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A Bisection Reinforcement Learning Approach to
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Abstract—The demand for indoor localization services in the
Internet of Things (IoT) has been increasing dramatically during
the last decade. Many indoor localization systems adopt Wi-Fi
fingerprinting with received signal strength indicators (RSSIs)
as a source of sensors to localize an object because it is cost
effective and can give high accuracy. However, the fluctuation of
wireless signals resulting from environmental uncertainties leads
to considerable variations in RSSIs, which poses a challenge to
accurate localization on a single floor, not to mention multifloor
or even 3-D localization. Most existing multifloor methods employ
a sequential approach where a different algorithm is tailored for
each step in the sequence to determine the floor and then the
location of an object. In this article, we formulate the indoor
localization problem as a Markov decision process rather than a
typical classification or regression problem. A deep reinforcement
learning method is used to bisect the search space in a hierarchy
from the entire building down to a prespecified distance scale to
the object position. This approach significantly reduces the time
complexity of the searching from ON?) to O(log N), where N
indicates the localization resolution. The proposed method tackles
environmental dynamics with Wi-Fi fingerprinting for 3-D con-
tinuous space. The experimental results demonstrate the high
accuracy, efficiency, and robustness of the proposed approach.

Index Terms—Deep Q-network (DQN), deep reinforcement
learning (DRL), dynamic environment, indoor localization,
Internet of Things (IoT), multifloor, received signal strength
indicator (RSSI), Wi-Fi fingerprint.

I. INTRODUCTION

HE Internet of Things (IoT) [1] describes a system
Tof connecting different entities or “things” to provide
ubiquitous connectivity and enhanced services, which can
be achieved by connecting any “thing” with sensors to the
Internet [2]. In the past decade, the proliferation of things,
such as smartphones and other wireless devices, has promoted
services that require accurate and robust indoor localization
of certain object(s) in a wide range of living, commerce,
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production, and public services. Indoor localization aims to
identify the location of a target (a device or a user) in an
indoor environment and usually in a setting with wireless
networks. It has been challenging because the global posi-
tioning system (GPS) signal [3], which serves as a standard
solution for outdoor localization, cannot penetrate well in the
indoor environment. Indoor localization has benefited from
modern technologies, such as visible light, acoustic signal,
ultrasound, and radio communication technologies, includ-
ing Wi-Fi, Bluetooth, ZigBee, radio-frequency identification
(RFID), and ultrawideband (UWB) [4]-[6]. Various signal
metrics are considered, such as received signal strength indica-
tor (RSSI), channel state information (CSI), Angle of Arrival
(AoA), Time Difference of Arrival (TDoA), and Time of Flight
(ToF).

Among the different techniques, Wi-Fi fingerprinting with
RSSIs from different access points (APs) has been an effec-
tive source for indoor localization because the collected Wi-Fi
signals vary according to indoor locations. It has high accu-
racy, high feasibility, simplicity, and deployment practicabil-
ity [3], [7]. Wi-Fi fingerprinting usually involves two phases:
1) an offline phase where RSSIs are collected from different
APs at many known locations to build a fingerprint database of
the environment and 2) an online phase where the position of
a target is estimated by comparing the current captured RSSIs
with those in the database.

However, the fluctuation and interference of wireless sig-
nal lead to considerable variations on RSSIs, and factors
that have been observed affecting the RSSIs include but
not limited to fading and shadowing, object presence and
movement, open/closed doors [8], and the relative humidity
level in a dynamic environment. These environmental uncer-
tainties pose grand challenges to the positioning accuracy of
fingerprint-based indoor localization.

Many machine learning algorithms, such as K-nearest
neighbors (KNNs) [9], Naive Bayesian [10], support vector
machine (SVM) [11], random forest (RF) [12], and neural
network (NN) [13], have been employed to find the most prob-
able location from the fingerprints. Basically, existing indoor
localization methods can be organized into two categories.

1) Regression Methods: The exact location coordinates of

a target are predicted according to the Wi-Fi signals
captured (e.g., RSSI values). For example, the KNN
algorithm obtains the K-nearest matches of the known
locations using the root mean-square error (RMSE)
based on the offline RSSI measurements stored in the
database. The nearest matches are then averaged to
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predict an estimated location of the target. It suffers from
the fact of low regression accuracy.

2) Classification Methods: The indoor environment is
divided into small grids of equal size, and Wi-Fi sig-
nals are then used to classify which predefined grid or
zone that the target resides in [13]. Nevertheless, it can
be difficult to determine an appropriate size for the grid
because it may require prior knowledge, such as the floor
plan. If the grid resolution needs to change, localization
models often have to be retrained. Furthermore, finer
localization requires the entire search space to have a
higher resolution grid, and the search complexity is in a
cubic order with respect to the resolution in 3-D space.

Most indoor localization studies are based on a 2-D single
floor, which cannot meet the demand for multifloor situa-
tions, such as large shopping malls, airports, and factories. The
state-of-the-art multibuilding and multifloor methods assume a
sequential approach to positioning, where the building, floor,
and location of a target are estimated in a sequence using
different algorithms for each task [14]-[16]. The model for
each task is trained with a different subdataset, making the
model hard to scale, especially to large and complex indoor
environments. There can be two scenarios of 3-D localization:
1) multifloor localization and 2) 3-D localization problems,
where continuous distance is also used in the vertical direction
rather than discrete floors.

In this article, we propose a bisection method based on rein-
forcement learning that keeps bisecting the search space into
octants (3-D localization) or quadrants (2-D localization) in a
hierarchy. Still, it bisects only the octant or quadrant that con-
tains the target as determined by the reinforcement learning
model. The initial search space can be a cube in 3-D situa-
tions or a square in 2-D localization. The bisecting process
continues until it finds an octant/quadrant of small size that
substantially intersects with the target so that the localization
is within a prespecified distance to the target. The well-studied
single-floor and multifloor indoor localization can be solved
by our approach as special cases. The contributions of this
article are as follows.

1) The proposed approach takes the environmental dynam-
ics into account. It models the indoor localization
problem as a Markov decision process (MDP), where
an agent runs deep reinforcement learning (DRL) that
interacts with the environment dynamically and selects
actions to narrow down the bounding region that con-
tains the target.

2) A bisecting method is used at all coordinate directions
in 3-D (or 2-D) search space to exponentially reduce
the search region. Thus, the runtime complexity is dra-
matically reduced from O(N>) by the grid methods
to O(logN), where N is the number of grids in each
coordinate and determines the localization resolution.

3) A top-down searching approach is developed and has
three main advantages. First, it does not require any
prior knowledge of the floor plan or building plan in the
indoor environment. Second, it is no longer needed to
partition the indoor environment into grids so to avoid
the drawbacks of grid-based methods. Third, because
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of the hierarchical structure, the approach is capable of
providing on-demand resolution of localization (just by
further bisecting) without retraining any model.

4) The proposed approach provides a unified framework
for single-floor, multifloor, and 3-D indoor localization
where horizontal position (coordinates on one floor)
and the vertical position (or floor information) could
be inferred simultaneously. It is readily adaptive to
multibuilding (4-D) indoor localization.

5) Because DRL has the capability of learning in a real-
time manner, the new approach does not need to retrain
and memorize all the past data samples. Consequently,
our localization model can achieve sufficient accuracy
quickly, enabling real-time positioning.

II. RELATED WORK

Single-Floor Localization: A variety of machine learn-
ing approaches have been proposed for indoor localization
with Wi-Fi RSSIs in IoT. Yang et al. [9] proposed a KNN-
based method by investigating the sensor data from smart-
phone and user motions to construct the radio map of a
floor plan. Tran and Pham [11] adopted the model-based
classification approach based on SVMs. However, these meth-
ods used hand-crafted features, so they may not utilize the
sensing data fully to learn features. A four-layer deep NN
(DNN) was used to extract features from the raw sensing
data and estimate locations in [13] by dividing the indoor
environment into hundreds of square grids and classifying
the target into a grid. Nguyen [17] performed a literature
review and compared the performance of the most popular
machine learning approaches based on Wi-Fi fingerprinting,
e.g., weighted KNN, Naive Bayes, and NNs. It suggested that
if only Wi-Fi RSSIs were used, complex algorithms might
not outperform simple ones. Despite the simplicity of the
weighted KNN method, it excelled in most fingerprinting
techniques, which is why KNN is the most widely used bench-
marking algorithm for indoor localization based on Wi-Fi
fingerprinting.

