention network (GAT) [41] first proposed attention mechanisms
on graph convolutions to learn the relative weights between two
connected nodes. The GAT approach determined the weight for
an edge based on the similarity of the two nodes of the edge. Gated
Attention Network (GAAN) [45] proposed a self-attention mecha-
nism to compute an additional attention score for controlling each
attention head’s importance. Abu-El-Haija et al. [46] presented an
attention mechanism for learning the context distribution based
on the mathematical equivalence between the context distribution
14
and the power series of the transition matrix. ASTGCN [47] further
designed a spatial attention function and a temporal attention
function to learn both spatial and temporal dependencies. Atten-
tiveFP [48] was an extension of the GAT, and learned both local
and nonlocal properties of a given chemical structure by combin-
ing GAT with the gated recurrent unit (GRU). The GROVER method
[49] integrated message passing methods into the Transformer-
style architecture to learn structural and semantic information of
molecules from enormous unlabelled molecular data. However,
all previous methods ignored the ‘‘edge consistency” illustrated
in Section 3 when modeling the molecular graphs. We design a
new consistent edge constrained attention mechanism to reserve
the consistency of the bond energies and bond lengths on multiple
molecules.

2.3. Convolutions on molecular graphs

Neural networks and GCNs have been applied to chemical stud-
ies such as protein interface prediction [16], and molecular repre-
sentation and prediction [21,23,24,29,50]. A CNN was presented in
[21] that operated directly on raw molecular graphs and general-
ized standard molecular feature extraction methods based on cir-
cular fingerprints (ECFP) [51]. Based on an autoencoder model,
the method in [19] converted discrete representations (e.g., ECFP)
of molecules to a multidimensional continuous one. Another work
[24] attempted to use different attributes of chemical bonds, and
graph edges were associated with attributes such as atom-pair
type or bond order and modeled via tensor computation. The resul-
tant graph network could utilize properties of both nodes (atoms)
and edges (bonds). The method in [29] learned atomic embeddings
which were then concatenated by the related bond features to
form atom-bond feature vectors. In these works, node features
and bond attributes were treated equally in the neighborhood
aggregation. However, different types of bonds may play very dif-
ferent roles, and should receive different attention in relation to a
target property.

3. Problem formulation

Let G ¼ V ; Eð Þ be an undirected graph where V is a set of n nodes,
E#V � V is a set of nE edges. The node features in a graph form a
feature matrix X 2 Rn�f 1 which is the input of the first layer so that
we get X1 ¼ X. The edge features from a graph are represented by
Z ¼ Z1; . . . ; Zkf g, where k is the number of edge features as shown
in Table 1 and each Zi 2 Z has multiple discrete values. Each mole-
cule is represented by such a graph G and is labeled by a molecular
property y 2 Y . The task of QSAR is to predict the target molecular
property of a molecular graph.

In traditional GCNs [13], the connectivity of the graph is sum-
marized into a binary adjacency matrix Abinary where the ij-th entry
has a value of 1 if there is an edge connecting node i and node j; or
otherwise has a value of 0. Based on Abinary, the spectral convolu-
tions on graph are defined as the multiplication of a signal x 2 X
with a filter gh parameterized by h from matrix coefficients H:

ghHx ¼ UghU
Tx; ð1Þ

where U is the matrix of eigenvectors of the normalized graph
Laplacian L ¼ In � D1=2AbinaryD

1=2, where I is the identity matrix and
D is the degree matrix of the fixed binary adjacency matrix Abinary.

However, when modeling molecular graphs, we need to pay
attention to two properties. First, some bonds can be more impor-
tant than others for a specific structure–activity relationship,
which cannot be implemented by a binary adjacency matrix which
amounts to equally summing up the information of all neighbors.
Naturally different attention weights should be given to different
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neighbors when aggregating node embeddings, in order to predict
a graph property. For example, in the aromaticity view, the weights
for aromatic bonds in any molecules can be closer than those
assigned to non-aromatic bonds. Second, different molecular
graphs have consistent bond energies (enthalpies) and bond
lengths (interatomic distances) for the same type of bond, called
edge consistency, which has been illustrated in the introduction.
The bonds with the same bond type can be assigned with the same
attention weight.

Although attention-based GCNs have been studied [41,44]
which learn a dynamic and adaptive aggregation of the neighbor-
hood, these methods such as GAT [44] determine the weight for
an edge based on node similarity. They cannot handle the edge
consistency which is important for molecules. In addition, most
of the existing methods [12,35,41,44] including GAT are designed
for a single large graph. It has the difficulty of designing an atten-
tion method that enforces edge consistency across multiple molec-
ular graphs of different sizes and shapes. All edges with the same
type across all molecular graphs should have the same attention
weight.

In this paper, we propose a CEM mechanism, which not only
assigns different attention weights to different neighbors when
aggregating node embedding, but also enforces a constraint of edge
consistency on all edges of the same interaction type to have the
same attention weight cross different input molecular graphs. This
CEM mechanism is able to reflect the above two properties of
molecules.

In addition, we model a molecular graph as multi-view graphs
to utilize the edge attributes. Each edge in molecular graph has
multiple edge attributes as shown in Table 1, where each attribute
has several discrete values. Each discrete value from an edge attri-
bute represents an edge type or an atom-to-atom interaction.
Hence, for each edge attribute, we can get a group of atom-to-
atom interactions or edge types. In this paper, each attribute
including a group of edge types is defined as one view. For each
view, our CEM function C defined in the following section will be
able to build the consistent edge constraint by assigning attention
weights based on this group of edge types. Note that this group of
edge types will be shared cross all molecules.

After that, each view is represented as a graph with a consistent
edge attention matrix where edge weights are specified according
to edge types. Since we have multiple discrete edge attributes, a
molecular graph can be decomposed into multiple graphs with a
group of consistent edge attention matrices A ¼ A0;A1; . . . ;Akf g.
Based on function C and multiple edge attributes Z, a novel edge
consistent constraint based multi-view spectral graph convolution
is proposed to collectively aggregate information from graph
structure.

