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Abstract—Clustering is amachine learning paradigmof dividing3
sample subjects into a number of groups such that subjects in4
the same groups are more similar to those in other groups. With5
advances in information acquisition technologies, samples can fre-6
quently be viewed from different angles or in different modalities,7
generating multiview data. Multiview clustering (MVC), that clus-8
ters subjects into subgroups using multiview data, has attracted9
more and more attentions. Although MVC methods have been10
developed rapidly, there has not been enough survey to summa-11
rize and analyze the current progress. Therefore, we propose a12
novel taxonomy of the MVC approaches. Similar to other ma-13
chine learning methods, we categorize them into generative and14
discriminative classes. In the discriminative class, based on the way15
of view integration, we split it further into five groups—common16
eigenvector matrix, common coefficient matrix, common indicator17
matrix, direct combination, and combination after projection. Fur-18
thermore,we relateMVCtoother topics:multiviewrepresentation,19
ensemble clustering, multitask clustering, multiview supervised,20
and semisupervised learning. Several representative real-world ap-21
plications are elaborated for practitioners. Somebenchmarkmulti-22
view datasets are introduced and representative MVC algorithms23
from each group are empirically evaluated to analyze how they24
perform on benchmark datasets. To promote future development25
of MVC approaches, we point out several open problems that may26
require further investigation and thorough examination.27

Impact Statement—Multiview clustering has gained the success28
in a variety of applications in the past decade. In order to obtain29
a comprehensive picture of the MVC development, we provide a30
new categorization of existing MVC methods and introduce the31
representative algorithms in each category. At last, we point out32
open problems that are worth investigating to advance the MVC33
study.More promisingMVCmethods to solve these open problems34
may appear following this review paper fromwhich a large number35
of applications can benefit.36

Index Terms—Canonical correlation analysis (CCA), clustering,37
data mining, k-means, machine learning, multiview learning,38
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nonnegative matrix factorization (NMF), spectral clustering, 39
subspace clustering, survey. 40

I. INTRODUCTION 41

C LUSTERING [1] is a paradigm to divide the subjects 42

into a number of groups such that subjects in the same 43

groups are more similar to other subjects in the same group and 44

dissimilar to the subjects in other groups. It is a fundamental task 45

in machine learning, pattern recognition, and data mining fields 46

and has widespread applications. Once subgroups are obtained 47

by clustering methods, many subsequent analytic tasks can be 48

conducted to achieve different ultimate goals. Traditional meth- 49

ods cluster subjects on the basis of only a single set of features 50

or a single information window of the subjects. When multiple 51

sets of features are available for each individual subject, how 52

these views can be integrated to help identify essential grouping 53

structure is a problemof our concern in this article,which is often 54

referred to as multiview clustering (MVC). A good example to 55

understand the importance of MVC, or multiview learning is 56

“the blind men and the elephant” story where each blind man (a 57

single view of the subject) may not acquire the true picture of 58

the subject [2], thus only collecting multiview data can recover 59

the whole picture of the subject. 60

Multiview data are very common in real-world applications 61

in the big data era. For instance, a web page can be described 62

by the words appearing on the web page itself and the words 63

underlying the links pointing to the web page from other pages 64

in nature. In multimedia content understanding, multimedia 65

segments can be simultaneously described by their video signals 66

from visual camera and audio signals from voice recorders. The 67

existence of such multiview data raised the interest of multi- 68

view learning [3]–[5], which has been extensively studied in 69

the semisupervised learning setting. For unsupervised learning, 70

particularly,MVC, single view-based clusteringmethods cannot 71

make an effective use of the multiview information in various 72

problems. For instance, anMVCproblemmay require to identify 73

clusters of subjects that differ in each of the data views. In 74

this case, concatenating features from the different views into a 75

single union followed by a single-view clustering method may 76

not serve the purpose. It has no mechanism to guarantee that the 77

resultant clusters differ in all of the views because the grouping 78

may be biased toward a view (or views) that yields a dominantly 79

large number of features in the feature union. MVC has thus 80

attractedmore andmore attention in the past two decades, which 81

makes it necessary and beneficial to summarize the state of the 82

art and delineate open problems to guide future advancement. 83

At first, we give the definition of MVC. MVC is a machine 84

learning paradigm to classify similar subjects into the same 85
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Fig. 1. Taxonomy of MVC methods.

group and dissimilar subjects into different groups by combining86

the availablemultiview feature information, and to search for the87

consistent clusterings across different views. Similar to the cate-88

gorization of clustering algorithms in [1], we divide the existing89

MVCmethods into two categories: generative (or model-based)90

approaches and discriminative (or similarity-based) approaches.91

Generative approaches try to learn the fundamental distribution92

of the data and use generative models to represent the data with93

each model representing one cluster. Discriminative approaches94

directly optimize an objective function that involves pairwise95

similarities to minimize the average similarity within clusters96

and to maximize the average similarity between clusters. In dis-97

criminative clustering family, there aremainly three strategies to98

combinemultiple views—assuming that all views share a similar99

structure, direct combination of the views, and combination after100

projection of each view. Due to the different similar structures101

shared, we further split those MVC methods based on the102

first strategy into three groups: 1) common eigenvector matrix103

based (mainly multiview spectral clustering); 2) common coef-104

ficient matrix based (mainly multiview subspace clustering); 3)105

common indicator matrix-based [mainly multiview nonnegative106

matrix factorization (NMF) clustering]. The complete taxonomy107

is shown in Fig. 1.108

Similarly motivated by the multiview real applications as109

MVC,multiview representation,multiview supervised, andmul-110

tiview semisupervised learningmethods have an inherently close111

relation with MVC. Therefore, the similarities and differences112

of these different learning paradigms are also worth discussing.113

An obvious commonality between them is that they all learn114

with multiview information. However, their learning targets115

are different. Multiview representation methods aim to learn a116

joint compact representation for subjects from all of the views117

whereas MVC aims to perform sample partitioning, and MVC118

is learned without any label information. In contrast, multiview119

supervised and semisupervised learning methods have access to120

all or part of the label information. Some of the view combina-121

tion strategies in these related paradigms can be borrowed and122

adapted by MVC. In addition, the relationships among MVC,123

ensemble clustering, multitask clustering are also elaborated in124

this review.125

MVC has been applied to many scientific domains such as126

computer vision, natural language processing, social multime-127

dia, bioinformatics, and health informatics. Although MVC128

has permeated into many fields and made great success 129

in practice, there are still some open problems that limit 130

its further advancement. We point out several open prob- 131

lems and hope they can be helpful to promote the devel- 132

opment of MVC. With the survey presented in this article, 133

we hope that readers can have a more comprehensive view 134

of the MVC development and what is beyond the current 135

progress. 136

There has been an earlier MVC survey [6]. We describe the 137

differences between that one and ours which necessitate this 138

survey. First, that work summarized the methods corresponding 139

to a subset of the methods in our discriminative category, but 140

the generative category of methods is a nonnegligible direction. 141

The generative methods assume that each cluster comes from 142

a specific distribution in each view and combine them together 143

to conduct MVC. Since most of them are based on the EM 144

algorithm or convex mixture model, they have some inherent 145

advantages over discriminative methods, such as being capable 146

of dealing with missing values or obtaining global optimal 147

solutions. Second, we discuss the relationship between MVC 148

and several related topics, such as multiview representation 149

learning, ensemble clustering, multitask clustering, and multi- 150

view supervised, and semisupervised learning. This discussion 151

helps researchers to position MVC in a scientific context and 152

potentially gain deeper insights into all these topics. Third, 153

we summarize representative applications of the various MVC 154

methods for reference by interested users. Fourth, in Sections II 155

and III, we examine the pros and cons of each class of MVC 156

methods and give the circumstances for which they are suit- 157

able. Also, we conduct a comprehensive comparison over the 158

representative MVC algorithm in each group to further analyze 159

and verify the advantages and disadvantages of each group of 160

MVC algorithms. Last but not least, we draw attention to certain 161

open problems with the hope that these directions help further 162

advance MVC. 163

The remainder of this article is organized as follows. In 164

Section II, we review the existing generative methods for MVC. 165

Section III introduces several classes of discriminative MVC 166

methods. In Section IV, we analyze the relationships between 167

MVC and several related topics. Section V presents the appli- 168

cations of MVC in different areas. In Section VI, we introduce 169

several commonly usedMVC datasets and conduct some exper- 170

iments on them to investigate how they perform. In Section VII, 171

we list several open problems with the aim to help advance 172

the development of MVC. Finally, we make the conclusion in 173

Section VIII. 174

II. GENERATIVE APPROACHES 175

Generative approaches aim to learn the generative models 176

each of which is used to generate the data from a cluster. In 177

multiview case, multiple generative models need to be learned 178

and then combined to obtain the final clustering results. In most 179

cases, generative clustering approaches are based on mixture 180

models or constructed via expectation maximization (EM) [7]. 181

Therefore, we first introduce mixture models, EM algorithm 182

and another popular single-view clusteringmodel named convex 183
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mixture models (CMMs) [8], and then introduce the multiview184

variants of these methods.185

A. Mixture Models and CMMs186

A generative approach assumes that data are sampled inde-187

pendently from a mixture model of multiple probability distri-188

butions. The mixture distribution can be written as189

p(x|θ) =
K∑

k=1

πkp(x|θk) (1)

where πk is the prior probability of the kth component and190

satisfies πk ≥ 0, and
∑K

k=1 πk = 1, θk is the parameter of191

the kth probability density model, and θ = {(πk,θk), k =192

1, 2, . . . ,K} is the parameter set of the mixture model. For193

instance, θk = {μk,Σk} for Gaussian mixture model.194

EM is a widely used algorithm for parameter estimation of the195

mixture models. Suppose that the observed data and unobserved196

data are denoted byX and Z, respectively. {X,Z} andX are197

called complete data and incomplete data, respectively. In the E198

(expectation) step, the posterior distribution p(Z|X,θold) of the199

unobserved data are evaluated with the current parameter values200

θold. The E step calculates the expectation of the complete data201

log likelihood evaluated for some general parameter value θ.202

The expectation, denoted by Q(θ,θold), is given by203

Q(θ,θold) =
∑
Z

p(Z|X,θold) ln p(X,Z|θ). (2)

Thefirst item is the posterior distributionof the latent variablesZ204

and the second one is the complete data log likelihood. Accord-205

ing to maximum likelihood estimation, the M (maximization)206

step updates the parameters by maximizing the function (2)207

θ = arg max
θ

Q(θ,θold). (3)

Note that for clustering,X can be considered as the observed208

data whileZ is the latent variable whose entry znk indicates the209

nth data point comes from the kth component. Also note that210

the posterior distribution form used to be evaluated in E step211

and the expectation of the complete data log likelihood used to212

evaluate the parameters are different for different distribution213

assumptions. It can adopt Gaussian distribution and any other214

probability distribution form, which depends on specific appli-215

cations.216

CMMs [8] are simplified mixture models that can proba-217

bilistically assign data points to clusters after extracting the218

representative exemplars from the dataset. By maximizing the219

log-likelihood, all instances compete to become the “center”220

(representative exemplar) of the clusters. The instances corre-221

sponding to the components that received the highest priors are222

selected exemplars and then the remaining instances are assigned223

to the “closest” exemplar. The priors of the components are the224

only adjustable parameters of a CMM.225

Given a dataset X = x1,x2, . . . ,xN ∈ Rd×N , the CMM226

distribution is Q(x) =
∑N

j=1 qjfj(x), x ∈ Rd, where qj ≥ 0227

denotes the prior probability of the jth component that satisfies228

the constraint
∑N

j=1 qj = 1, and fj(x) is an exponential family229

distribution, with its expected parameters equal to the jth data230

point. Due to the bijection relationship between the exponential 231

families and Bregman divergences [9], the exponential fam- 232

ily fj(x) = Cφ(x)exp(−βdφ(x,xj)) where dφ denotes the 233

Bregman divergence that calculates the component distribution, 234

Cφ(x) is independent of xj , and β is a constant controlling the 235

sharpness of the components. 236

The log-likelihood that needs to be maximized is 237

given as L(X; {qj}Nj=1) =
1
N

∑N
i=1 log(

∑N
j=1 qjfj(xi)) = 238

1
N

∑N
i=1 log(

∑N
j=1 qje

−βdφ(xi,xj))+const. If the empirical 239

samples are equally drawn, i.e., the prior of drawing each 240

example is P̂ = 1/N , the log-likelihood can be equivalently 241

expressed in terms ofKullbackLeibler (KL) divergence between 242

P̂ and Q(x) as 243

D(P̂ |Q) = −
N∑
i=1

P̂ (xi)logQ(xi)−H(P̂ )