The most relevant work to our method is the one that uses
DRL but only for single-floor localization in [18]. It proposed
a semi-supervised DRL framework as a learning mechanism in
support of smart IoT services and experimented in an indoor
localization system. An unsupervised navigation and localiza-
tion method was proposed in [19] to use a DRL algorithm.
However, these methods require the floor plan to be repre-
sented by small grids beforehand. As discussed before, any
change in the location accuracy requirement renders the entire
space to be repartitioned to a finer grid, and then models need
to be retrained. These methods can be inefficient because the
agent has to search grid-by-grid to find the target on the floor,
which might require hundreds of steps before reaching the tar-
get, depending on the initial position. We proposed a top-down
searching method using a DRL agent with two fully connected
layers to provide on-demand resolution in [20] without the
need to divide the floor into grids. This method can localize
a target with high accuracy, typically within ten steps. This
present article is a comprehensive extension of the method
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in [20] to a unified framework that can perform 2-D and 3-D
indoor localization.

Multifloor Localization: For multibuilding and multifloor
indoor localization, Nowicki and Wietrzykowski proposed a
DNN architecture with stacked autoencoder (SAE) and feed-
forward classifier, but it is only able to predict the building and
floor rather than coordinates on the floor [21]. Another method
first determined the target’s floor and used the KNN method to
find its location on that floor [14]. Thus, the task was separated
into multiple subtasks. Similarly, Song ef al. decomposed the
problem into three subtasks: 1) building classification; 2) floor
classification; and 3) position regression, and proposed a con-
volution NN (CNN) with SAE to extract features [15]. A major
disadvantage of these methods is that the models used at the
building, floor, and location levels need to be trained sepa-
rately with multiple subdatasets. The positioning accuracy has
been relatively low for the NN-based methods. Kim et al. [16]
followed the work in [21] and proposed a method to simul-
taneously perform building/floor/location prediction using a
DNN for multilabel classification. Although the output dimen-
sion is reduced from np x nf x ny to np + ny + n; where np,
nf, and n; denote the numbers of buildings, floors, and loca-
tions, respectively, the dimension is still large (hundreds) and
the network architecture is complex for the task. Furthermore,
it does not have the ability to predict locations beyond the
existing samples from the offline database.

Reinforcement Learning [22] is a type of machine learning
approach for optimal control and decision making, where an
agent learns an optimal policy of actions over a set of system
states by interacting with the system environment. It has a wide
range of applications, such as robotics [23], games [24]-[26],
image classification and object detection [27], [28], etc. The
best-known successes of reinforcement learning are Atari 2600
computer gaming system [24], [25] and AlphaGo meeting the
challenges of Computer Go [26], to name a few.

Mnih et al. [25] introduced a deep Q-network (DQN) and
kick started the revolution in scaling reinforcement learning to
complex sequential decision-making problems. It presented the
first DRL model to successfully learn control policies directly
at a human level from high-dimensional sensory input, which
contained raw image pixels. This method stabilized the train-
ing for estimating a value function using experience replay,
and the value function was implemented via a CNN. It also
designed a reinforcement learning approach that directly used
the image pixels and the game score as inputs. AlphaGo [26]
had made historical events by beating several human world
champions in the Go game and became a milestone in artificial
intelligence. This hybrid learning system was built with rein-
forcement learning techniques, deep CNN, and Monte Carlo
tree search (MCTS).

DQN has been an important milestone, and many exten-
sions have been proposed. Van Hasselt ef al. [29] proposed
a double DQN (DDQN) to tackle the over-estimate problem
in Q-learning, which was addressed by decoupling the selec-
tion of an action from its evaluation: evaluating the greedy
policy according to an online network, whereas using a tar-
get network to estimate its value. Built on top of DDQN,
Schaul et al. [30] proposed prioritized experience replay so as
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Fig. 1. MDP for indoor localization.

to replay important experience transitions more frequently to
learn more efficiently. Wang et al. [31] proposed the Dueling
DQN, which could converge faster than Q-learning to estimate
the action-value function by featuring two streams of compu-
tation: 1) a state value function and 2) an associated advantage
function. In [32], Deep Q-Learning from Demonstrations
(DQfDs) was proposed to accelerate the learning process even
from relatively small amounts of demonstration data and was
able to automatically assess the necessary ratio of demon-
stration data while learning based on a prioritized replay
mechanism. The method of noisy network [33] introduced a
noisy linear layer that combines a deterministic and noisy
stream to overcome the limitations of exploring with the
e—greedy policy, where many actions must be executed to
collect the first reward. Anschel et al. [34] proposed Averaged-
DOQON to reduce variability and instability by averaging the
Q-values estimated in the previous rounds. Hessel et al. [35]
examined six extensions to the DQN algorithm and proposed
the Rainbow method to combine the improvements from those
DQN extensions.

III. INDOOR LOCALIZATION AS MARKOV
DEcISION PROCESS

In an MDP [22], an agent keeps interacting with a system
environment and decides an action from the prescribed action
space in sequence to achieve a specific goal. In this section,
we formulate the indoor localization problem as a dynamic
decision-making process rather than a regression problem
predicting the target’s coordinates or a classification problem
where classes represent the coarse region grids.

The geometry of the search space, such as floor plan and/or
the floor numbers, and the RSSI signals in the entire search
space are defined as the environment, within which the agent
shifts and shrinks a bounding region via a series of actions.
The agent moves to the next state after taking a specific action
at the current state. After the targeted object enters the envi-
ronment and communicates any RSSI signals, the agent makes
progress in iterations to eventually bound it within a cubic
region of prespecified small size (a given precision for the
localization). In each iteration, the agent determines how to
move and reshape the search cube to find the target in as
few steps as possible. Fig. 1 gives a simple demonstration of
our approach where a building is enclosed in an initial cube,
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and the agent selects an action each time to bisect the search
space (the red-color octant) further into smaller octants until
the octant size reaches a threshold.

We parameterize the MDP with three components: 1) the
state space S; 2) the action space A; and 3) the reward func-
tion r in terms of an action at a state, which are explained in
the following sections. Note that an MDP contains the fourth
component: the transition rule or transition probabilities that
specify how likely the current state transits to a state in the
state space. We omit the transition rule because in our setting,
the transition from a state to the next state is determinis-
tic on the action that is taken. We illustrate the three MDP
components in the 3-D continuous search space where the
searching space at three directions (x, y, z) is all continuous.
The single-floor localization and multifioor localization are
two special cases of our MDP, where the z dimension is either
fixed or takes discrete values (floor numbers), respectively. In
the description of each component for the 3-D environment,
we also include discussions for the two special cases.

A. State Space

1) Definitions: The localization state space S3p of
our MDP comprises three elements in the representation
{S3p : (RSSL, cb, h)}.

1) A vector RSSI contains all RSSI values.

2) A vector cb = [c, rad], where c represents the center
coordinates (x,y, z) of the current search cube and the
radius rad denotes half the length of the cube side.

3) A vector h records the history of the actions taken in
each searching round.

The history vector h captures all the actions that the agent
has performed during each searching round, and is encoded
as a one-hot vector. If there are d possible actions to take,
each action in h is represented by a binary vector of length
d, where the entry corresponding to the taken action is set to
1, and others are all 0. We use a one-hot encoding instead of
integer encoding because integer values have a natural ordered
relationship between each other, and this relationship may
be misunderstood and harnessed by the algorithm, possibly
resulting in poor performance. The history vector of length nd
encodes n past actions where n depends on the largest number
of steps to localize the target in the indoor environment. The h
vector is used to stabilize the search trajectories. As discussed
in the next section, there are d = 8 or d = 4 possible actions
in a 3-D or a 2-D search space, respectively.

2) Remark: The state defined above in a 3-D continuous
space can include the single-floor and multifloor situations.

Single-Floor Localization: The state takes the same form
of three components (RSSI, cb, h) except the z dimension of
the center cb is removed and the bounding region becomes
a window: w = [(x, y), rad], where (x, y) specifies the center
of a square window defined in Section III-B2 and rad is the
half of the window side. The history vector h encodes n prior
actions, each of which is represented using a 4-entry vector,
leading to a total length of 4n.

Multifloor Localization: The state also takes the same three
components, but the z dimension of the cube is discrete, and
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Fig. 2. Eight actions for our MDP in 3-D localization.

the bounding region becomes a 3-D unit where the vertical
level only takes floor numbers: u = [(x,y, f), rad] where f
records the selected floor set in each searching round, and
(x,y) and rad are the same as those in the single-floor local-
ization. The floor set f is encoded as a vector with a length
equal to the total number of possible floors, and during the
search, certain floor numbers will be turned into 0 until only
one floor remains. The history vector in multifloor localization
encodes n past actions, leading to a total length of 8n.

