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A B S T R A C T   

The ever-growing threats of security and privacy loss from unauthorized access to mobile devices 
have led to the development of various biometric authentication methods for easier and safer data 
access. Gait-based authentication is a popular biometric authentication as it utilizes the unique 
patterns of human locomotion and it requires little cooperation from the user. Existing gait-based 
biometric authentication methods however suffer from degraded performance when using mobile 
devices such as smart phones as the sensing device, due to multiple reasons, such as increased 
accelerometer noise, sensor orientation and positioning, and noise from body movements not 
related to gait. To address these drawbacks, some researchers have adopted methods that fuse 
information from multiple accelerometer sensors mounted on the human body at different lo
cations. In this work we present a novel gait-based continuous authentication method by applying 
multimodal learning on jointly recorded accelerometer and ground contact force data from smart 
wearable devices. Gait cycles are extracted as a basic authentication element, that can continu
ously authenticate a user. We use a network of auto-encoders with early or late sensor fusion for 
feature extraction and SVM and softmax for classification. The effectiveness of the proposed 
approach has been demonstrated through extensive experiments on datasets collected from two 
case studies, one with commercial off-the-shelf smart socks and the other with a medical-grade 
research prototype of smart shoes. The evaluation shows that the proposed approach can ach
ieve a very low Equal Error Rate of 0.01% and 0.16% for identification with smart socks and 
smart shoes respectively, and a False Acceptance Rate of 0.54%–1.96% for leave-one-out 
authentication.   

1. Introduction 

Passwords and keys allow users to access their personal information, while protecting against unauthorized attempts. However, 
studies have shown that users often choose weak and easy to remember passwords like “12,345”, “abc 1234” or even “password” to 
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protect their data, even though those passwords are easy for an unauthorized user to guess Patel et al. (2016). In addition, the rapid 
advancements in mobile and wearable devices encourage the users to use these devices to monitor and store their sensitive health data, 
however this brings up challenges such as privacy leakage and financial damage once the devices are lost or compromised Liu and Sun 
(2016). Strong passwords that combine characters, numbers and symbols are more difficult to hack but can be easily forgotten. In order 
to bridge the gap between secure authentication and usability, there has been a shift towards biometric authentication methods which 
take advantage of biological features, such as fingerprints and face characteristics De Luca et al. (2015), or behavioral features like 
speech, keystroke dynamics Banerjee and Woodard (2012), swipe patterns Patel et al. (2016) and gait patterns Ngo et al. (2015); 
Juefei-Xu et al. (2012); Sprager & Juric (2015a); Derawi et al. (2010); Kale et al. (2004). These features cannot be forgotten and thus 
biometric authentication methods significantly improve the usability. Furthermore, continuous biometric authentication systems, 
especially on mobile devices, are gaining more attention in recent years. Instead of authenticating the user only at the entry point when 
the device is locked, biometric authentication methods determine whether biometric traits correspond to a respective user in a 
real-time and continuous manner. In this way, users can be continuously monitored after initial access and thus do not need to 
constantly worry about security and privacy in case their devices are lost Patel et al. (2016). 

Gait-based authentication is among the most popular behavioral biometric authentication methods. Gait refers to locomotion 
achieved through the movement of limbs and due to the different properties of an individual’s muscular-skeletal structure, gait 
patterns are fairly unique among individuals Zhong & Deng (2014). Gait-based continuous authentication seeks to verify whether the 
user is genuine in a periodic or constant manner without interrupting the user’s normal interaction. It requires little cooperation from 
the user, and is usually an inexpensive option. Gait is also difficult to mimic Mjaaland et al. (2011, pp. 361–380); Muaaz and Mayrhofer 
(2017); Gafurov et al. (2007), making spoofing of gait a hard task for an adversary. To perform gait-based authentication, multiple 
technologies have been used such as cameras for computer vision-based gait recognition Han and Bhanu (2006); Chen et al. (2009), or 
smart mats Pataky et al. (2012) and plates Derlatka and Bogdan (2015) for floor sensing. With the rapid development of wearable 
sensors and mobile phones, an increased amount of works that utilize those technologies has been performed recently. However, the 
majority of those devices are equipped with an inertial measurement unit (IMU) and a common issue of IMU measurements is the lack 
of accuracy, robustness and reliability Sprager & Juric (2015a). 

Motivated by these recent technological advances, in this paper, we present a gait-based continuous authentication framework 
using multimodal learning. Specifically, our approach aims to support a more user friendly and robust authentication method by 
combining two sensing modalities, i.e., accelerometer (ACC) data and ground contact force (GCF) data. We employ a multimodal 
learning approach based on autoencoders to explore the relationships between these two different modalities of the data and thus build 
more robust learning models leading to more accurate authentication results. Two types of sensor fusion techniques are explored, i.e. 
early and late sensor fusion. Early fusion is based on the hypothesis that it is possible to develop models that use simple time-domain 
features for authentication, while the hypothesis for the late sensor fusion is that more complex and abstract features are required for 
gait-based authentication, and thus extraction of higher-order features based on simple time-domain features is required. 

The proposed authentication method can be used in broad application scenarios. Specifically, it may be used as part of a multi- 
factor authentication framework on mobile phones Muaaz (2013), which is considered stronger than single factor or multi-layer 
authentication Al Abdulwahid et al. (2016). It may also be used in situations where other strategies such as facial recognition and 
fingerprints cannot be applied, but continuous authentication is required as part of an ongoing task. For example, continuous biometric 
authentication could be used to secure sensitive biomedical data recorded from smart wearable health devices. Furthermore, it can 
help enhance the UI experience, through adaptive interfaces based on different active users, or it can be used along with access control 
schemes, where access to more sensitive features or data of the device can be done with other more secure biometric methods or strong 
passwords. In this way, usability is increased, while security is kept high. 

The effectiveness of our approach is evaluated through extensive experiments on datasets collected from two case studies, one with 
commercial off-the-shelf (COTS) running smart socks and the other with a research prototype of smart shoes designed for lower- 
extremity rehabilitative training, both of which can record GCF and ACC data. With the use of these two different sensing plat
forms we can evaluate the generalizability of our approach. In the experiments, we first evaluate the robustness of the proposed 
authentication framework under different attack scenarios, such as passive attack and active attack, i.e. when impostors perform gait 
mimicking while observing their victim’s gait in real time. On top of that, we further evaluate the robustness of the proposed approach 
while controlling two parameters that effect gait patterns, i.e. walking speed Kirtley et al. (1985) and fatigue Qu & Yeo (2011); 
Helbostad et al. (2007). Finally, a per modality and per fusion technique evaluation is performed, based on individual sensing plat
forms. Our extensive results show that between the two modalities used in this approach, GCF is more robust than ACC. In addition, our 
evaluation shows that an early fusion of the ACC and GCF modalities is the most robust approach, compared to the GCF modality only 
or any other fusion method. By utilizing information in ACC and GCF data, the models can achieve equal error rates (EER) of as low as 
0.01% for the smart socks platform and 0.16% for the smart shoes platform. The leave-one-out approach, which evaluates the 
generalizability of the proposed method when a never-seen-before impostor tries to be authenticated, achieves a false acceptance rate 
(FAR) of 0.54% for smart socks and 1.96% for smart shoes. Walking parameters, such as speed and fatigue from everyday activities are 
shown to have significant impact on the authentication performance as well. This suggests that providing diverse gait samples can 
further improve the robustness of gait-based authentication models. 