= −L(X; {qj}Nj=1) + c (4)

where H(P̂ ) is the entropy of the empirical distribution P̂ (x) 244

which does not depend on the parameter qj , and c is a constant. 245

Now, the problem is changed into minimizing (4), which is 246

convex and can be solved by an iterative algorithm. In such 247

an algorithm, the updating rule for prior probabilities is given 248

by 249

q
(t+1)
j = q

(t)
j

N∑
i=1

P̂ (xi)fj(xi)∑N
j′=1 q

(t)
j′ fj′(xi)

. (5)

The data points are grouped into K disjoint clusters by re- 250

quiring the instances with the K highest qj values to serve as 251

exemplars and then assigning each of the remaining instances 252

to an exemplar with which the instance has the highest posterior 253

probability. Note that the clustering performance is affected by 254

the value of β. In [8] a reference value β0 is determined using 255

an empirical rule β0 = N2logN/
∑N

i,j=1 dφ(xi,xj) to identify 256

a reasonable range of β, which is around β0. Further details are 257

mentioned in [8]. 258

B. MVC Based on Mixture Models or EM Algorithm 259

The method in [10] assumes that the two views are indepen- 260

dent, and a multinomial distribution is adopted for document 261

clustering problem. It uses the two-view case as an example, and 262

executes theMandE steps on each viewand then interchange the 263

posteriors in two separate views in each iteration. The optimiza- 264

tion process is terminated if the log-likelihood of observing the 265

data donot reach a newmaximumfor afixednumber of iterations 266

in each view. Based on different criteria and assumptions, two 267

multiview EM algorithm versions for finite mixture models are 268

proposed in [11]. 269

Specifically, based on the CMMs for single-view clustering, 270

the multiview version proposed in [12] became much attractive 271

because it can locate the global optimum, and thus, avoid the 272

initialization and local optima problems of standard mixture 273

models,which requiremultiple executions of theEMalgorithms. 274



IEE
E P

ro
of

4 IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 00, NO. 00, 2021

For multiview CMMs, each xi with m views is de-275

noted by {x1
i ,x

2
i , . . . ,x

m
i }, xv

i ∈ Rdv
, the mixture distribu-276

tion for each view is given as Qv(xv) =
∑N

j=1 qjf
v
j (x

v) =277

Cφ(x
v)

∑N
j=1 qje

−βvdφv (x
v,xv

j ). To pursue a common cluster-278

ing across all views, all Qv(xv) share the same priors. In279

addition, an empirical data set distribution P̂ v(xv) = 1/N ,280

xv ∈ {xv
1,x

v
2, . . . ,x

v
N}, is associated with each view and the281

multiview algorithm minimizes the sum of KL divergences282

between P̂ v(xv) andQv(xv) across all viewswith the constraint283 ∑N
j=1 qj = 1. Thus, the formulated optimization problem is284

min
q1,...,qN

m∑
v=1

D(P̂ v|Qv)= min
q1,...,qN

−
m∑

v=1

N∑
i=1

P̂ v(xv
i )logQ

v(xv
i )

−
m∑

v=1

H(P̂ v). (6)

It is straightforward to see that the optimized objective is convex,285

hence the global minimum can be found. The prior update rule286

is given as follows:287

q
(t+1)
j =

q
(t)
j

M

m∑
v=1

N∑
i=1

P̂ vfv
j (x

v
i )∑N

j′=1 q
(t)
j′ f

v
j′(x

v
i )
. (7)

The prior qj associated with the jth instance is a measure of how288

likely this instance is to be an exemplar, taking all views into ac-289

count. The appropriate βv values are identified in the range of an290

empirically definedβv
0 byβ

v
0 = N2logN/

∑N
i,j=1 dφv

(xv
i ,x

v
j ).291

From (6), it can be found that all views contribute equally to the292

sum, without considering their different importance. To over-293

come this limitation, a weighted version of multiview CMMs294

was proposed in [13].295

1) Summary: For the aforementionedMVCgenerativemeth-296

ods,we can find that linear combinationwith differentweights to297

different views is a commonway to fuse information. In addition,298

multiview generative clustering has not attracted enough atten-299

tion, maybe because the technique is more difficult compared300

with its discriminative counterpart. It is not easy for generative301

methods to combine views by sharing a common variable or302

distribution, but sharing common variable(s) is the most popular303

way to combine views in the discriminative paradigm. This304

can limit the development of multiview generative clustering305

to some extent, but researchers are actively seeking for ways to306

combine views in multiview generative clustering methods. For307

example, it is quite reasonable to share somecommonality across308

the distributions of the data views corresponding to the same309

cluster. Moreover, generative methods have their advantages.310

First, generative methods are based on data distribution, and if311

the data do follow the distribution assumed, the method should312

performwell. Second, given themethods, such as in [12] can get313

the global optimum, it is quite intriguing. Third, there is no need314

to prespecify the number of clusters. We believe multiview gen-315

erative clustering even single-view generative clusteringmethod316

is an underestimated direction, more efforts can be made along317

this direction in the future.318

III. DISCRIMINATIVE APPROACHES 319

Compared with generative approaches, discriminative ap- 320

proaches directly optimize the objective to seek for the best 321

clustering solution rather than first modeling the sample distri- 322

bution then solving these models to determine clustering result. 323

Directly focusing on the objective of clustering makes dis- 324

criminative approaches gain more attentions and develop more 325

comprehensively. Up to now,most of existingMVCmethods are 326

discriminative approaches. Based on how to combine multiple 327

views, we categorize MVC methods into five main classes and 328

introduce the representative works in each group. 329

Given the data with N data points and m views, each data 330

point xi is denoted by {x1
i ,x

2
i , . . . ,x

m
i }, xv

i ∈ Rdv
. The aim 331

of MVC is to cluster the N data points into K classes. That 332

is, finally we will get a membership matrix H ∈ RN×K to 333

indicate which data points are in the same group while others 334

in other classes, the sum of each row entries of H should be 1 335

to make sure each row is a probability distribution. If only one 336

entry of each row is 1 and all others are 0, it is the so-called 337

hard clustering otherwise it is soft clustering. In the following 338

five subsections, we will introduce each class of multiview 339

discriminative clustering methods. 340

A. Common Eigenvector Matrix (Mainly Multiview Spectral 341

Clustering) 342

This class of MVC methods are based on a commonly used 343

clustering technique spectral clustering. Since spectral cluster- 344

ing hinges crucially on the construction of the graph Lapla- 345

cian [14], [15] and the resulting eigenvectors reflect the grouping 346

structure of the data, this class of MVC methods guarantee to 347

get a common clustering result by assuming that all the views 348

share the same or similar eigenvector matrix. There are two 349

representative methods: cotraining spectral clustering [16] and 350

coregularized spectral clustering [17]. Before discussing them, 351

we will introduce spectral clustering [18] first. 352

1) Spectral Clustering: Spectral clustering is a clustering 353

technique that utilizes the properties of graph Laplacian where 354

the graph edges denote the similarities between data points and 355

solve a relaxation of the normalized min-cut problem on the 356

graph [19]. Compared with other widely used methods such as 357

the k-means algorithm that onlyfits the spherical shaped clusters, 358

spectral clustering can apply to arbitrary shaped clusters and 359

demonstrate good performance. 360

Given G = (V ,E) as a weighted undirected graph with 361

vertex set V = v1, . . . , vN . The data adjacency matrix of the 362

graph is defined asW whose entrywij represents the similarity 363

of two vertices vi and vj . If wij = 0, it means that the vertices 364

vi and vj are not connected. Apparently W is symmetric since 365

G is an undirected graph. The degree matrix D is defined 366

as the diagonal matrix with the degrees d1, . . . , dN of each 367

vertex on the diagonal, where di =
∑N

j=1 wij . Generally, the 368

graph Laplacian isD −W and the normalized graph Laplacian 369

is L̃ = D−1/2(D −W )D−1/2. In many spectral clustering 370

works, e.g., [16]–[18], [20], L = D−1/2WD−1/2 is also used 371

to change a minimization problem (9) into a maximization 372

problem (8) since L = I − L̃, where I is the identity matrix. 373

Following the same terminology adopted in [16]–[18], [20], 374
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we will name both L and L̃ as normalized graph Laplacians375

afterward. Now the single-view spectral clustering approach can376

be formulated as follows:377 {
max

U∈RN×K
tr(UTLU)

s.t. UTU = I
(8)

which is also equivalent to the following problem:378 {
min

U∈RN×K
tr(UTL̃U)

s.t. UTU = I
(9)

where tr denotes the trace norm of a matrix. The rows of matrix379

U are the embeddings of the data points, which can be fed into380

the k-means to obtain the final clustering results. A version of381

the Rayleigh–Ritz theorem in [21] shows that the solution of the382

aboveoptimizationproblem is givenby choosingU as thematrix383

containing, respectively, the largest or smallest K eigenvectors384

of L or L̃ as columns. To understand the spectral clustering385

method better, we outline a commonly used algorithm [18] as386

follows:387

1) construct the adjacency matrix W ;388

2) compute the normalized Laplacian matrix L =389

D−1/2WD−1/2;390

3) calculate the eigenvectors ofL and stack the topK eigen-391

vectors as the columns to construct a N ×K matrix U ;392

4) normalize each row of U to obtain U sym;393

5) run the k-means algorithm to cluster the row vectors of394

U sym;395

6) assign subject i to cluster k if the ith row of U sym is396

assigned to cluster k by the k-means algorithm.397

Apart from the symmetric normalization operator U sym, an-398

other normalization operator U lr = D−1W is also commonly399

used. The work in [22] can be referred for further details about400

spectral clustering.401

2) Cotraining Multiview Spectral Clustering: For semisu-402

pervised learning, cotraining with two views has been a widely403

recognized idea when both labeled and unlabeled data are avail-404

able. It assumes that the predictive models constructed in each405

of the two views will lead to the same labels for the same406

sample with high probability. There are two main assumptions407

to guarantee the success of cotraining.408

1) Sufficiency: Each view is sufficient for sample classifica-409

tion on its own.410

2) Conditional independence: The views are conditionally411

independent given the class labels. In the original co-412

training algorithm [23], two initial predictive functions f1413

and f2 are trained in each view using the labeled data,414

then the following steps are repeatedly performed: the415

most confident examples predicted by f1 are added to the416

labeled set to train f2 and vice versa, then f1 and f2 are417

retrained on the enlarged labeled datasets. It can be shown418

that after a number of iterations, f1 and f2 will agree with419

each other on labels.420

For cotrainingmultiview spectral clustering, the motivation is421

similar: the clustering result in all views should agree. In spectral422

clustering, the eigenvectors of the graph Laplacian encode the423

Algorithm 1: Cotraining Multiview Spectral Clustering.

Input: Similarity matrices for two views: W (1) and
W (2).
Output: Assignments to K clusters.

