NON-DIFFUSIVE VARIATIONAL PROBLEMS
WITH DISTRIBUTIONAL AND WEAK GRADIENT CONSTRAINTS

HARBIR ANTIL, RAFAEL ARNDT, CARLOS N. RAUTENBERG, DEEPANSHU VERMA

ABSTRACT. In this paper, we consider non-diffusive variational problems with mixed boundary
conditions and (distributional and weak) gradient constraints. The upper bound in the constraint
is either a function or a Borel measure, leading to the state space being a Sobolev one or the space
of functions of bounded variation. We address existence and uniqueness of the model under low
regularity assumptions, and rigorously identify its Fenchel pre-dual problem. The latter in some
cases is posed on a non-standard space of Borel measures with square integrable divergences. We also
establish existence and uniqueness of solution to this pre-dual problem under some assumptions. We
conclude the paper by introducing a mixed finite-element method to solve the primal-dual system.
The numerical examples illustrate the theoretical findings.
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1. INTRODUCTION

We begin by considering an evolutionary problem whose semi-discretization (in time) gives rise to
the class of stationary problems of interest in this paper. Suppose that f : (0,7) x  — R together
with ug : Q@ — R are given, where Q@ C RY is a bounded domain with a Lipschitz boundary.
Furthermore, let a be a given nonnegative function (possibly only integrable), or a nonnegative
Borel measure in 2. Suppose that u : (0,7) x Q — R, such that u(0) = ug, is a solution to the
following problem

T
Find u € K such that / (Dpu(t) — f(t),v(t) — u(t))LQ(Q) dt >0, forallv e K, (1.1)
0

where the set C is given by
K:=U0,T)Nn{w : w(t) € K almost everywhere}. (1.2)

The choice of U(0,7) and K in (1.2) hinges on the type of the boundary conditions and the
regularity of a. We assume that the boundary 90X is partitioned into a Dirichlet boundary part I'p
and a non-Dirichlet boundary part I'y, both composed of a finite number of connected parts, such
that

TD UFN:(?Q, and I'pNITy=0.

Notice that on I'yy, we do not necessarily prescribe Neumann boundary conditions, as it is later
clarified. However, a conservation law of material is in place in the case I'p = (); specifically, it can
be inferred from (1.1) that [, (u(T) — ug) dz = fOT Jo fdaxdt given that v = u + 1 are admissible
test functions as we see next. The restriction of u to the I'p part of the boundary is assumed to
be zero, and no restrictions are assumed on I'y.

The set K is convex and it arises by a nonlinear law with a bound on the first order derivative
terms. In the most general form K is given by

K ={veUr,(Q):|Gv|, <a}, (1.3)
with 1 < p < 400. We briefly discuss the two possible scenarios that we consider:

(I) If @ is a nonnegative measurable function, then Ur,(12) is a Sobolev-type space and
G =V is the weak gradient, so that |Vv|, is the f,-norm of the weak gradient of v. Hence,
|Vv|, < o in (1.3) is considered in the almost everywhere (a.e.) in {2 sense.

(II) If o is a nonnegative Borel measure, then Ur, () is a subset of functions of bounded
variation BV(Q). In this case, G = D is the distributional gradient, and |Dwv|, the total
variation measure of Dv associated to the ¢,-norm, and the constraint |Dv|, < o is understood
in the measure sense.

Both instances, (I) and (II) are related, in fact (I) may be considered as a special case of (II).
Furthermore, letting o € M*(Q) in case (II), where M*(£2) denotes the set of nonnegative Borel
measures, enables us to handle the delicate case a € L'(Q)T in (I). Next we shall provide a brief
description of modeling capabilities of (I) and (II) in the context of a particular application.

A possible motivation for the above class of problems is based on the study of accumulation of
granular heterogeneous material on possibly discontinuous structures. This approach was pioneered
by Prigozhin [32, 34, 35] in the case of homogeneous materials and a continuous support structure.
In this vein, f:(0,T) x 2 — R represents the (density) rate of a granular material being deposited
on a supporting structure ug : Q — R. Moreover, fOT Jo fdxzdt is the total amount of material
deposited on € over the time interval [0, 7]. In case that a > 0 is a real number, this corresponds
to the classical case of a granular cohesionless material where homogeneous piles are generated. If
a : 2 — R is not constant zero, the value of o at a point determines the angle of repose of the
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FIGURE 1. Accumulation of two kinds (magenta and blue) of granular materials on
discontinuous surface. (LEFT) Depiction of f(t,7) = fiX(zg,22)(T) + f2X(20,1)(T),
the accumulation of both materials, and da = a1X(g; 2,)(7) AT + Q2X(4,1)(z) dz +
Z?:l 0(x — z;). (RIGHT) The value of the initial supporting structure ug and the
the final distribution u (7).

material at that point, i.e., the steepness of a cone generated from a point source of material. This
is the case for heterogenous sandpiles [10] and also a restricted case of the quasi-variational sandpile
model; see [6, 7, 31, 8]. In a more general setting, where « is a measure, using the approach in this
paper, it is possible to generate discontinuous structures such as cliffs by preserving discontinuities
in the initial supporting structure uy and/or of f. Such an approach has not yet been considered
in the literature to the best of our knowledge.

A description of the qualitative behavior of Problem (1.1) is displayed in Figure 1. We assume two
materials with different angles of repose a1 and s with a; > a9 are poured on the discontinuous
structure uo(z) = X(z;,0,)(®) for z € © := (0,1) and 0 < 21 < w2 < 1. The intensity of the
material being deposited is given by f(t,2) = f1X(xg,22)(T) + f2X(20,1)(z) for some points zo, and
9, and some fi, fo > 0, i.e., the first and second materials are poured with density rates f; and
fa2, respectively, during the entire time interval (0,7'). We further assume that a sharp edge can
form at xo with maximum height of 1, and in addition discontinuities of maximum size 1 can be
preserved at the locations of the discontinuities of ug. Finally, the the gradient constraint « is then
given by da = a1X(0,2,) (%) dr + QaX(4,,1)(z) dv + Z?:l 0(x — x;), and the material is assumed to
escape freely at the boundary points of 2. On the right side of Figure 1, we see the comparison
between uy and u(7'), the solution at time T > 0; on the left we see the depiction of f, o, and the
accumulation regions of both materials.

The study of solutions to (1.1) usually makes use of the semi-discretization (in time) of the
problem via an implicit Euler method. In particular, we approximate the partial time derivative
Oyu by (u™ — u™ 1) /k for some time-step k > 0. The class of problems of interest in this paper is
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then given by
1
Minimize (min) 2/ lu(z)|? dz —/ f(z)u(x)dx over u € Ur, (),
Q Q

subject to (s.t.) w€ K,

(P)

where we assume f € L?(£2). Notice that (P) can be seen as the time-discrete version of (1.1) where

the solution u to (IP) is equal to u™ when f corresponds to f&ﬂm f(r)dr 4+ ku™~! with w1 given.

Closely related to the problem above, we consider the following class of problems
1
min 2/ |div p(x) — f(x)]*de + J(p) over p € Vi, (Q). (P*)
Q

We prove that (P*) is the Fenchel pre-dual of problem (P), i.e., the Fenchel dual [17] of (P*)
under certain conditions is (P). Several choices for Vr, () and J are explored which are directly
related to the nature of . In all cases considered, V() contains d-dimensional vector fields with
divergences in L?(2). In particular, we consider

(i) If « is a nonnegative measurable function (additional assumptions are later explained
but continuity is enough to guarantee what follows), then we explore two options for J:

ﬂmzéammmum, and ﬂmzéamw

In the first case Vi, (Q) is a subspace of L'(Q)4. In the second case V() is contained in
the space of Rd-valued Borel measures, so that the second functional denotes the integral of a
with respect to the total variation measure of p induced by the £?-norm. The two functionals
are closely related, and the first can be seen as a restriction of the second one to measures
that are absolutely continuous with respect to the Lebesgue measure.