The remainder of this paper is organized as follows. Section 2 reviews the related work. Section 3 gives an overview of our 
approach. The two sensing devices used for data acquisition are discussed in Section 4. Section 5 describes our filtering and data 
segmentation techniques. Section 6 discusses the feature extraction and classification models of the gait patterns. Section 7 describes 
the data collection protocol and the evaluation results. Finally, we conclude the paper in Section 8 and discuss the future work. 
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2. Related work 

Gait-based behavioral biometrics can be used in both identification and authentication scenarios Zhong & Deng (2014). For 
identification, a sample gait is compared to a database of enrolled gait samples with known identities to determine whom the unknown 
sample belongs to; for authentication, a gait sample is compared to the enrolled sample gait data for a known person to validate his or 
her identity. Gait biometrics have attracted tremendous research attentions in recent years due to two main reasons: the rapid 
development of sensing technologies on mobile devices, and the increasing popularity and usability of biometric authentication 
compared to traditional authentication methods. Apart from that, gait-based authentication may be harder to spoof when compared to 
other widely used physiological biometric methods. For example, fake fingers have been used to get access in fingerprint based sys
tems; recorded voice has been used in voice recognition systems; and pictures and masks have been used for face recognition based 
authentication systems Patel et al. (2016); Gafurov et al. (2007); Al Abdulwahid et al. (2016). In addition, gait-based biometric 
authentication may be preferred from individuals when compared to other biometric methods which may be considered more privacy 
intrusive, e.g. face recognition that requires the use of cameras Vildjiounaite et al. (2006). 

In general, there are three main approaches in terms of hardware used for gait-based authentication, i.e., computer vision tech
niques, sensing on the floor with smart mats and plates, and wearable devices. Computer vision techniques are based on video re
cordings of the subject to be authenticated or identified Han and Bhanu (2006); Chen et al. (2009). They have drawn great attention 
recently due to their promising application to security, monitoring and surveillance systems in public places, such as airports. Floor 
sensing has been performed with the use of smart mats Pataky et al. (2012), force plates Derlatka and Bogdan (2015) and floor vi
bration measurement Pan et al. (2017). Its application mostly focuses on the identification of people entering a restricted area. 

Using wearables to perform gait-based biometric authentication is another popular approach due to their mobility, small size and 
low cost. That includes the use of IMUs and devices such as smart phones and smart watches. These wearables can record signals at 
multiple locations on the human body, including wrist Xu et al. (2017), waist Sprager & Juric (2015a); Ngo et al. (2015), breast pocket, 
trouser pocket Juefei-Xu et al. (2012); Zhong & Deng (2014); Derawi et al. (2010); Zhong et al. (2015), and hip Nickel et al. (2012); 
Gafurov et al. (2007). A summary of recent research work on using accelerometer for gait recognition can be found in Zhang et al. 
(2015) and Sprager & Juric (2015b). A common issue of IMU measurements is the lack of accuracy, robustness and reliability Sprager 
& Juric (2015a). This can be partially attributed to the high sensitivity to the location and orientation of the sensor and increased level 
of noise present in the recorded data. However, many of these recent research efforts have achieved remarkable performance. For 
example, a 0.8% equal error rate (EER) was reported in Sun & Yuao (2012) by applying a curve aligning approach on the dataset 
collected from 22 subjects. Research also shows that EER keeps increasing when the dataset size grows, e.g. Sprager & Juric (2015a) 
reports an EER of 6%–12% evaluated on a large open source dataset of 744 subjects. This increase may be related to multiple other 
parameters on top of the population size, such as types of sensing technologies, sensor placement and noise levels in the data. 

Besides wearables, smart phones can also be easily used as sensing devices for gait recognition, as they require no additional 
hardware support Lu et al. (2014). However, the effectiveness of using smart phones for gait authentication heavily depends on the 
location and orientation of the phone to be deployed on the human body. The performance will further degrade when the subject 
performs everyday actions with their phones (e.g., making calls or browsing the web Watanabe & Sara (2016)). Among the research 
attempts in this direction, Shen et al. (2018) studies gait authentication based on multiple placements of phones on the human body; 
several work rely on using the phones in a fixed position in their pocket Nickel and Busch (2013); Zhong & Deng (2014) addresses the 
issue of variable phone orientation by computing invariant gait representations and uses gait dynamic images to extract features, 
achieving an EER of 3.88–7.22% with 55 human subjects; Juefei-Xu et al. (2012) presents a pace-independent gait identification 
system with 36 subjects, achieving verification rates (VR) of 61.1–99.4% with a False Acceptance Rate (FAR) of 0.1%. 

To further improve the authentication/identification performance and alleviate the performance degradation from noisy mea
surements, multimodal methods and sensor fusion techniques have been used to combine different types of data from multiple sources 
Zhang et al. (2015). These approaches are attractive as they can effectively relate the increased information available from multiple 
sources and modalities and thus result in better models that outperform the traditional methods. For example, Crouse et al. (2015) 
introduces a continuous authentication method for mobile devices based on fusion of face images and IMU data. Zhang et al. (2015) 
presents a sparse representation method with the use of four accelerometer data sources, achieving an EER of 2.2% for verification. 
Such approaches however may come with reduced usability as the potential user may need to wear multiple wearable devices, making 
the setup not practical for everyday use. In addition, most of the studies fail to report leave-one-out cross-validation, which gives a 
better estimate of the generalizability of the approach when a new impostor subject is tested whose gait data are not used to train the 
corresponding model. For the studies that do report leave-one-out cross-validation, the best FAR performance achieved is 3% with 11 
subjects Trivino et al. (2010) and 6% with 32 subjects Trung et al. (2011). 

In this work, we use two modalities for gait-based authentication, which combine accelerometer (ACC) and ground contact force 
(GCF) data. GCF measurements can be recorded with the use of smart socks or smart shoes, which has recently seen great advancement 
in multiple domains, especially for gait rehabilitation Kong and Tomizuka (2009); Papavasileiou et al. (2017b, pp. 195–204, a, pp. 
34–49); Zhang et al. (2016). We hypothesize that by building models that combine data from multiple sources, we can achieve robust 
gait-based authentication. To the best of our knowledge, this is the first attempt in gait-based authentication using a combination of 
ACC and GCF data. Improved usability can be achieved with this approach, as users do not need to use extra wearables, except from a 
pair of smart socks or smart shoes that can record both modalities. With the rapid development of new wearable technologies, we 
envision that most shoes and socks in the near future will be equipped with smart sensors to capture ACC and GCF data in a continuous 
manner. In the following, we will first give an overview of our proposed methodology and then present the technical details. 
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Fig. 1. An overview of the proposed integrative framework for multimodal gait-based continuous authentication: (a) sensing platforms, (b) filtering/cycle extraction, (c) feature extraction, (d) clas
sification, and (e) authentication. 
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3. Methodology overview 

To support multimodal and continuous gait-based authentication we propose an integrative framework that comprises of a data 
acquisition platform, a gait cycle extraction component, a feature extraction component based on autoencoders and a classification 
component. An overview of the proposed framework is presented in Fig. 1. The sensing device used in the data acquisition platform 
(Fig. 1a) is either a pair of smart socks or smart shoes (see Section 4 for the details). Both sensing devices are capable of recording 
synchronized GCF and ACC motion data, and are equipped with wireless modules to transfer the recorded data to an application on a 
phone or a laptop. The corresponding wireless connection between the sensing platform and the mobile phone is considered to be 
secure and encrypted, so that there is no possibility for a replay attack, i.e. a type of attack in a biometric system where old captured 
data from previous sessions or other users are used for authentication. 