B. Action Space

1) Definitions: Because our approach starts the search from
the entire building as the search cube, every time when
we shrink the cube by bisecting it along all the x,y, and
Z directions, we obtain eight octants, which are shown in
Fig. 2. The proposed action space composes of eight possi-
ble actions to shrink the cube, denoted as {.43p : “UP-SW”
(South West), “UP-SE” (South East), “UP-NW” (North West),
“UP-NE” (North East), “DOWN-SW” (South West), “DOWN-
SE” (South East), “DOWN-NW” (North West), “DOWN-NE”
(North East)}.

Each action transits the system state to a new one.
Specifically, the center vector ¢; at time point f is updated
to ¢,y1 as follows.

1) “UP-SW”:

Crp1 = (X — E%,y: - %d—'a %+ r—agd—')-
2) “UP-SE”:

Crp1 = (X + E%,y: md' md')-
3) “UP-NW”:

Cri1 = (X — “;f‘,yr + —‘,z:+ &i‘)-
4) “UP-NE”:

Copr = O + 3,y + B, 7+ By,
5) “DOWN- SW”

a1 = (o — By — B g, — 2y,
6) “DOWN-SE”:

1 = O + B,y — B,z — B,
7) “DOWN-NW”:

1 = O — B,y + B, 7 — B).
8) “DOWN-NE”:

i1 = Ot + B,y + Bz, — B,

The radius rad is updated by rad;;1 = a x rad;, where a =
(1/2) because we bisect the cube. Note that a more general
strategy would be to shrink the cube in a certain ratio other
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Fig. 4. Actions in the vertical level in multifloor localization.

than only (1/2). For instance, we may allow the search octants
to overlap slightly, so the shrinkage ratio is (1/2)+€ where € is
a small machine number. Our approach does not require prior
information about the search space as long as a container cube
can be specified. Because the radius of the search cube keeps
reducing during the searching, the localization resolution (or
precision) can be determined in a real-time fashion unlike the
grid search approach where changing resolution means to vary
the grids and retrain the model.

2) Remark: The actions defined above in a 3-D continuous
space can be easily modified to cover both single-floor and
multifioor environments.

Single-Floor Localization: The action becomes Window
Selection at the horizontal level, yielding four possible actions:
{“SW,” “SE,” “NW,” “NE”} at each step, as shown in Fig. 3.
The transition rule on ¢; = (X, ;) is the same as that defined
in Section III-B1 (with the z dimension removed).

Multifloor Localization: At each step, the agent performs
the same eight actions in .43p as specified exactly in
Section III-B1, except the z dimension is different. In this
regard, “UP” means taking the upper half of the floors in the
current floor-set, and “DOWN” means taking the lower half
of the floors. Fig. 4 shows an example with six floors and
the possible actions in the vertical level: “UP” and “DOWN.”
Note that when the number of floors in the current floor set is
an odd number, both UP and DOWN actions should include
the middle floor in the next state.

C. Reward Function

1) Definitions: The reward function r is designed to reflect
if an action can improve the system from the current state
to a better state. The improvement in a 3-D environment is
measured using the Intersection of Cube (IoC) between the
target cube and the predicted cube where IoC e [0, 1], as
shown in Fig. 5(a). The reward for an action reveals if the
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Fig. 5. Measurement of improvement. (a) IoC. (b) IoW.

IoC has been improved by the action. Let cb® be the ground-
truth cube of the target. Then, the IoC between cb and cb®
equals the percentage of the volume in the search cube cb that
overlaps with the ground-truth cube ch®, i.e.,

TIoC(cb, ¢b¥) = volume(cb N ¢b¥) /volume(ch) 0))

where volume() calculates the volume of a cube.

In our top-down searching scheme, the predicted cubic
region scales down to the target. At step f, the agent gains a
positive reward if the IoC of the next state s,y is larger than
that of the current state s;, meaning that the agent chooses
a “correct” action to get closer to the target. Note that a cor-
rect action keeps the target inside the predicted cube while the
cube size rad decreases, so the IoC becomes larger. A large
positive reward will be assigned to the agent when the IoC
of the new state exceeds a threshold 8, and the search is ter-
minated. When the agent chooses a “wrong” action, leading
the predicted cube away from the target, it receives a large
negative penalty and terminates the search.

The two parameters—the target cube size radg in chg
and the threshold §—play a tradeoff between the localiza-
tion precision and searching cost. A larger radg leads to a
lower localization precision because the agent may reach a
rough region at the final step in fewer steps. Note that the
setting of radg indicates the finest localization resolution the
model could achieve. A larger & leads to a higher localiza-
tion accuracy, but the agent may take a longer time to learn a
correct policy, or sometimes RSSI data may not have enough
granularity for the agent to learn correctly.

When the agent takes the action a,, the system transits from
5¢ to 5¢41, and the reward function r:(,;)“‘z*l} is defined as

+n if ToC(cb®+1, ch®) € [4, 1]
+t if IoC(cb®+!, c¢b®) € (IoC(ch*, cb®), §)
—n otherwise

(-!f S+l ) -
3D.a, s

(&)

where 1 > 0 is much larger than > 0. The values of 5, T,
and § are determined as described in Section I'V-A.

2) Remark: The reward function defined for a 3-D contin-
uous space can be easily modified to fit with the single-floor
and multifloor situations.

Single-Floor Localization: Similar to the IoC, the
Intersection of Window (IoW) is defined to measure the
improvement in single-floor localization as illustrated in
Fig. 5(b). Then, the IoW between the current search window
w and the ground-truth window w# is defined as

ToW(w, w8) = area(w N w¥) /area(w) 3)
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Fig. 6. Time complexity for the search in a 2-D environment. (a) Search
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where area() calculates the area of a window. Then, after agent
executes the action a;, the system transits from s; to sy, the
reward function rg}:j:") is defined as

+n if oW (w'i+1, w8) ¢ [, 1]

+t if oW(w't!, w8) € (IoW(w', w¥), &)
—n otherwise.

(-‘h!r-:—l) _
SF,R; -

@

Multifloor Localization: In a multifloor environment, the
selected floor set needs to shrink into the exact floor where
the target resides simultaneously when the search window is
scaled down horizontally to the target location on that floor.
Let f** be the currently selected floor set, and f# is the floor of
the target. At step £, if either f® is not included in f* or the cur-
rent w* does not contain w#, the agent receives a large penalty
—n and the search is terminated. When w* overlaps w# sub-
stantially passing the threshold &, and f* pinpoints the correct
floor, the agent receives a large reward n and terminates the
search. In general, when an action a; makes the state transit
from s; to 5,41, the reward function rﬁ}}f:') is defined as

+n if £ =" and IoW(w*+!, w8) €[4, 1]

(sess1) ) +T if & ¢ f% and
MF.a IoW (w1, w&) € (IToW(w*, wf), §)
—n otherwise.

&)

D. Complexity Analysis

We argue that the proposed approach significantly reduces
the search complexity from those methods based on grid
search. The time complexity is measured by the number of
steps a search algorithm has to take in order to find the target
under a given localization resolution.

An early method in [18] adopts DRL to indoor localization,
shown in Fig. 6(a), where the environment is divided into a
grid of equal-sized cells. The action is to move from a cell to
a neighboring cell in a direction of north, east, west, south,
or in diagonal directions such as north west. Thus, the agent
has to move grid by grid to localize the target in the envi-
ronment. Following this logic, if the environment extends to
a 3-D space, illustrated in the upper right part in Fig. 7, the
worst case time complexity becomes O(Na), where N is the
number of cells in each direction of the grid and is determined
by the localization precision (or resolution).
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Fig. 7. Time complexity for the search in a 3-D environment.

In our approach, shown in the lower right part in Fig. 7 [or
Fig. 6(b) for 2-D localization], the bisecting method applied
to all three directions in a 3-D space can exponentially reduce
the search space, leading to a time complexity of O(logN).
This is a significant drop from O(N?) in the grid search.

Specifically, the time complexity of our approach in single-
floor localization is O(log N), shown in Fig. 6(b), and that in
multifioor localization is max(Q(log N), O(log M)), where M
denotes the number of total floors in a building and N indicates
N x N grids of the floor.

I1V. DEEP REINFORCEMENT LEARNING FOR
LOCALIZATION

Hessel et al. [35] compared the performance of the DQN
algorithm and its six extensions, and proposed the Rainbow
method to combine the improvements of those DQN exten-
sions. In our model, we use the most basic and simple DQN
algorithm to show the potential of the proposed MDP model.