Initialize: L(v) = D(v)(−1/2)
L(v)D(v)(−1/2)

for
v = 1, 2,
U (v)0 = argmax

U∈RN×K

tr(UTL(v)U) s.t. UTU = I for

v = 1, 2.
for i=1 to t do
1. S(1) = sym (U (2)i−1

U (2)i−1T
W (1))

2. S(2) = sym (U (1)i−1
U (1)i−1T

W (2))
3. Use S(1) and S(2) as the new graph similarities and
compute the graph Laplacians. Solve for the largest K

eigenvectors to obtain U (1)i and U (2)i

end for
4: Normalize each row of U (1)i and U (2)i.
5: Form matrix V = U (v)i, where v is the most
informative view a priori. If there is no prior knowledge
on the view informativeness, matrix V can also be set to
be column-wise concatenation of the two U (v)is.
6: Assign example j to cluster K if the jth row of V is
assigned to cluster K by the k-means algorithm.

discriminative information of the clustering. Therefore, cotrain- 424

ing multiview spectral clustering [16] uses the eigenvectors of 425

the graph Laplacian in one view to cluster samples and then use 426

the clustering result to modify the graph Laplacian in the other 427

view. 428

Each column of the similarity matrix (also called the adja- 429

cency matrix) WN×N can be considered as a N -dimensional 430

vector that indicates the similarities of ith point with all the 431

points in the graph. Since the largest K eigenvectors have the 432

discriminative information for clustering, the similarity vectors 433

can be projected along those directions to retain the discrimina- 434

tive information for clustering and throw away the within cluster 435

details thatmight confuse the clustering.After that, the projected 436

information is projected back to the original N -dimensional 437

space to get the modified graph. Finally, k-means algorithm is 438

conducted on most informative eigenvector matrix to get the 439

final clustering result. 440

Tomake the cotraining spectral clustering algorithm clear, we 441

borrowAlgorithm 1 from [16]. Note that the symmetrization op- 442

erator sym on a matrix S is defined as sym (S) = (S + ST)/2 443

in Algorithm 1. 444

3) CoregularizedMultiview Spectral Clustering: Coregular- 445

ization is an effective technique in semisupervised multiview 446

learning. The core idea of coregularization is to minimize the 447

distinction between the predictor functions of two views acting 448

as one part of the objective function. However, there are no 449

predictor functions in unsupervised learning like clustering, so 450

how to implement the coregularization idea in clustering prob- 451

lem? Coregularized multiview spectral clustering [17] adopted 452

the eigenvectors of graph Laplacian to play the similar role 453
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of predictor functions in semisupervised learning scenario and454

proposed two coregularized clustering approaches.455

LetU (s) andU (t) be the eigenvector matrices corresponding456

to any pair of view graph Laplacians L(s) and L(t) (1 ≤ s, t ≤457

m, s �= t). The first version uses a pairwise coregularization458

criteria that enforces U (s) and U (t) as close as possible. The459

measure of clustering disagreement between the two views s and460

t is D(U (s),U (t)) = ‖ K(s)

‖K(s)‖F 2 − K(t)

‖K(t)‖F 2 ‖2F , where K(s) =461

U (s)U (s)T using linear kernel is the similarity matrix of U (s).462

Since ‖K(s)‖2F = K, whereK is the number of the clusters, dis-463

agreement between the clustering solutions in the two views can464

bemeasured byD(U (s),U (t)) = −tr(U (s)U (s)TU (t)U (t)T).465

Integrating the measure of the disagreement between any pair of466

views into the spectral clustering objective function, the pairwise467

coregularizedmultiview spectral clustering can be formed as the468

following optimization problem:469 ⎧⎪⎪⎨
⎪⎪⎩

max
U(1),U(2),...,U(m)∈RN×K

∑m
s=1 tr(U (s)TL(s)U (s))

+
∑

1≤s,t≤m,s�=t λ tr(U (s)U (s)TU (t)U (t)T)

s.t. U (s)TU (s) = I, ∀1 ≤ s ≤ m.

(10)

The hyperparameter λ is used to tradeoff the spectral clustering470

objectives and the spectral embedding disagreement terms.After471

the embeddings are obtained, each U s can be fed for k-means472

clustering method, the final results are marginally different.473

The second version named centroid-based coregularization474

enforces the eigenvector matrix from each view to be similar475

by regularizing them toward a common consensus eigenvector476

matrix. The corresponding optimization problem is formulated477

as478 ⎧⎪⎪⎨
⎪⎪⎩

max
U(1),U(2),...,U(m),U ∗∈RN×K

∑m
s=1 tr(U (s)TL(s)U (s))

+λs

∑m
s=1 tr(U

(s)U (s)TU (∗)U (∗)T)
s.t. U (s)TU (s) = I, ∀1 ≤ s ≤ m, U ∗TU ∗ = I.

(11)

Compared with pairwise coregularized version, centroid-479

based MVC does not need to combine the obtained eigenvector480

matrices of all views to run k-means. However, the centroid-481

based version possesses one potential drawback: the noisy views482

could potentially affect the optimal eigenvectors as it depends483

on all the views.484

Cai et al. [24] used a common indicator matrix across the485

views to perform multiview spectral clustering and derived486

a formulation similar to the centroid-based coregularization487

method. The main difference is that [24] used tr((U (∗) −488

U (s))T(U (∗) −U (s))) as the disagreement measure between489

each view eigenvector matrix and the common eigenvector490

matrix while coregularized multiview spectral clustering [17]491

adopted tr(U (s)U (s)TU (∗)U (∗)T). The optimization prob-492

lem [24] is formulated as493 ⎧⎪⎨
⎪⎩

max
U(s),s=1,2··· ,m,U ∗

∑m
s=1 tr(U (s)TL(s)U (s))

+λ
∑m

s=1 tr((U
∗ −U (s))T(U ∗ −U (s)))

s.t. U ∗ ≥ 0, U ∗TU ∗ = I

(12)

where U ∗ ≥ 0 makes U ∗ become the final cluster indicator 494

matrix. Different from general spectral clustering that get eigen- 495

vector matrix first and then run clustering (such as k-means that 496

is sensitive to initialization condition) to assign clusters, Cai et 497

al. [24] directly solves the final cluster indicator matrix, thus it 498

will be more robust to the initial condition. 499

4) Others: Besides the two representativemultiview spectral 500

clustering methods discussed above, Wang et al. [25] enforces a 501

common eigenvector matrix across the views and formulates 502

a multiobjective problem which is then solved using Pareto 503

optimization. 504

A relaxed kernel k-means can be shown to be equivalent to 505

spectral clustering, as in the following Section III-D2, Ye et 506

al. [26] proposes a coregularized kernel k-means forMVC.With 507

amultilayerGrassmannmanifold interpretation,Dong et al. [27] 508

obtains the same formulation with the pairwise coregularized 509

multiview spectral clustering. 510

Because the MVC methods based on a shared eigenvector 511

matrix are rooted from the special clustering, they can be applied 512

to data clusters of any shape or any positioning of cluster 513

centers. This merit is inherited from spectral clustering that does 514

not make any assumption about the statistics of the clusters. 515

However, since spectral clustering needs eigen decomposition, 516

this type of MVC methods can be time consuming. 517

B. Common Coefficient Matrix (Mainly Multiview Subspace 518

Clustering) 519

In many practical applications, even though the given data 520

are high dimensional, the intrinsic dimension of the problem is 521

often low. For example, the number of pixels in a given image 522

can be large, yet only a few parameters are used to describe the 523

appearance, geometry, and dynamics of a scene. This motivates 524

the development of finding the underlying low dimensional 525

subspace. In practice, the data could be sampled from multiple 526

subspaces. Subspace clustering [28] is the technique to find the 527

underlying subspaces and then cluster the data points correctly 528

according to the identified subspaces. 529

1) Subspace Clustering: Subspace clustering uses the self- 530

expressiveness property [29] of the data samples, i.e., each 531

sample can be represented by a linear combination of a few 532

other data samples. The classic subspace clustering formulation 533

is given as follows: 534

X = XZ +E (13)

where Z = {z1, z2, . . . , zN} ∈ RN×N is the subspace coeffi- 535

cient matrix (representation matrix), and each zi is the repre- 536

sentation of the original data point xi based on the subspace. 537

E ∈ RN×N is the noise matrix. 538

The subspace clustering can be formulated as the following 539

optimization problem: 540{
min
Z

‖X −XZ‖2F
s.t. Z(i, i) = 0,ZT1 = 1.

(14)

The constraint Z(i, i) = 0 is used to avoid the case that a data 541

point is represented by itself, while ZT1 = 1 denotes that the 542
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data point lies in a union of affine subspaces. The nonzero543

elements of zi correspond to data points from the same subspace.544

After getting the subspace representation Z, the similarity545

matrix W = |Z|+|ZT|
2 can be obtained to further construct the546

graph Laplacian and then run spectral clustering on that graph547

Laplacian to get the final clustering results.548

2) Multiview SubspaceClustering: Withmultiview informa-549

tion, each subspace representation Zv can be obtained from550

each view. To get a consistent clustering result from multiple551

views, Yin et al. [30] shares the common coefficient matrix by552

enforcing the coefficient matrices from each pair of views as553

similar as possible. The optimization problem is formulated as554 ⎧⎪⎨
⎪⎩

min
Z(s),s=1,2,...,m

∑m
s=1 ‖X(s) −X(s)Z(s)‖2F

+α
∑m

s=1 ‖Z(s)‖1 + β
∑

1≤s≤t ‖Z(s) −Z(t)‖1
s.t. diag(Z(s)) = 0, ∀s ∈ {1, 2, . . . ,m}.

(15)

where ‖Z(s) −Z(t)‖1 is the l1-norm based pairwise coregular-555

ization constraint that can alleviate the noise problem. ‖Z‖1 is556

used to enforce sparse solution. diag(Z) denotes the diagonal557

elements of matrix Z, and the zero constraint is used to avoid558

trivial solution (each data point represents by itself).559

Maria et al. [31] also considered the low rank and sparse560

representation to conduct multiview subspace clustering. Wang561

et al. [32] enforced the similar idea to combine multi-view562

information. Apart from that, it adopted a multigraph regular-563

ization with each graph Laplacian regularization characterizing564

the view-dependent nonlinear local data similarity. At the same565

time, it assumes that the view-dependent representation is low566

rank and sparse and considers the sparse noise in the data. Wang567

et al. [33] proposed an angular based similarity to measure568

the correlation consensus in multiple views and obtained a569

robust subspace clustering for multiview data. Zhang et al. [34]570

adopted linear correlation and neural networks to integrate the571

representation of each view and proposed two latent subspace572

MVC methods. To deal with the scenario where each view is573

unsufficient to discover the latent cluster structure, Huang et574

al. [35] proposed a multiview intact subspace clustering by575

assuming a latent space and defining a mapping function from576

the latent space to view representation. Different from the above577

approaches, the three works [36]–[38] adopted general NMF578

formulation but shared a common representation matrix for the579

samples with both views and kept each view representation580

matrix specific. Zhao et al. [39] adopted a deep semi-NMF to581

performMVC, and enforced a common coefficient matrix in the582

last layer to exploit the multiview information. By introducing583

a label constraint matrix and enforcing representation matrix of584

each view close to a common one, Cai et al. [40] solved the585

MVC in semisupervised settings.586

The MVC methods based on a shared coefficient matrix587

are applied to multiview subspace clustering, which assumes588

that the cluster structures can be found by identifying the low589

dimensional subspaces. This kind of MVC methods has great590

utility in the computer vision field. Typically, after the final591

low-dimensional representation is obtained, spectral clustering592

is conducted on the graph Laplacian constructed from that593

representation, so this group of methods possesses the same594

advantages and disadvantages as spectral clustering as discussed 595

in Section III-A. 596

C. Common Indicator Matrix (Mainly Multiview NMF 597

Clustering) 598

NMF is commonly used in clustering. It enforces one of the 599

factorizedmatrix as an indicatormatrixwhose nonzero entry can 600

indicate which data point belongs to which cluster. Therefore, 601

enforcing the indicator matrix for multiple views be same or 602

similar is a natural way to conduct MVC. 603

1) Nonnegative Matrix Factorization: For a nonnegative 604

data matrix X ∈ Rd×N
+ , NMF [41] seeks two nonnegative ma- 605

trix factorsU ∈ Rd×K
+ and V ∈ RN×K

+ such that their product 606

is a good approximation of X 607

X ≈ UV T (16)

