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Abstract. In this paper, we consider non-diffusive variational problems with mixed boundary
conditions and (distributional and weak) gradient constraints. The upper bound in the constraint
is either a function or a Borel measure, leading to the state space being a Sobolev one or the space
of functions of bounded variation. We address existence and uniqueness of the model under low
regularity assumptions, and rigorously identify its Fenchel pre-dual problem. The latter in some
cases is posed on a non-standard space of Borel measures with square integrable divergences. We also
establish existence and uniqueness of solution to this pre-dual problem under some assumptions. We
conclude the paper by introducing a mixed finite-element method to solve the primal-dual system.
The numerical examples illustrate the theoretical findings.
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1. Introduction

We begin by considering an evolutionary problem whose semi-discretization (in time) gives rise to
the class of stationary problems of interest in this paper. Suppose that f : (0, T )×Ω → R together
with u0 : Ω → R are given, where Ω ⊂ Rd is a bounded domain with a Lipschitz boundary.
Furthermore, let α be a given nonnegative function (possibly only integrable), or a nonnegative
Borel measure in Ω. Suppose that u : (0, T ) × Ω → R, such that u(0) = u0, is a solution to the
following problem

Find u ∈ K such that

ˆ T

0

(︁
∂tu(t)− f(t), v(t)− u(t)

)︁
L2(Ω)

dt ≥ 0, for all v ∈ K, (1.1)

where the set K is given by

K := Ũ(0, T ) ∩ {w : w(t) ∈ K almost everywhere}. (1.2)

The choice of Ũ(0, T ) and K in (1.2) hinges on the type of the boundary conditions and the
regularity of α. We assume that the boundary ∂Ω is partitioned into a Dirichlet boundary part ΓD

and a non-Dirichlet boundary part ΓN , both composed of a finite number of connected parts, such
that

ΓD ∪ ΓN = ∂Ω, and ΓD ∩ ΓN = ∅.
Notice that on ΓN , we do not necessarily prescribe Neumann boundary conditions, as it is later
clarified. However, a conservation law of material is in place in the case ΓD = ∅; specifically, it can
be inferred from (1.1) that

´
Ω(u(T ) − u0) dx =

´ T
0

´
Ω f dx dt given that v = u ± 1 are admissible

test functions as we see next. The restriction of u to the ΓD part of the boundary is assumed to
be zero, and no restrictions are assumed on ΓN .

The set K is convex and it arises by a nonlinear law with a bound on the first order derivative
terms. In the most general form K is given by

K = {v ∈ UΓD
(Ω) : |Gv|p ≤ α}, (1.3)

with 1 ≤ p ≤ +∞. We briefly discuss the two possible scenarios that we consider:

(I) If α is a nonnegative measurable function, then UΓD
(Ω) is a Sobolev-type space and

G = ∇ is the weak gradient, so that |∇v|p is the ℓp-norm of the weak gradient of v. Hence,
|∇v|p ≤ α in (1.3) is considered in the almost everywhere (a.e.) in Ω sense.

(II) If α is a nonnegative Borel measure, then UΓD
(Ω) is a subset of functions of bounded

variation BV(Ω). In this case, G = D is the distributional gradient, and |Dv|p the total
variation measure of Dv associated to the ℓp-norm, and the constraint |Dv|p ≤ α is understood
in the measure sense.

Both instances, (I) and (II) are related, in fact (I) may be considered as a special case of (II).
Furthermore, letting α ∈ M+(Ω) in case (II), where M+(Ω) denotes the set of nonnegative Borel
measures, enables us to handle the delicate case α ∈ L1(Ω)+ in (I). Next we shall provide a brief
description of modeling capabilities of (I) and (II) in the context of a particular application.

A possible motivation for the above class of problems is based on the study of accumulation of
granular heterogeneous material on possibly discontinuous structures. This approach was pioneered
by Prigozhin [32, 34, 35] in the case of homogeneous materials and a continuous support structure.
In this vein, f : (0, T )×Ω → R represents the (density) rate of a granular material being deposited

on a supporting structure u0 : Ω → R. Moreover,
´ T
0

´
Ω f dx dt is the total amount of material

deposited on Ω over the time interval [0, T ]. In case that α > 0 is a real number, this corresponds
to the classical case of a granular cohesionless material where homogeneous piles are generated. If
α : Ω → R is not constant zero, the value of α at a point determines the angle of repose of the
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Figure 1. Accumulation of two kinds (magenta and blue) of granular materials on
discontinuous surface. (LEFT) Depiction of f(t, x) = f1χ(x0,x2)(x) + f2χ(x2,1)(x),
the accumulation of both materials, and dα = α1χ(x1,x2)(x) dx + α2χ(x2,1)(x) dx +∑︁3

i=1 δ(x− xi). (RIGHT) The value of the initial supporting structure u0 and the
the final distribution u(T ).

material at that point, i.e., the steepness of a cone generated from a point source of material. This
is the case for heterogenous sandpiles [10] and also a restricted case of the quasi-variational sandpile
model; see [6, 7, 31, 8]. In a more general setting, where α is a measure, using the approach in this
paper, it is possible to generate discontinuous structures such as cliffs by preserving discontinuities
in the initial supporting structure u0 and/or of f . Such an approach has not yet been considered
in the literature to the best of our knowledge.

A description of the qualitative behavior of Problem (1.1) is displayed in Figure 1. We assume two
materials with different angles of repose α1 and α2 with α1 > α2 are poured on the discontinuous
structure u0(x) := χ(x1,x2)(x) for x ∈ Ω := (0, 1) and 0 < x1 < x2 < 1. The intensity of the
material being deposited is given by f(t, x) = f1χ(x0,x2)(x) + f2χ(x2,1)(x) for some points x0, and
x2, and some f1, f2 > 0, i.e., the first and second materials are poured with density rates f1 and
f2, respectively, during the entire time interval (0, T ). We further assume that a sharp edge can
form at x2 with maximum height of 1, and in addition discontinuities of maximum size 1 can be
preserved at the locations of the discontinuities of u0. Finally, the the gradient constraint α is then
given by dα = α1χ(0,x2)(x) dx + α2χ(x2,1)(x) dx +

∑︁3
i=1 δ(x − xi), and the material is assumed to

escape freely at the boundary points of Ω. On the right side of Figure 1, we see the comparison
between u0 and u(T ), the solution at time T > 0; on the left we see the depiction of f , α, and the
accumulation regions of both materials.

The study of solutions to (1.1) usually makes use of the semi-discretization (in time) of the
problem via an implicit Euler method. In particular, we approximate the partial time derivative
∂tu by (un − un−1)/k for some time-step k > 0. The class of problems of interest in this paper is
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then given by

Minimize (min)
1

2

ˆ
Ω
|u(x)|2 dx−

ˆ
Ω
f(x)u(x) dx over u ∈ UΓD

(Ω),

subject to (s.t.) u ∈ K,

(P)

where we assume f ∈ L2(Ω). Notice that (P) can be seen as the time-discrete version of (1.1) where

the solution u to (P) is equal to un when f corresponds to
´ nk
(n−1)k f(τ) dτ +ku

n−1 with un−1 given.

Closely related to the problem above, we consider the following class of problems

min
1

2

ˆ
Ω
|div p(x)− f(x)|2 dx+ J(p) over p ∈ VΓN

(Ω). (P∗)

We prove that (P∗) is the Fenchel pre-dual of problem (P), i.e., the Fenchel dual [17] of (P∗)
under certain conditions is (P). Several choices for VΓN

(Ω) and J are explored which are directly
related to the nature of α. In all cases considered, VΓN

(Ω) contains d-dimensional vector fields with
divergences in L2(Ω). In particular, we consider

(i) If α is a nonnegative measurable function (additional assumptions are later explained
but continuity is enough to guarantee what follows), then we explore two options for J :

J(p) =

ˆ
Ω
α(x)|p(x)|q dx, and J(p) =

ˆ
Ω
α d|p|q.

In the first case VΓN
(Ω) is a subspace of L1(Ω)d. In the second case VΓN

(Ω) is contained in
the space of Rd-valued Borel measures, so that the second functional denotes the integral of α
with respect to the total variation measure of p induced by the ℓq-norm. The two functionals
are closely related, and the first can be seen as a restriction of the second one to measures
that are absolutely continuous with respect to the Lebesgue measure.