The goal of the agent in the MDP is to learn a policy m of
selecting actions a; (from an action space A) to interact with
an environment (from one state s; to another state sy in a
state space S) so that the expected reward r is maximized. In
reinforcement learning, the standard assumption is that future
rewards are discounted by a factor y e [0, 1] for each step,
which trades off the importance between the immediate and
later rewards. Define the future discounted refurn at time f as
Ry-— Z‘]::t yf_’rf, where T is the step at which the search
terminates. The true value function Q(s, a) is defined as the
expected return function in terms of taking the action a at the
state s

On(s,a) =E[Ry|s; = 5,a; = a, w] (6)

where m = P(als) is a distributions over actions given s.

The optimal return value is Q*(s, @) = max, Qx (s, @) and
an optimal policy can be easily derived from the optimal
Q function by selecting the action that achieves the high-
est @ value in a state. Q*(s,a) obeys the Bellman [22],
which is based on the following intuition: if the optimal value
O*(s¢11,ar11) of a state 5,1 at the next time point was
known for all possible actions a,y1, then the optimal strat-
egy is to select the action a, that maximizes the expected
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value of r; + Y Q(Sea1, Are1)
0* (s, ar) = s, |:r; +vy Cay Q* (St41, Arg1)|51, ar:|- (7)
'+

A reinforcement learning algorithm estimates an action-
value function using the Bellman equation as an iterative
update, Qiy1(ss, a) = Elrr + y maxg,, Qi(Se41, arp1)181, adl,
where i denotes the ith iteration. Such value iteration algo-
rithms converge to the optimal action-value function: Q; — Q*
as i — oo. However, this basic approach can be impractical,
because the action-value function is estimated discretely for
each observed state and cannot generalize to not-yet-observed
states. It is common to represent the action-value function by
a model, such as an NN parameterized by 6 : Q(s,a; 0) =
0*(s, a).

It is then derived into the DQN [25] method, which trains
a multilayered NN by adjusting the parameter € at each
iteration i to reduce the mean-squared error in the Bellman
equation. More precisely, in the DQN, there are two sepa-
rate deep networks: 1) an online network parameterized with
6 and 2) a target network parameterized with 6~, respec-
tively, aiming at further improving the stability of the network.
The target network is the same as the online network except
that its parameters are synchronized every C steps from
the online network, so that then 8;” = 6; 1, but are fixed
at all other steps. In this way, the optimal target values,
ry + y maxg, O*(S¢11,ary1), are substituted with approxi-
mate target values y;; = r; +y maxg,,, Q(Sty1, dry1; 6; ). The
Q-learning update in iteration { minimizes the following loss
function:

Li 1) = B a~p() [(y*"f — QG ar; 90)2] ®)

where
Yit = Eg,,,y [r: T O(e+1, ary1; 07 |se, a:] ©)
=+

is the target for iteration i and p(s,a) is a probability dis-
tribution over states s and actions a, which are referred to
as the behavior distribution. At each stage of optimization,
the parameters from the previous iteration 6; are held fixed
when optimizing the ith loss function L;(6;). Differentiating the
loss function with respect to the weights yields the following
gradient:

VoL (6;) = Eg, 01,501 [(n +y I O(se1, 413 6,)
t+

— Q(s¢, ag; 9:')) Vg, Q(s¢, ay; 9:')] .
(10)

A. Realization of the Q-function

Fig. 8 shows the structure of the DNN that we use to real-
ize the action-value (Q) function in our model. Two NNs of
the same architecture as shown in Fig. 8 are employed in the
deep Q-learning framework, which is specified in Algorithm 1.
The network in Fig. 8 consists of three fully connected hidden
layers of 2000, 1448, and 548 nodes, respectively. The activa-
tion function used in this network is the rectified linear unit
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Fig. 8. DNN used in our algorithm.

(ReLU). The output layer possesses eight nodes, each corre-
sponding to the Q values of one of the eight actions defined
in the action space. The input layer may contain varying num-
bers of nodes according to the specific applications. The input
of the network comprises the system state defined in the state
space, including nodes for RSSI values of the target, nodes
for the cube center, radius, and action history. Hence, the NN
takes in the current state and outputs a vector containing the
Q values of every action. Based on these Q values, we use an
exploration scheme that chooses the action having the highest
Q value with high probability 1 — € and chooses a random
action with a probability of € > 0.

B. Initialization

The initial RSSI is a vector containing all the RSSI values
from different APs in the environment, which will be fixed
for one data sample in each searching round. Assume all data
samples are bounded by Xmin, Xmax, Ymins Ymax, Zmin, aNd Zmax,
which we refer to as the initial cubic region. For the initial
cube cbg = [¢p, radg], we set ¢g as the center of the bounded
cubic region, and set radg to half of the largest side of the
region. Precisely, we initialize the parameters as follows:

{ cp = (x[],yOs Z{)) - (xmin‘l‘xmx : )“m.in‘l‘}’max, Zmin+2max)
radg =

max (Xmax —XminYmax —Ymin Zmax —Zmin) + radgt
——— T mn R mns

(1n

where radg denotes the estimated radius (or half of the side)
of the target cube, which represents localization resolution.
Note that the actual size of the target is not needed to run
our algorithm. Here, the estimated radg reflects the detection
precision required by a user. The initial history vector hg of
appropriate size (4n and 8n, respectively, in 2-D and 3-D cases)
is a vector of zeros.

The initialization of the window information ¢o = (xg. Yo)
and radg for single-floor localization is the same as defined
above, but just ignoring the z dimension. For multifioor cases,
except for the initialization of the window, the initial floor-set
fo contains all the floor numbers in the building, which are
sorted from the lowest to the highest floor.
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Algorithm 1: DRL for Hierarchical Indoor Localization

Data: A dataset containing RSSI values, labeled location D:{RSSI;, LOCy:(xy, yi, 21), or(xy, Y1), or(xt, yi, fi))}
Input: environment parameters: radg, «, 5; agent parameters: y, €, M
1 Initialize action-value function Q network with random parameters &

2 Initialize target action-value network Q network with parameters 6~ = 6;

sfori<0,...,Ndo
4 for each data sample d; = {RSSI;, LOCi} in D do

(RSSI', cbp, hj) = (RSST', [(x}, ), ), rado], hg) in 3D
5 Initialize state so = { (RSSI', wy, hy) = (RSST', [(xg, ¥p). radol, hp)

in Single-Floor;

(RSSI', uj, h) = (RSSL, [(x}), ¥}, ), radol, h{))  in Multi-Floor
6 fort < 0,...do
7 Select a random action a; with probability €, otherwise select a; = max,Q*(s;, ar; 9);
8 Execute af:tion a; as to get a reward ry, new radius rad§ 41 and new location

(412 Yiy1-2441) in 3D

9 Update history vector h;; with the chosen action ay;

(RSST', cb;,;, h;,,) in 3D

10 Transit from current state s; to its next state s,y = (RSSI"_, w; L1 h; +1) in Single-Floor;
(RSSI', uj, |, h; ;) in Multi-Floor
1 Store transition (s, ay, ry, Se41) in replay memory M;
12 Sample random mini batch of transitions (s;, a;, rj, Sj+1) from M;
13 Set yj = 1+ ymaxe,, Q(se41, Gry1; 07);
14 Calculate gradient descent according to Equation (10) and update € by Adam [36] and Dropout [37];
15 Every C steps reset Q =0 1e, et =8

C. Our Learning Algorithm

Algorithm 1 depicts the model training steps. Each data
sample in the training set corresponds to a target and contains
all RSSIs that this target receives from the environment and
its location coordinates. There is a prespecified parameter N,
which is the maximal number of possible iterations. In each
iteration, all data samples are used to update the NN (i.e., the
Q-function). For each data sample, a reinforcement learning
trial is performed consisting of multiple steps until the search
is terminated either with +n or —». In each step, the agent
selects an action g, via exploration or exploitation, executes it
to obtain a reward, and the system transits to the next state.
Then, the history vector is updated, and the transition record
is stored in the replay memory from which minibatches are
sampled to train the NNs. To be self-contained, several existing
techniques involved in our approach are described as follows.

Discounted Factor: In (9), there is a balance between the
most immediate reward and the future return. The future return
is discounted by a factor y. In our experiments, we use y =
0.1, which means we lean more toward the immediate reward
in the balance.

Exploration—Exploitation: The e-greedy policy [22] is used
during the model training, which gradually shifts from explo-
ration to exploitation according to the value of €. For explo-
ration, the agent selects random actions and observes the state
changes, while for exploitation, the agent greedily selects the
action that maximizes the current value function, and then
learns from its own successes and mistakes. In our settings,
the e-greedy policy starts with e = 1, which means a random

choice of action, and decreases to € = 0 with ;5,1 = 0.995 x¢;
at each iteration.