The collected data samples are then sent to the filtering and gait cycle extraction component (Fig. 1b) which is responsible for 
filtering the ACC data, segmenting the GCF and filtered ACC gait data into individual gait cycles, and storing the data within each gait 
cycle in a vector and forward them to the feature extraction component (Fig. 1c). For feature extraction, we use autoencoders. Different 
sensor fusion techniques can be achieved, depending on the way how the selected autoencoders are connected and what sensor types 
they get their input from. An overview of the five investigated sensor-fusion techniques is summarized in Fig. 6. The first model re
ceives the stacked raw ACC and GCF gait cycle data as input and learns a shared representation. The next two models each use only raw 
gait cycle data from one of the two modalities. The fourth model stacks the two individual encoder outputs from each modality. Finally, 
the last model forms a bimodal-deep autoencoder network that learns higher order features Ngiam et al. (2011). The number of nodes 
in each autoencoder has been empirically selected, aiming to reduce the initial raw data dimensionality, and improve the feature 
quality and class separation (see Section 5). 

The extracted features are finally sent to the last component of the processing pipeline for classification (Fig. 1d). The classifier 
decides whether the given feature vector from the corresponding gait cycle belongs to the legitimate user or not. In order to achieve 
this, we build classification tasks for each individual user. Training data belonging to the corresponding owner of the model are marked 
to be in the positive class, while data from all the other subjects in the training set are marked to be in the negative class. In order to 
achieve continuous gait-based authentication, the pipeline can be repeatedly invoked to decide whether a given gait cycle belongs to 
the corresponding owner of the mobile device. If the device is unlocked there could be a time interval before the method is invoked 
again to save resources, while keeping the user authenticated continuously. In addition, to improve the overall user experience and 
authentication performance, an additional ensemble or voting layer can be used to decide whether to lock or unlock the device based 
on the classification results from a number of past gait cycles. In this paper, we focus on the first four components of the proposed 
framework as depicted in Fig. 1 and plan to extend our study on the additional layers in the future work. The following three sections 
give a more detailed description of the components in the proposed gait authentication framework. 

4. Data acquisition platforms 

Multimodal learning essentially reveals correlations among different modalities from multiple data sources to build stronger and 
more robust learning models than those learned from individual modality Ngiam et al. (2011). In this work, we relate features 
extracted from users’ ACC and GCF data to build an improved model for gait-based behavioral biometric authentication. To 
demonstrate that our algorithms can be applied on different sensing platforms, we use both a commercial off-the-shelf (COTS) smart 
socks and a research prototype smart shoes for data acquisition. As will be shown in Section 7, despite the numerous differences 
between the two sensing devices, our algorithms can achieve similar performance and are not affected by the different characteristics 
of the sensing platforms. 

The COTS smart socks are purchased from Sensoria Sensoria (2020) (see Fig. 2a). The socks are designed for runners who need to 
improve their running skills and get real-time feedback on multiple parameters, such as cadence, foot landing position, pace and speed. 
The Sensoria Software Development Kit (SDK) includes a license to support raw data collection, a pair of smart socks and a pair of 

Fig. 2. The two sensing platforms for data acquisition.  
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Fig. 3. Raw ACC and GCF data from two platforms.  
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Bluetooth anklets for wireless data collection. The socks are embedded with 3 proprietary textile pressure sensors, attached at the 
bottom of the sock, one in the heel area under the calcareous bone and two in the metatarsal area, at the first and fifth joints, 
respectively. The collected GCF signals are relayed through conductive fibers to the anklet. The attachable Bluetooth anklet contains a 
3-axis accelerometer, making the hardware completely mobile. The GCF signals along with the ACC signals, are sent to the SensoriaLab 
iOS application, where data can be stored locally or uploaded to the cloud for further processing. The battery of the anklet allows about 
6 h of operation and the socks’ sampling frequency is set to 32 Hz. 

The smart shoe is a novel wireless human motion monitoring system for gait analysis in rehabilitation training Zhang et al. (2016); 
Deng et al. (2018). It is developed to measure the GCF at four points: toe, first metatarsal joint (Meta 1), fourth metatarsal joint (Meta 
4) and heel (see Fig. 2b). The silicone tubes are wound into air bladders and connected to barometric pressure sensors. In addition, an 
IMU sensor is attached to the distal end of the shank to measure the accelerations and rotations in three dimensions. The sampling rate 
is set to 30 Hz and the data is sent to a high-performance laptop through WiFi. 

Despite the fact that both sensing devices provide similar sensing modalities, there are multiple differences between the two. For 
example, the smart socks are equipped with three textile pressure sensors at the bottom of the socks, while the smart shoes have four air 
bladders embedded in the sole and connected to the barometric sensor on the back. In the smart socks, the ACC data are collected by 
the attachable Bluetooth anklet, while in the smart shoes, the IMU sensor measurement is sent through the WiFi. These characteristics 
can cause evident differences in the collected raw data. For example, in Fig. 3b and d, we can observe that the data collected from smart 
shoes change more sharply than the measurements from the socks. This could be due to the participants’ walking patterns since the 
data are collected from two individuals. In addition, a second factor for this difference could be the nature of the textile material which 
is less sensitive, compared to the barometric sensors that can capture small variations in data. 

5. Data filtering and gait cycle detection 

After receiving the ACC and GCF measurements from the data acquisition platforms, a pipeline of processing components are 
employed in order to provide continuous and robust gait-based authentication. In this section, we examine the data filtering and gait 
cycle detection components, which are used to reduce the noise levels in the ACC signals and segment the data stream to perform 
further processing. 

5.1. Filtering 

Both sensing devices provide raw unfiltered ACC and GCF data. As it can be seen in Fig. 3a and c, the ACC data contain higher noise 
levels compared to the GCF data. In order to reduce the noise levels in the ACC data, we employ a moving average approach. Moving 
average filters are low-pass filters, which are easy to implement, and provide great smoothing performance. This greatly helps in the 
following analytic layers to prevent overfiting and improve generalization. In our design, the ACC raw data from every sensor channel 
(x, y and z directions) from both sensing devices will pass through a 5-point moving average filter. The filter length was chosen to be 
small as we do not want to miss any important information, such as spikes from the feet movement, that could help distinguish a 
subject. The filter output is given by the following difference equation: 

y[i] =
1
N

∑N−1

j=0
x[i − j] (1)  

where y[i] is the filter output at timepoint i, x[i] represents the input data at timepoint i, and N = 5 is the filter length. If i < j we can set 

Fig. 4. An overview of gait cycles and gait phases.  
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y[i] = x[i] and skip filtering the first N observations. 