(ii) If @ is a nonnegative Borel measure, then V1, (Q) is contained in the space of maps that
are « measurable, with J given by

ﬂMzLMNw

A few words are in order concerning (P) and (P*). Although the objective functional in (IP)
is smooth and amenable, the constraint set K makes the entire problem highly nonlinear and
nonsmooth. The latter also holds for (P*) given the nature of the functional J. The develop-
ment of solution algorithms for both problems is a rather delicate issue that requires appropriate
regularization methods that can handle the nonsmothness in an asymptotic fashion.

The paper focuses on functional analytic properties of (P) and (P*) together with duality rela-
tionship properties. Additionally, we develop a mixed finite type method to solve the optimality
conditions corresponding to (P) and (P*).

Some Bibliography. The structure of Problems (P*) and (P) and their inherent difficulties are
analogous to the ones that appear in the context of plasticity; see [29, 39] and references therein. In
particular, the first class of applications for diffusive variational problems with gradient constraints
is the elasto-plastic torsion problem. Such a problem has been thoroughly analyzed by Brézis,
Caffarelli, Evans, Friedman, Gerhardt, and others; see [19, 18, 12, 21, 20, 14, 15, 13]. Further, a
complete account of the literature can be found in [37]. A significant amount of the aforementioned
works focuses on regularity of solutions, the free boundary, and the equivalence of the gradient
constrained problem to a double obstacle one.

The modeling of the evolution of the magnetic field in critical-state models of type-II super-
conductors also leads to a problem like (1.1) with the addition of a diffusive operator and a
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state-dependent constraint in some cases; see [36, 5, 33, 34, 23, 26, 24]. See [38] for a study of
evolutionary variational problems with non-constant gradient constraints, and [30] for a complete
account of evolutionary problems with derivative bounds.

Analogous problems are found in mathematical imaging involving total variation regularization
[27, 22, 9] and more specifically in the weighted total variation version [25]. There, in contrast
to the work here, the L>-norm on the gradient is replaced by the L'-norm, leading to a pre-dual
problem with a pointwise bound in its state variable.

1.1. Organization of the paper. Preliminaries are provided, and some notations are made ex-
plicit in Section 2; elementary results about the generalized gradient constraint are given in Sec-
tion 2.1. In Section 3, we prove existence and uniqueness of the solution to problem (P) for the
cases when « is either a nonnegative Lebesgue measurable function or a nonnegative Borel measure.
Existence of solutions to problem (P*) is addressed in Section 4, while for the case when p is a
function we require d = 1, when p is a measure the dimension restriction is dropped. The relation
between problems (P) and (P*) are considered in Section 5, where a rigorous Fenchel duality result
establishes a link between these two problems. In particular, in Section 5.1, we address the case
where « is a function and the variable p is either a function or a measure. The case when « is
a measure and an extension of the duality result of the previous section is given in Section 5.2.
Finally in Section 6, we introduce a mixed finite element method to solve the underlying problems
and present a range of numerical tests.

2. NOTATION AND PRELIMINARIES

The purpose of this section is to introduce notation involving spaces, and convergence notions
that are used throughout the paper; in particular, we address the well-known notions of Sobolev
spaces and the space of functions of bounded variation. We refer the reader to Attouch et al. [3]
that we follow closely for this introduction together with the book of Adams and Fournier [1].

For a Banach space X, we denote its corresponding norm as || - ||x. For an element F in the
topological dual X’ of X, the duality pairing of F' and an arbitrary element x € X is written as
(F,z)x x. Throughout the paper, all Banach spaces are assumed to be real vector spaces.

The inner product on the Lebesgue space L%(Q) of (equivalence classes of) functions that are
square integrable on  is denoted as (-,-), so that (f,g) := [, f( z)dx for f,g € L*()) where
dx refers to integration with respect to the Lebesgue measure.

The Sobolev space of functions in L"(Q2) for 1 < r < 4oo with weak gradients in L"(Q)? is
denoted by W17 (€), and it is endowed with the norm

[vllwir@) = lvllzr@) + VOl Lr)as

where Vv denotes the weak gradient of v. In the case 7 = 2, we use the notation H'(Q) := W2(Q).
Given that € is assumed Lipschitz, restriction of a function v € W7 (2) to the boundary 92 is well-
defined via the continuous trace map v : W7 (2) — L"(9€2). Furthermore, the closed subspace of
functions in W17 (Q) that are zero on I'p is denoted by W;;(Q), ie.,

W (Q) :=={v € W (Q) : 90(v) = 0 on T'p}.

Similarly, we define H%D (Q) = Wllj(Q)
The space of real-valued Borel measures M((2) is endowed with the norm ||u|lv) == |p/(£),
where |u| is defined for an arbitrary open set O as

|u[(O) = sup {<M7z>M(Q),CO(Q) 2 € Co(R), supp(z) C O, |2(x)| <1, for every z € O}-



6 HARBIR ANTIL, RAFAEL ARNDT, CARLOS N. RAUTENBERG, DEEPANSHU VERMA

Note that (u, 2)ni(@),co@) = Jo z du, and that || defines a Borel measure in M*(£2), the subset of
nonnegative elements of M(Q), i.e., o € MH(Q) if o(B) > 0 for every Borel set B C (.
We denote by BV(), the space of functions v in L(Q), for which the total variation semi-norm

/ |Dvl, = sup {/ vdivpdx : pe€ C&(Q)d, Ip(z)]q < 1, for every z € Q}
Q Q

is finite and where ¢ is the Holder conjugate of p, i.e., 1/p + 1/q = 1; see [3, Section 10.1]. The
space BV(£2) is a Banach space endowed with the norm

H%mm:WM@+Am%-

The operator D represents the distributional gradient, and for a v € BV(Q), Dv is a Ré%valued
Borel measure. We use |Dv|, to denote the total variation measure (associated to the ¢P-norm) of
Duw, and the total mass |Dv|,(€2) is by definition

]Dv]p(Q):/Q]Dv]p.

Furthermore, the Lebesgue decomposition result applied to Dv implies that there exist measures
D,v and Dgv such that
Dv = Dgyv + Dy,

with D,v and Dgv respectively being absolutely continuous and singular with respect to the d-
dimensional Lebesgue measure.

We define now the notions of weak and quasi-intermediate convergence of sequences in BV()
which provide different topologies on the space BV(£2). The former is obtained by a subsequence
of a bounded sequence in BV (Q2). Moreover, the latter is sufficient to preserve boundary conditions
in the sense of the trace as stated in Theorem 2.3 below.

Definition 2.1 (WEAK CONVERGENCE FOR BV(Q)). Let {u,} be a sequence in BV () and
u* € BV(Q). We say that u, converges to u* weakly, denoted as u, — u* in BV(Q), if

uy, — u* in LYK, and Du,, — Du* in M(Q)%.
Recall that if {u,} is a sequence of measures in M(Q) then u, — p in M(Q2) for some p € M(Q),

that is, pu, weakly converges to p, if
/gdun — / gdu, (2.1)
Q Q
for all g € Cp(Q2).

The definition 2.1 is understood in light of the following fact: If {u,} is a bounded sequence in
BV(Q), there exists u* € BV(2) such that along a subsequence w, — u* in BV(2). The latter
follows since the embedding BV(Q) < L(£2) is compact (see Attouch et al. [3, Theorem 10.1.4.])
for Lipschitz domains, and since a bounded sequence of measures admits a weakly convergent
subsequence.

We shall use the direct method of calculus of variations to establish existence of solutions to
problems in BV(2) and with Dirichlet homogeneous boundary conditions on I'p. The space of
interest is BV, (€2) defined as

BVr, () == {v € BV() : 70(v) = 0 on I'p},

where v is a trace operator; see [3, section 10.2]. Notice that we use the same notation for the
trace operator in Sobolev spaces W1P(Q). There is a fundamental issue with the trace in BV(Q)
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and the application of the direct method as we show next with a standard example adapted from

[3]-
Consider a bounded sequence {uy} in BVp, (). Then, we can extract a subsequence (not
relabeled) of {u,} such that u, — u* in BV(Q2) . The problem is that in general it is not possible

to say that v* € BVp,(Q): Let Q = (0,1) with I'p = {0}, and consider {v,} defined as

nx, if0<z<l1/n,
vp(x) = )

I, ifl/n<z<l.
Then, v, € BVr,(Q), and v, — v* € BV(Q) \ BVp, (), with v* = 1. The underlying reason
is that the trace operator in BV(2) is not continuous with respect to weak convergence, but it is
with respect to the intermediate (and quasi-intermediate) convergence subsequently defined. We
further notice that |Dv,|(0,1) = 1 and |Dv*|(0,1) = 0, this discrepancy is central to the issue we
are considering.