(ii) If α is a nonnegative Borel measure, then VΓD
(Ω) is contained in the space of maps that

are α measurable, with J given by

J(p) =

ˆ
Ω
|p|q dα.

A few words are in order concerning (P) and (P∗). Although the objective functional in (P)
is smooth and amenable, the constraint set K makes the entire problem highly nonlinear and
nonsmooth. The latter also holds for (P∗) given the nature of the functional J . The develop-
ment of solution algorithms for both problems is a rather delicate issue that requires appropriate
regularization methods that can handle the nonsmothness in an asymptotic fashion.

The paper focuses on functional analytic properties of (P) and (P∗) together with duality rela-
tionship properties. Additionally, we develop a mixed finite type method to solve the optimality
conditions corresponding to (P) and (P∗).

Some Bibliography. The structure of Problems (P∗) and (P) and their inherent difficulties are
analogous to the ones that appear in the context of plasticity; see [29, 39] and references therein. In
particular, the first class of applications for diffusive variational problems with gradient constraints
is the elasto-plastic torsion problem. Such a problem has been thoroughly analyzed by Brézis,
Caffarelli, Evans, Friedman, Gerhardt, and others; see [19, 18, 12, 21, 20, 14, 15, 13]. Further, a
complete account of the literature can be found in [37]. A significant amount of the aforementioned
works focuses on regularity of solutions, the free boundary, and the equivalence of the gradient
constrained problem to a double obstacle one.

The modeling of the evolution of the magnetic field in critical-state models of type-II super-
conductors also leads to a problem like (1.1) with the addition of a diffusive operator and a
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state-dependent constraint in some cases; see [36, 5, 33, 34, 23, 26, 24]. See [38] for a study of
evolutionary variational problems with non-constant gradient constraints, and [30] for a complete
account of evolutionary problems with derivative bounds.

Analogous problems are found in mathematical imaging involving total variation regularization
[27, 22, 9] and more specifically in the weighted total variation version [25]. There, in contrast
to the work here, the L∞-norm on the gradient is replaced by the L1-norm, leading to a pre-dual
problem with a pointwise bound in its state variable.

1.1. Organization of the paper. Preliminaries are provided, and some notations are made ex-
plicit in Section 2; elementary results about the generalized gradient constraint are given in Sec-
tion 2.1. In Section 3, we prove existence and uniqueness of the solution to problem (P) for the
cases when α is either a nonnegative Lebesgue measurable function or a nonnegative Borel measure.
Existence of solutions to problem (P∗) is addressed in Section 4, while for the case when p is a
function we require d = 1, when p is a measure the dimension restriction is dropped. The relation
between problems (P) and (P∗) are considered in Section 5, where a rigorous Fenchel duality result
establishes a link between these two problems. In particular, in Section 5.1, we address the case
where α is a function and the variable p is either a function or a measure. The case when α is
a measure and an extension of the duality result of the previous section is given in Section 5.2.
Finally in Section 6, we introduce a mixed finite element method to solve the underlying problems
and present a range of numerical tests.

2. Notation and Preliminaries

The purpose of this section is to introduce notation involving spaces, and convergence notions
that are used throughout the paper; in particular, we address the well-known notions of Sobolev
spaces and the space of functions of bounded variation. We refer the reader to Attouch et al. [3]
that we follow closely for this introduction together with the book of Adams and Fournier [1].

For a Banach space X, we denote its corresponding norm as ∥ · ∥X . For an element F in the
topological dual X ′ of X, the duality pairing of F and an arbitrary element x ∈ X is written as
⟨F, x⟩X′,X . Throughout the paper, all Banach spaces are assumed to be real vector spaces.

The inner product on the Lebesgue space L2(Ω) of (equivalence classes of) functions that are
square integrable on Ω is denoted as (·, ·), so that (f, g) :=

´
Ω f(x)g(x) dx for f, g ∈ L2(Ω) where

dx refers to integration with respect to the Lebesgue measure.
The Sobolev space of functions in Lr(Ω) for 1 ≤ r < +∞ with weak gradients in Lr(Ω)d is

denoted by W 1,r(Ω), and it is endowed with the norm

∥v∥W 1,r(Ω) := ∥v∥Lr(Ω) + ∥∇v∥Lr(Ω)d ,

where ∇v denotes the weak gradient of v. In the case r = 2, we use the notation H1(Ω) :=W 1,2(Ω).
Given that Ω is assumed Lipschitz, restriction of a function v ∈W 1,r(Ω) to the boundary ∂Ω is well-
defined via the continuous trace map γ0 :W

1,r(Ω) → Lr(∂Ω). Furthermore, the closed subspace of

functions in W 1,r(Ω) that are zero on ΓD is denoted by W 1,r
ΓD

(Ω), i.e.,

W 1,r
ΓD

(Ω) := {v ∈W 1,r(Ω) : γ0(v) = 0 on ΓD}.

Similarly, we define H1
ΓD

(Ω) :=W 1,2
ΓD

(Ω).

The space of real-valued Borel measures M(Ω) is endowed with the norm ∥µ∥M(Ω) := |µ|(Ω),
where |µ| is defined for an arbitrary open set O as

|µ|(O) = sup
{︂
⟨µ, z⟩M(Ω),C0(Ω) : z ∈ C0(Ω), supp(z) ⊂ O, |z(x)| ≤ 1, for every x ∈ O

}︂
.
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Note that ⟨µ, z⟩M(Ω),C0(Ω) =
´
Ω z dµ, and that |µ| defines a Borel measure in M+(Ω), the subset of

nonnegative elements of M(Ω), i.e., σ ∈ M+(Ω) if σ(B) ≥ 0 for every Borel set B ⊂ Ω.
We denote by BV(Ω), the space of functions v in L1(Ω), for which the total variation semi-normˆ

Ω
|Dv|p = sup

{︃ˆ
Ω
v div p dx : p ∈ C1

0 (Ω)
d, |p(x)|q ≤ 1, for every x ∈ Ω

}︃
is finite and where q is the Hölder conjugate of p, i.e., 1/p + 1/q = 1; see [3, Section 10.1]. The
space BV(Ω) is a Banach space endowed with the norm

∥v∥BV(Ω) := ∥v∥L1(Ω) +

ˆ
Ω
|Dv|p.

The operator D represents the distributional gradient, and for a v ∈ BV(Ω), Dv is a Rd-valued
Borel measure. We use |Dv|p to denote the total variation measure (associated to the ℓp-norm) of
Dv, and the total mass |Dv|p(Ω) is by definition

|Dv|p(Ω) =
ˆ
Ω
|Dv|p.

Furthermore, the Lebesgue decomposition result applied to Dv implies that there exist measures
Dav and Dsv such that

Dv = Dav +Dsv,

with Dav and Dsv respectively being absolutely continuous and singular with respect to the d-
dimensional Lebesgue measure.

We define now the notions of weak and quasi-intermediate convergence of sequences in BV(Ω)
which provide different topologies on the space BV(Ω). The former is obtained by a subsequence
of a bounded sequence in BV(Ω). Moreover, the latter is sufficient to preserve boundary conditions
in the sense of the trace as stated in Theorem 2.3 below.

Definition 2.1 (Weak convergence for BV(Ω)). Let {un} be a sequence in BV(Ω) and
u∗ ∈ BV(Ω). We say that un converges to u∗ weakly, denoted as un ⇀ u∗ in BV(Ω), if

un → u∗ in L1(Ω), and Dun ⇀ Du∗ in M(Ω)d.

Recall that if {µn} is a sequence of measures in M(Ω) then µn ⇀ µ in M(Ω) for some µ ∈ M(Ω),
that is, µn weakly converges to µ, if ˆ

Ω
g dµn →

ˆ
Ω
g dµ, (2.1)

for all g ∈ C0(Ω).
The definition 2.1 is understood in light of the following fact: If {un} is a bounded sequence in

BV(Ω), there exists u∗ ∈ BV(Ω) such that along a subsequence un ⇀ u∗ in BV(Ω). The latter
follows since the embedding BV(Ω) ↪→ L1(Ω) is compact (see Attouch et al. [3, Theorem 10.1.4.])
for Lipschitz domains, and since a bounded sequence of measures admits a weakly convergent
subsequence.