5.2. Gait cycle detection 

Gait cycle is the time interval between the same repetitive events of walking. Each gait cycle can be further divided into gait phases. 
Fig. 4 gives an overview of two gait cycles at the lower two horizontal solid lines and gait phases at the top part. Typically there are 
eight gait phases for a healthy subject, i.e. initial contact, loading response (or pre-swing), mid-stance, terminal stance (or initial 
contact), pre-swing, initial swing (not shown in Fig. 4), mid-swing, and terminal swing. Detecting gait cycles can be challenging, 
especially when only ACC data are used and the IMU sensor recording point is far away from the foot. However, the heel GCF sensor 
data can help easily detect heel strikes. By using the measured contact force of the heel with the ground, we can accurately detect the 
repeating heel strike gait phases. Based on this, we can define a gait cycle to be the time interval between two consecutive left heel 
strikes. Since the gait cycle length is not constant and depends on the walking speed, we use a fixed-size window that starts with a left 
foot heel strike, and has a length of 37 samples, i.e. 1.156 s at 32 Hz or 1.233 s at 30 Hz (Fig. 1b). This window length is empirically 
chosen to capture any walking speeds of a subject, except extremely slow walking, such as walking with less than 48 strides per minute. 
Note that on the two data acquisition platforms, both ACC and GCF data are recorded with the same timestamp. Thus data syn
chronization between the two modalities is not necessary during the gait cycle extraction. 

Once gait cycles have been identified, normalization across the two different modalities is performed, so that normalized data lie in 
the [0, 1] space. Normalization is important not only to help utilize the autoencoders in all the models for feature extraction, but also to 
eliminate differences between body-weight across individuals. In this way adversaries may not benefit when they try to match their 
body-weight to their victim. The formula used for normalization for both ACC and GCF data is as follows. 

yj[i] =
xj[i] − minxj[i]

maxxj[i] − minxj[i]
, i⊆I, j ∈ C (2)  

I refers to the set of indices, i, that belong to one gait cycle, while C refers to all the channels that correspond to this modality. By taking 
the min and max across all the channels in a gait cycle, we are able to keep the relative differences across sensor channels, and thus let 
the models used at the later components benefit from differences in force levels, or timing of gait patterns. 

The last step of gait cycle detection is to concatenate the feature vector into a single feature vector. The vector length is Lv = Lw ×

2 × Nc, where Lw = 37 (observations /window) is the window length, 2 is the number of feet (left and right), and Nc is the number of 
channels for each sensor. For example, the ACC sensors have 3 channels (x, y and z directions), the shoe GCF sensors have 4 channels 
(heel, meta12, meta 45 and toe) and the sock GCF sensors have 3 channels (heel, meta12 and meta). This results in a vector of 222 input 
features for the ACC modality for both smart socks and shoes, 222 features for the GCF modality of the smart socks and 296 features for 
the GCF modality of the smart shoes. Before these gait cycle vectors are sent to the next component for feature extraction, in order to 
train clean models and improve generalizability, outliers removal is performed. If the corresponding gait cycle vector contains more 
than 10 features that have observations more than 3 standard deviations away from their mean across all the gait cycle vectors 
belonging to the corresponding user, this feature vector is considered outlier and will be discarded. 

6. Feature extraction and classification 

To extract features from the detected gait cycles we employ autoencoder as a building block for early and late fusion of ACC and 
GCF data within a gait cycle. Early fusion technique tries to learn models that extract simple temporal and amplitude features, while 
late fusion technique uses per modality features to extract higher order and abstract features. In the following, we first describe the 
detailed characteristics of autoencoders and then discuss how they are used for feature extraction and sensor fusion. Finally, we 
describe the classification algorithms used on the extracted features to support gait-based authentication. 

6.1. Feature extraction with auto-encoders 

Autoencoders have recently been applied in a broad range of applications (e.g., image, video and audio processing Ngiam et al. 
(2011)) to find higher order correlations from different data sources and extract meaningful features that can better represent the data. 
Compared to linear methods such as the principal component analysis (PCA), autoencoders can achieve better feature extraction and 

Fig. 5. The conceptual structure of the autoencoder.  
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dimensionality reduction, due to its non-linear transfer function. For these reasons, in this work we use autoencoders to extract features 
separately for each vector from the two different modalities and then add another layer for bimodal feature extraction. 

An auto-encoder is a neural network that is trained to replicate its input at its output (see Fig. 5 for a conceptual structure). Training 
an autoencoder is unsupervised, in the sense that no labeled data is needed, and is based on the minimization of the error between 
input x and its reconstruction at the output x̂. An autoencoder is composed of an encoder and a decoder. Given an input vector x ∈ RD, 

the encoder tries to map vector x to a hidden representation z ∈ RD′

by learning a function hW,b as follows: z = hW,b(x) = s(Wx + b). S 

is a transfer function for the encoder (we use the sigmoid function), W ∈ RD′
×D is a weight matrix, b ∈ RD′

is a bias vector, and D, D′ are 
the number of nodes at the input and hidden layers, respectively. During training the weight matrix W and the bias vector b are 
learned. 

The decoder maps the encoded representation z back to a reconstructed vector x̂ in input space by learning a function gW′
,b′ as 

follows: ̂x = gW′
,b′ (z) = s(W′ z + b′

), where W′

∈ RD×D′

is a weight matrix, and b′

∈ RD is a bias vector. Autoencoders can achieve better 
feature extraction and dimensionality reduction, compared to linear methods (e.g., PCA) due to the non-linear transfer function s. 

The loss function used to train autoencoders is typically the mean squared error loss: 

E =
1
N

∑N

n=1

∑D

j=1

(

xj
n − x̂ j

n

)2

, (3)  

where N is the number of observations, and D is the number of variables in the training data, xj
n is the j-th variable of the n-th training 

sample, and x̂j
n is the j-th variable of the reconstruction of the n-th training sample from the autoencoder. To avoid over-fitting, a 

regularization term Ωw (weight decay) is typically introduced which favors small weights in W. In addition sparsity on the encoded 
representation can be enforced by adding a regularization term Ωs that takes a large value when the average activation value, ρ̂i, of a 
neuron i and its desired value, ρ, are not close in value Olshausen and Field (1997). By adding these two regularizes to the loss function 
(3) we get: 

E =
1
N

∑N

n=1

∑D

j=1

(

xi
n − x̂ j

n

)2

+ λ * Ωw + β*Ωs (4)  

where: 

Ωw =
1
2

∑D′

i=1

∑D

j=1

(
wij

)2 (5)  

is a regularization term that is used to decrease the magnitude of the weights and helps prevent over-fitting (it is also called weight 
decay), λ is a hyper-parameter, which controls the importance of weights regularization, wij is the parameter (or weight) associated 
with the connection between the i-th unit in the hidden layer and j-th unit in the input layer and 

Ωs =
∑D′

i=1
KL

(
ρ||ρ̂i

)
=

∑D′

i=1
ρlog

⎛

⎝ ρ
ρ̂i

⎞

⎠ + (1 − ρ)log

⎛

⎝ 1 − ρ
1 − ρ̂i

⎞

⎠ (6)  

is the sparsity regularization term, β is a hyper-parameter which controls the importance of sparse representations, ρ̂i is the average 
activation value of a neuron i and ρ is its desired value called sparsity parameter, typically set to ρ = 0.05. KL(ρ||ρ̂i) is the Kullback- 

Fig. 6. Models used for sensor fusion and classification.  
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Leibler (KL) divergence and is measuring how different two distributions are. In this case, it takes the value zero when ρ and ρ̂i are 
equal to each other, and becomes larger as they diverge from each other. The decoder objective function minimization is performed in 
a similar fashion. 