Definition 2.2 (QUASI-INTERMEDIATE CONVERGENCE). Let {u,} be a sequence in BV(Q) and
u* € BV(Q). We say that u, converges to u* in the sense of quasi-intermediate convergence if

u, — u* in LY(Q), and /ng - Du,, — /ng -Du* for all ¢ € Cy()4,

where Cy(§2) is the space of bounded and continuous functions on €.

The name quasi-intermediate convergence arises since it describes a stronger topology than the
one of weak convergence, but not as strong as the intermediate one in which the second convergence
in the above definition is exchanged to [, [Duy| — [, [Du*|. The importance of the intermediate
convergence is that the trace map 7o : BV(Q) — L%_[d,l (09) is intermediate-strong continuous. We
refer to Attouch et al. [3, Theorem 10.2.2] for its proof. Similarly, we have
Theorem 2.3. The trace operator vy : BV(Q2) — L%_ld_l (09) is continuous when BV (L) is equipped
with the quasi-intermediate convergence and when L%_[d,l(f)Q) is equipped with the weak o(X', X)
topology, where X is given by the normal components of boundary restrictions of C*(Q) functions.

The proof of Theorem 2.3 follows by direct observation of the generalized Green’s formula, see
[3, Theorem 10.2.1].

2.1. The gradient constraint. A few words are in order concerning the gradient constraint given
in the set K defined in (1.3). Although in the case when G = V the situation is somewhat standard,
if G = D, the distributional gradient for BV functions, require several non-trivial explanations. In
the cases where « is a Borel measure and v € BV(2), the inequality

Doy < o (2.2)

in (1.3) is understood in the sense of measures, i.e., (2.2) holds true if
/ w|Dol, < / wda for all w € C§°(2) with w > 0 in Q, (2.3)
Q Q
and equivalently, for every Borel measurable set S C €2, it holds that

/S|Dv|p§/sda. (2.4)

Given that nonnegative Borel measures are inner and outer regular ([3, Proposition 4.2.1]) the

condition (2.3) is equivalent to
/ Do, < / da (2.5)
0] O
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for all open sets O C 2. B
It is possible to replace C3°(€2) in (2.3) by C*°(2), which we discuss next.

Proposition 2.4. The condition in (2.3) is equivalent to
/ w|Dv|, < / wda  for every w € C*°(Q) with w > 0 in Q. (2.6)
Q Q

Proof. Suppose that (2.3) holds true and let K, be a sequence of closed sets such that

/ |Dv|, =0 and / da — 0. (2.7)
O\Kr, O\K,,

The sequence {K,} exists given that measures in M1 () are inner regular; see [3, Proposition

4.2.1]. Let w € C*°(Q2) be nonnegative and arbitrary.
Accordingly, let {w,} in C5°(€2) be nonnegative, uniformly bounded in €, and such that w,, = @
in K. Hence || + |wy| can be uniformly estimated by a constant, and by (2.7) it holds that

/(w — ) [Dyl :/ (@ — wy)[Dv| = 0 and /(ﬂ; _ wy)da :/ (@ — wy) da — 0.
Q O\Kp, Q ANK,

Since the inequality in (2.6) holds for every w, by initial assumption, it also holds in the limit for
w. Furthermore, (2.6) immediately implies (2.3), so the result is proven. O

3. EXISTENCE THEORY FOR (P)

In this section, we discuss the existence and uniqueness of solution to the problem (P). We
start with the case when « is a measure, and the case when « is a function follows as a special
one. In particular, existence of solutions is studied in the function spaces Ur,(2) = BVp, ()
and Ur,(Q2) = WllDl (©2). Both of these spaces share the same difficulty: Bounded sequences do
not necessarily admit convergent (in some sense) subsequences that preserve the zero boundary
condition on I'p in the limit. The main purpose of this section is to overcome this obstacle.

3.1. The case when o is a nonnegative Borel measure. We consider in this section that
a € MT(Q) and hence the state space is given by

Ur,(©2) =BVr, ().

We start by proving the following lemma which gives sequential precompactness of some classes of
bounded sets in BV, (€2). These bounded sets are subsets of K which in this case is defined as

K ={v e BVr,(Q):|Dv|, <a}.
Lemma 3.1. Let « € MT(Q) and M > 0, then the set
K*=Kn{ve L'(Q): vl < M}
is sequentially precompact in the sense of the quasi-intermediate convergence of BV(Q).

Proof. Let {v,} be a sequence in K*, then it is bounded in BV(Q2), and thus v, — v* in BV()
for some v* € BV(Q) along a subsequence (not relabelled). Since Dv, — Dv* in M(Q)4, and
|Duy, |, < a it follows that for every open set O C Q that

|Dv*[,(0) < lirginf |Duy, |(0) < a(0), (3.1)

where we have used the lower-semicontinuity property for open sets of weak convergence of mea-
sures; see [3, Proposition 4.2.3]. Additionally, since elements in M(2) are outer (and inner) regular,
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we have that for a Borel set B it holds that p(B) = inf (O) where the infimum is taken over all
open sets such that B C O; see [3, Proposition 4.2.1]. Thus,

[Dv*[(B) < (B) (3.2)

follows from (3.1) by taking the infimum over {O open : B C O}.

In order to prove that v, converges to v* in the sense of quasi-intermediate convergence, we are
only left to prove that Dv,, = Dv* narrowly in M(Q2)9. The latter meaning that [, ¢Dv, — [, ¢Dv*
for each continuous and bounded ¢ on . Given that o € MT(2) we have that for each ¢ > 0 there
exists a compact set A, C 2 such that

a(Q\ A <e.
Since v, € K, then |Dv,| < «, and hence for each € > 0 the compact set A, C €, is such that
|Du, |(2\ Ae) <, for all n € N.

Then, by Prokhorov Theorem (see [11, Theorem 8.6.2.] and [3, Theorem 4.2.3]), there is a subse-
quence of {Dv,,} (not relabelled) that Dv,, — Dv* narrowly in M(€Q)9. That is, along a subsequence,
vy, converges to v* in the sense of the quasi-intermediate convergence. This implies that

vt e BVFD (Q),
by virtue of Theorem 2.3 and the fact that v, € BVp,(Q) for all n € N. O

The above results particularly means that for a sequence {v,} in K that is bounded in BV(Q2),
there exists a subsequence that converges to some u* € BV(Q2) in the sense of the quasi-intermediate
convergence. Further, u* € BVp,(Q) and also u* € K. A direct consequence of the above lemma
is the following result.

Theorem 3.2. If a € M1 (Q), then there exists a unique solution to (P) in BVp,(Q).

Proof. Consider an infimizing sequence {u,} for (P). It follows that {u,} is bounded in L?(2) and
hence Lemma 3.1 is applicable. That is, there is a subsequence of {u,} (not relabelled) such that
up — u* in L?(£2), and u, — u* in the sense of the quasi-intermediate convergence for BV(£2), and
further v* € K. Finally, by exploiting the weakly lower semicontinuity property of the objective
functional in (IP), we have that u* € K is a minimizer. O

Next we discuss the case when « is a function.

3.2. The case when « is an integrable function. In this section, we let a : @ — R be a
nonnegative and integrable function, leading to

Ur, () = Wi (9).

This case can be interpreted (to some extent) as a special case of the one in the previous subsection
under the assumption that a is a measure absolutely continuous with respect to the Lebesgue
measure. However, we proceed in a slightly different fashion by considering « as a function and the
state space contained in W11(€); this provides further insight on bounded sequences in K and in
Sobolev spaces. In this case, we have K given by

K={veWp (Q):|Vu, <o ael}.