We shall use the direct method of calculus of variations to establish existence of solutions to
problems in BV(Ω) and with Dirichlet homogeneous boundary conditions on ΓD. The space of
interest is BVΓD

(Ω) defined as

BVΓD
(Ω) := {v ∈ BV(Ω) : γ0(v) = 0 on ΓD},

where γ0 is a trace operator; see [3, section 10.2]. Notice that we use the same notation for the
trace operator in Sobolev spaces W 1,p(Ω). There is a fundamental issue with the trace in BV(Ω)
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and the application of the direct method as we show next with a standard example adapted from
[3].

Consider a bounded sequence {un} in BVΓD
(Ω). Then, we can extract a subsequence (not

relabeled) of {un} such that un ⇀ u∗ in BV(Ω) . The problem is that in general it is not possible
to say that u∗ ∈ BVΓD

(Ω): Let Ω = (0, 1) with ΓD = {0}, and consider {vn} defined as

vn(x) =

{︄
nx, if 0 < x < 1/n,

1, if 1/n ≤ x < 1.

Then, vn ∈ BVΓD
(Ω), and vn ⇀ v∗ ∈ BV(Ω) \ BVΓD

(Ω), with v∗ = 1. The underlying reason
is that the trace operator in BV(Ω) is not continuous with respect to weak convergence, but it is
with respect to the intermediate (and quasi-intermediate) convergence subsequently defined. We
further notice that |Dvn|(0, 1) = 1 and |Dv∗|(0, 1) = 0, this discrepancy is central to the issue we
are considering.

Definition 2.2 (quasi-intermediate convergence). Let {un} be a sequence in BV(Ω) and
u∗ ∈ BV(Ω). We say that un converges to u∗ in the sense of quasi-intermediate convergence if

un → u∗ in L1(Ω), and

ˆ
Ω
φ ·Dun →

ˆ
Ω
φ ·Du∗ for all φ ∈ Cb(Ω)

d,

where Cb(Ω) is the space of bounded and continuous functions on Ω.

The name quasi-intermediate convergence arises since it describes a stronger topology than the
one of weak convergence, but not as strong as the intermediate one in which the second convergence
in the above definition is exchanged to

´
Ω |Dun| →

´
Ω |Du∗|. The importance of the intermediate

convergence is that the trace map γ0 : BV(Ω) → L1
Hd−1(∂Ω) is intermediate-strong continuous. We

refer to Attouch et al. [3, Theorem 10.2.2] for its proof. Similarly, we have

Theorem 2.3. The trace operator γ0 : BV(Ω) → L1
Hd−1(∂Ω) is continuous when BV(Ω) is equipped

with the quasi-intermediate convergence and when L1
Hd−1(∂Ω) is equipped with the weak σ(X ′, X)

topology, where X is given by the normal components of boundary restrictions of C1(Ω) functions.

The proof of Theorem 2.3 follows by direct observation of the generalized Green’s formula, see
[3, Theorem 10.2.1].

2.1. The gradient constraint. A few words are in order concerning the gradient constraint given
in the set K defined in (1.3). Although in the case when G = ∇ the situation is somewhat standard,
if G = D, the distributional gradient for BV functions, require several non-trivial explanations. In
the cases where α is a Borel measure and v ∈ BV(Ω), the inequality

|Dv|p ≤ α (2.2)

in (1.3) is understood in the sense of measures, i.e., (2.2) holds true ifˆ
Ω
w|Dv|p ≤

ˆ
Ω
w dα for all w ∈ C∞

0 (Ω) with w ≥ 0 in Ω, (2.3)

and equivalently, for every Borel measurable set S ⊂ Ω, it holds thatˆ
S
|Dv|p ≤

ˆ
S
dα. (2.4)

Given that nonnegative Borel measures are inner and outer regular ([3, Proposition 4.2.1]) the
condition (2.3) is equivalent to ˆ

O
|Dv|p ≤

ˆ
O
dα (2.5)



8 HARBIR ANTIL, RAFAEL ARNDT, CARLOS N. RAUTENBERG, DEEPANSHU VERMA

for all open sets O ⊂ Ω.
It is possible to replace C∞

0 (Ω) in (2.3) by C∞(Ω), which we discuss next.

Proposition 2.4. The condition in (2.3) is equivalent toˆ
Ω
w|Dv|p ≤

ˆ
Ω
w dα for every w ∈ C∞(Ω) with w ≥ 0 in Ω. (2.6)

Proof. Suppose that (2.3) holds true and let Kn be a sequence of closed sets such thatˆ
Ω\Kn

|Dv|p → 0 and

ˆ
Ω\Kn

dα→ 0. (2.7)

The sequence {Kn} exists given that measures in M+(Ω) are inner regular; see [3, Proposition
4.2.1]. Let w̃ ∈ C∞(Ω) be nonnegative and arbitrary.

Accordingly, let {wn} in C∞
0 (Ω) be nonnegative, uniformly bounded in Ω, and such that wn = w̃

in Kn. Hence |w̃|+ |wn| can be uniformly estimated by a constant, and by (2.7) it holds thatˆ
Ω
(w̃ − wn)|Dv| =

ˆ
Ω\Kn

(w̃ − wn)|Dv| → 0 and

ˆ
Ω
(w̃ − wn) dα =

ˆ
Ω\Kn

(w̃ − wn) dα→ 0.

Since the inequality in (2.6) holds for every wn by initial assumption, it also holds in the limit for
w̃. Furthermore, (2.6) immediately implies (2.3), so the result is proven. □

3. Existence Theory for (P)

In this section, we discuss the existence and uniqueness of solution to the problem (P). We
start with the case when α is a measure, and the case when α is a function follows as a special
one. In particular, existence of solutions is studied in the function spaces UΓD

(Ω) = BVΓD
(Ω)

and UΓD
(Ω) = W 1,1

ΓD
(Ω). Both of these spaces share the same difficulty: Bounded sequences do

not necessarily admit convergent (in some sense) subsequences that preserve the zero boundary
condition on ΓD in the limit. The main purpose of this section is to overcome this obstacle.

3.1. The case when α is a nonnegative Borel measure. We consider in this section that
α ∈ M+(Ω) and hence the state space is given by

UΓD
(Ω) = BVΓD

(Ω).

We start by proving the following lemma which gives sequential precompactness of some classes of
bounded sets in BVΓD

(Ω). These bounded sets are subsets of K which in this case is defined as

K = {v ∈ BVΓD
(Ω) : |Dv|p ≤ α}.

Lemma 3.1. Let α ∈ M+(Ω) and M > 0, then the set

K∗ = K ∩ {v ∈ L1(Ω) : ∥v∥L1(Ω) ≤M}

is sequentially precompact in the sense of the quasi-intermediate convergence of BV(Ω).

Proof. Let {vn} be a sequence in K∗, then it is bounded in BV(Ω), and thus vn ⇀ v∗ in BV(Ω)
for some v∗ ∈ BV(Ω) along a subsequence (not relabelled). Since Dvn ⇀ Dv∗ in M(Ω)d, and
|Dvn|p ≤ α it follows that for every open set O ⊂ Ω that

|Dv∗|p(O) ≤ lim inf
n→∞

|Dvn|p(O) ≤ α(O), (3.1)

where we have used the lower-semicontinuity property for open sets of weak convergence of mea-
sures; see [3, Proposition 4.2.3]. Additionally, since elements in M(Ω) are outer (and inner) regular,
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we have that for a Borel set B it holds that µ(B) = inf µ(O) where the infimum is taken over all
open sets such that B ⊂ O; see [3, Proposition 4.2.1]. Thus,

|Dv∗|p(B) ≤ α(B) (3.2)

follows from (3.1) by taking the infimum over {O open : B ⊂ O}.
In order to prove that vn converges to v∗ in the sense of quasi-intermediate convergence, we are

only left to prove that Dvn ⇀ Dv∗ narrowly in M(Ω)d. The latter meaning that
´
Ω φDvn →

´
Ω φDv

∗

for each continuous and bounded φ on Ω. Given that α ∈ M+(Ω) we have that for each ϵ > 0 there
exists a compact set Λϵ ⊂ Ω such that

α(Ω \ Λϵ) ≤ ϵ.