By using the autoencoders as a building block, we can develop different models that perform feature extraction with different 
characteristics. We discuss the employed approaches in the following subsections. 

6.2. Early and late sensor fusion techniques 

When dealing with multimodal sensor data in neural networks, it is possible to fuse the data at different stages of the network, 
achieving different sensor fusion techniques Münzner et al. (2017). Here we investigate early fusion and late fusion approaches, while 
also evaluating no-fusion between modalities to understand the importance of GCF and ACC modalities. Early fusion has the advantage 
of a simple model, that lets the algorithm figure out which feature from which modality is important for authentication. On the other 
hand, late fusion is designed to identify more abstract characteristics, as it is the task of the lower layer encoders to learn specific 
features from each modality. 

An overview of the investigated sensor fusion techniques is presented in Fig. 6. The first model (Fig. 6a) performs early fusion by 
receiving as input a stacked vector of raw ACC and GCF gait cycle data and treating them equally. Its advantage lies in extracting 
temporal and amplitude related features that may be easier to detect with a simple model. The next two models (Fig. 6b and c) each 
uses only raw gait cycle data from one of the two modalities, performing no sensor fusion with the other modality. They have similar 
characteristics with the first model in extracting simple features for each modality, but do not perform any fusion of features between 
the two modalities. 

Late sensor fusion is performed by the last two models. The fourth model (Fig. 6d) is an extension of the two per-modality feature 
extraction models. It combines the outputs of these two models and lets the classification algorithm to learn a good combination of 
features extracted from the two modalities separately. Finally, the last model (Fig. 6e) forms late fusion with a bimodal-deep 
autoencoder network that fuses the two individual models at the second layer in order to learn higher order, more complex and 
abstract features given features that were extracted at the first layer, per modality Ngiam et al. (2011). Its advantage lies in extracting 
features that are not easy to detect with a single layer of encoding and may require more complex, non-linear transformations, such as 
those required for audio-visual classification Ngiam et al. (2011). 

For all the models, the decoders of any autoencoder are discarded after training as the goal is for feature extraction and no 
reconstruction is required. The number of nodes for each encoder is set to 25, with the exception of the raw-stacked model where 50 
nodes are employed. This selection was decided after trying different number of nodes and selecting those leading to increased per
formance. Higher number of nodes for the raw-stacked model could be explained since this model has to fuse features from both 
modalities, so there could be more information potential to be learned from the raw data. 

6.3. Classification of gait features 

Most related work in the literature studies the authentication or identification of gait using distance metrics or pattern similarity 
measures, such as dynamic time warping (DTW) Sprager & Juric (2015b). One drawback of those methods is that DTW might warp the 
series too much so that the series lose its discriminative patterns Zhang et al. (2015). In this work, we use autoencoders to perform 
feature extraction and rely on a classification algorithm to make the final decision of authentication. It is a standard practice for many 
neural network algorithms to attach an additional final layer (called soft-max layer) of one output node per data class, that will provide 
a probability that the corresponding input belongs to each class. Here we define a data class to be a human subject, so after a new gait 
cycle is passed through the model, we have class probabilities, i.e. the probability that it belongs to any class, with the sum of 
probabilities equal to one. 

In addition, we use support vector machine (SVM), which is one of the most popular machine learning algorithms. SVM can achieve 
improved performance in binary classification, and especially in authentication, since the algorithm is trained to learn a separating 
hyper-plane that separates the positive class (genuine user) from the negative class (impostor users) in the best possible way. By doing 
so, we expect that unknown gait samples that belong to an unknown impostor user can be more easily rejected by SVM, which is 
trained to specifically identify gait patterns of the corresponding genuine user. SVM maps the input points in a high dimensional space 
using a kernel. A hyper-plane is used to divide the geometric space into two parts for classification. The main advantage of SVM is that 
it solves a convex problem and is suitable for classification of continuous features. The regularization parameters can be tweaked to 
control over-fitting. We use SVM by defining a classification task for authentication of each of the subjects, which predicts whether a 
new gait sample originated from that user or not. To train SVM the user’s gait is marked as positive, while all other subjects’ gait 
samples are marked as negative. 

7. Performance evaluation 

To evaluate the effectiveness of the proposed gait-based authentication framework, we design two case studies. We use smart shoes 
in one of the studies and smart socks in the other. This helps evaluate the robustness of the approach on different sensing platforms. In 
addition, different testing scenarios are considered for each of the studies that can affect gait dynamics, such as walking speeds and 
fatigue levels. In the following, we first summarize the design principles of the case studies and the experiment setup. We then present 
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the details of the experimental results. 

7.1. Case studies 

In both case studies, we select healthy and young adult subjects to participate in the experiments. The studies are designed to test 
the efficacy of the proposed algorithmic framework under different scenarios (see Table 1). Our first case study uses Sensoria smart 
socks (Fig. 2a). Seven female and eight male healthy students participate in this pilot study and their ages range from 20 to 29. For each 
subject we demonstrate how to use the hardware and give instructions for the data collection sessions. Specifically, the subjects are 
asked to walk normally on a 55 feet long hallway back and forth for 5 min. To collect the two modalities of the gait data, the subjects 
wear the smart socks and carry a smart phone in their pocket with the SensoriaLab iPhone application for data storage. Before the 5 min 
recording session, we make sure that the socks are worn correctly, the Bluetooth anklet is adequately charged, the wireless connection 
with the phone is in good condition, and the ACC and GCF signal quality from the socks and anklet do not show any abnormalities or 
excessive noise. During the 5 min recording session, the subjects are asked to walk in two different walking speeds, i.e. slow and fast 
walking. At the first two and half minutes they walk at slow speed, between 3 and 4 feet per second and at the remaining time they walk 
between 5 and 6 feet per second. In order to make sure that the subjects follow the walking speed requirements, the student researcher 
kept walking on the side of the subject for the first two round-trip walks for both walking speed recording sessions in order to keep the 
speed constant. The researcher had performed the walking session multiple times using a timer to measure the exact time requirements 
for the given hallway length. The sampling rate of the smart socks is 32 Hz and the total number of gait cycles across all subjects for all 
sessions recorded is 4004. 