Experience Replay: 1t is proposed in [24] and [38], where
the agent’s experiences at each time step, the transition
m; = (8¢, 4y, I'y, S¢+1) 1S stored in an experience replay memory
M =my,my, ..., my. During each training stage, we perform
the Q-learning updates using minibatches randomly sampled
from the stored experiences, m ~ M. In our settings, we
use an experience replay of 100 experiences and a batch
size of 50.

History Vector: As discussed in Section III-A, we capture
all the actions for each data sample during each iteration in the
search for the target. The total number of steps for the agent to
find the target in each searching round depends on the initial
cube size and the radius of the target cube. However, it can
be difficult to use a history vector of arbitrary length as inputs
to an NN. In our settings, we fix the length of the history
to record at most ten recent actions for each target during
each iteration, thus, h € R* for single-floor localization and
h € R for a 3-D or multifloor case. If the agent stops at a
specific step f < 10, then the remaining entries of h will be
filled with O s.

Environmental Parameters: In (2)—(5), the terminating
reward n takes the value of 3, so the agent receives a reward
of +3 when it successfully localizes the target, or a penalty of
—3 when it moves away from the target, i.e., IoC or IoW is
reduced. A correct action in the intermediate steps is rewarded
by r = 1 when the action makes IoC or IoW larger. The
threshold value § is set to be 0.5.
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TABLE I
DATA SET STATISTICS

Single-Floor Datasets | Multi-Floor Datasets
IPIN UJL BIFI | UJ_BI UTS
Number of WAPs 168 168 208 589
Number of RPs 57 60 238 1452
Number of Training Samples | 1303 1187 4156 7286
Number of Test Samples 326 297 1040 1822
Number of Floors 1 1 4 16
Floor/Building Plan (m x m)|30 x 5 150 x 170 [150 x 174 104 x 32
Area Coverage (m?) 150 725,500 “104,400 44,000

V. EXPERIMENTS
A. Data Description

The proposed model is evaluated on the IPIN2016 Tutorial
data set, UTSIndoorLoc data set [15], and UJlIndoorLoc data
set [39]. The IPIN2016 Tutorial data set was collected in a
small area of 30 m x5 m (150 m?) covering a corridor of the
School of Engineering of the University of Alcala (Spain) on
a single floor. The database comprised 927 training/reference
records and 702 test ones, where 168 wireless APs (WAPs)
were detected. The UTSIndoorLoc data set was collected in the
FEIT Building at the University of Technology Sydney (UTS),
which covered 16 floors, including three basement levels. The
total area was approximately 44000 m?, and 9107 training
samples and 387 test ones were provided with 589 different
WAPs in total. The UlJlIndoorLoc data set was collected in the
real world, including three buildings with four or five floors
by more than 20 users using 25 different models of mobile
devices within several months. The data set included a surface
area of 108703 m? in Universitat Jaume I (UJI) and 19937
training/reference records and 1111 test records. The number
of different WAPs appearing in the database was 520.

We extract two sets of data from the UJI data set for
experiments, respectively, in the single-floor and multifloor
environments: data on Building 1 Floor 1 (B1F1) and data
in Building 1 (B1) containing four floors. For every data set,
we randomly split it into an offline-training set and an online-
test set with a ratio of 80% versus 20%. Table I shows the
statistics of our experimental data sets.

B. Online Test Evaluation

The output of our algorithm is a series of bounding regions,
as shown in Figs. 6(b) or 7. For each test sample, the algo-
rithm outputs a final predicted bounding region, described by
its center coordinates and radius. The localization error is cal-
culated as the Euclidean distance (in m) between the position
recorded in the test sample and the center coordinates of the
predicted region. The height of a single floor is assumed to be
4 m in the calculation of the prediction errors in the multifloor
environment. We compute a cumulative distribution function
(CDF) of the localization errors that occurred on all of the test
samples, as shown on the figures in this section under different
experimental settings.

We experiment with two choices of radg : radg = 0.5 m,
and radg = 0.2 m. Two settings are considered to evaluate
the easy adaptation of the proposed algorithm to change in the
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resolution requirement. In our experiments shown in later sec-
tions, we examine the prediction error that our model achieves
for a given percentage of targets under the two choices of radg,.
For instance, in Table II (left-top corner), 50% of targets are
localized with an error distance of 0.496 m. In such a table, we
also examine (on the right half of the columns) the percentage
of targets that is successfully localized within a given distance.
For instance, in Table II (middle top area), 18.17% of targets
are detected within 0.2 m distance error. A good policy often
means that the agent makes the center of the predicted region
fall into the target/ground-truth region recorded in chg;.

The experiments described in Sections V-B1, V-B2, and
V-B3 are performed to analyze the robustness of the proposed
approach under different levels of environmental dynamics,
evaluate the ability of on-demand resolution, and compare with
other algorithms, respectively.

1) Robustness Analysis in Dynamic Environment: To ele-
vate the level of dynamics in the environment, we inject noise
into the input of the DRL network in every decision-making
step. The quantitative effects of the dynamic environmental
factors were analyzed in [8]. The measurement results demon-
strated that the average vibrations on RSSI were approximately
8, 9, and 0.8 dB, respectively, for people, doors, and humid-
ity. In our model, we generate the centered Gaussian noise
N(0, 02) with the standard deviation & = 3 and 5 to simu-
late approximately 3- and 5-dB variations of RSSIs caused by
environmental uncertainty, and compare with the case without
environmental uncertainty (i.e., 0 dB).

Single-Floor Localization: The results of the robustness
analysis for single-floor localization are included in Fig. 9
and Tables II and III. For example, on the IPIN data set with
radgs = 0.5 m shown in the upper right part of Table II, the
model is capable of localizing 50.31%, 52.45%, or 48.16%
of the targets within 0.5 m under different noise settings.
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SINGLE-FLOOR (IPIN) LOCALIZATION ROBUSTNESS ANALYSIS UNDER DIFFERENT DYNAMICS WITH GAUSSIAN NOISE (o =0, 3, 5)

e Noise Percentile Euclidean Distance Error (m)
Cl 50% 75% 90% <0.2 <0.3 <0.5 <0.6 <1 <6
o =0dB | 049677657 246988725 441344528 | 18.10% 3865% 5031% 5031% 62.70% 93.56%
radgt = 0.5m o =3dB | 040398364 2.14819502 4.29441885 | 23.62% 44.17% 5245% 52.45% B252%  95.40%
o=>5dB | 061460643 194809433 361571381 | 16.87% 3620% 48.16% 4847% 63.19% 96.01%
o=0dB | 0.17674976 0.26386152 235289928 | 31.60% 5521% 56.44% 56.44% 60.12% 95.40%
radgt = 0.2m o =3dB | 0.1594505  0.24478037 2.28084253 | 34.97% 59.51% 59.82% 59.82% 64.11% 96.93%
o =>5dB | 0.18386117 0.26386152 2.10968318 | 30.67% 5521%  5552%  5552% 59.20% 96.01%
TABLE III

SINGLE-FLOOR (UJI_B1F1) LOCALIZATION ROBUSTNESS ANALYSIS UNDER DIFFERENT DYNAMICS WITH GAUSSIAN NOISE (¢ =0, 3, 5)

B i Percentile Euclidean Distance Error (m)
&) 75% 80% 90% <0.2 <03 <05 <0.6 <l <6
o=0dB | 050971194 4.21280862 11.61790607 | 20.87% 55.55% 73.73% 76.76% 71.77%  85.52%
radgt = 0.5m o =3dB | 050971194 3.54798449 10.84133242 | 2121% 56.22% 74.41% 78.11% 7845% 87.20%
o=5dB | 062458716 3.06216012 13.924585 27.94%  44.44%  68.68%  73.73% 7643%  86.53%
o=0dB 0.814134 4.1205886 10.35558446 | 65.65% 65.99%  66.32% 68.68% 75.75% 86.53%
radg: = 0.2m o =3dB | 0.19734504 3.43704572 10.35558446 | 77.10% 77.77% 71.77% 77.77% 78.11% 86.53%
o=>5dB | 022569945 531054606 13.70288678 | 74.74%  7542%  7542%  7542%  75.75%  83.83%
TABLE IV