whereK denotes the desired reduced dimension (for clustering, 608

it is the number of clusters),U is the basis matrix, and V is the 609

indicator matrix. 610

Due to the nonnegative constraints, a widely known property 611

of NMF is that it can learn a part-based representation. It is 612

intuitive and meaningful in many applications, such as in face 613

recognition [41]. The samples in many of these applications, 614

e.g., information retrieval [41] and pattern recognition [42], 615

[43] can be explained as additive combinations of nonnega- 616

tive basis vectors. The NMF has been applied successfully to 617

cluster analysis and has shown the state-of-the-art performance 618

[41], [44]. 619

2) MVC Based on NMF: To combine multiview information 620

in the NMF framework, Akata et al. [45] enforces a common 621

indicator matrix in the NMF among different views to per- 622

form MVC. However, the indicator matrix V (v) might not be 623

comparable at the same scale. In order to keep the clustering 624

solutions across different views meaningful and comparable, 625

Liu et al. [46] enforces a constraint to push each view-dependent 626

indicator matrix toward a common indicator matrix, which leads 627

to another normalization constraint inspired by the connection 628

betweenNMFand probability latent semantic analysis. The final 629

optimization problem is formulated as 630

⎧⎪⎪⎨
⎪⎪⎩

min
U(v),V (v),v=1,2,...,m

∑m
v=1 ‖X(v) −U (v)V (v)‖2F

+
∑m

v=1 λv‖V (v) − V ∗‖2F
s.t. ∀1 ≤ k ≤ K, ‖U (v)

.,k ‖1 = 1,U (v),V (v),V (∗) ≥ 0.

(17)

The constraint ‖U (v)
.,k ‖1 = 1 is used to guarantee V (v) within 631

the same range for different v such that the comparison between 632

the view-dependent indicator matrixV (v) and the consensus in- 633

dicator matrixV (∗) is reasonable. After obtaining the consensus 634

matrixV ∗, the cluster label of data point i can be computed from 635

argmaxkV
∗
i,k. 636

3) Multiview K-Means: The k-means clustering method can 637

be formulated using NMF by introducing an indicator matrixU . 638
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The NMF formulation of k-means clustering is639 {
min
U ,V

‖XT −UV T‖2F
s.t. U i,k ∈ {0, 1},∑K

k=1 U i,k = 1, ∀i = 1, 2, . . . , N

(18)

where the columns of V ∈ Rd×K give the cluster centroids.640

Because the k-means algorithm has lower computational cost641

than those requiring eigen-decomposition, it can be a good642

choice for large scale data clustering. To deal with large scale643

multiview data, Cai et al. [47] proposed a multiview k-means644

clusteringmethodby adopting a common indicatormatrix across645

different views. The �2,1 norm has been applied in traditional646

NMF-based clustering methods with proved performance, such647

as model sparse and robustness. Herein the Frobenius norm has648

been replaced by a �2, 1 norm, and different views are weighed649

differently according to their importance. The new optimization650

problem obtained from (18) is formulated as follows:651 ⎧⎨
⎩

min
V (v),α(v),U

∑m
v=1(α

(v))γ‖X(v)T −UV (v)T‖2,1
s.t. U i,k ∈ {0, 1},∑K

k=1 U i,k = 1,
∑m

v=1 α
(v) = 1

(19)

where α(v) is the weight for the vth view and γ is the parameter652

to control the weight distribution. By learning the weights α for653

different views, the important views will be emphasized.654

Still based on multiview k-means clustering (18), to deal with655

high dimensional problems in multiple views, Xu et al. [48]656

introduced one projection matrix for data of each view, and then657

conduct MVC by enforcing the common indicator matrix. Their658

optimization problem is formulated as659 ⎧⎨
⎩

min
V (v),W (v),U

∑m
v=1 ‖X(v)TW (v) −UV (v)T‖F

s.t. W (v)TW (v) = I,U i,k ∈ {0, 1},∑K
k=1 U i,k = 1

(20)

where W (v) ∈ RDv×mv indicates the projection matrix which660

embeds the data matrix X(v) from Dv to mv , mv < Dv, ∀v.661

Note that to deal with outliers, Frobenious norm (not squared)662

is adopted. By replacing Frobenious norm with a �2 norm and663

considering different importance of each view, a reweighted664

discriminative embedding k-means method is formulated as665 ⎧⎨
⎩

min
V (v),W (v),α(v),U

∑m
v=1 α

(v)‖X(v)TW (v) −UV (v)T‖2
s.t. W (v)TW (v) = I,U i,k ∈ {0, 1},∑K

k=1 U i,k = 1

(21)

where α(v) = (2‖X(v)TW (v) −UV (v)T‖F )−1 is the weight666

for the vth view and is computed by current V (v),W (v) andU .667

Besides the above multiview NMF clustering methods, Liu668

and Fu [49] introduced a categorical utility function to measure669

similarity between the common indicator matrix and the indi-670

cator matrix from each view and proposed a consensus based671

MVC method.672

According to [50], whenW = H ∗HT , whereW indicates673

similarity between data points or is a kernel, the above method674

is equivalent to spectral clustering or kernel k-means clustering.675

Although the single view methods (NMF, kernel k-means, and 676

spectral clustering) have connections between each other, their 677

multiview versions are less connected because the views need 678

to share some common factors, but there is only one factor H , 679

which cannot be used in multiple of the views. However, for 680

the multiview k-means clustering method can be expressed as 681

a multiview NMF-based clustering problem with U indicating 682

the indicator matrix according to formulation (18). 683

4) Others: As mentioned earlier, there are generally two 684

steps in subspace clustering: find a subspace representation and 685

then run spectral clustering on the graph Laplacian computed 686

from the subspace representation. To identify consistent clusters 687

from different views, Gao et al. [51] merged these two steps in 688

subspace clustering and enforced a common indicator matrix 689

across different views. The formulation is given as follows: 690

⎧⎪⎨
⎪⎩

min
Z(v),E(v),U

∑m
v=1 ‖X(v) −X(v)Z(v) −E(v)‖2F

+λ1tr(U
T(D(v) −W (v))U) + λ2

∑m
v=1 ‖E(v)‖1

s.t. Z(v)T,Z(v)(i, i) = I,UTU = I

(22)

whereZ(v) is the subspace representationmatrix of the vth view, 691

W (v) = |Z(v)|+|Z(v)T|
2 ,D(v) is a diagonal matrix with diagonal 692

elements defined as dvi,i
=

∑
j wvi,j

, and U is the common 693

indicator matrix which indicates a unique cluster assignment 694

for all the views. Although this multiview subspace clustering 695

method is based on subspace clustering, it does not enforce a 696

common coefficient matrix Z, but uses a common indicator 697

matrix for different views. We thus categorize it into this group. 698

Wang et al. [52] integrates multiview information via a com- 699

mon indicator matrix and simultaneously selects features for 700

different data clusters by formulating the problem as follows: 701

{
min

UTU=I,W
‖XTW + 1NbT −U‖F

+γ1‖W ‖G1
+ γ2‖W ‖2,1

(23)

where X = {x1,x2, . . . ,xN} ∈ Rd×N , but here each xi in- 702

cludes the features from all the m views and each view has 703

dj features such that d =
∑m

j=1 dj . The coefficient matrix 704

W = [w1
1, . . . , w

1
K ; . . . , . . . , . . . , ;wm

1 , . . . , wm
K ] ∈ Rd×K con- 705

tains the weights of each feature for K clusters, b ∈ RK×1 is 706

the intercept vector, 1N is N -element constant vector of ones, 707

andU = [u1, . . . , uN ]T ∈ RN×K is the cluster (assignment) in- 708

dicator matrix. The regularizer ‖W ‖G1
=

∑K
i=1

∑m
j=1 ‖wj

i ‖2 709

is the group l1 regularization to evaluate the importance of 710

an entire view’s features as a whole for a cluster whereas 711

‖W ‖2,1 =
∑d

i=1 ‖wi‖2 is the l2,1 norm to select individual 712

features from all views that are important for all clusters. 713

In [53], a matrix factorization approach was adopted to rec- 714

oncile the clusters arisen from the individual views. Specifically, 715

a matrix that contains the partition indicator of each individual 716

view is created and then decomposed into two matrices: one 717

showing the contribution of individual groupings to the final 718

MVC, calledmetaclusters, and the other showing the assignment 719

of instances to the meta-clusters. Tang et al. [54] treated MVC 720
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as clustering with multiple graphs, each of which is approxi-721

mated by matrix factorization with two factors: a graph-specific722

factor and a factor common to all graphs. Qian et al. [55] and723

Zong et al. [56] required each view’s indicator matrix to be as724

close as possible to a common indicator matrix and employed725

the Laplacian regularization to maintain the latent geometric726

structure of the views simultaneously. After learning indicator727

matrices of different views, Kang et al. [57] learned a common728

indicatormatrix bymeasuring distance between indicatormatrix729

and considering different impact each view enforces. Also by730

learning an indicator matrix and maximizing the worst-case731

performance against single-view case, Tao et al. [58] proposed732

a reliable MVC method. Zhang et al. [59] proposed a robust733

manifold matrix factorization to cluster hyperspectral images.734

Taking the discriminative information in lowdimensional spaces735

into account, Ma et al. [60] extend the work in [59] to MVC by736

enforcing the same indicator matrix.737

Besides using a common indicator matrix, [61]–[63] intro-738

duced a weight matrix to indicate whether there are missing739

entries so that it can tackle the missing value problem. The740

multiview self-paced clustering method [64] takes the complex-741

ities of the samples and views into consideration to alleviate742

the local minima problem. Tao et al. [65] enforces a common743

indicator matrix and seeks for the consensus clustering among744

all the views in an ensemble way. Another method that utilizes745

a common indicator matrix to combine multiple views [66]746

employed the linear discriminant analysis idea and automatically747

weighed different views. For graph-based clustering methods,748

the similarity matrix for each view is obtained, and then by749

minimizing the differences between a common indicator matrix750

and each similarity matrix, Nie et al. [67] provided one MVC751

method with multiple graphs.752

The MVC methods that use a shared indicator matrix across753

views include the k-means or NMF. On one side, it can scale754

to large scale datasets compared with spectral clustering based755

MVC approaches. On the other side, it can only be applied to756

data with cluster of spherical shape to cluster center. This is757

because k-means clustering makes a strong assumption that the758

data points assigned to a cluster are spherical about the cluster759

center.760

D. Direct Combination (Mainly Multikernel-Based MVC)761

Besides the methods that share some structure among dif-762

ferent views, direct view combination via a kernel is another763

common approach to perform MVC. A natural way is to define764

a kernel for each viewand then combine these kernels in a convex765

combination [68]–[70].766

1) Kernel Functions andKernelCombinationMethods: Ker-767

nel is a trick to learn nonlinear problem just by linear learning768

algorithm, since kernel function K : X × X → R can directly769

give the inner products in feature space without explicitly defin-770

ing the nonlinear transformation φ. There are some common771

kernel functions as follows:772

1) linear kernel: K(xi,xj) = (xi · xj);773

2) polynomial kernel: K(xi,xj) = (xi · xj + 1)d;774

3) Gaussian kernel (Radial basis kernel): K(xi,xj) = 775

(exp(−‖xi−xj‖2
2σ2 ); 776

4) sigmoid kernel: K(xi,xj) = (tanh(ηxi · xj + ν)). 777

Kernel functions in a reproducing kernel Hilbert space 778

(RKHS) can be viewed as similarity functions [71], [72] in a 779

vector space, sowe canuse a kernel as a non-Euclidean similarity 780

measure in the spectral clustering and kernel k-means methods. 781

There have been someworks onmultikernel learning for cluster- 782

ing [73]–[76], however, they are all for single-view clustering. 783

If a kernel is derived from each view, and different kernels are 784

combined elaborately to deal with the clustering problem, it will 785

become the multikernel learning method for MVC. Obviously, 786

multikernel learning [77]–[80] can be considered as the most 787

important part in this kind of MVC methods. There are three 788

main categories ofmethods for combiningmultiple kernels [81]. 789

1) Linear combination: It includes two basic subcate- 790

gories: unweighted sum K(xi,xj) =
∑m

v=1 kv(x
v
i ,x

v
j ) 791

and weighted sum K(xi,xj) =
∑m

v=1 w
q
vkv(x

v
i ,x

v
j ) 792

wherewv ∈ R+ denotes the kernelweight for the vth view 793

and
∑m

v=1 wv = 1, q is the hyperparameter to control the 794

distribution of the weights, 795

2) Nonlinear combination: It uses a nonlinear function in 796

terms of kernels—namely, multiplication, power, and ex- 797

ponentiation, 798

3) Data-dependent combination: It assigns specific kernel 799

weights for each data instance, which can identify the 800

local distributions in the data and learn proper kernel 801

combination rules for different regions. 802

2) Kernel K-Means and Spectral Clustering: Kernel k- 803

means [82] and spectral clustering [83] are two kernel-based 804

clustering methods for optimizing the intracluster variance. Let 805

φ(·) : x ∈ X → H be a feature mapping which maps x onto 806

an RKHS H . The kernel k-means method is formulated as the 807

following optimization problem: 808

{
min
H

∑N
i=1

∑K
k=1 Hik‖φ(xi)− μk‖22

s.t.
∑K

k=1 Hik = 1
(24)