In the second study, 10 healthy male subjects aged from 21 to 27 are invited. Limited by the shoe size, only male participants are 
selected, whose shoe sizes are either 10 or 11. The subjects are asked to walk on a 50 feet long hallway at two speed cases: slow and fast. 
The speed for slow and fast walking are set as 3–4 feet per second and 5–6 per second correspondingly. To ensure the recorded data are 
within the speed range, makers are labeled on the hallway floor for every 5 feet and a camera is used to record the whole experiment, 
shown in Fig. 7. After synchronizing the video with the shoe measurements, the data where the speed is not within the requirement are 
removed. For each subject, the experiments are finished twice at around 11 a.m. in the morning and 4 p.m. in the afternoon on the same 
day. The goal of this study is to investigate whether the reduced energy level in the afternoon would affect the performance of gait- 
based biometric authentication. In total, 9357 gait cycles are recorded from all the subjects. The data are collected by the smart shoes at 
a sampling rate of 30 Hz to match the experiment with smart socks. Joint acceleration data in three dimensions are collected and 
pressure data at four different locations (toe, the first and second metatarsophalangeal joint, the fourth and fifth metatarsophalangeal 
joint, and the heel) at feet are collected. 

Table 1 
A summary of the two case studies with different sensing platforms and testing scenarios.  

Case Study Sensing Platform Testing Scenarios 

First Smart socks Fast walking 
First Smart socks Slow walking 
Second Smart shoes Fast walking in the morning 
Second Smart shoes Fast walking in the afternoon 
Second Smart shoes Slow walking in the morning 
Second Smart shoes Slow walking in the afternoon  

Fig. 7. Test environment for the smart shoes case study.  
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7.2. Experimental setup 

To test the effectiveness of the proposed method, we train a binary classifier for each of the subjects in the dataset. Data originating 
from the corresponding subject are marked to be in the positive class, while all the others are marked negative. To report the 
generalizability of the models, k-fold cross-validation (CV) is adopted. In k-fold cross-validation, the dataset is split into k separate 
equal subsets, one subset is used for testing and the rest k − 1 subsets are used for training, and this is repeated for all the k subsets. In 
addition, we perform leave-one-out cross-validation to report how well the models can generalize and predict a never-seen-before 
impostor. In this case, data belonging to the impostor subject are left out for testing, and the rest data from all the other subjects 
are used to train the models. For all the experiments, average and standard deviation of the performance metrics are reported. The 
available training set for each experiment is used to train both the auto-encoders network and classifiers. The test set is tested against 
the models returned by the training set. 

To select the hyper-parameters, λ and β, for the auto-encoders, grid search is conducted on the complete training dataset from the 
first case study and the set of parameters that achieved the highest performance is selected. The kernel scale parameter in SVM, is 
selected by a heuristic approach in Matlab, which uses sub-sampling. Due to the hardware differences between the two sensing devices, 
experiments are done independently and only data from one sensing device are used in each experiment. 

Biometric authentication methods are typically evaluated using three performance metrics, i.e. false acceptance rate (FAR), false 
rejection rate (FRR) and equal error rate (EER). Given a new-to-be-tested observation, a classifier returns a score (or probability) that 
this observation belongs to the positive class, i.e., the class with gait samples of the genuine user. If this score exceeds the acceptance 
threshold, the observation is accepted, otherwise is rejected. Based on that, FAR is defined as the portion of imposting recognition 
attempts that are accepted (score above threshold) and FRR is defined as the portion of genuine recognition attempts that are rejected 
(score below and equal to threshold). A trade-off between these two types of errors is achieved by varying the acceptance threshold, so 
that as error of one type decreases, error of the other type increases. Thus a common way of evaluating the performance of a biometric 
system is to estimate the point where FAR and FRR are approximately equal Vildjiounaite et al. (2006), which is called EER. In our 
experiments, we report EER when we perform k-fold CV, since the test set contains observations from both negative and positive 
classes, so we can report the point where FAR and FRR are equal. If the generated data do not provide scores that set FAR and FRR 
equal, we report the average of the two metrics at the point where their difference is minimum. Finally, we report FAR for the 
leave-one-out CV, since the test set of these experiments contains impostor gait samples and thus should be rejected by the algorithms. 

We perform extensive experiments to evaluate the performance of the proposed authentication method. First we perform cross- 
validation and leave-one-out evaluation to assess generalizability and robustness. Next, we conduct experiments to control parame
ters that affect gait, such as walking speed and fatigue due to daily activities, and report their effects on the proposed gait-based 
authentication method. In addition, we evaluate how the training set size, in terms of the number of gait cycles, will affect the 
authentication performance. Finally, we evaluate the robustness of the proposed method when a gait mimicking attack is performed by 
an adversary. 

Fig. 8. 10-fold and leave-one-out CV for the two studies.  

Table 2 
EER and FAR performance per modality and fusion model, with SVM classification.  

Experiment Set Platforms Metric Raw stck ACC GCF Stck Bimodal 

1 Shoes EER 0.16 ± 0.22  1.58 ± 0.96  0.59 ± 0.59  0.18 ± 0.23  0.37 ± 0.43  
1 Socks EER 0.01 ± 0.04  5.58 ± 4.13  0.01 ± 0.05  0.00 ± 0.00  0.01 ± 0.02  
1 Shoes FAR 1.96 ± 3.69  6.40 ± 6.46  4.48 ± 6.50  2.09 ± 4.04  2.96 ± 4.90  
1 Socks FAR 0.54 ± 0.23  10.91 ± 11.53  0.77 ± 3.16  0.56 ± 2.60  0.84 ± 3.56   
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7.3. Cross-validation and leave-one-out evaluation 

In the first set of experiments, we first perform 10-fold cross-validation on both case studies. Average EER results across all folds and 
all subjects are reported in Fig. 8a. These results (SVM only, average and standard deviation) can also be seen in Table 2, since the small 
differences cannot be visualized. For this experiment, data from both slow and fast walking speeds are used for smart socks and smart 
shoes, and both morning and afternoon sessions are used for the smart shoes. 

To evaluate the generalizability of the models, we further evaluate the effectiveness of the proposed approach when a never-seen- 
before impostor tries to get authenticated. For this, we perform leave-one-out cross-validation using training data similar to the 
previous experiment, including both slow and fast walking datasets from the socks and shoes studies and both morning and afternoon 
data from the shoes study. This experiment can be taken as a passive attack, since the impostors select their victim to attack without 
performing any active attempt to hack their gait-based authentication model. They passively hope that their gait patterns are close 
enough to the victim’s patterns, so that the models accept them. Both the average and standard deviation of the FAR values are re
ported in Fig. 8b. A summary of the performance per model is given in the last two rows of Table 2. 

From these results, we first observe that the GCF modality, for both studies, outperforms the ACC modality. This indicates that by 
adopting advanced sensor technologies that can record GCF data, we are able to significantly improve the authentication performance 
compared to those methods using ACC data only. In addition, by employing multimodal learning, and fusing the two modalities, we are 
able to further improve EER and FAR comparing to any single modality. All the fusion models outperform GCF and ACC modalites, 
except in the socks leave-one-out experiment (last row in Table 2), where GCF performs better than the bimodal fusion model. 