MULTIFLOOR (UJI_B1) LOCALIZATION ROBUSTNESS ANALYSIS UNDER DIFFERENT DYNAMICS WITH GAUSSIAN NOISE (o =0, 3, 5)

rad Noise Percentile Euclidean Distance Error (m)
gt 25% 50% 5% <02 <03 <0.5 <0.6 <1 <6
o=0dB | 0.24728036 0.34689871  0.7460704 17.79%  36.73%  66.73%  72.69%  75.58%  86.44%
radg: = 0.5m o =3dB | 022736675 0.34229886 0.50655113 | 19.32%  39.81% 7394%  T78.17%  B1.92% 89.71%
o=>5dB | 02337569 034229886 0.50358052 | 19.23% 3932% 74.90% 80.67% 82.02% 90.09%
o=0dB | 0.10310226  0.15394343 022058083 | 72.50% 7740% 77.69% 77.69% 78.07%  85.96%
radgt = 0.2m o = 3dB | 0.10149658 0.14641456 0.18801542 | 76.44% 80.86% 81.15% 81.34% 82.11% 89.32%
o=>5dB | 01046026  0.15220485 020989673 | 73.75%  78.36%  78.56%  78.84%  79.52%  89.23%
TABLE V

MULTIFLOOR (UTS) LOCALIZATION ROBUSTNESS ANALYSIS UNDER DIFFERENT DYNAMICS WITH GAUSSIAN NOISE (o =0, 3, 5)

rad Noise Percentile Euclidean Distance Error (m)
" 80% 90% 95% <02 <03 <05 <06 <1 <6
o =0dB | 046869795 0.53696699 3.65700084 | 13.99% 3572% 87.15% 90.66% 91.05% 96.65%
radgt = 0.5m o =3dB | 046898214 054987317 6.03449167 | 13.72%  3556%  86.77% 90.39% 9039% 94.95%
o =>5dB | 046401539 0.52895119 3.42375144 | 14.27% 36.22% 87.59% 91.60% 91.87% 96.70%
o =0dB | 022237837 0.38948878 341343457 | 71.56% 89.62% 90.17% 9055% 90.72% 97.20%
radgt = 0.2m o =3dB | 0.21908864 0.26263524 4.11139834 | 72.67% 90.99% 91.11% 91.11% 91.38% 95.77%
o =>5dB | 022292926 095692812 446285949 | 71.40%  89.24% 89.41% 89.52% 90.01% 96.10%

The results in the column for the 50% percentile confirm
the performance where the targets are detected within 0.496,
0.403, and 0.614 m, respectively. Similarly, on the UJI_B1F1
data set in Table III, for instance, when radg = 0.2 m, 75%
of the targets are detected within around 0.2 m. The overall
results show that our model can localize a significant portion of
targets (50%—75%) within a very small distance, e.g., around
0.2-0.3 m. Furthermore, Fig. 9 and details in Tables II and III
reveal that our model often performs better in a dynamic envi-
ronment with a small Gaussian noise. For example, it performs
the best when the noise is set to 3 dB with radg = 0.2 m on
the IPIN and UJI B1F1 data sets.

Multifloor Localization: The results of the robustness anal-
ysis for multifloor localization are shown in Tables IV and V.
The same conclusion as in single-floor localization can also be
drawn in multifloor situations. For the UJI_B1 data set with
radg = 0.5 m and radg = 0.2 m, respectively, 75% of targets

are detected within 0.5 and 0.2 m. On the UTS data set, 80%
of targets are localized within around 0.5 and 0.2 m in the two
radg settings under various environmental dynamics. Together
with Fig. 10, we also observe that our method performs better
in a dynamic environment with a Gaussian noise of ¢ = 3 or 5.

Figs. 9 and 10 show that the proposed method obtains
higher localization accuracy with small environmental uncer-
tainty (¢ = 3 and 5). We believe that this robustness to
environmental dynamics may be partially explained by the
adaptivity of deep learning methodology to a dynamic envi-
ronment. Moreover, sample perturbation is often treated as a
data augmentation strategy in image processing and natural
language processing [40], and commonly consists of inject-
ing a small Gaussian noise to the samples. For instance,
Moreno-Barea et al. [41] verified that adding noise to images
could help convolutional networks learn robust image features.
Effectiveness of noise injection in normalizing deep sequence
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Fig. 11. CDF of Euclidean distance error (m) on UJI_B1 under a large
variation of Gaussian noise (¢ = 0—50). The most deviated curves correspond
to the noise levels of 30 (in the top plot) and 20 dB (in the bottom plot). The
curves for the noise levels of 40 and 50 dB are off the chart. (a) radgg = 0.5 m.
(b) radgt = 0.2 m.

models is also illustrated in [42] and [43]. We believe that
the environmental noise may bring out an effect of sample
perturbation in the indoor localization problem.

We further use the largest UJI_B1 multifloor data set to
examine to what degree the proposed algorithm can adapt to
the Gaussian noise. Our experimental results are shown in
Fig. 11, where the injected noise is randomly drawn from a
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Fig. 12. Average Euclidean distance error (m) at 75% percentile versus noise
level on UJI_BI1.

Gaussian distribution with a bandwidth o, respectively, equal
to 50, 40, 30, 20 dB, and then 10 and 9 dB, and all the way to
1 dB. We also include the performance curve when no noise
is added (i.e., o = 0 dB). It can be seen that the performance
shows a large degradation when o > 10 dB. The CDFs for
the noise levels of 40 and 50 dB are invisible in the figure
because the signal-to-noise ratio is no longer sensible for the
agent to learn good detection steps. For smaller noise, we
observe that when o < 8 dB, the performance is actually
improved over the case of o = 0 dB. Particularly, the models
with 3-5 dB noise have pretty consistently outperformed the
others. To further investigate, we plot the localization distance
error at a detection rate of 75% targets in Fig. 12, which again
confirms that 0 = 3-5 dB is a safe noise zone for robust
localization.

2) On-Demand Resolution Analysis: We analyze the
predictions in the last five steps of a searching round for two
different localization resolutions at 0.5 m when radg = 0.5
and 0.2 m when radg; = 0.2 m (equivalent to drawing small
grids on a floor area with a side of 1 and 0.4 m, respectively).
The last five steps when radg = 0.5 m correspond to local-
ization resolution of 0.5, 1, 2, 4, and 8 m, from the last step
backward. If using a grid search method, it means that the
floor area needs to be segmented into grid cells of side 1, 2,
4, 8, and 16 m separately. When radg = 0.2 m, the model
reaches a relatively finer resolution, where the last five steps
correspond to a resolution of 0.2, 0.4, 0.8, 1.6, and 3.2 m,
respectively.

Single-Floor Localization: As shown in Fig. 13, the trained
models take six or seven steps to zoom into the target region on
the IPIN data set to research the localization resolution of 0.5
or 0.2 m, respectively, when radg = 0.5 m or radg = 0.2 m,
and eight or nine steps on the UJI_B1F1 data set. The CDFs
under different settings in Fig. 13 also demonstrate that the
localization resolution gets better as the steps move forward.
Our approach can construct a model in one-shot training that
can provide different localization resolutions.

For instance, in Fig. 13(a) and Table VI, on the IPIN data
set, our experiments to evaluate the localization resolution at
the last five steps show that the model can detect 50% of
targets within 0.5, 1, 2, 4, and 8 m, which verifies the models’
capability of on-demand localization.

Moreover, our model can achieve good performance much
quickly than other compared models, such as KNN-based

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on June 18,2021 at 16:40:16 UTC from IEEE Xplore. Restrictions apply.



6530

,'.—-~-— Step 2 Step 3

™S
g [ e Step3 ~a Step 4
i 2 A -e- Step 4 - Step 5
0.2 } -+ Step 5 +«— Step6
4| —e=— Step6 i —s— Step 7
0.0k ) P ook | | p
0.0 25 5.0 75 100 125 15.0 0.0 25 5.0 75 100 125 150

Euclidean Distance Error {m) Euclidean Distance Error {m)

(a) (b)
1.0
—w- Step 4 w O6f —+- Step 5
(=} 4
TR StEp 5 o - P e StED 6
a: T
--+— Step 6 Ly -+ Step 7
i
—-+— Step 7 o fg——— Step 8
—s=— Step 8 ; —s=— Step 9
0,0
10 15 20 25 1] 15 20 25

5 5 10
Euclidean Distance Error (m) Euclidean Distance Error (m)

(c) (d)

Fig. 13. CDF of Euclidean distance error (m) in single-floor localization
on last five steps under radg; = 0.5 m and rady = 0.2 m with 0 = 3 or
o = 5. (a) radgt = 0.5 m, ¢ =5 @IPIN. (b) radg = 0.2 m, ¢ =3 @IPIN.
(c) radgt = 0.5 m, o = 3 @UJI_BI1FI. (d) radgt = 0.2 m, 0 = 3 @UJI_BIF1.