First, let us consider the i-th edge attribute (i-th view) Zi 2 Rdi�1

where di is the number of discrete values of attribute i. The objec-
tive is to learn a function FH;M and a function PW minimizing the
empirical loss L with an edge consistency constraint:
Fig. 1. The architecture
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min
H1 ;...;HL ;W

M1 ;...;ML

L P FL � FL�1 � . . . � F1 X1;A1
i ;H

1
� �

;W
� �

; y
� �

subject to Al
i ¼ C Abinary; Zi;M

l
� �

;81 6 l 6 L;X1 ¼ X;

where C Abinary; Zi;M
l

� �
is the consistent edge mapping (CEM)

function, Ml includes all parameters of C in layer l. The function P
includes the graph representation layer, fully connected layer and
activation functions where W contains all parameters of P. The
graph convolutional network F is used in a composite function
denoted by � so

Flþ1 � Fl :¼ Flþ1 Fl Xl;Al
;Hl

� �
;Alþ1

;Hlþ1
� �

;

where Hl includes all parameters of F in layer l.
Second, we extend our model to a multi-view neural network so

multiple edge attributes Z ¼ Z1; . . . ; Zkf g can be utilized. In the
multi-view model, our objective function can be written as:

min
H1 ;...;HL ;W

M1 ;...;ML

; L P FL �FL�1 � . . .�F1 X1;A1;H1
� �

;W
� �

;y
� �

subject to Al ¼ Al
0;A

l
1; . . . ;A

l
k

n o
;Al

i ¼C Abinary;Zi;M
l
i

� �
;816 l6 L;X1 ¼X;

where the parameters Ml and Hl can be defined as

Ml ¼ M1
1; . . . ;M

l
k

n o
and Hl ¼ H1

1; . . . ;H
l
k

n o
and F is the mapping

represented by a multi-view graph convolutional network layer.
In summary, we define the molecular property prediction task

as an edge consistency constraint based graph learning problem,
which reserves the general consistency of the bond energies and
bond lengths in various molecules.
4. The EAGCN model

The architecture of the proposed EAGCN model is shown in
Fig. 1. EAGCN begins with multi-view spectral GCN layers where
each layer has two steps: CEM and Spectral Graph Convolution.
The output of multi-view spectral GCN layers is the node embed-
dings. Then a graph representation layer combines all node embed-
dings to obtain the graph embedding. We compare the two
methods including simple sum and differential pooling [31] to
integrate node embeddings into a graph representation. Then a
fully connected layer with an activation function is used to predict
the molecular property y based on the graph representation of the
molecule.
of EAGCN model.



Fig. 2. The process of consistent edge mapping.
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4.1. Consistent Edge Mapping (CEM)

The CEM mechanism generates a learnable consistent edge

attention matrix Al
i using the discrete values of the edge attribute

i (view i) in layer l. If the edges have the same edge attribute no
matter they are from the same molecule or different molecules,
they are considered the same edge type. The same edge type
receives the same attention weight, which will limit the parameter
space to be optimized during GCN training. By assigning the same
weight to all edges of the same type cross molecular graphs, edge
consistency is automatically imposed. This consistency of assign-
ing edge attention weights amounts to an ‘‘edge consistency con-
straint” imposed to the GCN architecture.
4.1.1. Creating edge mapping dictionaries
To better understand the importance of each edge type to the

target property y, EAGCN learns the attention weights for graph
edges at each neural network layer. However, it is difficult to
assign weights with edge consistency for multiple graphs of differ-
ent sizes and shapes.

In our paper, for each view i in layer l, we build an edge

mapping dictionaryMl
i to satisfy the consistent edge attention con-

straint. For view i, if we have di discrete values for edge attribute i,

edge mapping dictionaryMl
i is created with di learnable neural net-

work parameters. In the dictionary, a discrete (attribute) value (i.e.,
an edge type) corresponds to a single parameter. For a view of a
given molecular graph, our method will look up this dictionary
to form an attention-based adjacency matrix according to the
specific edge types in the graph. During the training of the GCN
on this input graph, the values in the dictionary will be updated.
For example, as shown in Fig. 2 (a), all edges in a view will search
the edge mapping dictionary to get the attention weight. In Fig. 2
(a), we can see that all C–C edges will select the same a1;1 as the

attention weight from Ml
1 in layer l.

The attention weights in these dictionaries will be learned by
our EAGCN model. We claim two points for the dictionaries: 1)
the edge mapping dictionaries are defined for a dataset. Based on
the edge attributes of a molecule, it is coded as weighted adjacency
matrices of multiple views using these edge mapping dictionaries;
2) the dictionaries for edge attributes are used for all graphs in the
dataset. Then a weighted adjacency matrix called consistent edge
attention matrix is constructed for each view at each layer as
described in the following subsection.
1 One-hot encoding vector is a group of values among which the legal combinations
of values are only those with a single value of 1 and all the others 0.
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4.1.2. Consistent edge attention matrix
In layer l, we first create a binary one-hot encoding vector 1

bi eð Þ 2 Rdi for each edge e 2 E in the view i, otherwise it will be a zero
vector. Based on the vector bi eð Þ, we will obtain a specific weight al

i;j

for edge e by looking up the dictionary for this view:

al
i;j ¼ bi eð ÞTMl

i; ð2Þ

where j denotes the j-th element in dictionary Ml
i, and i indexes the

views. Note that al
i;j will be zero if bi eð Þ is a zero vector. As shown in

Fig. 2 (b), all vectors form the binary tensor Bi for view i. By looking
up all existing edges using the binary tensor, we get a newly gener-

ated consistent edge attention matrix Al
i:

Al
i ¼ Bi �Ml

i; ð3Þ
where ‘‘�” is the lookup operation on the dictionary as shown in
Fig. 2 (b). The global edge weights over all graphs preserve the con-
sistent property of the relationship. In the experiment, we imple-
ment this mapping process using the 2D convolution. We
consider the one-hot encoding tensor is an image with multiple
channels. Here the channel size is the dimension di of the edge map-
ping dictionary. The kernel size we used is 1� 1.