where H ∈ {0, 1}N×K is the cluster indicator matrix (also 809

known as cluster assignment matrix), nk =
∑N

i=1 Hik and 810

μk = 1
nk

∑N
i=1 Hikφ(xi) are the number of points in the kth 811

cluster and the centroid of the kth cluster. With a kernel 812

matrix K whose (i, j)th entry is Kij = φ(xi)
Tφ(xj), L = 813

diag([n−1
1 , n−1

2 , . . . , n−1
K ]) and 1l ∈ Rl, a column vector of all 814

ones, (24) can be equivalently rewritten as the followingmatrix- 815

vector form: 816

{
min
H

tr(K)− tr(L
1
2HTKHL

1
2 )

s.t. H1k = 1N .
(25)

For the above kernel k-means matrix-factor form, the matrix 817

H is binary, which makes the optimization problem difficult to 818

solve. By relaxing the matrixH to take arbitrary real values, the 819

above problem can be approximated. Specifically, by defining 820

U = HL
1
2 and letting U take real values, further considering 821
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Tr(K) is constant, (25) will be relaxed to822 {
max
U

tr(UTKU)

s.t. UTU = 1K .
(26)

The factHTH = L−1 leads to the orthogonality constraint on823

U which tells us that the optimal U can be obtained by the824

topK eigenvectors of the kernel matrixK. Therefore, (26) can825

be considered as the generalized optimization formulation of826

spectral clustering.Note that (26) is equivalent to (8) if the kernel827

matrixK takes the normalized Gram matrix form.828

3) Multikernel-Based MVC: Assume that there arem kernel829

matrices available, each of which corresponds to one view. To830

make a full use of all views, the weighted combination K =831 ∑m
v=1 w

p
vK

(v), wp
v ≥ 0,

∑m
v=1 w

p
v = 1, p ≥ 1 will be used in832

kernel k-means (26) and spectral clustering (8) to obtain the833

corresponding multiview kernel k-means and multiview spec-834

tral clustering [84]. Using the same nonlinear combination but835

specifically setting p = 1, Guo et al. [85] extended the spectral836

clustering to MVC with kernel alignment. Due to the potential837

redundance of the selected kernels, Liu et al. [86] introduced838

a matrix-induced regularization to reduce the redundancy and839

enhance the diversity of the selected kernels to attain the fi-840

nal goal of boosting the clustering performance. By replacing841

the original Euclidean norm metric in fuzzy c-means with842

a kernel-induced metric in the data space and adopting the843

weighted kernel combination, Zhang et al. [87] successfully844

extended the fuzzy c-means to MVC that is robust to noise845

and outliers. In the case when incomplete multiview dataset846

exists, by optimizing the alignment of the shared data instances,847

Shao et al. [88] collectively completes the kernel matrices of848

incomplete datasets. Liu et al. [89] integrated imputation and849

clustering into a unified learning procedure, but the computa-850

tional and storage complexities of this method is quite high. To851

overcome these drawbacks, they proposed a late fusion method852

that effectively and efficiently conduct MVC with a three-step853

iterative procedure [90]. To overcome the cluster initialization854

problem associated with kernel k-means, Tzortzis et al. [91]855

proposed a global kernel k-means algorithm, a deterministic and856

incremental approach that adds one cluster in each stage, through857

a global search procedure consisting of several executions of858

kernel k-means from suitable initiations.859

4) Others: Besides multikernel-based MVC, there are some860

other methods that use the direct combination of features to861

perform MVC like [66], [67], [92]. In [93], two-level weights:862

view wights and variable wights are assigned to the clustering863

algorithm for multiview data to identify the importance of the864

corresponding views and variables. Zhou et al. [94] learns an865

optimal neighborhood Laplacian matrix by searching the neigh-866

borhood of both the linear combination of the first-order and867

high-order base Laplacian matrices simultaneously to conduct868

multiview spectral clustering finally. To extend fuzzy clustering869

method to MVC, each view is weighted and the multiview870

versions of fuzzy c-means and fuzzy k-means are obtained871

in [95] and [96], respectively.872

Direct combination-based MVC can adaptively tune the873

weights of each view, which is necessary and important when874

some views are of low quality. The consensus information 875

among different views are not clear in the direct combination 876

based MVC methods because there are no commonality shared 877

between different views. 878

E. Combination After Projection (Mainly CCA-Based MVC) 879

Formultiview data with all viewswith the same data type, like 880

categorical or continuous, it is reasonable to directly combine 881

them together. However, in real-world applications, the multiple 882

representationsmay have different data types, and it is difficult to 883

compare them directly. For instance, in bioinformatics, genetic 884

information can be one view while clinical symptoms can be 885

another view in the cluster analysis of patients [97]. Obviously, 886

the information cannot be combined directly. Moreover, high 887

dimension and noise are also difficult to handle. To solve the 888

above problems, the last yet important combination way is 889

introduced: combination after projection. The most commonly 890

used technique is canonical correlation analysis (CCA) and the 891

kernel version of CCA (KCCA). 892

1) CCA and KCCA: To better understand this style of 893

view combination, CCA and KCCA are briefly introduced 894

(refer to [98] for more detail). Given two datasets Sx = 895

[x1,x2, . . . ,xN ] ∈ Rdx×N and Sy = [y1,y2, . . . ,yN ] ∈ 896

Rdy×N where each entry x or y has a zero mean, CCA aims 897

to find a projection wx ∈ Rdx for x and another projection 898

wy ∈ Rdy for y such that the correlation between the projection 899

of Sx and Sy on wx and wy are maximized 900

ρ = max
wx,wy

wx
TCxywy√

(wx
TCxxwx)(wy

TCyywy)
(27)

where ρ is the correlation and Cxy = E[xyT] denotes the 901

covariance matrix of x and y with zero mean. Observing that ρ 902

is not affected by scaling wx or wy either together or indepen- 903

dently, CCA can be reformulated as 904⎧⎪⎪⎪⎨
⎪⎪⎪⎩

max
wx,wy

wx
TCxywy

s.t. wx
TCxxwx = 1

wy
TCyywy = 1

(28)

which can be solved using the method of Lagrange multiplier. 905

The two Lagrange multipliers λx and λy are equal to each 906

other, that is λx = λy = λ. If Cyy is invertible, wy can be ob- 907

tained as wy = 1
2Cyy

−1Cyxwx and Cxy(Cyy)
−1Cyxwx = 908

λ2Cxxwx. Hence, wx can be obtained by solving an eigen 909

problem. For different eigen values (from large to small), eigen 910

vectors are obtained in a successive process. 911

The above canonical correlation problem can be transformed 912

into a distanceminimization problem. For ease of derivation, the 913

successive formulation of the canonical correlation is replaced 914

by the simultaneous formulation of the canonical correlation. 915

Assume that the number of projections is p, thematricesWx and 916

Wy denote (wx1,wx2, . . .,wxp) and (wy1,wy2, . . .,wyp), 917

respectively. The formulation that simultaneously identifies all 918

the w’s can be written as an optimization problem with p 919
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iteration steps920 ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
(wx1,wx2,...,wxp),(wy1,wy2,...,wyp)

p∑
i=1

wxi
TCxywyi

s.t. wxi
TCxxwxj =

{
1 if i = j
0 otherwise,

wyi
TCyywyj =

{
1 if i = j
0 otherwise

i, j = 1, 2, . . ., p

wxi
TCxywyj = 0

i, j = 1, 2, . . ., p, j �= i.

(29)

The matrix formulation to the optimization problem (29) is921 ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
Wx,Wy

Tr(Wx
TCxyWy)

s.t. Wx
TCxxWx = I

Wy
TCyyWy = I

wxi
TCxywyj = 0

wyi
TCyxwxj = 0

i, j = 1, . . ., p, j �= i

(30)

where I is an identity matrix with size p× p. Maximizing the922

objective function of (30) can be transformed into the equivalent923

form as follows:924

min
Wx,Wy

∥∥Wx
TSx −Wy

TSy

∥∥
F

(31)

which is used widely in many works [36], [38], [99].925

KCCA uses the “kernel trick” to maximize the correlation926

between two nonlinear projected variables. Analogous to (28),927

the optimization problem for KCCA is formulated as follows:928 ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

max
wx,wy

wx
TKxKywy√

(wx
TK2

xwx)(wy
TK2

ywy)

s.t. wx
TKxwx = 1

wy
TKywy = 1.

(32)

In contrast to the linear CCA that works by solving an eigen-929

decomposition of the covariance matrix, KCCA solves the fol-930

lowing eigen-problem:931 (
0 KxKy

KyKx 0

)(
wx

wy

)
= λ

(
K2

x 0

0 K2
y

)(
wx

wy

)
.