TABLE VI
SINGLE-FLOOR (IPIN) LOCALIZATION ON-DEMAND RESOLUTION
ANALYSIS AT DIFFERENT STEPS WITHIN 50% PERCENTILE

radgt | Step 7

0.5m
0.2m

Step 6 Step 5 Step 4 Step 3 Step 2

0.5709745 0.9796782 1.9078235 3.7955055 8.0753095
0.2447803 0.5488228 0.9243887 1.7952863 3.7085324

TABLE VII
SINGLE-FLOOR (UJI_B1F1) LOCALIZATION ON-DEMAND RESOLUTION
ANALYSIS AT DIFFERENT STEPS WITHIN 75% PERCENTILE

radgt| Step 9 Step 8 Step 7 Step 6 Step 4

05097119 0.7573803 1.5893224 29220892 6.2025979
0.1973450 0.4280092 0.897713 1.6195523 27930272

Step 5

0.5m
0.2m

and RF methods. As illustrated in Fig. 13(d) and Table VII,
the experiment is conducted on the UJI_B1F1 data set when
radgs = 0.2 m. In the final step, the model detects 75% of
targets within a distance of 0.197 m, while at step 5, 75% of
targets are already localized within 2.793 m. By cross-referring
with Table XI, we see that the KNN-based model, which is
the most effective method among all other methods, could
only achieve a distance error of 4.882 m at 75% percentile.
Our method reduces the localization error by 96% and 43%
at the last step and step 5, respectively, from the KINN-based
method.

Multifloor Localization: The same observation is obtained
in multifioor localization as shown in Fig. 14 and Tables VIII
and IX. For instance, on the UJI_B1 data set, 75% of targets
are detected within a distance of 0.188 m at the last step and
3.058 m at step 5 when radg; = 0.2 m. Our method improves
the localization resolution by 96% and 28% at the last step and

IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 8, APRIL 15, 2021
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Fig. 14. CDF of Euclidean distance error (m) in multifloor localization on
different steps under radg; = 0.5 m and radg; = 0.2 m with o =3 or o =5.
(a) radgg = 0.5 m, 0 = 5 @UJLBI. (b) rady = 02 m, 0 = 3 @UJLB1.
(c) radgt = 0.5 m, ¢ =5 @UTS. (d) radgt = 0.2 m, ¢ = 3 @UTS.

TABLE VIII
MULTIFLOOR (UJI_B1) LOCALIZATION ON-DEMAND RESOLUTION
ANALYSIS AT DIFFERENT STEPS WITHIN 75% PERCENTILE

Step 8 Step 7 Step 6 Step 5 Step 4

0.5035805 0.7946793 1.6014869 3.0229795 6.2581297
0.1880154 0.3751067 0.7675248 1.58895 3.0577386

radg:| Step 9

0.5m
0.2m

TABLE IX
MULTIFLOOR (UTS) LOCALIZATION ON-DEMAND RESOLUTION
ANALYSIS AT DIFFERENT STEPS WITHIN 80% PERCENTILE

radg: | Step 8

0.5m
0.2m

Step 7 Step 6 Step 5 Step 4 Step 3

0.4633451 0.8791922 1.7448887 3.3489760 6.6680579
0.2190886 0.4413257 0.880845 1.7211385 3.3249144

step 5, respectively, compared with the KNN-based method
(detection distance of 4.265 m as shown in Table XII).

We provide a further discussion. The total number of search
steps in our method is affected by several factors, including
the initial search space size radg calculated in (11) that reflects
the size of the building/floor of the indoor environment, the
size of the target region radg, and the threshold é discussed in
Section III-C1. Hence, the number of needed steps ngep can be
estimated from radg and radg, due to the bisecting approach

Nep ~ [log radg — log rag,,]. (12)

On the UJI_BI1FI1 data set, as illustrated in Figs. 13(c) and
(d) and 14(a) and (b), and Tables VII and VIII, eight steps
are taken when radg = 0.5 m and nine steps when radg =
0.2 m for both the single-floor and multifloor tasks. This is
because the longest sides of the corresponding floor area and
the building plan are very close: 170 m for the UJI_B1F1 and
174 m for the UJI_B1 (by referencing Table I), which brings
similar rady for the single-floor and multifioor tasks.
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TABLE X
SINGLE-FLOOR (IPIN) LOCALIZATION COMPARISON OF EUCLIDEAN DISTANCE ERROR (M) UNDER DIFFERENT PERCENTILES
AND PERCENTILES UNDER DIFFERENT EUCLIDEAN DISTANCE ERROR (M)
Percentile Euclidean Distance Error (m)
30% 40% 50% 5% <0.2 <03 <0.5 <0.6 <1 <3
DRL(0.2m) | 0.18386117 0.21940582  0.24478037 1.97171207 | 3497% 5951% 59.82% 59.82% 64.11% 8527%
DRL(0.5m) | 0.41519974 0.46419895 0.57097453 2.07068381 0.61% 0.61% 47.54% 57.05% 63.80% 86.19%
KNN 091664006  1.20000833 14093644  2.27844596 3.37% 4.91% 13.80% 1595% 3221% 87.73%
RandomF 0.76040055  1.00064042 1.3374128 2.12160435 4.60% 7.97% 14.72% 17.79%  39.88% 87.73%
SVM 1.01229955  1.53231672 1.9195283 3.10010672 8.28% 11.04% 13.80% 14.72%  2945% 73.31%
Lasso 1.64481243  1.97755286 236423883  3.86548731 0% 0.92% 2.76% 3.99% 11.96% 62.88%
Ridge 1.60355575  2.03531899  2.3333411 3.85912371 0.31% 0.61% 2.76% 4.60% 11.96% 59.81%
TABLE XI
SINGLE-FLOOR (UJI_B1F1) LOCALIZATION COMPARISON OF EUCLIDEAN DISTANCE ERROR (M) UNDER DIFFERENT PERCENTILES
AND PERCENTILES UNDER DIFFERENT EUCLIDEAN DISTANCE ERROR (M)
Percentile Euclidean Distance Error (m)
50% 60% 75% 80% <02 <03 <0.5 <0.6 <1 <6
DRL(0.2m) 0.16686455 0.17959264 0.19734504 343704572 | 77.10% 77.78% 77178%  77.78%  78.11% 86.53%
DRL(0.5m) 0.29794088 0.32200393 0.50971194 3.54798449 21.21% 5622% 7441% 7811% 78.45%  87.20%
KNN 1.04017735 2.08299649 488217288 6.1027161 44.44%  4545%  4545%  46.46%  48.15% T78.79%
RandomF 2.10966344 3.0131779 5.20168333 6.54556976 28.62%  28.62%  2896%  30.64%  35.01% 74.42%
SVM 8.43512502 12.0376808 15.32321058  16.97653589 5.39% 5.39% 5.72% 5.72% 7.07% 35.35%
Lasso 9.6792809 12.21386393  16.15703809  17.78602958 0% 0% 0.33% 0.33% 3.37% 27.61%
Ridge 10.13856399  12.27806632 16.80432547  18.30826735 0% 0% 0.33% 0.33% 3.03% 29.29%
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Fig. 15. Single-floor localization performance comparison with different Fig. 16.  Multifloor localization performance comparison with different

algorithms. (a) @IPIN. (b) @UIJ_BIFI.

This suggests that no extra runtime cost will be introduced
when making the online query in complex multifloor indoor
environments to achieve the same resolution as in the single-
floor case if the longest side remains the same length. The
number of execution steps will not change even though the
offline-survey sample size in the multifloor case is usually far
larger than that in the single-floor case. Nevertheless, the time
complexity of the brute-force neighbor search in the KINN-
based algorithm is proportional to the size of the training
data set for each test sample [44], which is not scalable with
massive data in complex indoor environments.

3) Comparison With the State of the Art: We compare
the proposed approach against five widely-used methods: the
KNNs, RF, SVM, Lasso Regression, and Ridge Regression.

Single-Floor Localization: Our approach outperforms all
other comparison algorithms in single-floor environments, both
with radg; = 0.5 m and radg = 0.2 m. For example, the results
on the IPIN data set are shown in Fig. 15(a) and more detail
is illustrated in Table X. Among the classic machine learning
algorithms, the RF method excels the others, but our approach
outperforms these algorithms significantly. Specifically, when
radg = 0.2 m, 50% of targets are detected with a distance

algorithms. (a) @UJI_BI. (b) @UTS.

that is 83%, 82%, 87%, 90%, and 89% closer than KNN, RF,
SVM, Lasso, and Ridge, respectively. Similar observation is
obtained on UJI_B1F1 data set as shown in Fig. 15(b) and
Table XI.