4.2. Multi-view spectral GCN

The previous section introduces the CEM to transform the edge
types of graph signals to the edge consistency constraint. Based on
this constraint, each molecular graph in layer l has been converted
to a constrained graph signal, which consists of consistent edge

adjacency matrices A ¼ Al
1; . . . ;A

l
k

n o
and feature matrix X. In this

section, we propose a multi-view spectral graph convolution oper-
ation with a new spectral filter for the graph signal. The proposed
multi-view GCN with the layer-wise propagation rule is presented
in Section 4.2.1. Then Section 4.2.2 illustrates that this propagation
rule is motivated via a new parameterization of the first order Che-
byshev approximation of graph Laplacian.

4.2.1. The proposed graph convolution
There are multiple consistent edge attention weights (each cor-

responding to a view or edge attribute) for each edge in each layer.
The graph convolution aggregates the node information over all
first-order neighbors from each view. In layer l, the new spectral
graph convolution for the constrained graph signal in view i is
defined as:

Xlþ1
i ¼ r Ul

iX
lHl

i

� �
¼ r ~D�1

2~Al
i
~D�1

2XlHl
i

� �
; ð4Þ
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where A
� l

i ¼ Al
i þ riI; D

�
is the corresponding normalized degree

matrix of ~Al
i, the ratio ri is the weight of the self-loop edges in view

i;r is an activation function. Then the outputs from multiple views
are concatenated:

Xlþ1 ¼ Concate Xl
1;X

l
2; . . . ;X

l
k

� �
; ð5Þ

where the Xlþl is used as the input of next layer. Since the parameter

matrix Hlþ1
i from next convolutional layer provides different neural

network parameters for multiple views, the contributions of differ-
ent views are learned by our model.

In each view, the spectral GCN layer aggregates the features of
each node with all of its neighbors according to attention weights
which reflect the ‘‘strengths” of node-to-node interactions for one
edge attribute. By multi-view spectral graph convolutions, the pro-
posed model explores the multiple types of ‘‘strengths” between
two nodes in a molecule.

We summarize the computational steps when training layer l of
the proposed GCN in Algorithm 1. A normalized consistent edge

attention matrix Ul
i is calculated for each view i. The different edge

types in different views will derive particular meaningful node
embeddings, which are concatenated to form a complete node fea-
ture matrix. In the study of chemical compounds, such collection
gives different perspectives of atomic interaction and strength of
influence.

Algorithm 1: Consistent Edge-Aware Multi-View Spectral
Graph Convolutional Layer l

1: Input: View i 2 1; k½ �; Layer l; Binary Tensors Bi; Node

Feature Matrix Xl

2: Trainable Parameters: Edge Mapping Dictionaries Ml
i;

Self-attention Weights rli; Parameters Matrices

Hl
i; i ¼ 1;2; . . . ; k

3: Multi-View Spectral Graph Convolutions:
4: for i ¼ 1 to k do

5: Al
i ¼ Bi �Ml

i – Consistent Edge Mapping

6: ~Al
i ¼ Al

i þ rliI

7: Ul
i ¼ ~Dl

i

� ��1=2
~Al
i D

�
l
i

� ��1=2

where ~Dl
i = diag(row-sum (~Al

i)),

that is the Diagonal Degree Matrix.

8: Xl
i ¼ Ul

iX
lHl

i

9: end for

10: Output: Xlþ1 ¼ Concate Xl
1;X

l
2; . . . ;X

l
k

� �
Graph Invariance and Varying Graph Size. The consistent edge
attention matrices imply the multiple strengths of connection
and interaction between nodes. The attention weights are condi-
tioned on edge mapping dictionaries instead of the neighborhood
order. These edge mapping dictionaries result in a homogeneous
view of local graph neighborhoods. These weights are shared over
all molecular graphs, which enables us to extract the locally sta-
tionary property of the input data by revealing local features that
are shared across all graphs. Hence, our model has been designed
to extract invariant features by the consistent edge attention, and
provides a solution to solve the graph invariance problem [24]. In
addition, for each edge attention layer, the number of attention
parameters equals the number of different values in an edge attri-
bute rather than the actual number of edges in a graph. Thus, the
number of parameters in EAGCN is much smaller than other GCNs
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with a real-valued adjacency matrix and insensitive to the varying
graph size. The varying size has no influence on the complexity of
the model.

Interaction between Substructures. From Eq. (4), for each node,
the information is exchanged only with its neighbors within a
graph convolution layer. However, if we consider such information
propagation from layer to layer, the attentions at the higher layers
learn the interactions of substructures. The attention weights in
layer 1 represent the atomic interaction between two atoms in
the first order neighbors, while the attention weights in layer 2
propagate the neighborhood information to the second-order
neighbors, and so learn the interaction between substructures.
The attention weights are thus capable of characterizing substruc-
ture within different scopes to learn the connection information.
4.2.2. Spectral analysis
The graph convolutional operation presented in Section 4.2.1 is

motivated via the multiplication of a constrained graph signal A
with a new spectral filter. We explain the new spectral filter on

the feature matrix Xl and consistent edge adjacency matrix Al
i in

view i and layer l. Because the spectral analysis is the same across
layers and views, we omit the layer superscript and view subscript
in this subsection.

The Laplacian of Consistent Edge Adjacency Matrix. An essential
tool in spectral graph analysis is the graph Laplacian matrix [37].
We get the normalized graph Laplacian matrix for consistent edge

attention matrix, defined as L ¼ I � D�1=2AD�1=2, where I is the
identity matrix, D is a diagonal degree matrix which contains infor-
mation about the degree of each vertex. We first show that the
graph Laplacian matrix L of the edge adjacency matrix A satisfies
the following properties, and the proof can be referenced in Appen-
dix A:

1. For every vector x 2 Rn, we have xTLx P 0, that means L is a pos-
itive semi-definite matrix.

2. L is a symmetric matrix with n non-negative, real-valued eigen-
values (given L is positive semi-definite):
0 ¼ k1 6 k2 6 . . . 6 kn ¼ kmax 6 2.