(33)

2) CCA-BasedMVC: Since cluster analysis in a high dimen-932

sional space is difficult, Chaudhuri et al. [100] first projects933

the data into a lower dimensional space via CCA and then934

clusters samples in the projected low dimensional space. Under935

the assumption that multiple views are uncorrelated given the936

cluster labels, it shows a weaker separation condition required937

to guarantee the algorithm successful. Blaschko et al. [101]938

projects the data onto the top directions obtained by the KCCA 939

across different views and applies k-means to clustering the 940

projected samples. 941

For the case of paired views with some class labels, CCA 942

can still be applied by ignoring the class labels. However, the 943

performance can be ineffective. To take an advantage of the 944

class label information, Rasiwasia et al. [102] has proposed two 945

solutionswithCCA:mean-CCAand cluster-CCA.Consider two 946

datasets each of which is divided into K different but corre- 947

sponding classes or clusters.GivenSx = {x1,x2, . . . ,xK} and 948

Sy = {y1,y2, . . . ,yK}, where xk = {xk
1 ,x

k
2 , . . . ,x

k
|xk |} and 949

yk = {yk
1 ,y

k
2 , . . . ,y

k
|yk |} are the data points in the kth cluster 950

for the first and second views, respectively. The first solution is 951

to establish correspondences between the mean cluster vectors 952

in the two views. Given the cluster means mk
x = 1

|xk |
∑|xk |

i=1 x
k
i 953

and mk
y = 1

|yk |
∑|yk |

i=1 y
k
i , mean-CCA is formulated as 954

ρ = max
wx,wy

wxV xywy√
(wx

TVxxwx)(wy
TVyywy)

(34)

where V xy = 1
K

∑K
k=1 m

k
xm

k
y
T
, V xx = 1

K

∑K
k=1 m

k
xm

k
x
T
, 955

and V yy = 1
K

∑K
k=1 m

k
ym

k
y
T
. The second solution is to es- 956

tablish a one-to-one correspondence between all pairs of data 957

points in a given cluster across the two views of datasets and 958

then standard CCA is used to learn the projections. 959

For multiview data with at least one complete view (features 960

for this view are available for all data points), Anusua et al. [103] 961

borrowed the idea fromLaplacian regularization to complete the 962

incomplete kernel matrix and then applied KCCA to perform 963

MVC. In another method for MVC, multiple data matrices 964

A(v) ∈ RN×Kv , v = 1, 2, . . . ,K each of which corresponds to 965

a view are obtained in an intermediate step and then a consensus 966

data matrix should be learned to approximate each view’s data 967

matrix as much as possible. Due to the unsupervised property, 968

however, the data matrices are often not directly comparable. 969

Using the CCA formulation (31), Long et al. [104] projects one 970

view’s data matrix first before comparing with another view’s 971

data matrix. 972

The same idea can be used to tackle the incomplete view 973

problem (i.e., there are no complete views). For instance, if there 974

are only two views, the methods in [36] and [38] split data into 975

the portion of data with both views and the portion of data with 976

only one view, and then projects each view’s data matrix so that 977

it is close to the final indicator matrix. Multiview information 978

is connected by the common indicator matrix corresponding to 979

the projected data from both views. Wang et al. [105] provides 980

a MVC method using an extreme learning machine that maps 981

the normalized feature space onto a higher dimensional feature 982

space. 983

Combination after projection-based MVC methods fit for 984

scenarios where different views cannot be compared directly 985

in original input space. Although the consensus information is 986

used well in this group of MVC methods, the complementary 987

information is not taken into account. This is contrary to direct 988

combination-based MVC approaches. Thus, it is intriguing to 989

explore whether it is possible to fuse this two groups of methods 990
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together to make full use of the consensus and complimentary991

information.992

F. Other MVC Methods993

In Section III-A, III-B, III-C, we have introduced three classes994

of similarity structure-based MVC methods. In addition, there995

are also some methods to share other similar structures to per-996

form MVC. By sharing an indicator vector across views in a997

singular value decomposition of multiple data matrices, Sun et998

al. [97], [106], [107] extend the biclustering [108] method to999

the multiview settings. Wang et al. [109] chooses the Jaccard1000

similarity to measure the cross-view clustering consistency and1001

simultaneously considers the within-view clustering quality to1002

cluster multiview data. By sharing a shared subspace’s bidirec-1003

tional sparsity, Fan et al. [110] proposed an MVC approach1004

which can find an effective subspace dimension and deal with1005

outliers simultaneously.1006

Apart from the above categorized methods, there are some1007

other MVC methods. Different from exploiting the consensus1008

information of multiview data, Cao et al. [111] utilizes a Hilbert1009

Schmidt independence criterion as a diversity term to explore1010

the complementarity of multiview information. It reduces the1011

redundancy of multiview information to improve the clustering1012

performance. Based on the idea of “minimizing disagreement”1013

between clusters from each view, De Sa [112] proposes a two-1014

view spectral clustering that creates a bipartite graph of the1015

views. Zhou et al. [113] defines a mixture of Markov chains on1016

similarity graph of each view and generalize spectral clustering1017

to multiple views. In [114], a transition probability matrix is1018

constructed from each single view, and all these transition prob-1019

ability matrices are used to recover a shared low-rank transition1020

probability matrix as a crucial input to the standard Markov1021

chain method for clustering. By fusing the similarity data from1022

different views, Lange et al. [115] formulates an NMF problem1023

and adopts an entropy-based mechanism to control the weights1024

of multiview data. Zhu et al. [116] enforced a common affinity1025

matrix to conduct MVC in one step. Liu et al. [117] chooses1026

tensor to represent multiview data and then performs cluster1027

analysis via tensor methods. Based on an assumption that the1028

exemplar of a cluster in one view is always an exemplar of1029

that cluster in the other views, Zhang et al. [118] proposed a1030

multiviewandmultiexemplar fuzzy clusteringmethodwhichhas1031

a theoretical guarantee on the performance improvement com-1032

pared with single-view clustering counterpart. In paper [119],1033

via cross-view graph diffusion, a unified graph for multiview1034

data is learned to conduct final clustering.1035

IV. RELATIONSHIPS TO RELATED TOPICS1036

As we mentioned previously, MVC is a learning paradigm1037

for cluster analysis with multiview feature information. It is a1038

basic task in machine learning and thus can be useful for various1039

subsequent analyses. Inmachine learning and datamining fields,1040

there are several closely related learning topics such asmultiview1041

representation learning, ensemble clustering, multitask cluster-1042

ing, and multiview supervised, and semisupervised learning. In1043

the following, we will elaborate the relationships betweenMVC1044

and a few other topics.1045

A. Relationship to Multiview Representation 1046

Multiview representation [120] is the problem of learning a 1047

more comprehensive or meaningful representation from mul- 1048

tiview data. According to [121], representation learning (also 1049

known as embedding learning ormetric learning) is away to take 1050

advantage of human ingenuity and prior knowledge to extract 1051

some useful but far-removed feature representation for the ulti- 1052

mate objective. Thus representation learning does not need to be 1053

unsupervised in nature. For instance, metric learning has mainly 1054

been studied from the supervised perspective, when class labels 1055

are present. Using the class labels, approaches usually form 1056

constraints, for example, pairwise or triplet-based constraints. 1057

Multiview representation can be considered as a more basic 1058

task than MVC, since multiview representation can be useful 1059

in broader purpose such as classification or clustering and so 1060

on. However, cluster analysis based onmultiview representation 1061

may not be ideal because the creation of multiview representa- 1062

tion is unaware of the final goal of clustering [122], [123]. 1063

In an archived survey article [120], multiview representation 1064

methods are categorized into mainly two classes: the shallow 1065

methods and the deepmethods. The shallowmethods aremainly 1066

based on CCA, which may correspond to Section III-E. For the 1067

deep methods, there exist a large number of works [124]–[130] 1068

on multiview representation. For multiview deep clustering, 1069

there are also many recent works including [131]–[136]. As 1070

mentioned above, the sequential way of first multiview repre- 1071

sentation and then clustering is a natural way to perform MVC, 1072

but the ultimate performance is usually not good because of the 1073

gap in the two steps. Therefore, how to integrate clustering and 1074

multiview representation learning into a simultaneous process 1075

is an intriguing direction up to date, especially for deep multi- 1076

view representation. In addition, although many MVC methods 1077

sprung up in recent years, it still has large space to develop, 1078

especially compared with the development of multiview deep 1079

representation learning. 1080

B. Relationship to Ensemble Clustering 1081

Ensemble clustering [137] (also named consensus clustering 1082

or aggregation of clustering) is made up of two steps: generation 1083

step and consensus step. Generation step is used to generate 1084

several sets of clusterings of the dataset while consensus step is 1085

used to combine those sets of clusterings to obtain a consensus 1086

clustering. MVC does not need to obtain the final clustering 1087

result based on the sets of clusterings from original datasets, 1088

the final clustering result can be directly obtained from original 1089

datasets. This is the big difference between ensemble clustering 1090

and MVC. Certainly, MVC can also conduct clustering from 1091

generation step and consensus step when original datasets are 1092

multiview and those clusterings obtained in generation step are 1093

gotten from each view of the original datasets. Thus if ensemble 1094

clustering is applied to clustering with multiple views of data, 1095

it becomes a type of MVC method. In this sense, MVC and 1096

ensemble clustering have some overlaps. Therefore, some of the 1097

ensemble clustering techniques, e.g., [138]–[143] can be applied 1098

to MVC. This works in [65], [144], and [145] are representative 1099

multiview ensemble clustering methods. Although the idea of 1100

ensemble clustering is simple, it has gained good performance 1101
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in real-world application. Especially in many kaggle competi-1102

tions held recently, ensemble mechanism is quite popular and1103

performed well. Thus, more exploration in this direction can1104

be done in future. However, it should be noted that MVC does1105

not need to have clear separate generation and consensus steps.1106

More works connect MVC and ensemble clustering can be1107

investigated further.1108

C. Relationship to Multitask Clustering1109

Multitask clustering improves the clustering performance of1110

each task by transferring knowledge among the related tasks,1111

such as in [146]–[151]. BetweenMVC andmultitask clustering,1112

there are two big differences. The first one is that multitask1113

cares about the performance of each task, while MVC just cares1114

about a final consensus clustering performance not each view.1115

The second one is that one works on multiple tasks while the1116

other one works on multiple views. Multiple tasks can be based1117

on multiple datasets, while multiple views have to be based on1118

the same dataset (but just different views of this one dataset).1119

If each task corresponds to clustering in a specific view of1120

the same dataset, multiple clustering results will be obtained,1121

and then ensemble clustering methods may be employed to1122

fuse these clustering results. Therefore, multitask clustering,1123

potentially combined with ensemble clustering, can implement1124

MVC in the scenario where each task corresponds to each1125

view of the same data. In addition, multitask clustering and1126

MVCcanbe conducted simultaneously to improve the clustering1127

performance [152]–[154]. However, we should still distinguish1128

the differences between them, since multi-task clustering cares1129

about the clustering performance of each task. Even if each task1130

corresponds to each view of the dataset, multitask clustering is1131

still not equivalent to MVC. When multitask clustering com-1132

bines ensemble clustering further, it will achieve MVC. Thus1133

some techniques and ideas in multitask clustering and ensemble1134

clustering can be helpful for MVC1135

D. Relationship to Multiview Supervised and Semisupervised1136

Learning1137

The difference between MVC and multiview supervised,1138

semisupervised learning lies in whether to use the label of the1139

data. MVC does not use any label of the data while multiview1140

supervised learning [4], [155] uses the labeled data to learn clas-1141

sifiers (or other inference models), multiview semisupervised1142

learning [3], [4] can learn classifiers with both the labeled and1143

unlabeled data.1144

The commonality between them lies in the way to combine1145

multiple views. Many widely recognized techniques for com-1146

bining views in the supervised or semisupervised settings, e.g.,1147

cotraining [23], [156], coregularization [157], [158], margin1148

consistency [159], [160] can lend a hand to MVC if there is1149

a mechanism to estimate the initial labels. Thus, the key point1150

to conduct MVC with some techniques in multiview supervised1151

or semisupervised learning is how to estimate the initial labels1152

or get some pseudo labels to play the role of labels in multiview1153

supervised learning or multiview semisupervised learning.1154

Fig. 2. Five views (CENTRIST, ColorMoment, LBP, HOG, and SIFT) on
three sample images from Caltech101.