Next we state a version of Lemma 3.1 adapted to the current setting which can be used to prove
existence of solutions to (IP).
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Lemma 3.3. Let a € LY(Q)* and M > 0, then every sequence {v,} in the set
K*=Kn{veL(Q): vl i) < M}
admits a subsequence satisfying for all p € Cy(Q)? that

* . 1 *
v, = " in L(Q), and /ng(:v) - Vg (x)de — /ng(x) - Vu*(z) dz,

for some v* € K*, which is also the weak limit in WEE(Q) of the same subsequence.

The above can be seen as a consequence of equi-integrability of the set K. Recall that a family
of functions F C L'(Q) is equi-integrable provided that for every e > 0, there exists a § > 0 such
that for every set A C Q with |A| < § we have that [, |u|dz < e for all u € F. Further, the
Dunford-Pettis theorem states that if {u,} is a bounded sequence in L*(2) and is equi-integrable,
then u, — u along a subsequence for some u € L'(Q2). Hence, since K is bounded in W11(Q),
and the gradients are equi-integrable, it is simple to infer strong convergence in L'() together
with a weaker convergence of the gradients in L!(2). A similar approach can be done again via
Prokhorov’s result as in the proof of Lemma 3.1 leading to an equivalent of the quasi-intermediate
convergence in BV(Q2). The trace preservation follows directly from the same proof. Further note
that the convergence determined does not imply strong convergence in W11(€2) since this space is
not uniformly convex. With the use of Lemma 3.3 and following the same argument as before for
Theorem 3.2, we have

Theorem 3.4. If a € LY(Q)7, then there exists a unique solution to (P) in Wll; (Q).

Remark 3.5. It should be noted that the obtention of the existence result Theorem 3.2 when o €
M(Q)*, by means of an approvimating sequence of solutions to problems (P) with oy, € LY()7F,
is not a trivial task, as we describe next. Consider the sequence {ay} in LY(Q)F which induces a
sequence of sets {K,} as

K, ={veBVr,(Q) : [Dv|, < an}.
Each K,, can be equivalently written as K,, = {v € Wllg(Q) H|Vulp < oy ace.} since o, is regular.
In order for the sequence of solutions {u,} to (P) with constraint K, to converge to the solution u

with constraint

K ={v e BVr,(Q): |Dv|, < a},

a set convergence like Mosco convergence is required. If o, o, € C'(Q) forn € N, with ap,(x) > € >0
for oll x € Q, and if o, — o uniformly, then Mosco convergence results are available in case of
Sobolev spaces; see [4]. Similar results are also available in the case of nonnegative oy, € WHP(Q)
with 1 < p < +oo for which a,, — a in WP(Q); see [2]. For BV(Q), results of the aforementioned
type are not known, and the non-reflexivity of BV(Q) makes the concept of Mosco convergence
not precisely appropriate for the kind of problems under study. On the other hand, in Section 6,
a numerical test concerning a sequence of functions approzimating a measure (in a distributional
sense) is presented, and the results seem to behave according to expectations. The set approximation
concept required in the BV setting is a topic of current research and an open question.

4. EXISTENCE THEORY FOR THE PRE-DUAL PROBLEM (IP*)

The focus of this section is on existence and uniqueness of solutions of problem (P*) under
different functional analytic settings. In particular, we focus on two cases where p is either (i)
a function or (ii) a Borel measure. In the first case, we let a be either a function or a measure;
here, existence results are limited to d = 1. On the other hand, in the second case we establish
an existence and uniqueness result for p with arbitrary d € N, for a specific class of a’s (to be
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specified later). Furthermore, this second case requires a nonstandard space of vector measures
with divergences in L?(Q2). Remarkably, a version of the integration-by-parts formula still holds
in this general setting; such a construct is rather recent [41]. We start with the case when p is a
function.

4.1. The case when p is a function and « is either a function or a measure. We begin
this section by considering that o € L'(2)* and J is defined as

ﬂMZAMMMMNm (4.1)
Moreover, we define
HMMFAM@WMN“WMMBQ

for p € C>(Q)4.
We assume that if d = 1 and T'y = () then « is not identically zero, and if d > 1 then a > 0 a.e.
in Q. Thus, the space V1, () is defined by

Ve () =B 7, (42)

where
E(Q):={p € C™(Q)" : supp (p)NTx = 0}.

It follows that Vi, (Q) is a Banach space: If d > 1, the result is clear given that « > O a.e. in
Q. If d =1, then V() = H%N(Q) which follows from the fact that J(p) + 3 [, |p/(z)[*> dz is an
equivalent norm (to the usual one) on H%N(Q) The latter is due to J(p) = [, o(z)|p(z )| dz being
a seminorm in H%N (©) and norm on the constants, i.e. for a € R, J(a) = |a|a(Q2) = 0 iff a = 0; see
[40, Chapter 1.4]. We can now establish existence of a solution to problem (P*).

Theorem 4.1. Letd =1, a € LY ()", and if Ty = () then suppose that o is not identically zero.
Consider J as defined in (4.1) on Vi, (Q) as in (4.2). Then, there exists a unique solution to (P*).

Proof. The proof is based on the direct method. Let J: V1, (€2) — R be the objective function
in (P*), that is,

/Wp (@) dz + J(p),

and let {p,, }°° in Vi, (€2) be an infimizing sequence of 7. Note that [, |p'(z)|* dz+ [, a|p(z)| dz
is a norm in Hf.(€); see [40, Chapter 1.4]. Hence, {pn}52, is bounded in Vr, (), and there exists
a weakly convergent (not relabeled) subsequence {p,}°, such that p, — p in H} +(€). By the
compact embedding of HFN () = C(Q) (see [1, Chapter 6]) we have existence of a subsequence

(not relabeled) p, — p in C(Q). Finally, weak lower semicontinuity of J (p) yields that p € Vi, (Q)
is a solution to (P*). The strict convexity of the objective functional provides uniqueness to the
solution. O

An analogous approach can be considered when « is a non negative Borel measure (and not
identically zero), that is, when o € M (Q). In particular, we set

Jpwaémuex (4.3)

and we construct the space Vp, (€2) in the same way as in (4.2), but with the norm || - |42 defined
as

2:AMNWHMMMW
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and assuming that if d = 1 and I'y = () then « is not identically zero, and if d > 1 then a(B) > 0
if |IB| > 0 and B C § is a Borel set.
The existence result of Theorem 4.1 follows mutatis mutandis: Since 3 [, [p(z)|*dz + [, [p|dov
is again a norm in H%N(Q), see [40, Chapter 1.4], the exact argument is applicable in this case.
We can now focus on the case when p is a measure which provides a general setting for the
problem of interest in terms of existence, uniqueness, and duality results.

4.2. The case when « is a function and p is a measure. We focus now on problem (P*) when
J is defined as

J(p):/ﬂad|p|q, (4.4)

and p is a Borel measure. Notice that the above functional can be seen as a generalization of the
functional in (4.1). The latter can be obtained by letting p be absolutely continuous with respect
to the Lebesgue measure.

The functional analytic setting in this section, requires p to be a measure with divergence of p
in L*(Q), and « to be measurable with respect to |p|,. We start with a proper definition of such
spaces and their properties. We disregard the possible “boundary conditions” for the variable p,
so that 'y = () and we define Vr (2) as follows:

Vi () =W (Q) = {peMQ)!: divp € L*(Q)}, (4.5)

where M(Q)9 corresponds to the R9-valued Borel measures in  C R4, Specifically, p € W(Q) if
there exists h € L?() such that

/ Ve -dp= —/ whdz, Vo € C*(Q), (4.6)

Q Q

and we define div p := h. The space W (£2) is a Banach space when endowed with the norm
[wllw (o) = lwlg(2) + [|div wl| L2 (), (4.7)

where ¢ € [1, +o0] and

[w],y () := sup {('w,v) cv € () with |u(z)], <1 Vae Q} :

Note that above (-, ) is the duality pairing between M(Q)4 and C.(Q)4, and hence

d
w,v)= [ v-dw= /vidwi.
w.v) = [ >,

Similarly to the definition of |w|4(12), we can define |w|,(A) for any open set A, and subsequently for
an arbitrary Borel set A. Hence, |w|, induces a nonnegative measure (the total variation measure
of w); in addition |w|,(Q) = [, d|wl|,. Note that the space W () contains regular maps, clearly
if p e CL(Q)4 then p € W(Q), in this case “d|p|, = |p|;dz” where dz is the Lebesgue measure.