Spectral Convolutions on Graph Signals. Based on spectral theory,
a positive semi-definite matrix can always be diagonalized using a
basis of eigenvectors, so it can be written as L ¼ UKUT for a unitary
matrix U and a diagonal matrix K ¼ diag kið Þ. If we multiple the L

matrix s times as Ls ¼ UKUT
� �s

¼ UKsUT , which is the basis of s-

localized convolution in a graph convolution analysis.
The convolution operator on graph in the Fourier domain is

defined as x 	 y ¼ U UTx
� �


 UTy
� �� �

, where 
 is the element-

wise Hadamard product. The graph Fourier transform of a graph
signal x is defined as x̂ ¼ UTx 2 Rn, and the UTy and 
 operations
perform the filtering of the UTx in the Fourier domain. Thus we
can define a signal x with a filter gh in the Fourier domain as:

y ¼ gh Lð Þx ¼ gh UKUT
� �

x ¼ Ugh Kð ÞUTx; ð6Þ

where h is a vector of Fourier coefficients. However, the cost of the
filtering operation on signal x is as high as O n2

� �
because of the mul-

tiplication with the Fourier basis U. To alleviate this issue, few
approaches [36,52] are proposed to parameterize gh Lð Þ as a polyno-
mial function, such as the Chebyshev polynomials.

The Chebyshev polynomials form a recursive sequence defined
as Ts xð Þ ¼ 2xTs�1 xð Þ � Ts�2 xð Þ, where s = 2;3; � � � is an index, and
T0 xð Þ ¼ 1; T1 xð Þ ¼ x. The operator gh Lð Þ can then be computed
recursively from Laplacian L through a Chebushev approximation.
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We can derive the S-th order polynomial approximation of the
convolution operator gh Lð Þx in terms of the eigen-values K of L:

gh Kð Þ �
XS

s¼0

hsTs K
�� �

; ð7Þ

where we use the re-scaled eigenvalue matrix ~K ¼ 2
kmax

K� I to help
make sure that the eigenvalues used in the polynomial approxima-
tion lie in the range �1;1½ �, where the kmax � 2. Correspondingly, we

have the ~L ¼ L� I ¼ �D�1=2AD�1=2.
Now, similar to all other GCNs, we examine the first order

approximation with S ¼ 1. The Chebyshev approximation is linear
with respect to the graph Laplacian spectrum, specifically:

y ¼ gh Lð Þx ¼ Ugh Kð ÞUTx

� U h0 þ h1 ~K
� �

UTx ¼ h0xþ h1~Lx

¼ h0 � I � xþ h1 �D�1=2AD�1=2
� �

x:

The spectral filter in traditional GCNs [13] is also derived from
the first order Chebyshev approximation relying on these two coef-
ficients - h0 and h1. However, these two coefficients are enforced to
satisfy h0 ¼ �h1, which thus results in only a single free parameter
h.

The New Spectral Filter. In this paper, we relax the ‘‘h0 ¼ �h1”
requirement to derive a more general and effective parameteriza-
tion of the GCN network. We employ a parameter h and a real-
valued ratio r to satisfy the following conditions:

h0 ¼ rh
h1 ¼ �h;

�

where ratio r specifies the weight of the self-loop edges which will
be proved in the coming paragraph. Then the expression will come
out as:

y � rh � I � xþ h D�1=2AD�1=2
� �

x

¼ h rI þ D�1=2AD�1=2
� �

x:

Different from the traditional spectral analysis of

I þ D�1=2AD�1=2, the weighted graph we will learn at each layer
includes a weighted self-edge to each node itself. Hence, the eigen-
values will be nested in the range r � 1; r þ 1½ �. Note that when the
ratio is 1, our method is degenerated into the traditional graph
convolution. In order to leave the eigenvalues in the range 0;1½ �
to ensure a stable deep neural network, we re-normalize:

y � h ~D�1
2~A~D�1

2

� �
x; ð8Þ

where ~A ¼ Aþ rI, and ~D is the corresponding normalized degree

matrix of ~A. An interesting observation is that the ratio r can be con-
sidered as the weight that the self-loop edges play in the convolu-
tion as illustrated in Algorithm 1. By adding this parameter into
the GCN, each node has the ability to control the importance of
its original information and features. In summary, the propagation
rule in our GCN based on the consistent edge attention matrix is
derived based on the first-order Chebyshev approximation with
more plausible assumptions and reasonable parameterization than
early works (e.g., [13]).

Putting all these h parameters together for all graph signals in
X 2 Rn�f with f input channels yields a filter parameter matrix

H 2 Rf�f 0 with f 0 filters, hence we get:

Y ¼ ~D�1
2~A~D�1

2XH ¼ UXH; ð9Þ
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where U ¼ ~D�1
2~A~D�1

2. We thus derive the convolved signal matrix

Y 2 Rn�f 0 . If the input graph signal is Xl, the output Y of the proposed

method will be Xlþ1. When we extend our analysis to multi-view
graph convolution, a set of ratio parameters r1; . . . ; rkf g are used
in our model. These parameters provide more expressive network
models than the traditional GCN to benefit the property prediction.

4.3. The graph representation layer

After the node representations have been generated in the early
layers of the proposed GCN, another step is to compute the graph
representation using these node representations. Two aggregation
methods are provided and we compare them in the Experiments
section.

4.3.1. Simple sum
A simple way to obtain the graph representation is summing up

all node embeddings or representations:

Xlþ1 ¼ Sum xl1; x
l
2; . . . ; x

l
n

� � 2 R1�f l ;

where xli means the representation of node i in layer l;n is the num-
ber of node, and f l is the dimension of node representation in layer l.