Another observation is that authentication in the socks study seems easier (with lower EER and FAR) compared to the shoes study. 
This could be attributed to the difference in the subjects participated in the study and the increased resolution of the shoe design that 
may make the authentication task harder, as more variance to the gait patterns is introduced. In addition, differences between shoes 
worn are eliminated in the shoes study, since all the participated subjects wear the same pair of smart shoes to collect data. While in the 
socks experiment, subjects are allowed to participate with their own shoes. A detailed discussion on this follows in subsection 7.7. 

From the results, we also observe that the raw-stacked model, i.e. performing early fusion in the two modalities (Table 2), is better 
than the other fusion models, as any classifier seems to achieve lower EER with this model. This might indicate that early fusion may be 
sufficient to learn simple features in the time domain and develop authentication models. In addition, the proposed approach can be 
successfully applied to gait identification or recognition applications, where the goal is to determine the identity of the subject, given a 
new observation, based on a database of gait samples from a set of enrolled known subjects. 

Finally, we observe increased FAR when compared to EER of the 10-fold CV from the first experiment, in both the shoes and socks 
studies. This performance degradation is expected, since the test data come from a subject that the auto-encoder and classification 
models have never seen before. It is important to note that most of the related work on gait-based authentication fail to report the 
leave-one-out FAR. We believe this experiment should be reported to have a complete and fair evaluation on the effectiveness of the 
proposed approach as typically in real-life scenario an impostor will not provide his training set to the gait-based authentication 
system. 

A per-subject leave-one-out FAR performance evaluation is given in Fig. 9, for both case studies. Different rows in the tables are the 
corresponding subjects, for which the model is built. Each column corresponds to an imposing user, who tries to passively attack the 
corresponding model. From this set of results we observe that for the majority of victim-attacker pairs we get 0% FAR. However, there 
are specific pairs that generate FAR up to 21.7% and 24.7% in each of the case studies. In addition, there exists specific subjects (like 
subject 7 in the shoes study) that have worse FAR in their models compared to the others. This suggests that there may be easier and 
harder to target subjects. Based on this observation, we conduct further experiments in Sec.7.6 that evaluate what consequences there 

Fig. 9. Per-subject leave-one-out performance.  
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may be in the gait-based authentication system when an adversary can identify the best target and attempt mimicking the victim’s gait. 

7.4. Evaluation of parameters that affect gait 

In this set of experiments we evaluate how the walking speed and fatigue level of the subject will affect the authentication per
formance. The first experiment focuses on the walking speed. For each of the two case studies, we build auto-encoder and classification 
models based on slow walking data and test the performance of the models against fast walking data. This is repeated with fast walking 
data being the training set and slow walking data being the test set. Data from both morning and afternoon sessions are used for 
training on the shoes study in this experiment. The average EER and its standard deviation are reported in Fig. 10a for the socks study 
and Fig. 10b (first two error-bars, S–F) for the shoes study, respectively. From the results we have the observations that for the raw- 
stacked model with softmax, the average EER is 4.56% for the socks study with a standard deviation of 6.55%, and the average EER is 
6.79% for the shoes study with a standard deviation of 18.01%. SVM seems to perform much worse in this experiment as for the socks 
study the average EER is 12.22% with a standard deviation of 13.73% and for the shoes study, the average EER is 25.79% with a 
standard deviation of 6.35%. Compared with the observations from Expt. 1, the results from this experiment indicate that when a gait 
authentication model is trained only on one pace, the performance drops significantly compared to training the models with data that 
contain multiple walking speeds. Specifically, the models that are trained on slow gait and tested with fast gait samples, and vise versa, 
have generated statistically significant differences in the EER scores when compared to the EER scores from models trained on both 
slow and fast gait samples. The generated T-test p-value for the EER scores of the raw-stacked models with SVM between the two 
experiments is very small, i.e. 1.0023 × 10−148 for the socks data and 3.8557 × 10−129 for the shoes data. This concludes that the 
walking pace can greatly affect the authentication performance, and this is verified in both the socks and shoes studies. To reduce this 
performance degradation, the dataset that is used for training the user’s model, needs to include multiple walking speeds. The more 
significant performance degradation in the shoes study can be attributed to the higher sensitivity of the smart shoes used for this study 
and the fact that subjects in this study are asked to wear the same pair of shoes. A more detailed explanation of this is given in Section 
7.7. Next, we discuss how the fatigue level of the subject will affect the authentication performance. 

Fatigue from daily activities is considered to be a factor that can affect gait Qu & Yeo (2011); Helbostad et al. (2007). To study the 
effect of reduced energy levels in the afternoon of the day, we perform a similar experiment to the previous one, with the difference 
being that the training data are from the morning session and the testing data are from the afternoon session in the shoes study. This is 
then repeated by taking afternoon session data as the training set and the morning session data as the testing set. The results are 
summarized in Fig. 10b. From the figure, we have the observation that from the raw-stacked with softmax model, the Average EER and 
standard deviations are 7.11% and 11.42%, respectively. Comparing to the first set of experiments focusing on the walking speed only, 
the EER increases by 6%. This indicates that fatigue does play an important role in gait-based authentication. In addition, slightly 
different sensor placement when the subjects wear the shoes for the afternoon experiment may be another factor for this performance 
change. To reduce performance degradation from such cases, the dataset used for training the user’s model needs to include recordings 
from a set of subjects that have recorded their gaits in multiple different time-points of the day. By doing so, we can capture the 
day-to-day variance and variance from different sensor placement in shoe wearing. 

To better estimate the effect of fatigue, we perform two more experiments by restricting the training and testing datasets to one 
walking pace, and the results are summarized in Fig. 10b. More precisely, the first experiment uses training and testing datasets from 
the slow pace morning (SM) and slow pace afternoon (SA) sessions, and the second experiment uses training and testing datasets from 
the fast morning (FM) and fast afternoon (FA) sessions. A comparison of the EER statistics can be found in Table 3. Although the 
performance is similar, it can be observed that the average EER is slightly better when only the fast walking pace data is used. This may 
be explained by the fact that fast walking can generate gait patterns that are more consistent since there is limited time in each gait 
cycle for deviations in the movement. 

Fig. 10. Results from all testing scenarios in Table 1.  
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7.5. Evaluation on the impact of training time 

The amount of data used for training a model can have a big impact on the performance. It is thus important to quantify how much 
training data a corresponding user needs to provide. In order to quantify that, we perform a similar set of experiments to those in Expt. 
1 (Sec. 7.3), but in each iteration a different number of gait cycles is used to train the corresponding model. For a selected number of 
gait cycles, c, we pick c consecutive gait cycles for training and the rest are used for testing. For each value in c, the experiment is 
repeated at most 10 times, if there are enough different sets of c consecutive gait cycles. Average FAR results are summarized in Fig. 11. 
Fig. 11a the average results across all subjects, while Fig. 11a the results from individual subjects. Overall, we observe that FAR in
creases when the number of gait cycles used for training is reduced. In addition, from Fig. 11b we can observe that the performance 
depends on the subject as well. Some subjects seem to have their FAR fairly unchanged even when the smallest, i.e. 7, number of gait 
cycles is used for training. On the other hand, there are subjects that would benefit a lot from increasing their provided number of gait 
cycles for training their models. By also taking into account the performance changes in gait from parameters such as walking speed 
and time of the day, it is advised to new enrolled subjects to provide not only increased number of gait cycles for training, but also 
diverse samples in terms of walking speed and collected time. 