A note on the space W () is in order. Although one may be inclined to think that vector
fields whose divergences are in L?(f2) would always have better regularity than just the measure
type, this is not true. We consider an example developed by Silhavy [41] to show otherwise.
Let v € BV(Q) with Q c R?, and define p = (Du)* with (a1,a2)t = (a2, —a1) with Du the
distributional (measure valued) gradient of u; it follows that divp = 0. This can be seen as follows:
C>(Q) is dense (in the sense of the intermediate convergence) in BV((2), this means in particular
that lim [, Vo - pydz = [, Ve - dp for such a smooth sequence defined as p, = (Duy)* with

u, € C*(Q). Since also [, Vi - p, dz = 0, the result follows by taking the limit and from (4.6).
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Following Silhavy [41], we have a form of integration-by-parts formula together with a trace
result. We denote by Lip®(A) the space of Lipschitz maps h : A — R for A € R¥ and endow it
with the norm

Il ) = Lin(h) + sup [a(z)]

where Lip(h) is the Lipschitz constant of h on A. It follows that for each p € W there exists a
linear functional N, : Lip?(9Q) — R such that for all v € Lip?(Q) we have

Np(vlaa) = / Vou-dp+ / vdivpdz. (4.8)
Q Q
Further, Nj, is bounded in the following sense
Np(@)] < (IPla() + [div pI(D) gl 00) < Cllplv 190105 00

for some C' > 0, and all p € W and all g € Lip?(0Q). Provided that p and v have enough
differential regularity, we observe

Np(v|an) = / vp-vdHIT!
o0

as expected. Thus, (4.8) is an extension of the usual integration-by-parts formula.
We are now ready to state and prove the existence and uniqueness result for problem (P*) under
the setting above.

Theorem 4.2. Let a € C(Q) be such that a(x) > 0 for all x € Q, and consider J defined by (4.4)
on Vi (Q) = W(Q) as given in (4.5). Then, problem (P*) admits a unique solution.

Proof. Note first that J is well-defined given that « is measurable with respect to all Borel mea-
sures. Consider an infimizing sequence {p,}. Since min ga(z) > 0, then {p,} is bounded in
Vi (92). Hence, we can extract a subsequence (not relabelled) such that p, — p* in M(Q)¢ for
some p* € M(Q)? and div p, — h in L*(Q) for some h € L?*(Q). Furthermore, for ¢ € CX(Q)
arbitrary

(¢, divp*)r2(q) = —/QW: -dp* = —nli_{glo/ﬂvw -dpp, = nli_{lgo(%diV Pn)r2) = (0, 1) 2 ),

so that h = div p*, i.e., p* € W(Q).

Since the map p ~ |p|, is weakly lower semicontinuous, ap, — ap* in M(Q)4, and |s|, = a|p|,
for s = ap, we have that p* is a minimizer by a weakly lower semicontinuity argument. Uniqueness
follows from the strict convexity of the objective functional. O

At this point, one would be tempted to extend the result to the case where I'y # (), for example,
by defining
Vi (@) =W(Q)N{pe W :Np(vlon) =0 Vv e Lipf (D)} (4.9)
While the space above is well-defined, it is not clear if the weak limits of sequences in the space
also belong to it. In fact, if p,, € V() is bounded, then

/Vu-dpn:—/vdivpndar,
Q Q

for each v € Lip{?D (). However, the weak limit along a subsequence argument is not enough to
pass to the limit in the left hand side given that Vv is not necessarily of compact support. This
remains an open problem.
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5. DUALITY RELATION BETWEEN (P) AND (P*)

In this section, we discuss the dual problem corresponding to (P*). We start with the case when
« is a Lebesgue measurable function and further subdivide it into two subsections. In Section 5.1
we discuss the case when the pre-dual variable p is a function and in the following Section 5.1.2
we assume that the variable p is a measure. Next in Section 5.2, we consider the case where « is a
measure and the pre-dual variable p is a function. In general, we prove that

Problem (P) is the Fenchel dual of Problem (P*).

In order to keep the discussion self-contained, we introduce the following notation and terminol-
ogy. For an extended real valued function ¥ : X — R U {oo} over a Banach space X, by * we
denote its convex conjugate, which is defined by (e.g. see [17, p. 16])

T X" = RU{oo},  ¢7(a") = sup {{a", 2)x-x — ()} (5.1)

Provided that the operator div : V — L?(€) is defined for a Banach space V, and it is bounded,
its adjoint (div)* : L2(Q) — V* is well-defined and is given by ((div)*v, p)y+y = (v,div p) for all
veL?N) andall pe V.

5.1. The case when « is a function. We first consider the case where a is a non negative
Lebesgue measurable function and we accordingly set

J(p) = /Q a@p@gdr  or  J(p) = /Q adlpl,,

in (P*) for the cases when p is a function or a measure, respectively. For each of the choices of J
above, we will also establish the strong duality to (P). We assume throughout this section (and for
the sake of simplicity) that
a€C(Q), and a(z)>0,
for all z € Q as discussed in Section 1, together with
Urp(Q) =Wy (Q), and G=V,

and hence,
K={ve W;;(Q) (V| < a ae. in Q}.

Note that in Section 3 we proved the existence and uniqueness of solution to (P).
We compute the dual problem to (P*) and show that it is given by problem (P). Defining
F:L*Q) = R by

1
F(o) =5 [ (o) = fla) . (52)
the problem (P*) can be written as

inf J(p) + F(div p), 5.3
itk ) 0) + Fidivp) (5:3)
for div : Vp, (Q) — L?(Q), where the space Vr, () is chosen based on whether p is a function or
a measure.
By [17, p. 61], the Fenchel dual of (P*) with respect to the perturbation function

¢: Viy(2) x L*(Q) = RU{oo},  ¢(p,u) = J(p) + F(divp —u)
is given by

inf J*(div* F*(— 5.4
L) (), (54)
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where the convex conjugates J* : (Vi (Q2))* — RU{oo}, F* : L?*(Q) — RU {oc} of J and F are
defined according to (5.1), see also [17, p. 17] for more details.

5.1.1. Duality when p is a function. Now we show that the problem (PP) is the dual to problem (P*).
In this section, we assume that Vr, (€) is given by (4.2), and that

I®) = [ a@lp(@)d.
We start by proving the following result:
Theorem 5.1. For every u € L?(Q), it holds that J*(div*u) = I (u).

We break the proof of the above theorem into Lemmas 5.3 and 5.4, which we state after the
following observation.

Remark 5.2. Observe that J*(div*u) only takes the value 0 or +o00: By the definition of the convex
conjugate J*, for any u € L*(Q) it holds that

J*(diviu) > (u, div 0) — / a()[0], dz = 0. (5.5)
Q
If J*(div*u) > 0, i.e. there exists a p € Vr, () such that

V0P 0 gy o)~ [ a@Ip(@)]yde >0,
we can scale p by an arbitrarily large A € R leading to J*(div*u) = +0o0.

Lemma 5.3. Let u € L*(Q) with J*(div*u) = 0. Then the following hold true:
(i) we BV(Q);

(ii) |Dulp < o

(iii) Du = Vu and u € WH(Q);

(iv) y0(u) =0 onI'p

and therefore u € K.

Proof. (i) First we show that J*(div*u) = 0 implies u € BV(Q).
Suppose u ¢ BV(Q). Then, since C(2)4 C Vi, (22), we have that

s = sup LAV B o im0~ [ alo)ip(lde )

PEVT  (Q)

> sup {<u,divp>— / a<x>|p<x>|qu}
peCH () Q
|P|q<1

> sup { u,div p) } /
peCH(Q)
|P|q<1
Then, by using definition of a function of bounded variation, see [3, Definition 10.1.1], we
have that the supremum on the right hand side of the above inequality is o0 if u ¢ BV(Q)
and hence, u € BV(Q) if J*(div* u) < +o0.
(ii) As u € BV(Q), we have that Du € M(Q)? and the inequality |Du|, < a is understood in the

sense of (2.5). Hence, if
/ Dul, —/ a(z) dz < 0, (5.7)
0] O

(5.6)
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for an arbitrary open set O C €2, then the required condition [Du|, < a immediately follows.
By the assumption J*(div*u) = 0, and using integration by parts, we observe that

0=J*(diviu) = sup (diviu,p) — / a(z)|p(z)|q dz
IJGVI‘N(Q) (9]

> sup { [pou- [ a(m)\p(aznqu}
pech@ Lo o

> sup {/ pDU—/a(@‘p(x)qu}
peci(0)* LJO ©

|plq<1

> sup {/ pDu}—/a(m)dx
peCj(0)* L/O o

[plg<1

:/O|Du|p—/oa(ﬂf)dx,

where the last inequality follows using the definition of [, [Dul, and (5.7).