4.3.2. Differentiable pooling
The differentiable pooling (Diffpool) [31] is proposed to learn

the hierarchical representation of a graph. Diffpool designs a graph
pooling neural network to generate a cluster assignment matrix for
nodes:

Sl ¼ softmax GCNl
1 Al

;Xl
� �� �

2 Rnl�nlþ1 ;

where the softmax function is applied in a row-wise fashion, the

inputs are the feature matrix Xl and cluster adjacency matrix Al,

and GCNl
1 is the traditional graph convolutional network [13] at

layer l. In the first layer of Diffpool, nl ¼ n. Because we have multiple
consistent attention matrices, the input of first differential pooling

layer is Al ¼ Pk
i¼1

~Al�1
att;i. Then the new cluster adjacency matrix and

the feature (representation) matrix of cluster nodes can be obtained

using another GCNl
2 as follows:

Xlþ1 ¼ Sl
� �T

GCNl
2 Al

;Xl
� �

;

Alþ1 ¼ Sl
� �T

AlSl:

This final output embedding is the graph representation
X 2 R1�f Gwhere f G is the dimension of the graph representation.

5. Experiments

We perform an extensive empirical analysis based on five
benchmark datasets with respect to both the regression and classi-
fication tasks. We also make efforts to understand the GCN-derived
molecular representation and interpret the attention weights that
are learned by our model.

5.1. Benchmark datasets

Five benchmark datasets [22,53] (Tox21, Freesolv, Lipophilicity,
eSOL and CPAL) are utilized in this study to evaluate the predictive
performance of the EAGCN model.



Table 2
Regression results for the three benchmark datasets. EAGCN1 is the EAGCNsum and EAGCN2 is the EAGCNdiffpool.

Method Regression (RMSE)

Lipo Freesolv eSOL

Valid Test Valid Test Valid Test

RF 0:85� 0:02 0:85� 0:03 2:31� 0:82 1:62� 0:14 1:27� 0:07 1:18� 0:11
Weave 0:85� 0:10 0:88� 0:09 1:63� 0:25 1:37� 0:19 0:90� 0:08 0:85� 0:03
MPNN 0:81� 0:05 0:80� 0:05 1:26� 0:42 1:09� 0:19 0:66� 0:07 0:67� 0:06
GAT 0:85� 0:02 0:84� 0:01 1:73� 0:25 1:45� 0:25 0:86� 0:00 1:00� 0:20
GCN 0:60� 0:03 0:64� 0:03 1:24� 0:26 0:94� 0:10 0:76� 0:08 0:80� 0:17

EAGCN1 0:56� 0:03 0:60� 0:03 1:07� 0:28 0:81� 0:04 0:54� 0:06 0:61� 0:10
EAGCN2 0:61� 0:08 0:63� 0:04 1:14� 0:27 0:86� 0:09 0:59� 0:06 0:65� 0:06
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Tox21. The original Tox21 data comes from the Toxicology in
the 21st century research initiative. It contains 7831
environmental compounds and drugs as well as their biological
outcomes of 12 pathway assays.

Freesolv. Freesolv is a database of experimental and calculate
hydration free energies for small neutral molecules in water, along
with molecular structures, input files, references, and annotations
[54]. It includes a set of 642 neutral molecules which are mostly
fragment-like.

Lipophilicity (Lipo). Lipophilicity, curated from ChEMBL data-
base, provides experimental results of octanol/water distribution
coefficient of 4200 compounds.

eSOL. eSOL is a database on the solubility of entire ensemble E.-
coli proteins [55] individually synthesized by PURE system that is
chaperone free.

CPAL. The ‘‘Cytotoxic Profiling of Annotated Libraries Using
Quantitative High-Throughput Screening” (CPAL) dataset is pro-
vided by Pubchem. The CPAL data can be download from Pubchem
website2.

Four of these datasets except CPAL are downloaded from the
MoleculeNet website3 that hold various benchmark datasets for
machine learning studies of molecules. In our experiments, we only
use molecules with common atom types, e.g. boron, carbon, nitro-
gen, oxygen, halogen, phosphorus, sulfur.

5.2. Experimental setup

Our experiments are designed to evaluate the QSAR prediction
on the standard supervised classification and regression tasks.
We design our experiments with the goals of verifying the
improvement of our method over several baseline methods, such
as the classic GCN [13] and providing more in-depth interpretation
of the molecular representation and atom embeddings.

The node features and edge attributes are extracted using the
RDKit4, an open source cheminformatics package. RDKit also con-
verts SMILES strings into RDKit ‘‘mol” format, which contains the
molecular structure information used to build the molecular graphs.
Here we ignore the SMILES samples whose structural graphs have no
edge. The edge attributes [29] are shown in the Table 1. When we
build the edge mapping dictionaries for different atom-pair types,
we set a threshold on the frequency of atom pair types for each data-
set. For the atom pair types whose frequencies are lower than the
threshold, we give a fixed attention weight for them in the dic-
tionary. Each dataset is randomly split into three sets: training
(80%), validation (10%), and test (10%). For each experiment, five
independent runs with different random seeds are performed. The
number of multi-view spectral graph convolutional layers is 4. For
fair comparison, the number of layers for GCN baseline is also 4. In
2 https://pubchem.ncbi.nlm.nih.gov/bioassay/1296008
3 http://moleculenet.ai/
4 http://www.rdkit.org/
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addition, when we use the Diffpool aggregation layer to obtain graph
representation, the number of such layers is 2. All results present
here are the average of five runs, with standard deviations listed.
We use the adaptive moment (Adam) algorithm [56] to train the
deep GCN model and set the learning rate to 0.0001 for freesolv
and tox21 datasets and 0.001 for other datasets.