Multifloor Localization: Two multifloor environments, the
UJI_B1 with 4 floors and the UTS with 16 floors, are used
in our experiments, and results are shown in Fig. 16 and
Tables XII and XIII. Again, the same comparison results
seen in single-floor localization are observed. Specifically, our
approach on the UJI_B1 data set at the 75% detection rate
with radg; = 0.2 m and 0.5 m outperforms the best one of the
comparison methods by 95% and 88%, respectively. On the
UTS data set, the detection distances at the 80% percentile are
at least 77% and 51% better than that of other methods.

Note that there is an alternative training procedure for multi-
floor environments: training single-floor models floor by floor.
This approach is time consuming and wastes time for the
floors on which the object does not reside. Furthermore, it
may lose coherent floor-to-floor information. In contrast, our
approach for multifioor indoor environments improves the
model generalization ability.
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TABLE XII

IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 8, APRIL 15, 2021

MULTIFLOOR (UJI_B1) LOCALIZATION COMPARISON OF EUCLIDEAN DISTANCE ERROR (M) UNDER DIFFERENT PERCENTILES
AND PERCENTILES UNDER DIFFERENT EUCLIDEAN DISTANCE ERROR (M)

Percentile Euclidean Distance Error (m)
50% 60% 75% 80% <0.2 <0.3 <05 <0.6 <1 <6
DRL(0.2m;) 0.14641456 0.16322652 0.18801542 0.23267903 76.44% 80.86% B1.15% 81.34% 82.11% 89.32%
DRL(0.5m) 0.34229886 0.38622938 0.50358052 0.57766541 19.23% 3932% 74.90% 80.67% 82.02% 90.09%
KNN 1.17250237 2.12247767 4.26518625 5.28064634 4336%  43.46%  43.75%  44.04% 47.02%  82.88%
RandomF 2.24823372 3.10797416 5.03139127 6.21808848 20.19%  21.25%  23.36%  2490% 31.06% 79.13%
SVM 16.54373206  19.35557075  24.00114485 26.4065361 0.77% 1.25% 1.44% 1.54% 2.02% 22.02%
Lasso 12.95332697 1495938104  19.59771724 21.1767986 0% 0% 0.19% 0.38% 1.06% 17.50%
Ridge 12.88732559  15.01004171  19.59308972  21.28604442 0.09% 0.09% 0.19% 0.29% 0.96% 17.59%
TABLE XIII
MULTIFLOOR (UTS) LOCALIZATION COMPARISON OF EUCLIDEAN DISTANCE ERROR (M) UNDER DIFFERENT PERCENTILES
AND UNDER DIFFERENT EUCLIDEAN DISTANCE ERROR (M)
Percentile Euclidean Distance Error (m)
60% 75% 80% 90% <02 <03 <0.5 <0.6 %1 <6
DRL({0.2m) | 0.180194796 0.20463872 0.21908864 0.26263524 71.68%  90.39% 90.45%  90.50% 91.16%  96.05%
DRL(0.5m) | 0.387418993 0.44114424 0.46401539 0.52895119 1427%  3622% 87.59% 91.60% 91.88% 96.71%
KNN 0.628033777 1.48670229 1.82680632 341736164 52.85%  53.02%  54.17% 5834% 6492% 88.52%
RandomF 0 0.50315592 0.95507277 2.54147542 67.39% 70.96% 74.92%  75.85%  80.62%  91.44%
SVM 6.32712355 9.88741834 11.65529585  17.18357329 | 12.73% 13.67% 1421% 1531% 18.06% 3534%
Lasso 7.87929378 10.24626683  11.53491626  15.87920593 0.16% 0.22% 0.38% 0.44% 2.03% 12.89%
Ridge 7.67207733 10.27303419  11.07382976  15.70234405 0.33% 0.60% 1.32% 1.64% 2.69% 14.54%
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under different dynamics with Gaussian Noise (o =0, 3, 5, 6, 8, 10).

We also evaluate how robustly the comparison methods
react to the noise injection during training as shown in
Fig. 17. Our models with a noise level under 10 dB perform

because the deep RL model is adaptive to dynamics which the
other baseline localization models do not naturally possess.

4) Analysis of Computational Time: We compare the run-
time [in milliseconds (ms)] between our bisection method
and the early RL-based grid search method on a single GTX
1080Titan card in this section. The boxplots in Fig. 18 show
the runtime statistics of our approach, including the median
(the orange line), the mean (the green triangle), and the quan-
tile information for each experimental setting when the trained
models are deployed to search targets. Table XIV gives the
detailed average runtime of each trial. In general, our model
takes approximately 6-10 ms to localize a target in the envi-
ronments ranging from the small single-floor plan, such as in
IPIN to the large multifioor plan, such as in UJI_B1. Note that
for each data set, the computational time under the setting of
radg = 0.2 m is on average greater than that of radg = 0.5 m
as illustrated in Table VI-IX in Section V-B2 because the agent
takes one more step to reach 0.2 m from 0.5 m.
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TABLE XIV
AVERAGE COMPUTATIONAL TIME NEEDED FOR LOCALIZING A TARGET

|LPI.N_I],5m IPIN_0.2m UJLBIF1_0.5m UILBIF1 0.2m UJLBI1_0.5m UJIL.B1 0.2m UTS_0.5m UTS_0.2m

9.5 10.5 7.5 88

(ms)| 67 54 8.7 93
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Fig. 19. Comparison of our algorithm with the greedy grid-by-grid search
algorithm on the IPIN data set. (a) Computational time. (b) CDF of Euclidean
distance error (m).

We employ the grid environment used in the early RL
approach [18], where the agent learns to move from its initial
location grid-by-grid to localize a target on a single floor. The
search method in [18] divides the environment into 1 m x1 m
grids. We adopt the same NN structure in the greedy method
of [18] and our method. We improve the search efficiency by
allowing the agent to move toward the target greedily, so it
does not get the worst case complexity for a fair comparison.
Fig. 19(a) shows the runtime of the testing phase after both
models are trained in the same number of epochs. As the figure
shows, the proposed method’s computational time is signifi-
cantly less than the grid search method. The average detection
time of our approach is 6.7 ms, while the grid search method
is 27.1 ms. This observation confirms the time efficiency of
the proposed bisection method. Our algorithm shows a more
stable runtime ranging from 4 to 10 ms because the number of
searching steps is fixed to six before reaching the predefined
precision. However, the grid search method may require as
long as 74 ms due to the large variation in the steps needed
to move from the beginning position to the target location.

Furthermore, we evaluate the accuracy of the greedy grid
search method and compare it with that of the bisection algo-
rithm in Fig. 19(b). After the agents of the two methods are
trained with the same number of epochs, the bisecting method
outperforms significantly in terms of the test accuracy, which
might be partially due to the difficulty in training the grid
search model. Theoretically, the greedy search with grids can
reach O(N) time complexity in 2-D search space, but it is still
exponentially longer than ours in O(log N) time.

We experiment with the grid search on the smaller IPIN
data set because the method can be very challenging and time
consuming to train and test in other more complex settings.
In contrast, there is only a slight increase in computational
time of the bisection method in large and complex multifloor
environments, such as in the UJI and UTS data sets as shown
in Fig. 18 and Table XIV.

VI. CONCLUSION

We have developed an effective hierarchical model that uni-
fies both single-floor and multifloor indoor localization based
on DRL, by formatting the problem as an MDP other than the
traditional classification or regression problem. It detects the
location of a target by consecutively bisecting the search space
to a small cube or window that significantly overlaps with the
target. This approach runs faster than existing indoor localiza-
tion methods, even including the recent ones that also employ
DRL. The fast speed of this approach renders it the potential
for real-time tracking of an object. Furthermore, it does not
require any prior knowledge about the search space, such as
floor plans or any beforehand partitioning of the search space.
The DRL framework allows the model to automatically adapt
to environmental dynamics causing the variation of RSSIs, and
the impact of the environmental dynamics on the model learn-
ing is worthy of further exploration in the future. Although
the proposed approach has been implemented based on WiFi
RSSI values, it can be applied to any other suitable signals to
localize objects.

There are several directions to extend this work. Although
the basic Q-learning method with networks of two to three
layers in our current implementation already shows superior
empirical performance, applying more advanced deep learning
techniques may further improve the model (e.g., speed up or
stabilize training, or improve accuracy). We have tested the
proposed approach on three data sets in both single-floor and
multifloor settings. We hope that truly 3-D indoor data sets
(continuous in the vertical direction) will be available in the
near future, which may be the best scenario to demonstrate
the advantages of this approach.
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