Since vn ∈ K, then |Dvn| ≤ α, and hence for each ϵ > 0 the compact set Λϵ ⊂ Ω, is such that

|Dvn|(Ω \ Λϵ) ≤ ϵ, for all n ∈ N.

Then, by Prokhorov Theorem (see [11, Theorem 8.6.2.] and [3, Theorem 4.2.3]), there is a subse-
quence of {Dvn} (not relabelled) that Dvn ⇀ Dv∗ narrowly in M(Ω)d. That is, along a subsequence,
vn converges to v∗ in the sense of the quasi-intermediate convergence. This implies that

v∗ ∈ BVΓD
(Ω),

by virtue of Theorem 2.3 and the fact that vn ∈ BVΓD
(Ω) for all n ∈ N. □

The above results particularly means that for a sequence {vn} in K that is bounded in BV(Ω),
there exists a subsequence that converges to some u∗ ∈ BV(Ω) in the sense of the quasi-intermediate
convergence. Further, u∗ ∈ BVΓD

(Ω) and also u∗ ∈ K. A direct consequence of the above lemma
is the following result.

Theorem 3.2. If α ∈ M+(Ω), then there exists a unique solution to (P) in BVΓD
(Ω).

Proof. Consider an infimizing sequence {un} for (P). It follows that {un} is bounded in L2(Ω) and
hence Lemma 3.1 is applicable. That is, there is a subsequence of {un} (not relabelled) such that
un ⇀ u∗ in L2(Ω), and un → u∗ in the sense of the quasi-intermediate convergence for BV(Ω), and
further u∗ ∈ K. Finally, by exploiting the weakly lower semicontinuity property of the objective
functional in (P), we have that u∗ ∈ K is a minimizer. □

Next we discuss the case when α is a function.

3.2. The case when α is an integrable function. In this section, we let α : Ω → R be a
nonnegative and integrable function, leading to

UΓD
(Ω) =W 1,1

ΓD
(Ω).

This case can be interpreted (to some extent) as a special case of the one in the previous subsection
under the assumption that α is a measure absolutely continuous with respect to the Lebesgue
measure. However, we proceed in a slightly different fashion by considering α as a function and the
state space contained in W 1,1(Ω); this provides further insight on bounded sequences in K and in
Sobolev spaces. In this case, we have K given by

K = {v ∈W 1,1
ΓD

(Ω) : |∇v|p ≤ α a.e.}.

Next we state a version of Lemma 3.1 adapted to the current setting which can be used to prove
existence of solutions to (P).
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Lemma 3.3. Let α ∈ L1(Ω)+ and M > 0, then every sequence {vn} in the set

K∗ = K ∩ {v ∈ L1(Ω) : ∥v∥L1(Ω) ≤M}

admits a subsequence satisfying for all φ ∈ Cb(Ω)
d that

vn → v∗ in L1(Ω), and

ˆ
Ω
φ(x) · ∇vn(x) dx→

ˆ
Ω
φ(x) · ∇v∗(x) dx,

for some v∗ ∈ K∗, which is also the weak limit in W 1,1
ΓD

(Ω) of the same subsequence.

The above can be seen as a consequence of equi-integrability of the set K. Recall that a family
of functions F ⊂ L1(Ω) is equi-integrable provided that for every ϵ > 0, there exists a δ > 0 such
that for every set A ⊂ Ω with |A| < δ we have that

´
A |u| dx < ϵ for all u ∈ F . Further, the

Dunford-Pettis theorem states that if {un} is a bounded sequence in L1(Ω) and is equi-integrable,
then un ⇀ u along a subsequence for some u ∈ L1(Ω). Hence, since K is bounded in W 1,1(Ω),
and the gradients are equi-integrable, it is simple to infer strong convergence in L1(Ω) together
with a weaker convergence of the gradients in L1(Ω). A similar approach can be done again via
Prokhorov’s result as in the proof of Lemma 3.1 leading to an equivalent of the quasi-intermediate
convergence in BV(Ω). The trace preservation follows directly from the same proof. Further note
that the convergence determined does not imply strong convergence in W 1,1(Ω) since this space is
not uniformly convex. With the use of Lemma 3.3 and following the same argument as before for
Theorem 3.2, we have

Theorem 3.4. If α ∈ L1(Ω)+, then there exists a unique solution to (P) in W 1,1
ΓD

(Ω).

Remark 3.5. It should be noted that the obtention of the existence result Theorem 3.2 when α ∈
M(Ω)+, by means of an approximating sequence of solutions to problems (P) with αn ∈ L1(Ω)+,
is not a trivial task, as we describe next. Consider the sequence {αn} in L1(Ω)+ which induces a
sequence of sets {Kn} as

Kn = {v ∈ BVΓD
(Ω) : |Dv|p ≤ αn}.

Each Kn can be equivalently written as Kn = {v ∈W 1,1
ΓD

(Ω) : |∇v|p ≤ αn a.e.} since αn is regular.

In order for the sequence of solutions {un} to (P) with constraint Kn to converge to the solution u
with constraint

K = {v ∈ BVΓD
(Ω) : |Dv|p ≤ α},

a set convergence like Mosco convergence is required. If α, αn ∈ C(Ω) for n ∈ N, with αn(x) ≥ ϵ > 0
for all x ∈ Ω, and if αn → α uniformly, then Mosco convergence results are available in case of
Sobolev spaces; see [4]. Similar results are also available in the case of nonnegative αn, α ∈W 1,p(Ω)
with 1 < p < +∞ for which αn → α in W 1,p(Ω); see [2]. For BV(Ω), results of the aforementioned
type are not known, and the non-reflexivity of BV(Ω) makes the concept of Mosco convergence
not precisely appropriate for the kind of problems under study. On the other hand, in Section 6,
a numerical test concerning a sequence of functions approximating a measure (in a distributional
sense) is presented, and the results seem to behave according to expectations. The set approximation
concept required in the BV setting is a topic of current research and an open question.

4. Existence Theory for the pre-dual problem (P∗)

The focus of this section is on existence and uniqueness of solutions of problem (P∗) under
different functional analytic settings. In particular, we focus on two cases where p is either (i)
a function or (ii) a Borel measure. In the first case, we let α be either a function or a measure;
here, existence results are limited to d = 1. On the other hand, in the second case we establish
an existence and uniqueness result for p with arbitrary d ∈ N, for a specific class of α’s (to be
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specified later). Furthermore, this second case requires a nonstandard space of vector measures
with divergences in L2(Ω). Remarkably, a version of the integration-by-parts formula still holds
in this general setting; such a construct is rather recent [41]. We start with the case when p is a
function.

4.1. The case when p is a function and α is either a function or a measure. We begin
this section by considering that α ∈ L1(Ω)+ and J is defined as

J(p) =

ˆ
Ω
α(x)|p(x)|q dx. (4.1)

Moreover, we define

∥p∥α,2 :=
ˆ
Ω
α(x)|p(x)|q dx+ ∥div p∥L2(Ω),

for p ∈ C∞(Ω)d.
We assume that if d = 1 and ΓN = ∅ then α is not identically zero, and if d > 1 then α > 0 a.e.

in Ω. Thus, the space VΓN
(Ω) is defined by

VΓN
(Ω) := E(Ω)

∥·∥α,2
, (4.2)

where
E(Ω) := {p ∈ C∞(Ω)d : supp (p) ∩ ΓN = ∅}.

It follows that VΓN
(Ω) is a Banach space: If d > 1, the result is clear given that α > 0 a.e. in

Ω. If d = 1, then VΓN
(Ω) = H1

ΓN
(Ω) which follows from the fact that J(p) + 1

2

´
Ω |p′(x)|2 dx is an

equivalent norm (to the usual one) on H1
ΓN

(Ω). The latter is due to J(p) =
´
Ω α(x)|p(x)|dx being

a seminorm in H1
ΓN

(Ω) and norm on the constants, i.e. for a ∈ R, J(a) = |a|α(Ω) = 0 iff a = 0; see

[40, Chapter 1.4]. We can now establish existence of a solution to problem (P∗).