5.3. Molecular property prediction

We compare our model against several benchmark methods
which are shown in MoleculeNet [22]. First, the Kernel-SVM and
Random Forests (RF) which are the most widely used machine
learning methods for molecules are compared in our experiments.
Second, the classic GCN [13] is the baseline for the comparison. In
addition, we also compare with three other models which leverage
the edge attributes. Weave model [24] is similar to our graph con-
volutions. The weave featurization encodes both the local chemical
environment and connectivity of atoms in a molecule, and calcu-
lates a feature vector for each pair of atoms in the molecule. Mes-
sage passing neural network (MPNN) [23] is a generalized model of
GCN, which learns a message passing algorithm and aggregation
procedure to compute a function of their entire input graph. GAT
is the benchmark of the attention-based GCN, which determines
the weight for an edge based on the similarity of the two nodes.

5.3.1. Regression analysis
Solubility and lipophilicity are two basic physical chemistry

properties that are important for understanding how molecules
interact with solvents. Table 2 reports root-mean-squared-error
(RMSE) results of five different comparison models and our EAGCN
model. The comparison between EAGCNsum and EAGCNdiffpool shows
that the simple sum operation in graph representation layer has
slightly better performance than the complex Diffpool operation.
We believe that it may be partially due to the Diffpool method
[31] that was proposed to handle larger graphs. Large graphs
may be more suitable to learn the hierarchical graph representa-
tion. When the inputs are the small molecular graphs with differ-
ent sizes and shapes, simple sum operation seems outperforming
in obtaining a graph representation.

We compare the EAGCNsum with the best baseline models in [22]
on the regression task. In Lipophilicity dataset, EAGCNsum achieves
about 6.7% and 6.3% performance increases in comparison with the
GCN which is the best baseline on the validation and test datasets.
For the Freesolv dataset, EAGCNsum improves over the GCN by a
margin of 13.7% and 13.8% in validation and test. For the eSOL
dataset, EAGCNsum improves over MPNN by a margin of 18.2% on
validation datasets and by a margin of 9.0% on test datasets. EAGCN
achieves the best performance, which demonstrates that using the
consistent edge mapping improves the molecular property
prediction.

EAGCN shows strong validation and test results on all datasets.
Given the FreeSolv dataset contains only around 600 compounds,



Table 3
Classification results for the two benchmark datasets. EAGCN1 is the EAGCNsum and EAGCN2 is the EAGCNdiffpool.

Method Classification (ROC-AUC)

Tox21 CPAL

Valid Test Valid Test

Kernel-SVM 0:77� 0:01 0:77� 0:02 0:79� 0:02 0:76� 0:06
RF 0:76� 0:01 0:77� 0:01 0:77� 0:05 0:74� 0:06

Weave 0:81� 0:01 0:83� 0:01 0:78� 0:06 0:77� 0:08
MPNN 0:80� 0:02 0:82� 0:02 0:83� 0:04 0:78� 0:07
GAT 0:84� 0:02 0:84� 0:02 0:81� 0:04 0:83� 0:05
GCN 0:83� 0:01 0:84� 0:01 0:88� 0:02 0:80� 0:07

EAGCN1 0:85� 0:01 0:86� 0:01 0:90� 0:02 0:85� 0:06
EAGCN2 0:85� 0:01 0:85� 0:01 0:87� 0:02 0:83� 0:07

Table 5
Sample molecules with similar structure but different property in the Freesolv dataset
where ‘‘=” is double bond and ‘‘#” is triple bond.

Name SMILES Label Prediction

1-chloro-2-methyl-benzene Cc1ccccc1Cl �1.14 -1.14
2-methylaniline Cc1ccccc1N �5.53 �5.53

o-cresol Cc1ccccc1O �5.9 �5.69
pent-1-yne CCCC#C 0.01 0.10
pent-1-ene CCCC = C 1.68 1.49
pent-1-ene CCCC = C 1.68 1.49
butanal CCCC = O �3.18 �3.21

2-chloro-2-methyl-propane CC(C)(C) Cl 1.09 1.43
2-methylpropan-2-ol CC(C)(C) O -4.47 �4.35

isobutane CC(C) C 2.3 2.17
2-bromopropane CC(C) Br �0.48 �0.40

1-ethyl-2-methylbenzene CCc1ccccc1C �0.85 �0.91
2-ethylphenol CCc1ccccc1O -5.66 �5.62
pent-1-yne CCCC#C 0.01 0.10
butanenitrile CCCC#N -3.64 �3.78
hex-1-ene CCCCC = C 1.58 1.70
pentanal CCCCC = O -3.03 �2.95
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our model still reach excellent performance by training on this
limited sample. From the table, graph-based methods, such as
EAGCN and graph convolutional model, all exhibit significant
boosts over tasks, indicating the advantages of learnable featuriza-
tions. In these three datasets, data-driven methods outperform
physical algorithms with moderate amounts of data. These results
suggest that graph convolution based approaches are powerful
alternatives to QSAR analysis.

5.3.2. Classification analysis
Table 3 reports the Receiver Operating Characteristic curve and

the Area Under the Curve (ROC-AUC) results of six different base-
line models on Tox21 and CPAL datasets. On the Tox21 dataset,
the GAT baseline model achieves the best performance among all
baselines on the test and validation datasets. EAGCNsum improves
from the performance of GAT by a margin of 1.2% and 2.4% on
the validation and test datasets. For the CPAL dataset, EAGCNsum

model improves over the GCN by a margin of 2.3% on validation
dataset and achieves about 2.4% improvement than GAT on the test
dataset. These results show that EAGCNsum consistently achieves
reasonable and excellent performance in predicting QSAR proper-
ties. By referencing the last two rows in Table 3, EAGCNsum perfor-
mance is still slightly better than molecular property prediction
task comparing to EAGCNdiffpool, which is consistent with the
regression task. There are many applications which can benefit
from our model. For example, the classification model created
using the Tox21 dataset can be further utilized to identify any
new compounds with potential liability and prioritize specific
compounds for more extensive toxicological evaluation.