V. APPLICATIONS 1155

MVC has been successfully applied to various applications 1156

including computer vision, natural language processing, social 1157

multimedia, bioinformatics and health informatics, and so on. 1158

A. Computer Vision 1159

MVC has been widely used in image categorization [30], 1160

[32], [51], [111], [139], [161], [162] and motion segmentation 1161

tasks [45], [163]. Typically, several feature types, e.g., CEN- 1162

TRIST [164], ColorMoment [165], HOG [166], LBP [167], and 1163

SIFT [168] can be extracted from the images (see Fig. 2 [51]) 1164

prior to cluster analysis. Yin et al. [30] proposed a pairwise 1165

sparse subspace representation for multiview image clustering, 1166

which harnesses the prior information and maximizes the cor- 1167

relation between the representations of different views. Wang et 1168

al. [32] enforced between-view agreement in an iterative way to 1169

performmultiview spectral clustering on images. Gao et al. [51] 1170

assumed a common low dimensional subspace representation 1171

for different views to reach the goal of MVC in computer vision 1172

applications. Cao et al. [111] adopted Hilbert Schmidt indepen- 1173

dence criterion as a diversity term to exploit the complementary 1174

information of different views and performedwell on both image 1175

and video face clustering tasks. Jin et al. [161] utilized the CCA 1176

to perform multiview image clustering for large-scale annotated 1177

image collections. 1178

Ozay et al. [139] used consensus clustering to fuse image 1179

segmentations. Chi et al. [169] conducted MVC for web image 1180

retrieval ranking. Méndez et al. [162] adopted the ensemble 1181

way to perform MVC for MRI image segmentation. NMF 1182

was adopted in [45] to perform MVC for motion segmenta- 1183

tion. Djelouah et al. [163] addressed the motion segmentation 1184

problem by propagating segmentation coherence information 1185

in both space and time. Xin et al. [89] successfully applied 1186

MVC for person reidentification. Tao et al. [170] applied their 1187

proposedmultiview subspace clusteringmethods to background 1188

subtraction from multiview videos. 1189
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Fig. 3. Some photographs from two social events: concerts (top row) andNBA
game (bottom row).

B. Natural Language Processing1190

In natural language processing, text documents can be ob-1191

tained in multiple languages. It is natural to useMVC to conduct1192

document categorization [16], [17], [46], [51], [171]–[173] with1193

each language as one view. Employing the cotraining and coreg-1194

ularization ideas, Kumar et al. [16], [17] proposed cotraining1195

MVCand coregularizationMVC, respectively. The performance1196

comparison onmultilingual data demonstrates the superiority of1197

these two methods over single-view clustering. Liu et al. [46]1198

extended NMF to multiview settings for clustering multilingual1199

documents. Kim et al. [171] obtained the clustering results from1200

each view and then constructed a consistent data grouping by1201

voting. Jiang et al. [172] proposed a collaborative PLSAmethod1202

that combines individual PLSA models in different views and1203

imports a regularizer to force the clustering results in an agree-1204

ment across different views. Hussain et al. [174] utilized an1205

ensemble way to performMVC on documents. Zhang et al. [43]1206

adopted an MVC method with graph regularization to improve1207

object recognition.1208

C. Social Multimedia1209

Currently, with the fast development of social multimedia,1210

how to make full use of large quantities of social multimedia1211

data is a challenging problem, especially when matching them1212

to the “real-world concepts” such as the “social event detection.”1213

Fig. 3 shows two such events: a concert and an NBA game. The1214

pictures showed there form just one view, and other textural1215

features such as tags and titles form the other view. Such a1216

social event detection problem is a typicalMVCproblem. Petkos1217

et al. [175] adopted a multiview spectral clustering method to1218

detect the social event and additionally utilized some known1219

supervisory signals (the known clustering labels). Samangooei1220

et al. [176] performed feature selection first before constructing1221

the similarity matrix and applied a density-based clustering to1222

the fused similarity matrix. Petkos et al. [177] proposed a graph-1223

based MVC to cluster the data from social multimedia. MVC1224

has also been applied to grouping multimedia collections [178],1225

news stories [179], and social web videos [180].1226

D. Bioinformatics and Health Informatics1227

In order to identify genetic variants underlying the risk for1228

substance dependence, Sun et al. [97], [106], [107] designed1229

Fig. 4. Three views from health informatics: vital sign (left), urine drug screen
(middle), and craving measure (right)).

three multiview coclustering methods to refine diagnostic clas- 1230

sification to better inform genetic association analyses. Chao et 1231

al. [181] extended the method in [97] to handle missing values 1232

that might appear in each view of the data, and used the method 1233

to analyze heroin treatment outcomes. The three views of data 1234

for heroin-dependent patients are demonstrated in Fig. 4. Yu 1235

et al. [182], [183] designed a multikernel combination to fuse 1236

different views of information and showed superior performance 1237

on disease datasets. In [184], an MVC based on the Grassmann 1238

manifold was proposed to deal with gene detection for complex 1239

diseases. MVC is also applied to analyze athlete’s physical fit- 1240

ness test [185]. Recently, Rappoport and Shamir [186] provided 1241

a review on MVC on biomedical omics datasets. 1242

VI. DATASETS AND EXPERIMENTS 1243

To further analyze the advantages and disadvantages of each 1244

group of MVC algorithms, we provide several commonly used 1245

MVCdatasets and conduct empirical evaluation tomeasure how 1246

each group of MVC algorithms performs. 1247

A. Datasets 1248

Six benchmark multiview datasets are adopted, and the statis- 1249

tics of these datasets are summarized in Table I. 1250

3 Sources1 is a news article dataset. These articles are col- 1251

lected from three news sources: BBC, Reuters, and Guardians. 1252

In original datasets, there are 948 articles that are reported by 1253

at least one of the three sources. Herein, 169 of these articles 1254

are included, and the bag-of-word representation is adopted to 1255

represent the articles. These 169 articles are dominated by one of 1256

the six topical classes: business, entertainment, health, politics, 1257

sport, technology. 1258

Reuters [187] includes documents in five languages: English, 1259

French, German, Spanish, and Italian. These five language 1260

versions constructed five views of these documents, and bag 1261

of words is used to represent the features in each view. These 1262

documents belong to one of the six categories. 100 documents 1263

are randomly sampled from each category to construct a dataset 1264

of 600 documents. 1265

Handwritten Digits is available from the UCI repository.2 It 1266

has 2000 examples of handwritten digits (0-9) extracted from 1267

Dutch utility maps. There are 200 examples in each class, 1268

each represented with six feature sets. Following experiments 1269

1[Online]. Available: http://mlg.ucd.ie/datasets/3sources.html
2[Online]. Available: http://archive.ics.uci.edu/ml/datasets/

Multiple+Features

http://archive.ics.uci.edu/ml/datasets/Multiple
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TABLE I
STATISTICS OF THE MULTIVIEW DATASETS

in [188], three feature sets: 76 Fourier coefficients of the char-1270

acter shapes, 216 profile correlations and 64 Karhunen-Love1271

Coefficiens are adopted.1272

COIL203 consists of 1440 images belonging to 20 classes.1273

Three views are represented by 30 isometric projection (ISO),1274

19 linear discriminant analysis (LDA), and 30 neighborhood1275

preserving embedding (NPE), respectively.1276

YALE [189] consists of 165 images from 15 subjects, which1277

has 11 images per subject and corresponds to different facial1278

expressions or configurations. Each image is expressed by three1279

heterogeneous feature sets with dimensions of 4096, 3304, and1280

6750.1281

Movies4 includes 617 movies belonging to 17 genres. Each1282

movie is described by two views: 1878 keywords and 13981283

actors.1284

B. Compared Methods and Parameter Settings1285

In the experiment, six representative MVC algorithms cor-1286

responding to each group of MVC approaches are used to1287

compare. To explore how deep MVC algorithms perform, one1288

deep algorithm is chosen to compare. These algorithms are1289

multiview mixture-of-multinomials EM (MVMMEM) [10], co-1290

regularizationmultiview spectral clustering (Co-Reg) [17], mul-1291

tiview low-rank sparse subspace clustering (MVLRSSC) [31],1292

multiview clustering via joint NMF (MultiNMF) [46], kernel-1293

based weightedmultiview clustering (MVKKM) [84], MVC via1294

CCA (MVCCA) [100], and MVC via deep matrix factorization1295

(DeepNMF) [39].1296

As for the parameter settings,we try our best to set it according1297

to that in their original papers. For MVMMEM, the number1298

of rounds are selected from {5, 10, . . . , 100}. For Co-Reg, pa-1299

rameter α is selected from 0.01 to 0.05 with step 0.01. For1300

MVLRSSC, we tune the parameters β1, β2, λ
(v) according to1301

[31]. For MultiNMF, λv is set to 0.01 for all views. According1302

to MVKKM [84], good performance can be obtained with1303

p = 1.5, we adopted this setting. For MVCCA, we kept vectors1304

with canonical correlation bigger than 0.01. For DeepNMF, two1305

layers with layer size [100, 50] are designed for all the datasets1306

except COIL20 ([18,9]), parameter β = 0.1, γ = 0.5.1307

To conduct a comprehensive evaluation, all the approaches1308

are compared with six evaluation metrics: normalized mutual1309

information (NMI), accuracy (ACC), adjusted rand index (ARI),1310

F-score, Precision, and Recall. For all these metrics, the higher1311

value indicates better clustering performance. All the algorithms1312

3[Online]. Available: http://www.cs.columbia.edu/CAVE/software/softlib/
coil20.php

4[Online]. Available: http://lig-membres.imag.fr/grimal/data.html

are run 20 times and the mean and standard deviation of each 1313

metric is reported. 1314

C. Experiment Results 1315

The results are shown in Table II. On datasets 3 Sources, 1316

Reuters and Movies, MVLRSSC performs best. On datasets 1317

Handwritten Digits, COIL20, MVKKM outperforms all the 1318

other algorithms.On datasetYALE,DeepNMFobtained the best 1319

performance. These results are almost consistent on six different 1320

metrics except NMI on dataset HandwrittenDigits andRecall on 1321

datasetMovies. On dataset Handwritten Digits, the performance 1322

in NMI for MVKKM andMVLRSSC are very close. On dataset 1323

Movies, although the performance in Recall for MVKKM is 1324

significantly better than that for MVLRSSC, the precision and 1325

comprehensive metric F1 score for MVKKM are worse. 1326

Datasets 3 Sources, Reuters, and Movies consist of text 1327

information. Due to special topic properties, low rank and 1328

sparsity are important when conducting MVC, thus the algo- 1329

rithm MVLRSSC that take low rank and sparsity into account 1330

performswell. Datasets Handwritten Digits, COIL20 andYALE 1331

are datasets of images, maybe it is necessary to use nonlinear or 1332

deep structure to learn the abstract or meaningful clusters, thus 1333

MVKKM and DeepNMF perform better on these datasets. In 1334

addition, different views contribute different in final clustering, 1335

thus different weights should be given them to promote the 1336

performance, thus MVKKM can be a good choice. From the 1337

results, we can find that MultiNMF just applied to datasets 3 1338

Sources, YALE, and Movies, that is because MultiNMF can 1339

apply to the scenario where all entries of the datasets are 1340

nonnegative. This is one limitation of MultiNMF. Results in 1341

Table II also shows that algorithms MVMMEM and MVCCA 1342

just apply to dataset Movies, that is because they are suitable for 1343

the datasets with only two views, thus this is the limitation of 1344

these algorithms.MVMMEMperforms worse thanMVLRSSC, 1345

as well as Co-Reg, better than MultiNMF, MVKKM, MVCCA, 1346

and DeepNMF. It can be seen that generative algorithms has the 1347

potential to be comparable with state of the art discriminative 1348

algorithms. Although MultiNMF has nonnegative property, it 1349

does not perform well compared with other group of algorithms 1350

on the above datasets. This maybe because compared with 1351

nonnegative property, other properties like low rank, sparsity, 1352

weights difference aremore important for performance improve- 1353

ment. 1354

Based on the results in Table II, we can find that multi- 1355

view subspace clustering group, multikernel MVC, and deep 1356

MVC algorithms performwell. Spectral clustering-basedMVC, 1357

NMF-based MVC, and MVCCA perform worse than the above 1358

http://www.cs.columbia.edu/CAVE/software/softlib/coil20.php
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TABLE II
PERFORMANCE OF SEVEN ALGORITHMS ON SIX MULTIVIEW DATASETS. THE MEAN AND STANDARD DEVIATION OF 20 RUNS

OF THESE ALGORITHMS ARE REPORTED

“—” indicates that this dataset has negative entries, thus MultiNMF cannot apply. “/” indicates this algorithm only applies to two-view case directly but this dataset has more
than two views. the best results among seven MVC algorithms on each dataset is shown in bold font.