Theorem 4.1. Let d = 1, α ∈ L1(Ω)+, and if ΓN = ∅ then suppose that α is not identically zero.
Consider J as defined in (4.1) on VΓN

(Ω) as in (4.2). Then, there exists a unique solution to (P∗).

Proof. The proof is based on the direct method. Let J : VΓN
(Ω) → R be the objective function

in (P∗), that is,

J (p) :=
1

2

ˆ
Ω
|p′(x)− f(x)|2 dx+ J(p),

and let {pn}∞n=1 in VΓN
(Ω) be an infimizing sequence of J . Note that 1

2

´
Ω |p′(x)|2 dx+

´
Ω α|p(x)| dx

is a norm in H1
ΓN

(Ω); see [40, Chapter 1.4]. Hence, {pn}∞n=1 is bounded in VΓN
(Ω), and there exists

a weakly convergent (not relabeled) subsequence {pn}∞n=1 such that pn ⇀ p̄ in H1
ΓN

(Ω). By the

compact embedding of H1
ΓN

(Ω) ↪→ C(Ω) (see [1, Chapter 6]) we have existence of a subsequence

(not relabeled) pn → p̄ in C(Ω). Finally, weak lower semicontinuity of J (p) yields that p̄ ∈ VΓN
(Ω)

is a solution to (P∗). The strict convexity of the objective functional provides uniqueness to the
solution. □

An analogous approach can be considered when α is a non negative Borel measure (and not
identically zero), that is, when α ∈ M+(Ω). In particular, we set

J(p) =

ˆ
Ω
|p|q dα, (4.3)

and we construct the space VΓN
(Ω) in the same way as in (4.2), but with the norm ∥ · ∥α,2 defined

as

∥p∥α,2 :=
ˆ
Ω
|p|q dα+ ∥div p∥L2(Ω),
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and assuming that if d = 1 and ΓN = ∅ then α is not identically zero, and if d > 1 then α(B) > 0
if |B| > 0 and B ⊂ Ω is a Borel set.

The existence result of Theorem 4.1 follows mutatis mutandis: Since 1
2

´
Ω |p′(x)|2 dx+

´
Ω |p|dα

is again a norm in H1
ΓN

(Ω), see [40, Chapter 1.4], the exact argument is applicable in this case.
We can now focus on the case when p is a measure which provides a general setting for the

problem of interest in terms of existence, uniqueness, and duality results.

4.2. The case when α is a function and p is a measure. We focus now on problem (P∗) when
J is defined as

J(p) =

ˆ
Ω
α d|p|q, (4.4)

and p is a Borel measure. Notice that the above functional can be seen as a generalization of the
functional in (4.1). The latter can be obtained by letting p be absolutely continuous with respect
to the Lebesgue measure.

The functional analytic setting in this section, requires p to be a measure with divergence of p
in L2(Ω), and α to be measurable with respect to |p|q. We start with a proper definition of such
spaces and their properties. We disregard the possible “boundary conditions” for the variable p,
so that ΓN = ∅ and we define VΓN

(Ω) as follows:

VΓN
(Ω) :=W (Ω) = {p ∈ M(Ω)d : div p ∈ L2(Ω)}, (4.5)

where M(Ω)d corresponds to the Rd-valued Borel measures in Ω ⊂ Rd. Specifically, p ∈ W (Ω) if
there exists h ∈ L2(Ω) such thatˆ

Ω
∇φ · dp = −

ˆ
Ω
φhdx, ∀φ ∈ C∞

c (Ω), (4.6)

and we define div p := h. The space W (Ω) is a Banach space when endowed with the norm

∥w∥W (Ω) := |w|q(Ω) + ∥divw∥L2(Ω), (4.7)

where q ∈ [1,+∞] and

|w|q(Ω) := sup
{︂
⟨w,v⟩ : v ∈ Cc(Ω)

d with |v(x)|p ≤ 1 ∀x ∈ Ω
}︂
.

Note that above ⟨·, ·⟩ is the duality pairing between M(Ω)d and Cc(Ω)
d, and hence

⟨w,v⟩ =
ˆ
Ω
v · dw =

d∑︂
i=1

ˆ
Ω
vi dwi.

Similarly to the definition of |w|q(Ω), we can define |w|q(A) for any open set A, and subsequently for
an arbitrary Borel set A. Hence, |w|q induces a nonnegative measure (the total variation measure
of w); in addition |w|q(Ω) =

´
Ω d|w|q. Note that the space W (Ω) contains regular maps, clearly

if p ∈ C1
c (Ω)

d then p ∈W (Ω), in this case “d|p|q = |p|q dx” where dx is the Lebesgue measure.
A note on the space W (Ω) is in order. Although one may be inclined to think that vector

fields whose divergences are in L2(Ω) would always have better regularity than just the measure
type, this is not true. We consider an example developed by Šilhavý [41] to show otherwise.
Let u ∈ BV(Ω) with Ω ⊂ R2, and define p = (Du)⊥ with (a1, a2)

⊥ = (a2,−a1) with Du the
distributional (measure valued) gradient of u; it follows that divp = 0. This can be seen as follows:
C∞(Ω) is dense (in the sense of the intermediate convergence) in BV(Ω), this means in particular
that lim

´
Ω∇φ · pn dx =

´
Ω∇φ · dp for such a smooth sequence defined as pn = (Dun)

⊥ with

un ∈ C∞(Ω). Since also
´
Ω∇φ · pn dx = 0, the result follows by taking the limit and from (4.6).
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Following Šilhavý [41], we have a form of integration-by-parts formula together with a trace
result. We denote by LipB(Λ) the space of Lipschitz maps h : Λ → R for Λ ⊂ Rk and endow it
with the norm

∥h∥LipB(Λ) := Lip(h) + sup
x∈Λ

|h(x)|,

where Lip(h) is the Lipschitz constant of h on Λ. It follows that for each p ∈ W there exists a
linear functional Np : LipB(∂Ω) → R such that for all v ∈ LipB(Ω) we have

Np(v|∂Ω) =
ˆ
Ω
∇v · dp+

ˆ
Ω
v div p dx. (4.8)

Further, Np is bounded in the following sense

|Np(g)| ≤
(︁
|p|q(Ω) + |div p|(Ω)

)︁
∥g∥LipB(∂Ω) ≤ C∥p∥V ∥g∥LipB(∂Ω),

for some C > 0, and all p ∈ W and all g ∈ LipB(∂Ω). Provided that p and v have enough
differential regularity, we observe

Np(v|∂Ω) =
ˆ
∂Ω
v p · ν dHd−1

as expected. Thus, (4.8) is an extension of the usual integration-by-parts formula.
We are now ready to state and prove the existence and uniqueness result for problem (P∗) under

the setting above.

Theorem 4.2. Let α ∈ C(Ω) be such that α(x) > 0 for all x ∈ Ω, and consider J defined by (4.4)
on VΓN

(Ω) =W (Ω) as given in (4.5). Then, problem (P∗) admits a unique solution.

Proof. Note first that J is well-defined given that α is measurable with respect to all Borel mea-
sures. Consider an infimizing sequence {pn}. Since minx∈Ω α(x) > 0, then {pn} is bounded in

VΓN
(Ω). Hence, we can extract a subsequence (not relabelled) such that pn ⇀ p∗ in M(Ω)d for

some p∗ ∈ M(Ω)d and div pn ⇀ h in L2(Ω) for some h ∈ L2(Ω). Furthermore, for φ ∈ C∞
c (Ω)

arbitrary

(φ,div p∗)L2(Ω) = −
ˆ
Ω
∇φ · dp∗ = − lim

n→∞

ˆ
Ω
∇φ · dpn = lim

n→∞
(φ,div pn)L2(Ω) = (φ, h)L2(Ω),

so that h = div p∗, i.e., p∗ ∈W (Ω).
Since the map p ↦→ |p|q is weakly lower semicontinuous, αpn ⇀ αp∗ in M(Ω)d, and |s|q = α|p|q

for s = αp, we have that p∗ is a minimizer by a weakly lower semicontinuity argument. Uniqueness
follows from the strict convexity of the objective functional. □

At this point, one would be tempted to extend the result to the case where ΓN ̸= ∅, for example,
by defining

VΓN
(Ω) =W (Ω) ∩ {p ∈W : Np(v|∂Ω) = 0 ∀v ∈ LipBΓD

(Ω)}. (4.9)

While the space above is well-defined, it is not clear if the weak limits of sequences in the space
also belong to it. In fact, if pn ∈ VΓN

(Ω) is bounded, thenˆ
Ω
∇v · dpn = −

ˆ
Ω
v div pn dx,

for each v ∈ LipBΓD
(Ω). However, the weak limit along a subsequence argument is not enough to

pass to the limit in the left hand side given that ∇v is not necessarily of compact support. This
remains an open problem.
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5. Duality relation between (P) and (P∗)

In this section, we discuss the dual problem corresponding to (P∗). We start with the case when
α is a Lebesgue measurable function and further subdivide it into two subsections. In Section 5.1
we discuss the case when the pre-dual variable p is a function and in the following Section 5.1.2
we assume that the variable p is a measure. Next in Section 5.2, we consider the case where α is a
measure and the pre-dual variable p is a function. In general, we prove that

Problem (P) is the Fenchel dual of Problem (P∗).