5.3.3. The t-test results
In Table 4, the mean and standard deviation of model perfor-

mance are computed according to the five trials using different
data splits. In each trial, all models are compared on the basis of
the same training, validation, and test set under the same random
seed (i.e., the same split). To compare if the two different models
Table 4
The paired t-test for model comparison.

p-value

Models EAGCNsum vs GCN EAGCNsum vs EAGCNdiffpool

Lipo Validation 0.0373 0.3105
Testing 0.0232 0.1992

Freesolv Validation 0.0297 0.1966
Testing 0.0247 0.1010

eSOL Validation 0.0265 0.0562
Testing 0.0106 0.3697

Tox21 Validation 0.0002 0.0921
Testing 0.0156 0.0719

CPAL Validation 0.0129 0.0923
Testing 0.0305 0.2862
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are significantly different, we do a paired t-test between the
prediction accuracy on both validation set and test set. The null
hypothesis H0 is that the two models are the same. In Table 5,
the p-values in the column of ‘‘EAGCNsum vs GCN” are all less than
or equal to 0:05. Thus, our EAGCNsum model performed significantly
differently from the GCN model at a significance level of a ¼ 0:05.
In the column of ‘‘EAGCNsum vs EAGCNdiffpool”, the p-values indicate
that the two different graph representation methods have no sig-
nificant difference (i.e., failure to reject H0).

5.4. Molecular graph embedding analysis

We employ the widely-used t-SNE program [57] to reduce the
dimension of the molecular graph representations and visualize
the molecules in the CPAL dataset in the projected 2-dimensional
(2D) space in Fig. 3(a). The t-SNE algorithm is a nonlinear dimen-
sionality reduction technique to embed the high-dimensional atom
vector representation to a two-dimensional space. It constructs the
probability distribution over data points in both original high-
dimensional space and the reduced low-dimensional space, and
then minimizes the Kullback–Leibler divergence between the two
distributions. The CPAL molecules are labeled with respect to tox-
icity of either 1 or 0. The striking observation is that most mole-
cules labeled differently can be clearly separated. The points
labeled by 1 (triangle) are restricted to the top-left corner of the
projection plane, and the molecules with label 0 are scattered over
a large area. Because this dataset is unbalanced in terms of the 1
and 0 labels, so we have down-sampled the molecules with label 0.

Since many molecular graphs have similar structure but differ-
ent property values, it is a challenge to predict their property



Fig. 3. Graph representation visualization and matched molecular pair examples.
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accurately. Fig. 3(b) shows several exemplar molecules that differ
only by a single chemical transformation, but their properties are
quite different. Table 5 shows more examples with property values
where only one atom of the first three molecules is different. In
addition, only one bond between the two molecules in the second
block is different. Different bond orders and atoms do lead to dif-
ferent property values. The remaining rows of Table 5 contain
more examples. After comparing the true property and prediction
values, we see that our predictions for these cases are rather accu-
rate even when they have similar structures.

The potential relationships cross molecules are very similar to
the transformation between the word vectors in Natural Language
Processing (NLP). The word embeddings often preserve the rela-
tions in the projected 2D space. For example, the relationship
between male and female [58] is automatically learned. The
‘‘Queen” embedding can be derived from ‘‘King - Man + Woman”.
In the field of chemoinformatics, chemists are often interested in
comparing properties of two molecules that differ only by a single
chemical transformation, such as the substitution of a hydrogen
atom by a chlorine atom. Such pairs of compounds are usually
referred as matched molecular pairs (MMP), as demonstrated by
Fig. 3(b). We are interested in assessing whether our atom embed-
dings can capture the singularity relationship among certain
matched molecule pairs in the investigated dataset and further
Fig. 4. Visualization of molecular represen
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providing visual interpretation. We thus examine the 2D PCA plots
for several subsets of matched molecule pairs in Fig. 4. Similar to
the vector analyses in Word2Vec, the vector transformations
between each matched pair are mapped to the 2D PCA plot.

As illustrated in Fig. 4, we obtain a series of relatively parallel
vector transformation lines within each subset of matched mole-
cule pairs, which shows that our EAGCN model may capture the
implicit relationships of each molecular pair and such relationships
can be useful to predict the relevant chemical properties of related
analogs. For instance, when chloro substitutions are replaced with
the hydroxy group in the first MMP example, the resulting trans-
formation vectors are almost parallel and all point toward the
same direction, which imply that these similar structural changes
lead to similar changing effects on solubility property.

5.5. Atom subtype analysis

In our study, atom (sub) types of molecules are determined
prior to the GCN modeling. Atom types are classified in Table 6
based on their elements, atomic connectivity and hybridization
states. The atomic representation vectors are collected from the
output of the last multi-view spectral graph convolutional layer
in our model. We visualize these high-level atom representations
learned by the GCN nets using t-SNE.
tation using PCA in Freesolv dataset.



Table 6
Atom Subtype Definition.

Atom Subtype Definition

O O carbonyl oxygen
Oa sp2-hybridized oxygen in the aromatic ring
Oh sp3-hybridized oxygen in alcohol
Os sp3-hybridized oxygen in ether or ester

C C carboxylate, carbonyl and thion carbon
C1 sp-hybridized carbon
C2 sp2-hybridized noaromatic carbon with one substitution
C3 sp3-hybridized carbon
Ca aromatic carbon

N N sp2-hybridized with 3 substituents and sp2-hybridized nitrogen in base NH2 group
N1 sp1-hybridized nitrogen
N3 sp3-hybridized nitrogen
Na sp2-hybridized aromatic nitrogen
Nh sp2-hybridized nitrogen in amide group

Fig. 5. Visualizations of atom embeddings using t-SNE in Lipo. Points are colored by atom subtypes defined by Chemist.
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As shown in Fig. 5, vector representations of various oxygen and
carbon atom subtypes from EAGCN model in the Lipo dataset are
mapped into the 2D t-SNE visualization plots. In each t-SNE plot,
projected atom type representations are color coded with respect
to atom subtypes specified in Table 6. For instance, in Fig. 5(s),
depending on their chemical bonding environment, oxygen (O)
Fig. 6. Visualization of the learned edge attention weights. The labels ar

22
atoms within the molecules of the Lipo dataset can be classified
as the following four subtypes: sp3-hybridized oxygen in alcohol
(oh), sp2-hybridized oxygen in the aromatic ring (oa), carbonyl
oxygen (o), sp3-hybridized oxygen in ether or ester (os).
Interestingly, the different atom subtype representations learned
by the proposed GCN model are relatively well clustered in the
e the edge types. The self-loop weights rli ’s are labeled with ‘‘_self”.