(iii) By (i) and (ii), it holds that
/S Dul, < /S olz) dz, (5.8)

for every Borel set S (see (2.4)), and especially for every Borel set of Lebesgue measure zero, it
follows that |Du|, vanishes on every set of measure zero, and hence Du is absolutely continuous
w.r.t. the d-dimensional Lebesgue measure, and therefore Du = Vu, i.e., the distributional
gradient is a weak gradient. Thus, v € WH1(Q).
(iv) To obtain the boundary conditions on u, we will show that if J*(div*u) = 0, then ~o(u) = 0.
Since u € BV(Q), then using [3, Theorem 10.2.2] we have that yo(u) € L'(9€) and

0= J5(diviu) =  sup {(div*u,p)v*y— / a(:v)|p(x)|qu}

PEVL  (Q) Q

= s Awavp) - [a@poa)

PEVL \ (2)NCH(Q)

. {— [ P Vatyde+ [ owpevantt - [ a<x>|p<x>rqdw} .
peVr , (HNCL(Q) Q I'p Q
Whence for all p € Vi, (Q2) N CL(Q), we have

—/Qp(ﬂs) - Vu(z) dx+/FD Yo(u)p - vdHITL — /Qa(x)|p(ﬂs)]qd$ <0.

Subsequently for all p € Vi, () N C1(Q), we arrive at

/FD Y(wp-vdH! S/le(fv) Vu(ﬂﬁ)ldf“r/ga(ﬂv)lp(ﬂ?)lqu- (5.9)

To get (5.9), for a p € Vp,, (2) N CHQ), choose s € {—1,1} such that

/ ~o(u)sp - vdHI > 0,
I'p
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then for w = sp € Vi, (Q) N C1(Q), we obtain that

/ Yo(u)p - vdH?
I'p

:/ ’yo(u)Sp'l/de_l :/ vo(u)'w-ud?-[d_l
'p

< [ w@) Va@)do + [ a@lw],da

<

/Q sp() Vu(z) dz + / o) |sp(x)], de

Q

< [ p@ Vu@lde+ [ a@lp(),de.
Now for € > 0, by inner regularity [16, pp. 95, proposition 15.1], there exist closed subsets
I'; € I'p and Q° C Q such that
‘/ |Vu(:v)|pd$—/ |Vu(z)|,dz| < e, ‘/ a(x) dz—/ a(z)dx
Q Qe Q Qs
‘/ "yo(u)} dHI! —/ }'yo(u)‘ dHdt
I'p re)
Then, by Urysohn’s lemma there exists ¢. € C*°(Q2) satisfying, 0 < ¢. < 1, such that

¢:=1on I's;, and ¢.=0 on Q°UTy.
Then for any q € C(Q), applying (5.9) to p = p. := ¢ q € Vi, () N CL(Q2), we obtain that

< e and

<e.

/Fnyg(u)pa-dedl S/Q]pg(:c)-Vu(:c)\dx—i—/ﬂa(:c)\pg(xﬂqu

< /Q\QE |pe(z) - Vu(z)| dz + /Q\Qe a(z)|p.(z)|, dz.

Further, from

/ Yo(u)g - vd A = / Yo(u)(q — pe) - vd HO ¢ / Yo()p. - v d HO!
I'p FD\F‘ED I'p

we infer that

/ Yo(u)g - v dHI!
T'p

- <

/ Yo(u)pe - vdHIT!
I'p

/ 7o(w) (e — q) - vd HA!
I\,

Next, using the two inequalities above in conjunction with

/ Ipe() - Vu(@)| + a(@)|pe(x)]g dz| < 2] qll e,
Q\Q=
and
/ o) (pe — q) - A | < 22 qll e,
\I'g,
we obtain that
/F To(u)g - v dH| < deflqllLa.
D
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Now since g € C1(Q2) and € > 0 have been chosen arbitrarily, it follows that

=0, forallqe CH(Q).

/ Y(u)g - vdH!
I'p

This immediately leads to the required result, 7o(u) = 0 a.e. on I'p, and the proof is complete.
O

Finally, the converse result remains to be shown, i.e., if u € K, then J*(div'u) = 0; we prove
this next.

Lemma 5.4. Ifu € K, then J*(div*u) = 0.

Proof. Since u € K, therefore by the definition of K, it holds that u € WllDl(Q) and |Vul, < «
a.e. in €. Next, using the definition of the convex conjugate J* of J, we obtain that

J*(diviu) =  sup {div*u,p * —/ozx p(x d:c}
( ) PEVE\ (9) < Wiy (@ Vi () Q @lp@)ls

_ sup(m{(u,div p) — /Q a(x)\p(ac)\qu}. (5.10)

PEVT

Next, by using the density of C1(Q)4 N Vi, () in Vi, (Q), from (5.10), we obtain that

JH(div* u) = sup {/ u(z) div p(z dx—/ |qdm}
pECI@inhy (@) L2
= sup {—/p(x) d:c—/ ]qu—i—/ *yo(u)p-yd”;’-ld_l}
peC (Q)INVr (Q) Q I'p
< s A Wil - [ a@ipola)
peC (Q)dnvr, () L/Q Q
<0.

Thus, since J*(div* u) is nonnegative (we can set p = 0 in the definition of J*), it follows that
J*(div* u) = 0 and the proof is complete. O

Next we compute the conjugate function of the function F'.

Proposition 5.5. The conjugate function of F' defined in (5.2) is given by

1
F(u) = 5”“”%2(9) + (fu) (5.11)

Proof. The proof is an immediate consequence of the definition of F*. Recalling the definition
of F* and rearranging the terms, we obtain that

* 1
F*w) = sup {(uv) ~ F(v)} = sup){(u,v)—Qllv—flliQ(Q)}

veEL2(Q) vEL2(Q

1 1
— swp Lt £0) = JlolEe - 311

veL?(Q)

The result then follows from elementary calculus. O
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Proposition 5.6 (STRONG DUALITY). The problem (P) is the Fenchel dual to problem (P*), and
for these problems the equality strong duality, i.e.,

inf J F(di =— inf J*(div* F*(— 5.12
o8 ) ) F (v p) == inp (A )+ () (5.12)

holds. Further, p solves problem (P*) if and only if the following extremality relation holds:
u=f—divp mnQ, and Vuedl(p), (5.13)
where uw denotes the solution of (P), and 0J(q) denotes the subdifferential of J at a point q.

Proof. As a corollary to Theorems 5.1 and 5.5, it immediately follows that the dual of problem (P*)
which is given in (5.4) is identical to problem (P). Using that J and F' are convex and continuous
proper functions and bounded from below, equality (5.12) and the extremality relation (5.13) follow
from the application of Theorem III.4.1 and Proposition I11.4.1 in [17, p. 59] in its decomposed
form, which is described in Remark II1.4.2 therein, where condition (4.20) is satisfied by any
peVr N (Q) ]

Remark 5.7. The duality between (P) and (P*) holds symmetrically, i.e. (P*) is the dual to
problem (P) as well. Defining the perturbation function ¢ : Vi, () x L?(Q) — R U {oo} by
o(p,u) = J(p) + F(div p — u) following the framework in [17, pp. 58-60], (P*) can be written as
inf ,0

peit ) ¢(p,0)
and the application of [17, (4.20) in p. 61] yields that ¢ is convez, l.s.c., proper, and bounded from
below, given that the same holds true for J and F. Thus, it follows from [17, p. 49] that ¢** = ¢
and that (P*) is identical to its bidual problem

inf *(p,0),
pertd (Q)¢ (p,0)

i.e., to the dual problem to (), with respect to the perturbation function ¢*.