In order to keep the discussion self-contained, we introduce the following notation and terminol-
ogy. For an extended real valued function ψ : X → R ∪ {∞} over a Banach space X, by ψ∗ we
denote its convex conjugate, which is defined by (e.g. see [17, p. 16])

ψ∗ : X∗ → R ∪ {∞}, ψ∗(x∗) = sup
x∈X

{︁
⟨x∗, x⟩X∗,X − ψ(x)

}︁
. (5.1)

Provided that the operator div : V → L2(Ω) is defined for a Banach space V , and it is bounded,
its adjoint (div)∗ : L2(Ω) → V ∗ is well-defined and is given by ⟨(div)∗v,p⟩V ∗,V = (v,div p) for all
v ∈ L2(Ω) and all p ∈ V .

5.1. The case when α is a function. We first consider the case where α is a non negative
Lebesgue measurable function and we accordingly set

J(p) =

ˆ
Ω
α(x)|p(x)|q dx or J(p) =

ˆ
Ω
α d|p|q,

in (P∗) for the cases when p is a function or a measure, respectively. For each of the choices of J
above, we will also establish the strong duality to (P). We assume throughout this section (and for
the sake of simplicity) that

α ∈ C(Ω), and α(x) > 0,

for all x ∈ Ω as discussed in Section 1, together with

UΓD
(Ω) =W 1,1

ΓD
(Ω), and G = ∇ ,

and hence,

K = {v ∈W 1,1
ΓD

(Ω) : |∇v|p ≤ α a.e. in Ω}.
Note that in Section 3 we proved the existence and uniqueness of solution to (P).

We compute the dual problem to (P∗) and show that it is given by problem (P). Defining
F : L2(Ω) → R by

F (v) :=
1

2

ˆ
Ω
|v(x)− f(x)|2 dx, (5.2)

the problem (P∗) can be written as

inf
p∈VΓN

(Ω)
J(p) + F (div p), (5.3)

for div : VΓN
(Ω) → L2(Ω), where the space VΓN

(Ω) is chosen based on whether p is a function or
a measure.

By [17, p. 61], the Fenchel dual of (P∗) with respect to the perturbation function

ϕ : VΓN
(Ω)× L2(Ω) → R ∪ {∞}, ϕ(p, u) = J(p) + F (div p− u)

is given by

inf
u∈L2(Ω)

J∗(div∗ u) + F ∗(−u), (5.4)
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where the convex conjugates J∗ : (VΓN
(Ω))∗ → R ∪ {∞}, F ∗ : L2(Ω) → R ∪ {∞} of J and F are

defined according to (5.1), see also [17, p. 17] for more details.

5.1.1. Duality when p is a function. Now we show that the problem (P) is the dual to problem (P∗).
In this section, we assume that VΓN

(Ω) is given by (4.2), and that

J(p) =

ˆ
Ω
α(x)|p(x)|q dx.

We start by proving the following result:

Theorem 5.1. For every u ∈ L2(Ω), it holds that J∗(div∗u) = IK(u).

We break the proof of the above theorem into Lemmas 5.3 and 5.4, which we state after the
following observation.

Remark 5.2. Observe that J∗(div∗u) only takes the value 0 or +∞: By the definition of the convex
conjugate J∗, for any u ∈ L2(Ω) it holds that

J∗(div∗u) ≥ (u,div 0) −
ˆ
Ω
α(x)|0|q dx = 0. (5.5)

If J∗(div∗u) > 0, i.e. there exists a p ∈ VΓN
(Ω) such that

⟨div∗u,p⟩VΓN
(Ω)∗,VΓN

(Ω) −
ˆ
Ω
α(x)|p(x)|q dx > 0,

we can scale p by an arbitrarily large λ ∈ R+ leading to J∗(div∗u) = +∞.

Lemma 5.3. Let u ∈ L2(Ω) with J∗(div∗u) = 0. Then the following hold true:

(i) u ∈ BV(Ω);
(ii) |Du|p ≤ α;
(iii) Du = ∇u and u ∈W 1,1(Ω);
(iv) γ0(u) = 0 on ΓD

and therefore u ∈ K.

Proof. (i) First we show that J∗(div∗u) = 0 implies u ∈ BV(Ω).
Suppose u /∈ BV(Ω). Then, since C1

0 (Ω)
d ⊂ VΓN

(Ω), we have that

J∗(div∗ u) = sup
p∈VΓN

(Ω)

{︃
⟨div∗ u,p⟩VΓN

(Ω)∗,VΓN
(Ω) −

ˆ
Ω
α(x)|p(x)|q dx

}︃
≥ sup

p∈C1
0 (Ω)d

|p|q≤1

{︃
(u,div p) −

ˆ
Ω
α(x)|p(x)|q dx

}︃

≥ sup
p∈C1

0 (Ω)d

|p|q≤1

{︁
(u,div p)

}︁
−
ˆ
Ω
α(x) dx

(5.6)

Then, by using definition of a function of bounded variation, see [3, Definition 10.1.1], we
have that the supremum on the right hand side of the above inequality is +∞ if u /∈ BV(Ω)
and hence, u ∈ BV(Ω) if J∗(div∗ u) < +∞.

(ii) As u ∈ BV(Ω), we have that Du ∈ M(Ω)d and the inequality |Du|p ≤ α is understood in the
sense of (2.5). Hence, if ˆ

O
|Du|p −

ˆ
O
α(x) dx ≤ 0, (5.7)
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for an arbitrary open set O ⊂ Ω, then the required condition |Du|p ≤ α immediately follows.
By the assumption J∗(div∗u) = 0, and using integration by parts, we observe that

0 = J∗ (︁div∗u)︁ = sup
p∈VΓN

(Ω)
⟨div∗u,p⟩ −

ˆ
Ω
α(x)|p(x)|q dx

≥ sup
p∈C1

0 (Ω)d

{︃ˆ
Ω
pDu−

ˆ
Ω
α(x)|p(x)|q dx

}︃
≥ sup

p∈C1
0 (O)d

|p|q≤1

{︃ˆ
O
pDu−

ˆ
O
α(x)|p(x)|q dx

}︃

≥ sup
p∈C1

0 (O)d

|p|q≤1

{︃ˆ
O
pDu

}︃
−
ˆ
O
α(x) dx

=

ˆ
O
|Du|p −

ˆ
O
α(x) dx,

where the last inequality follows using the definition of
´
O |Du|p and (5.7).

(iii) By (i) and (ii), it holds that ˆ
S
|Du|p ≤

ˆ
S
α(x) dx, (5.8)

for every Borel set S (see (2.4)), and especially for every Borel set of Lebesgue measure zero, it
follows that |Du|p vanishes on every set of measure zero, and hence Du is absolutely continuous
w.r.t. the d-dimensional Lebesgue measure, and therefore Du = ∇u, i.e., the distributional
gradient is a weak gradient. Thus, u ∈W 1,1(Ω).