Table 7
Ablation test on single-view settings. The views correspond to the attributes in Table 1.

Method Regression (RMSE)

Lipo Freesolv

Valid Test Valid Test

EAGCNmultiview 0:56� 0:03 0:60� 0:03 1:07� 0:28 0:81� 0:04
EAGCNview1 0:59� 0:03 0:63� 0:04 1:15� 0:18 0:94� 0:11
EAGCNview2 0:59� 0:03 0:62� 0:03 1:18� 0:27 0:96� 0:08
EAGCNview3 0:59� 0:03 0:64� 0:03 1:13� 0:23 0:93� 0:13
EAGCNview4 0:60� 0:04 0:63� 0:04 1:14� 0:23 0:91� 0:16
EAGCNview5 0:59� 0:03 0:63� 0:03 1:18� 0:21 0:96� 0:11
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t-SNE plot, which is consistent with the predefined atom subtypes
based on the chemical intuition. We observe similar effects for the
carbon (C) and nitrogen (N) atom subtypes, as demonstrated by
Fig. 5(b) and 5(c). Hence, the atom embeddings of the EAGCN
model are apparently able to pick up the atom type and subtype
information.

5.6. Interpretation of attention weights

From the physical chemistry perspective, our edge mapping dic-
tionaries learn to characterize multiple strengths of influence from
neighboring atoms, which may offer some insights into atomic
interactions. In Fig. 6, the weights stored in the edge mapping dic-
tionaries are visualized by heatmaps. The darkness of a block cor-
responds to the magnitude of attention weights. The attention
weights in Layer 1 represent the atomic interaction between two
atoms, while the attention weights in Layer 2 model the interac-
tion between two substructures centered at two atoms. Hence
the attention weights in different layers have different values. In
Fig. 6, both C � O and C � N attention weights in the first layer of
the GCN model for the eSOL and Freesolv datasets have higher
attention values. This is consistent with the analysis in Table 5,
which shows that O and N are highly related with the solubility
property. For edge mapping dictionaries of the Lipo dataset, the
C � N has a large weight in the second layer, which means the sub-
structure around C has a significant strength of influence to the
substructure around N for the property. This analysis of attention
weights helps us understand the contributions of different interac-
tion types to the property prediction.

5.7. Ablation tests

In order to analyze the importance of each edge attribute, we
show the results of ablation tests in Table 7 including both mult-
view and single-view settings. The comparison clearly shows: 1)
the EAGCN model using multiple data views has better perfor-
mance than that learned using single-view data only; 2) EAGCN
under the single-view settings also achieves competitive perfor-
mance comparing to baselines; 3) different views or attributes
have different contributions and levels of importance for the prop-
erty prediction. For example, as shown in the Freesolv test results,
view 4 (‘‘Conjugation” view in Table 1) is more important to the
solubility prediction of molecules. We observe that different attri-
butes influence differently on different properties.

6. Conclusion

We have introduced a consistent Edge-Aware multi-view spec-
tral GCN (EAGCN), which models the graph connectivity in multiple
views by parameterizing the graph deep network with consistent
edge attention weights for graph representation and molecular
property prediction. Because attention weights from an edge map-
ping dictionary are shared across all molecular graphs, EAGCN
learns the invariant features from different graphs and keeps the
23
edge attention consistency. In various experiments, we provide
the in-depth analyses about property predictions, molecular graph
representations and atom subtype analysis. These analyses help us
understand the performance of the proposed EAGCN and interpret
the learned models. In the future, we plan to apply EAGCN to other
scientific domains such as social networks to evaluate its
performance.
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Appendix A

The following is the mathematical proof that ‘‘Laplacian matrix
L of consistent edge attention matrix is a positive semi-definite
matrix”.

Proof [36]. mentions that L is a real symmetric positive semi-
definite matrix. However, there isn’t theoretical proof for this
claim. We provide the detailed proof here.

Let Le be the Laplacian of graph G on n vertices consisting of just the
edge attribute e. By additivity, the graph Laplacian L ¼ P

e2ELe, each
Le may have different values by varying weight defined in our dic-
tionary. Without loss of generality, we study two vertices v1; v2 in
the weighted graph, let e be the edge of v1;v2ð Þ. Define the corre-

sponding adjacency matrix as w11 w12

w12 w22

	 

, degree matrix

D ¼ w11 þw12 0
0 w12 þw22

	 

, we have:
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D�1=2AD�1=2 ¼
w11

w11þw12

w12ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w12þw22

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w11þw12

p
w12ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w12þw22
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w11þw12
p w22

w12þw22

" #
:

The Laplacian matrix on edge e will be:

Le ¼ I � D�1=2AD�1=2 ¼
w11

w11þw12

w12ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w12þw22

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w11þw12

p
w12ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w12þw22
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w11þw12
p w22

w12þw22

" #
:

Then for any vector x 2 Rn, we get:

xTLex ¼
ffiffiffiffiffiffiffiffi
w12

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w11 þw12

p x1 �
ffiffiffiffiffiffiffiffi
w12

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w12 þw22

p x2

� �2

P 0:

If xTLex P 0 holds for all non-zero x in Rn, the matrix is said to be
a positive semi-definite matrix. It follows immediately that the
Laplacian of the whole graph is positive semi-definite.
xTLx ¼ xT

P
e2ELe

� �
x ¼ P

e2Ex
TLex P 0, which implies that the sym-

metric real matrix L is a positive semi-definite matrix [37]. In addi-
tion, we also know the eigenvalues of L satisfy
0 ¼ k1 6 k2 6 . . . 6 kn ¼ kmax 6 2 [37].
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