algorithms on the six commonly used datasets. GenerativeMVC1359

performs better than many discriminative ones, thus it is worth1360

attracting more attention in future. In this experiment, we fo-1361

cused on clustering performance, a more comprehensive study1362

including time cost factor, and more advanced MVC algorithms1363

that are worth further exploration.1364

VII. OPEN PROBLEMS1365

We have identified several problems that are still underex-1366

plored in the current body of MVC literature. We discuss these1367

problems in this section.1368

A. Large Scale Problem (Size and Dimension)1369

In modern life, large quantities of data are generated every1370

day. For instance, several million posts are shared per minute in1371

Facebook, which include multiple data forms (views): videos,1372

images, and texts. At the same time, a large amount of news are1373

reported in different languages, which can also be considered1374

as multiview data with each language as one view. However,1375

most of the existing MVC methods can only deal with small1376

datasets. It is important to extend these methods to large scale 1377

applications. For instance, it is difficult for the existingmultiview 1378

spectral clustering basedmethods towork on datasets ofmassive 1379

samples due to the expensive computation of graph construction 1380

and eigen-decomposition. Although some previous works such 1381

as [190]–[193] attempted to accelerate the spectral clustering 1382

method to scale with big data, it is intriguing to extend them 1383

effectively to themultiview settings. Recently, Zhang et al. [194] 1384

proposed an interesting idea to solve large scale problem by 1385

encoding multiview image data into a compact common binary 1386

code space and then conduct binary clustering. 1387

Another type of big data has high dimensionality. There is a 1388

large quantity of single-view clustering methods [195] to deal 1389

with this kind of problem, However, there is still one special 1390

class of such problem tough to deal with. For instance, in 1391

bioinformatics, each person has millions of genetic variants as 1392

genetic features where, compared with the problem dimension, 1393

the number of samples is low. Using genetic features in a 1394

clinical analysis with another view of clinical phenotypes often 1395

forms a multiview analytics problem. How to deal with such 1396

a clustering problems is tough due to the over-fitting problem. 1397
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Although feature selection [196], [197] or feature dimension1398

reduction [198] like PCA is commonly used to alleviate this1399

problem in single-viewsettings, there are no convincingmethods1400

up to now, especially because deep learning cannot cope with it1401

due to the properties: small size and high feature dimension. It1402

may recall new theory to appear to handle this problem.1403

B. Incomplete Views or Missing Value1404

MVC has been successfully applied to many applications as1405

shown in Section V. However, there is an underlying problem1406

hidden behind: what if one or more views are incomplete? This1407

is very common in real-world applications. For example, in1408

multilingual documents, many documents may have only one1409

or two language versions; in social multimedia, some sample1410

may miss visual or audio information due to sensor failure; in1411

health informatics, some patients may not take certain lab tests1412

to causemissing views ormissing values. Some data entriesmay1413

bemissing at randomwhile others are nonrandom [181]. Simply1414

replacing the missing entries with zero or mean values [199] is1415

a common way to deal with the missing value problem, and1416

multiple imputation [200] is also a popular method in statistical1417

field. The missing entries can be generated by the recently pop-1418

ular generative adversarial networks [201]. However, without1419

considering the differences of random and nonrandom effects in1420

missing data, the clustering performance is not ideal [181].1421

Up to now, there have already been several multiview works1422

[36]–[38], [61], [63], [88], [103], [202] that attempted to solve1423

the incomplete view problem. Two methods in [61] and [63]1424

introduced a weight matrix Mi,j to indicate whether the ith1425

instance present in the jth view. For the two-view case, the1426

method in [36] reorganized the multiview data to include three1427

parts: samples with both views, samples only having view 1, and1428

samples only having view 2 and then analyzed them to handle1429

missing entries. Assuming that there is at least one complete1430

view, Trivedi et al. [103] used the graph Laplacian to complete1431

the kernel matrix with missing values based on the kernel matrix1432

computed from the complete view. Shao [88] borrowed the1433

same idea to deal with multiview setting. Instead imputing1434

kernel matrix, Liu [203] imputed each base matrix generated by1435

incomplete views with a learned consensus clustering matrix.1436

It is noted that all these methods deal with incomplete views1437

or missing value with some constraints, but they do not aim to1438

deal with the situation with arbitrarily missing values in any of1439

the views. In other words, this situation is that all views have1440

missing values and the samples just miss a few features in a1441

view. Obviously, the above methods have significant limitations1442

that cannot make full use of the available multiview incomplete1443

information. In addition, all existing methods do not take into1444

consideration the difference between random and nonrandom1445

missing patterns. Therefore, it is worth exploring how to use the1446

mixed types of data in multiview analysis.1447

C. Initialization and Local Minima1448

For MVC methods based on k-means, the initial clusters are1449

very important and different initializations may lead to different1450

clustering results. It is still challenging to select the initial1451

clusters effectively in MVC and even in single-view clustering 1452

settings. 1453

Most NMF-based methods rely on nonconvex optimization 1454

formulations, and thus are prone to the local optimum problem, 1455

especially when missing values and outliers exist. By enforcing 1456

a consistent clustering result in different view, Zhao et al. [173] 1457

formulated a jointly convex optimization formulation and addi- 1458

tionally using some side information. Self-paced learning [204] 1459

is a possible solution, and Xu et al. [64] applied it to MVC to 1460

alleviate the local minimum problem. 1461

The generative convex clustering method [8] is an interesting 1462

approach to avoid the local minimum problem. In [12], a mul- 1463

tiview version of the method in [8] is proposed and shows good 1464

performance. This kind of generative methods may be another 1465

good direction worth further exploring. 1466

D. Deep Learning 1467

Recently, deep learning has demonstrated outstanding perfor- 1468

mance in many applications such as speech recognition, image 1469

segmentation, object detection, and so on. However, compared 1470

with the fast growth of supervised deep learning and unsuper- 1471

vised deep representation learning, deep clustering still has a 1472

lot of room to develop, especially multiview deep clustering. A 1473

naturalway to conduct deep clusteringormultiviewdeep cluster- 1474

ing is to conduct clustering on the representation obtained from 1475

single-view representation learning or multiview representation 1476

learning. In fact, there should bemany advancedways to explore 1477

how to conduct multiview deep clustering. 1478

Recently, there indeed appeared a number of deep clustering 1479

works. For example, the works in [205]–[207] borrowed the 1480

supervised deep learning idea to perform supervised clustering. 1481

In fact, they can be considered as performing semisupervised 1482

learning. So far, there are already several truly deep clustering 1483

works [131], [132], [208]. Tian et al. [131] proposed a deep 1484

clustering algorithm that is based on spectral clustering, but 1485

replaced eigenvalue decomposition by a deep auto-encoder. Xie 1486

et al. [132] proposed a clustering approach using deep neural 1487

network which can learn representation and perform clustering 1488

simultaneously. It is interesting to explore how to extend them 1489

to multiview scenarios. 1490

Besides deep clustering works, there also exist some MVC 1491

methods. Huang et al. [208] proposed to use multiple layer 1492

matrix factorization and shared the same representation matrix 1493

across different views to conduct MVC. Experimental results 1494

demonstrates the superiority of this deep learning methods to 1495

multi-view shallow clustering methods like cotraining cluster- 1496

ing, coregularization clustering, and multiview k-means clus- 1497

tering. By using auto-encoder architecture, Zhu et al. [135] 1498

designed a diverse net and universal net to make full use of 1499

the complementary and consensus information among multiple 1500

views to implement MVC. To let clustering label to guide the 1501

representation learning, Sun et al. [136] proposed another deep 1502

subspace MVC method in a semisupervised way. Li et al. [133] 1503

presented a deep MVC approach borrowing the idea and archi- 1504

tecture of generative discriminative network (GAN). Inspired 1505

by the great success obtained by using attention mechanism in 1506
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deep learning fields, Zhou et al. [134] explored anMVCmethod1507

by combing GAN and attention mechanisms, and experiments1508

support its effectiveness.1509

Compared with traditional multiview shallow clustering1510

methods, the aforementioned multiview deep clustering meth-1511

ods demonstrated better performance due to several reasons.1512

First, deep networks adopted in multiview deep clusteringmeth-1513

ods havebetter expression ability,maybe it candiscover themore1514

real structure of the multiview data. Second, part of them adopt1515

end-to-end multiview deep clustering way. The representation1516

obtained amid can reflect multiview data comprehensively and,1517

at the same time, serve to the final goal clusteringwell. However,1518

there are still large space to explore and develop in this direction.1519

First, there aremore andmore novel deep learning architectures;1520

how to extend them to multiview scenarios needs more in-1521

vestigation. Second, although some end-to-end multiview deep1522

clustering methods appeared, more such methods are expected,1523

since multiview deep representation learning developed more1524

sufficiently than multiview deep clustering, and it is simple1525

and natural to run clustering algorithm on the representation1526

obtained frommultiviewdeep representation learning.However,1527

the separate process to deal with multiview deep clustering1528

has its limitations, like being unaware of clustering goal in1529

representation learning. Third, deep learning techniques has its1530

special properties; more ways to combine multiple views can1531

be designed to serve to multiview deep clustering. Fourth, some1532

theoretical investigation should be conducted to unfold how and1533

why multiview deep clustering shows better performance than1534

traditional shallow methods.1535

E. Mixed Data Types1536

Multiview data may not necessarily just contain numerical1537

or categorical features. They can also have other types such1538

as symbolic, ordinal, etc. These different types can appear1539

simultaneously in the same view, or in different views. How1540

to integrate different types of data to perform MVC is worthy1541

of careful investigation. Converting all of them to categorical1542

type is a straightforward solution. However, much information1543

will be lost during such processing. For example, the difference1544

of the continuous values categorized into the same category is1545

ignored. The work in [209] proposed a solution to mixed data1546

type problem with vine copulas. It is worth more exploring to1547

make full use of the informationwithinmixed data types inMVC1548

settings.1549

F. Multiple Solutions1550

Most of the existing MVC, even single-view clustering, al-1551

gorithms only output a single clustering solution. However, in1552

real-world applications, data can often be grouped in many dif-1553

ferentways, and all these solutions are reasonable and interesting1554

from different perspectives. For example, it is both reasonable1555

to group the fruits apple, banana, and grape according to the1556

fruit type or color. Until now, to the best of our knowledge,1557

there are very few works along this direction [210]–[212]. Cui1558

et al. [210] proposed to partition multiview data by projecting1559

the data to a space that is orthogonal to the current solution1560

so that multiple nonredundant solutions were obtained. In an- 1561

other work [211], Hilbert–Schmidt independence criterion was 1562

adopted to measure the dependence across different views and 1563

then one clustering solution was found in each view. Chang et 1564

al. [212] automatically learned multiple expert views and the 1565

clustering structure corresponding to each view in a Bayesian 1566

probabilistic model. MVC algorithms that can produce multiple 1567

solutions should attract more attention in the future. 1568

VIII. CONCLUSION 1569

To sort out existing MVC methods, we proposed a novel tax- 1570

onomy to introduce them. Similar to machine learning method 1571

categorizations, we split MVC methods into two classes: gen- 1572

erative methods and discriminative methods. Based on the way 1573

to combine multiple views, discriminative methods are further 1574

split into five main classes, the first three of which have a com- 1575

monality: sharing certain structures across the views. The fourth 1576

one uses direct combinations of the views, while the fifth one 1577

employs view combinations after projections. Compared with 1578

discriminative methods, generative methods have developed far 1579

less sufficiently. Although it has inherent limitation, it can deal 1580

with missing data and get global optima easily, thus it calls for 1581

more attention. To better understand MVC, we elaborate on the 1582

relationships betweenMVC and several closely related learning 1583

topics. We have also introduced several real-world applications 1584

of MVC and, most importantly, we conducted a comprehensive 1585

experimental study on representative MVC algorithms of each 1586

group to further analyze the advantages and disadvantages of 1587

them, and finally pointed out some interesting and challenging 1588

directions to guide researchers to advance in future. 1589
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