7.6. Active attacks through gait mimicking 

In this experiment, a human subject is asked to perform gait mimicking to evaluate the robustness of our method. Under this 
scenario, impostors try to mimic the gait patterns of their victims by generating similar mechanical body movement as their victim do. 
This scenario assumes the attacker has compromised the system’s database and can use their gait patterns against the models belonging 
to other subjects in the database. By doing that, they are able to identify which victim’s model gives the highest FAR. Once a victim is 
identified, the attackers are able to observe their victim’s walking patterns visually, and then mimic the victim’s gait patterns in order 
to increase their FAR even further. 

In order to collect data for this gait mimicking scenario, we first identify candidate pairs of attacker-victim whose FAR is the highest 
compared to others as presented in Fig. 9. Since some subjects are not available to join the gait mimicking experiment, this pair (subject 
6 and subject 9) shows the highest FAR among the available pairs. For this experiment, subject 9 was selected to be the victim, and 
subject 6 to be the attacker (impostor). The victim walks in a hallway similarly to what they are asked to do in the previous experi
ments. The attacker follows the victim by walking behind him and tries to match his gait patterns and mimic the victim’s behavior by 
visual observation. Specifically, the attacker is required to mimic the victim’s walking speed, step length and time duration of stance 
phase and swing phase. The walking speed for both subjects are the same as the fast walking scenario and the total experiment time is 5 

Table 3 
The experimental results on the performance of the raw-stacked model. M and A refer to Morning and Afternoon recording sessions, respectively. μ 
and σ are the mean and standard deviation of the reported metric, respectively.  

Experiment Set Test scenario Sensing Metric Classifier μ (%) σ (%) 

2 Slow vs Fast (S–F) Shoes EER softmax 6.79 18.01 
2 Slow vs Fast (S–F) Socks EER softmax 4.56 6.55 
2 Morning vs Afternoon (M-A) Shoes EER softmax 7.11 11.42 
2 Slow M vs Slow A (SM-SA) Shoes EER softmax 9.03 9.56 
2 Fast M vs Fast A (FM-FA) Shoes EER softmax 12.73 16.60  

Fig. 11. Impact of the amount of training time on the authentication performance.  
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min. A camera is used to record the whole experiment and the shoe data is synchronized with the recorded video so that only the data 
which is within the walking speed range will be kept. In addition, the data are collected from both victim and attacker at same time. 

Table 4 summarizes the gait mimicking results under different models. The FAR performance on the raw-stacked model with 
passive gait leave-one-out (Expt. 1) is 12.7%. After performing gait mimicking, FAR on the raw-stacked model is increased to 15.18%. 
Although the impostor is able to increase his chance to be accepted, the differences in the FAR scores between the passive and 
mimicking attacks are not statistically significant (p-value is 0.268). 

7.7. Summary and discussion of the experiments 

We now summarize our experimental results and findings. First, we observe that the proposed methods can be successfully applied 
for gait-based authentication. Specifically, it is possible to achieve very low EER and FAR, based on early fusion of data from the two 
modalities. This indicates that gait data do not require complex and higher order features to improve the authentication performance. 
Based on the results from the first experiment (Fig. 8) we observe that the average CV EER reaches as low as 0.01% for the smart socks 
platform and 0.16% for the smart shoes platform. To the best of our knowledge, this result is the best among all the related work, e.g., a 
0.8% EER was reported in Sun & Yuao (2012). In addition, the leave-one-out FAR ranges from 0.54%, when using the smart socks to 
1.96%, when using the smart shoes. Related studies have reported FAR performance of 3% with 11 subjects Trivino et al. (2010) and 
6% with 32 subjects Trung et al. (2011). This indicates that our approach outperforms the literature with similar subject populations. 

Another observation is the different authentication performance between the two case studies. In general the socks study yields 
lower EER and FAR compared to that of the shoes study. This result may be attributed to multiple reasons. First, in the socks study, 
participating subjects are allowed to wear their own shoes. This indicates that wearing different shoes will contribute in differentiating 
the gait patterns, and thus make authentication easier in the socks study. In addition, differences in the subjects population and the 
sensing technology itself may also contribute to the different authentication performance. Nevertheless, this difference may give a hint 
to understand the extend to which shoe types affect gait-based authentication. Finally, differences in the GCF sensing technology 
between the two sensing platforms may also play a role in the performance differences. 

From both Expt. 2 and Expt. 3, we observe that there are multiple parameters that can affect the gait-based authentication per
formance. Walking parameters such as speed and time of the day may have a significant impact on the gait patterns. In addition, the 
amount of gait cycles used for training the corresponding models may greatly affect the performance as well. Based on all these ob
servations, it is recommended that when users provide their training data at the enrollment phase, they should provide longer and 
more diverse gait examples in terms of both walking speed and collection time of the day. 

8. Conclusion and future directions 

Gait-based authentication has recently gained great attention in the research community since it has shown promising results 
towards bridging the gap between usability and effectiveness of authentication methods. In this work, we present our approach to 
improving the robustness of gait-based biometric authentication with the introduction of multimodal learning. With the use of 
commercially available smart socks and medical-grade research prototype of smart shoes as our sensing platforms, we jointly collect 
GCF and ACC data that are then passed through a pipeline of analytic methods for segmentation, feature extraction and classification. 
The use of early fusion on the sensing data with autoencoders for feature extraction, and SVM for classification is shown to be a very 
promising design that can capture the specific characteristics of each modality, correlate them and achieve superior performance 
compared to the methods only using a single modality. 

There are still many open questions that need to be addressed before gait-based authentication systems can be adopted for everyday 
use on our personal devices. First, more data from more subjects need to be collected to further backup our findings that GaitCode is a 
feasible and secure biometric authentication method. In addition, the trade-off between the extra security offered by additional 
wearable sensors versus the additional cost needs to be further quantified. Finaly, biometric systems are vulnerable to different types of 
attacks, e.g. impersonation, replay, and spoofing. Muaaz and Mayrhofer (2017) gives an overview of all the possible vulnerable points 
in a generic biometric authentication system, including sensing devices, feature extraction modules, matchers, databases, and all 
communication channels connecting them. Impersonation attacks on gait-based biometric authentication systems can be a real threat 
to the security of the system and are very hard to model, since the sophistication level of an attacker and the resources available to them 
can vary. It will be our future work to overcome these vulnerable points to further improve the robustness of the proposed gait-based 
authentication system. 
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Table 4 
FAR scores with gait mimicking under different models. Subject 6 is the attacker and subject 9 is the victim.  

Sensing Platforms Metric Raw stck ACC GCF Stck Bimodal 

Smart Shoes FAR 15.18 13.25 15.66 16.75 12.89  
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