(iv) To obtain the boundary conditions on u, we will show that if J∗(div∗u) = 0, then γ0(u) = 0.
Since u ∈ BV(Ω), then using [3, Theorem 10.2.2] we have that γ0(u) ∈ L1(∂Ω) and

0 = J∗(div∗u) = sup
p∈VΓN

(Ω)

{︃
⟨div∗u,p⟩V ∗,V −

ˆ
Ω
α(x)|p(x)|q dx

}︃
= sup

p∈VΓN
(Ω)∩C1(Ω)

{︃
(u,div p) −

ˆ
Ω
α(x)|p(x)|q dx

}︃

= sup
p∈VΓN

(Ω)∩C1(Ω)

{︄
−
ˆ
Ω
p(x) · ∇u(x) dx+

ˆ
ΓD

γ0(u)p · ν dHd−1 −
ˆ
Ω
α(x)|p(x)|q dx

}︄
.

Whence for all p ∈ VΓN
(Ω) ∩ C1(Ω), we have

−
ˆ
Ω
p(x) · ∇u(x) dx+

ˆ
ΓD

γ0(u)p · ν dHd−1 −
ˆ
Ω
α(x)|p(x)|q dx ≤ 0.

Subsequently for all p ∈ VΓN
(Ω) ∩ C1(Ω), we arrive at⃓⃓⃓⃓

⃓
ˆ
ΓD

γ0(u)p · ν dHd−1

⃓⃓⃓⃓
⃓ ≤
ˆ
Ω
|p(x) ∇u(x)|dx+

ˆ
Ω
α(x)|p(x)|q dx. (5.9)

To get (5.9), for a p ∈ VΓN
(Ω) ∩ C1(Ω), choose s ∈ {−1, 1} such thatˆ

ΓD

γ0(u)sp · ν dHd−1 ≥ 0,
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then for w = sp ∈ VΓN
(Ω) ∩ C1(Ω), we obtain that⃓⃓⃓⃓

⃓
ˆ
ΓD

γ0(u)p · ν dHd−1

⃓⃓⃓⃓
⃓ =
ˆ
ΓD

γ0(u)sp · ν dHd−1 =

ˆ
ΓD

γ0(u)w · ν dHd−1

≤
ˆ
Ω
w(x)∇u(x) dx+

ˆ
Ω
α(x)|w(x)|q dx

≤
⃓⃓⃓⃓ˆ

Ω
sp(x) ∇u(x) dx+

ˆ
Ω
α(x)|sp(x)|q dx

⃓⃓⃓⃓
≤
ˆ
Ω
|p(x)∇u(x)| dx+

ˆ
Ω
α(x)|p(x)|q dx.

Now for ε > 0, by inner regularity [16, pp. 95, proposition 15.1], there exist closed subsets
Γε
D ⊂ ΓD and Ωε ⊂ Ω such that⃓⃓⃓⃓ˆ

Ω
|∇u(x)|p dx−

ˆ
Ωε

|∇u(x)|p dx
⃓⃓⃓⃓
< ε,

⃓⃓⃓⃓ˆ
Ω
α(x) dx−

ˆ
Ωε

α(x) dx

⃓⃓⃓⃓
< ε and⃓⃓⃓⃓

⃓
ˆ
ΓD

⃓⃓
γ0(u)

⃓⃓
dHd−1 −

ˆ
Γε
D

⃓⃓
γ0(u)

⃓⃓
dHd−1

⃓⃓⃓⃓
⃓ < ε.

Then, by Urysohn’s lemma there exists ϕε ∈ C∞(Ω) satisfying, 0 ≤ ϕε ≤ 1, such that

ϕε = 1 on Γε
D and ϕε = 0 on Ωε ∪ ΓN .

Then for any q ∈ C1(Ω), applying (5.9) to p = pε := ϕε q ∈ VΓN
(Ω) ∩ C1(Ω), we obtain that⃓⃓⃓⃓

⃓
ˆ
ΓD

γ0(u)pε · ν dHd−1

⃓⃓⃓⃓
⃓ ≤
ˆ
Ω
|pε(x) · ∇u(x)| dx+

ˆ
Ω
α(x)|pε(x)|q dx

≤
ˆ
Ω\Ωε

|pε(x) · ∇u(x)| dx+

ˆ
Ω\Ωε

α(x)|pε(x)|q dx.

Further, fromˆ
ΓD

γ0(u)q · ν dHd−1 =

ˆ
ΓD\Γε

D

γ0(u)(q − pε) · ν dHd−1 +

ˆ
ΓD

γ0(u)pε · ν dHd−1

we infer that⃓⃓⃓⃓
⃓
ˆ
ΓD

γ0(u)q · ν dHd−1

⃓⃓⃓⃓
⃓−

⃓⃓⃓⃓
⃓
ˆ
Γ\Γε

D

γ0(u)(pε − q) · νdHd−1

⃓⃓⃓⃓
⃓ ≤

⃓⃓⃓⃓
⃓
ˆ
ΓD

γ0(u)pε · ν dHd−1

⃓⃓⃓⃓
⃓ .

Next, using the two inequalities above in conjunction with⃓⃓⃓⃓
⃓
ˆ
Ω\Ωε

|pε(x) · ∇u(x)|+ α(x)|pε(x)|q dx

⃓⃓⃓⃓
⃓ ≤ 2ε∥q∥L∞(Ω),

and ⃓⃓⃓⃓
⃓
ˆ
Γ\Γε

D

γ0(u)(pε − q) · νdHd−1

⃓⃓⃓⃓
⃓ ≤ 2ε∥q∥L∞(Ω),

we obtain that ⃓⃓⃓⃓
⃓
ˆ
ΓD

γ0(u)q · ν dHd−1

⃓⃓⃓⃓
⃓ ≤ 4ε∥q∥L∞(Ω).
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Now since q ∈ C1(Ω) and ε > 0 have been chosen arbitrarily, it follows that⃓⃓⃓⃓
⃓
ˆ
ΓD

γ0(u)q · ν dHd−1

⃓⃓⃓⃓
⃓ = 0, for all q ∈ C1(Ω).

This immediately leads to the required result, γ0(u) = 0 a.e. on ΓD, and the proof is complete.
□

Finally, the converse result remains to be shown, i.e., if u ∈ K, then J∗(div∗u) = 0; we prove
this next.

Lemma 5.4. If u ∈ K, then J∗(div∗u) = 0.

Proof. Since u ∈ K, therefore by the definition of K, it holds that u ∈ W 1,1
ΓD

(Ω) and |∇u|p ≤ α
a.e. in Ω. Next, using the definition of the convex conjugate J∗ of J , we obtain that

J∗(div∗ u) = sup
p∈VΓN

(Ω)

{︃
⟨div∗ u,p⟩VΓN

(Ω)∗,VΓN
(Ω) −

ˆ
Ω
α(x)|p(x)|q dx

}︃
= sup

p∈VΓN
(Ω)

{︃
(u,div p) −

ˆ
Ω
α(x)|p(x)|q dx

}︃
. (5.10)

Next, by using the density of C1(Ω)d ∩ VΓN
(Ω) in VΓN

(Ω), from (5.10), we obtain that

J∗(div∗ u) = sup
p∈C1(Ω)d∩VΓN

(Ω)

{︃ˆ
Ω
u(x) div p(x) dx−

ˆ
Ω
α(x)|p(x)|q dx

}︃

= sup
p∈C1(Ω)d∩VΓN

(Ω)

{︄
−
ˆ
Ω
p(x) · ∇u(x) dx−

ˆ
Ω
α(x)|p(x)|q dx+

ˆ
ΓD

γ0(u)p · ν dHd−1

}︄

≤ sup
p∈C1(Ω)d∩VΓN

(Ω)

{︃ˆ
Ω
|∇u(x)|p|p(x)|q dx−

ˆ
Ω
α(x)|p(x)|q dx

}︃
≤ 0.

Thus, since J∗(div∗ u) is nonnegative (we can set p ≡ 0 in the definition of J∗), it follows that
J∗(div∗ u) = 0 and the proof is complete. □

Next we compute the conjugate function of the function F .