Note that though we assume o € C(£2), results within this section hold for a € L(2). However
recall that the existence result for this case (c.f. Section 4.1) only stands in the case d = 1.

5.1.2. Duality when p is a measure. We consider now the duality result in the framework of the
variable p in the space of Borel measures with L?(f2) divergences. Surprisingly, the dual problem
remains the same. We recall in this framework that

Ty=0 and Vi, (Q)=W(Q),

as in (4.5), and d > 1. Since we already assumed that a € C(Q) is positive, existence of a unique
solution follows from Theorem 4.2.

We again propose to follow the Fenchel dual approach and let J : Vi, (2) — Rand F : L?(Q2) — R
be

J(p) ::/ad|p|q and /|v (z)? dz.
Q

In this setting, it also holds that for every u € LQ(Q) we have J*(div* u) = Ix(u), i.e., Theorem 5.1.
In fact, we show that Lemma 5.3 and Lemma 5.4 remain true under the functional analytic setting
of this section.

Proof of Lemma 5.3. (i) By choosing dp = p(x)dz with p € C3(2)4 and |p|, < 1, we obtain
the same inequality as (5.6). Moreover, by following similar steps as before, we can show
that © € BV(Q)

(ii) The proof follows identically as before by considering dp, = p, () dz with p, € CF(Q)9.
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(iii) The same proof applies.

(iv) Note that |Vu| < a a.e. implies that u € W1H*°(Q), given that a € C(Q2). As shown before,
in Remark 5.2, J*(div*u) < +o0 implies J*(div*u) = 0 which yields for dp = p(z) dz with
p € CL(Q)N the following

—/ p(z) - Vu(x)dx +/ up - vdHI — / a(z)|p(x)|,dz <0, for all p € CHQ)Y,
Q o0 Q

and the proof follows identically leading to u|r, = 0.
O

Proof of Lemma 5.4. Let u € K, then from the definition of K, it follows that u € T/VO1 1(Q) and
|Vul, < a. Furthermore,

J*(diviu) = sup {—/ Vu-dp+Np(u|aQ)—/ad|p|q}
Q Q

PEVL ()

= sup {—/ Vu-dp—/ad]p]q}
PEVL () Q Q
sup {/ |Vul, d|p]q—/ozd|p|q}
PEVT, () LJQ Q

= sup {/(\Vu]p—a) d\p\q}
peviy (@ Ua

<0

IN

i.e., it follows that J*(div*u) = 0. The proof is complete. O

From Theorem 5.1, it follows that the duality result of Proposition 5.6 also holds in this setting;
the proof is straightforward.

5.2. The case when « is a measure. In this section, we will extend the duality result of Propo-
sition 5.6 by letting o to be a non negative Borel measure, that is, a € M*(Q2). However, p is a
function in this setting. In its more general form, in problem (P*), we set

J(p) = /Q plgda. (5.14)

The results in this subsection are a generalization of the case of the Lebesgue integrable constraint
o, that was presented in Section 5.1. We shall assume that p € Vi, (©2), see (4.2) for the definition
of VFN (Q)

Since a € M (), as we discussed in Section 1, we let

Ur,(2) =BVr, () and G=D, (5.15)
the distributional gradient, and hence
K ={v e BVr,(Q): |Dv|, < a}.

We prove that the dual problem to (P*) is given by (P) with inequality constraint |Du|, < o being
understood in the sense of (2.6).

Recall that in section 3 we have shown existence and uniqueness of solution to (IP). Here, we
show that dual of problem (P*) is given by (P). We start by writing (P*) as

inf  F(divp) + J(p),
pert @ (divp) + J(p)
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with J : Vi, (Q) — R as in (5.14) and F : L*(Q) — R, as before, given by

/ lv(x (z)* dz.

We prove now that Theorem 5.1 holds also true in the current setting. For brevity, we only discuss
the essential modifications needed in Lemmas 5.3 and 5.4.

Proof of Theorem 5.1. This proof follows along the same lines as the proof to Theorem 5.1. We
start by observing that the discussion in Remark 5.2 holds in the current setting as well, i.e.,
J*(div* u) only takes the values 0 and +oo. We now prove the result.

The proof that J*(div*u) = 0 implies that u € K follows along the lines of Lemma 5.3. Indeed
(i) and (ii) in Lemma 5.3 apply directly, and for (iv) everything follows in the same way, when Du
and da are measures instead of the functions Vu and a(x).

On the other hand, the converse (Lemma 5.4), i.e., u € K implies that J*(div*u) = 0 follows
from the calculations below. Recall that if u € K, then v € BVp,(Q) and |Du|, < « in the sense
of (2.6). Therefore,

0<J%diviu) = sup {(diV* Uy P) (Vi (Q))* Vi () —/ |P|qda}
PEVR (2) Q

= sup {—/pDu—/ ]p]qdoz—i-/ vo(u)p-zxd%d_l}
peC (Q)dNVr (Q) Q Q I'p

= sup {—/pDu—/ |p|qda}
peC (Q)INVvr (Q) Q Q

< o[ ipioul, - [ iphdal <0
peC(Q)4Nvr ()

and the proof is complete. ]
Finally, note that it follows identically as before that the polar function of F' is given by

F(u) = gllull3a) — (Fu). (5.16)

Hence, the duality result of proposition 5.6 also holds in the case where a is a measure, with V
replaced by D.

6. A FINITE ELEMENT METHOD WITH APPLICATIONS
The purpose of this section is to illustrate the applicability of the proposed primal-dual approach
to solve Problems (P) and (P*). We assume throughout this section that p = ¢ = 2.
Recall that Problem (P) in the case that a € L>(Q)% is given by
min — / lu(z))? da —/ f(z over u € WI};XJ(Q), s.t. [Vula < a ae. (6.1)
and that the pre-dual problem (P*) is given by

I
mminlvp - fH%Q(Q) +/ a(x)|p(x)|edz  over p € V(). (6.2)
Q
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Now the first order (necessary and sufficient) optimality condition corresponding to (6.2) in the
strong form is given by: Find p : Q — RY satisfying

~V (divp— f)+0 (llalpllrie) 50 n
p-v=0 only,

(6.3)

where 0 denotes the subdifferential operator. In order to solve (6.3), recall from the extremality
conditions (5.13), that if «* and p* are solutions to (6.1) and (6.2), respectively, they satisfy

u'i=—divp+ f a.e. in Q. (6.4)

Then, a primal-dual system arises from (6.3) and (6.4), which in the weak form becomes the
following variational inequality of second kind: Find (p,u) € Vi, (Q) x L?(Q2) such that

(u, —div (v - p)) +/ o(2)[v(2)]s do — / o(2)p(@)]s dz > 0 for all v € Viy (Q),  (65)
Q Q
(u,w) + (div p,w) = (f,w) for all w € L*(Q).  (6.6)

Due to their nonlinear and nonsmooth nature, it is challenging to solve (6.5)—(6.6).

We shall proceed by introducing the Huber-regularization for ¢(p) := |p|2 in the last term under
the integral in (6.2). This regularization is C'! with piecewise differentiable first order derivative.
Therefore one can use Newton type methods to solve the resulting regularized system. For a given
parameter 7 > 0, the Huber regularization of ¢ is given by

. ‘pb - %Tv ‘p‘Q > T,
or(p): { =pl3,  Ipl2<T.

As 7= 0, ¢,(p) = ¢(p). Moreover, ¢.(+) is continuously differentiable with derivative given by

L’ ‘p‘2>7
¢/ p) = Ipl2
e

Replacing ¢(-) = | - |2 in (6.2) by ¢-(), the regularized primal-dual system corresponding to
(6.5)—(6.6) is given by

(u, —divv) + /QO@IT(I)) v =0, for all v e Vr, (), (6.7)

(u,w) + (div p,w) = (f,w), for all w € L*(9). (6.8)

Notice, that ¢ (-) is piecewise differentiable and the second order derivative is given by

1 _pp!
Z(p) — \1p|2 (IdXd |p|§) ) |p|2 > T,
;Idxda |p|2 =T,

where ;4 is the d x d identity matrix.

A few words are in order concerning the approximating problem (6.7) and (6.8). In particular, it
should be noted that the regularization of the a-weighted L!-norm is performed once the primal-
dual system is formed and not at an earlier stage. In contrast, if we had regularized the a-weighted
L'-norm in (6.2), then this would reflect with an additional Tikhonov-type regularization on (6.1)
(see for example [28] for a similar problem). The proposed setup in (6.7) and (6.8) can be considered
as a hybrid approach, and its analysis is an open problem that requires additional considerations.
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6.1. Finite Element Discretization. We discretize p and u using the lowest order Raviart-
Thomas (RT() and piecewise constant (Py) finite elements, respectively. Whenever needed, the
integrals are computed using Gauss-quadrature which is exact for polynomials of degree less than
or equal to 4. For each fixed 7, we solve the discrete saddle point system (6.7)—(6.8) using Newton’s
method with backtracking line-search strategy. We stop the Newton iteration when each residual
in L2(Q)-norm is smaller than 1078, Each linear solve during the Newton iteration is done using
direct solve. Starting from 7 = 10, a continuation strategy is applied where in each step we reduce
7 by a factor of 1.30 until 7 is less than or equal to 107%. We initialize the Newton’s method
by zero. To compute solution for next 7, we use the solution corresponding to previous 7 as the
initial iterate for the Newton’s method. The number of iterations remains stable in all cases for
Examples 1 and 2 for each mesh size h, and for each 7 less than 6 iterations are needed to achieve
termination conditions. The situation is different for Example 3, where as h | 0, o” approximates
a Borel measure; here the number of iterations deteriorate as h | 0.

6.2. Numerical Examples. Next, we report results from various numerical experiments. In all
examples we consider Q = (0,1) x (0,1) and we assume that Iy = 0, T'p = 99, and hence
pure Dirichlet boundary conditions on u on the entire boundary are set. In the first example, we
construct exact solutions (p,u) when f and « are constants. We compare these exact solutions with
our finite element approximation. These experiments validate our finite element implementation
for constant o and f and provide optimal rate of convergence. Additionally, we solve (P*) and (P)
first for a fixed « and vary f and next we fix f and vary a. In our second experiment, we consider a
more generic f with different features such as cone, valley and flat regions. In our final experiment,
we consider « to be a measure.

Example 1. Note initially that if & and f are constants, it is possible to calculate an exact solution.
By setting
m(z) == min {f,a(z — 1),a(z = 0)},

the exact v and p are given as:

u(z,y) = min{m(x), m(y)},

and
_
(;(m(y) — m(z))sgn(0.5 — ) (f — 1 (m(x) + m(y))) ,o) . if Jz— 0.5 > |y — 0.5],

p(z,y) = T
<0, L(m(z) — m(y))sgn(0.5 — y) (f — 1 (m(z) + m(y)))) , otherwise.

Notice that in this example, u is again Lipschitz continuous. In Figure 2 (top panel), we have
shown the ||p — pull12() and |lu — up|2(q) when @ = (0,1)?, f = 1, and o = 1. We observe
optimal rate of convergence in both cases. In the bottom row, the left panel shows wuj, the middle
panel shows |Vuy|2, and the right panel shows p;,. We observe that, in this example, the gradient
constraints are active in the entire region. Notice that at the corners (which are sets of measure
zero), gradient is undefined.

Next, we fix the number of p;, and u; unknowns to be 197,120 and 131,072, respectively. Figure 3
shows our results for 3 different experiments. In all cases, we have used a fixed o = 1. The rows
correspond to up, |Vup|2, and pp. Each column correspond to f =1, f = 0.25, and f = 0.1. As
expected, for a large value of f, we observe steep slope, but for smaller values of f, plateau regions
appear. We also observe that the active region shrinks as f decreases since the gradient is zero at
the top of the plateau. The dual variable py also changes significantly with f.
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FIGURE 2. Example 1: Top panel - We have shown the L?({))-error between the
computed solution (up,pp) and the exact solution (u,p). The optimal linear rate
of convergence is observed. Bottom panel: Computed wup (left), |Vup|z (middle),
pp (right). Notice that we are touching the constraints in the entire region, except
where the gradient is undefined. We have omitted the plots of the exact (u,p) as
they look exactly same as (up, pp,).

In Figure 4 we again show results from 3 different experiments. In all cases, we have used a fixed
f = 1. The rows correspond to up, |Vuylz, and py. Each column corresponds to

0.75, y<1—ux,

a=1a=05 and o= { 1.0, otherwise,

respectively. In all cases, we observe that the gradient constraints are active in the entire domain
(except on a set of measure zero). For the case of piecewise constant «, nonsmoothness in py is
clearly visible.
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025 01

Ficure 3. Example 1 (fixed «, varying f). The rows correspond to up, |Vuy|2,
and pp. The columns represent f = 1, 0.25, and 0.1. In all cases, we observe that
the gradient constraints are active but the activity region shrinks as f decreases,
this is expected since the gradient on the plateau region is zero. The behavior of p
also changes considerably with f.

Example 2. In this example, we set

f=10"3+ ug,
where
min{0.2,0.5(z* + %)}, y<1-ux,
Up = { max {1 —5¢/(z—0.7)2 + (y — 0.7)2, min {0.2,0.5(z? + yQ)}} , -z <y,
0 otherwise .

Moreover, we set o = 2.5. Figure 5 (left panel), shows a plot of f. Figure 5 (right panel) shows
the computed solution up. In Figure 6, we have shown |Vuylz (left panel), and p;, (right panel).
Notice that, the gradient constraints are active. Moreover, we also observe significant flat regions,
where the gradient is zero.

In Figure 7 have also displayed uy, |Vug|2 and pp when o = 1.5.
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FIcurE 4. Example 1 (fixed f, varying «). The rows correspond to up, |Vuy|2,
and pp. The first two columns represent constant o« = 1 and 0.5. The third column
corresponds to a with jump discontinuity. In all cases, we observe that the gradient
constraints are active in the entire region, except on a set of measure zero. Moreover,
discontinuity in p in the last column is clearly visible.

Example 3. In this example, we consider f given by

025 (z,y)eQ, 05<y,
f(z,y) = { 0 otherwise.

The main novelty and challenge in this example is the fact that we let « to be a measure. Specifically

/vda:/vdx+102/vd7{1,
Q Q w

for all v € C°(Q) and where w := {(z,y) € Q : y = 0.5}, i.e., « consists in the Lebesgue measure
dz and a weighted line measure on w.
Let h denotes the meshsize, then «

da? = <1 + M) dz,

h is approximated as

where
Wwh = {(z,y) € : 0.5 — 10%h < y <0.5, z€(0,1)}.
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FiGUuRE 5. Example 2 (a = 2.5). Left panel: f. Right panel: the computed
solution wuy,.

1 4
35
0.8 . 0.01
3 R 9
X 2 0.005
0.6 2.0
‘ 0
2
0. -0.005
04 1.5
i -0. -0.01
0.2 1
05 1 1
’ . 0.5
. 05
0
0 0.2 0.4 0.6 0.8 1 00

FIGURE 6. Example 2 (a = 2.5). Left panel: |Vuy|2. Right panel: the computed
solution py,.

As h | 0, we approximate the measure in the sense that [, v da? — Jovda for all v € C2°(Q).

When h = 8.4984 x 1075, the results are shown in Figure 8 (top row). Finally, when h =
2.1412 x 1077 the results are provided in Figure 8 (bottom row). We notice that as h | 0, we indeed
approximate the measure: In fact, we observe a clear discontinuity on the solution wu, the size of
the jump is below 100 which is the upper bound on the distributional gradient on w.

7. SOME OPEN PROBLEMS

Two main open problems/research directions have emerged based on this current work:

e To the best of our knowledge, it is not known in which sense the sequence of Borel measures
{an} should converge to a measure « so that the solutions to the respective variational
problems (P) (associated to ) converge to the solution associated to . See Remark 3.5
for a digression about this issue.

e The analysis of the system (6.7) and (6.8), and its approximation properties to the original
variational problem is a current topic of research.
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FIGURE 7. Example 2 (o = 1.5). Top row: uj and |Vuy|2. Bottom row: py,.
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