Proposition 5.5. The conjugate function of F defined in (5.2) is given by

F ∗(u) =
1

2
∥u∥2L2(Ω) + (f, u) (5.11)

Proof. The proof is an immediate consequence of the definition of F ∗. Recalling the definition
of F ∗ and rearranging the terms, we obtain that

F ∗(u) = sup
v∈L2(Ω)

{(u, v) − F (v)} = sup
v∈L2(Ω)

{︃
(u, v) − 1

2
∥v − f∥2L2(Ω)

}︃
= sup

v∈L2(Ω)

{︃
(u+ f, v) − 1

2
∥v∥2L2(Ω)

}︃
− 1

2
∥f∥2L2(Ω).

The result then follows from elementary calculus. □
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Proposition 5.6 (Strong duality). The problem (P) is the Fenchel dual to problem (P∗), and
for these problems the equality strong duality, i.e.,

inf
p∈VΓN

(Ω)
J(p) + F (div p) = − inf

u∈L2(Ω)
J∗(div∗ u) + F ∗(−u) (5.12)

holds. Further, p solves problem (P∗) if and only if the following extremality relation holds:

u = f − div p in Ω, and ∇u ∈ ∂J(p), (5.13)

where u denotes the solution of (P), and ∂J(q) denotes the subdifferential of J at a point q.

Proof. As a corollary to Theorems 5.1 and 5.5, it immediately follows that the dual of problem (P∗)
which is given in (5.4) is identical to problem (P). Using that J and F are convex and continuous
proper functions and bounded from below, equality (5.12) and the extremality relation (5.13) follow
from the application of Theorem III.4.1 and Proposition III.4.1 in [17, p. 59] in its decomposed
form, which is described in Remark III.4.2 therein, where condition (4.20) is satisfied by any
p ∈ VΓN

(Ω). □

Remark 5.7. The duality between (P) and (P∗) holds symmetrically, i.e. (P∗) is the dual to
problem (P) as well. Defining the perturbation function ϕ : VΓN

(Ω) × L2(Ω) → R ∪ {∞} by
ϕ(p, u) = J(p) + F (div p− u) following the framework in [17, pp. 58–60], (P∗) can be written as

inf
p∈VΓN

(Ω)
ϕ(p, 0)

and the application of [17, (4.20) in p. 61] yields that ϕ is convex, l.s.c., proper, and bounded from
below, given that the same holds true for J and F . Thus, it follows from [17, p. 49] that ϕ∗∗ = ϕ
and that (P∗) is identical to its bidual problem

inf
p∈VΓN

(Ω)
ϕ∗∗(p, 0),

i.e., to the dual problem to (P), with respect to the perturbation function ϕ∗.

Note that though we assume α ∈ C(Ω), results within this section hold for α ∈ L1(Ω). However
recall that the existence result for this case (c.f. Section 4.1) only stands in the case d = 1.

5.1.2. Duality when p is a measure. We consider now the duality result in the framework of the
variable p in the space of Borel measures with L2(Ω) divergences. Surprisingly, the dual problem
remains the same. We recall in this framework that

ΓN = ∅ and VΓN
(Ω) =W (Ω),

as in (4.5), and d ≥ 1. Since we already assumed that α ∈ C(Ω) is positive, existence of a unique
solution follows from Theorem 4.2.

We again propose to follow the Fenchel dual approach and let J : VΓN
(Ω) → R and F : L2(Ω) → R

be

J(p) :=

ˆ
Ω
α d|p|q and F (v) :=

1

2

ˆ
Ω
|v(x)− f(x)|2 dx.

In this setting, it also holds that for every u ∈ L2(Ω), we have J∗(div∗ u) = IK(u), i.e., Theorem 5.1.
In fact, we show that Lemma 5.3 and Lemma 5.4 remain true under the functional analytic setting
of this section.

Proof of Lemma 5.3. (i) By choosing dp = p̂(x) dx with p̂ ∈ C1
0 (Ω)

d and |p̂|q ≤ 1, we obtain
the same inequality as (5.6). Moreover, by following similar steps as before, we can show
that u ∈ BV(Ω)

(ii) The proof follows identically as before by considering dpϵ = p̂ϵ(x) dx with p̂ϵ ∈ C1
0 (Ω)

d.
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(iii) The same proof applies.
(iv) Note that |∇u| ≤ α a.e. implies that u ∈W 1,∞(Ω), given that α ∈ C(Ω). As shown before,

in Remark 5.2, J∗(div∗u) < +∞ implies J∗(div∗u) = 0 which yields for dp = p̂(x) dx with
p̂ ∈ C1(Ω)N the following

−
ˆ
Ω
p̂(x) · ∇u(x) dx+

ˆ
∂Ω
up̂ · ν dHd−1 −

ˆ
Ω
α(x)|p̂(x)|q dx ≤ 0, for all p̂ ∈ C1(Ω)N ,

and the proof follows identically leading to u|ΓD
= 0.

□

Proof of Lemma 5.4. Let u ∈ K, then from the definition of K, it follows that u ∈ W 1,1
0 (Ω) and

|∇u|p ≤ α. Furthermore,

J∗(div∗ u) = sup
p∈VΓN

(Ω)

{︃
−
ˆ
Ω
∇u · dp+Np(u|∂Ω)−

ˆ
Ω
α d|p|q

}︃
= sup

p∈VΓN
(Ω)

{︃
−
ˆ
Ω
∇u · dp−

ˆ
Ω
α d|p|q

}︃
≤ sup

p∈VΓN
(Ω)

{︃ˆ
Ω
|∇u|p d|p|q −

ˆ
Ω
α d|p|q

}︃
= sup

p∈VΓN
(Ω)

{︃ˆ
Ω
(|∇u|p − α) d|p|q

}︃
≤ 0

i.e., it follows that J∗(div∗u) = 0. The proof is complete. □

From Theorem 5.1, it follows that the duality result of Proposition 5.6 also holds in this setting;
the proof is straightforward.

5.2. The case when α is a measure. In this section, we will extend the duality result of Propo-
sition 5.6 by letting α to be a non negative Borel measure, that is, α ∈ M+(Ω). However, p is a
function in this setting. In its more general form, in problem (P∗), we set

J(p) =

ˆ
Ω
|p|q dα . (5.14)

The results in this subsection are a generalization of the case of the Lebesgue integrable constraint
α, that was presented in Section 5.1. We shall assume that p ∈ VΓN

(Ω), see (4.2) for the definition
of VΓN

(Ω).
Since α ∈ M+(Ω), as we discussed in Section 1, we let

UΓD
(Ω) = BVΓD

(Ω) and G = D, (5.15)

the distributional gradient, and hence

K = {v ∈ BVΓD
(Ω) : |Dv|p ≤ α}.

We prove that the dual problem to (P∗) is given by (P) with inequality constraint |Du|q ≤ α being
understood in the sense of (2.6).

Recall that in section 3 we have shown existence and uniqueness of solution to (P). Here, we
show that dual of problem (P∗) is given by (P). We start by writing (P∗) as

inf
p∈VΓN

(Ω)
F (div p) + J(p),
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with J : VΓN
(Ω) → R as in (5.14) and F : L2(Ω) → R, as before, given by

F (v) :=
1

2

ˆ
Ω
|v(x)− f(x)|2 dx.

We prove now that Theorem 5.1 holds also true in the current setting. For brevity, we only discuss
the essential modifications needed in Lemmas 5.3 and 5.4.

Proof of Theorem 5.1. This proof follows along the same lines as the proof to Theorem 5.1. We
start by observing that the discussion in Remark 5.2 holds in the current setting as well, i.e.,
J∗(div∗ u) only takes the values 0 and +∞. We now prove the result.

The proof that J∗(div∗u) = 0 implies that u ∈ K follows along the lines of Lemma 5.3. Indeed
(i) and (ii) in Lemma 5.3 apply directly, and for (iv) everything follows in the same way, when Du
and dα are measures instead of the functions ∇u and α(x).

On the other hand, the converse (Lemma 5.4), i.e., u ∈ K implies that J∗(div∗u) = 0 follows
from the calculations below. Recall that if u ∈ K, then u ∈ BVΓD

(Ω) and |Du|p ≤ α in the sense
of (2.6). Therefore,

0 ≤ J∗(div∗ u) = sup
p∈VΓN

(Ω)

{︃
⟨div∗ u,p⟩(VΓN

(Ω))∗,VΓN
(Ω) −

ˆ
Ω
|p|qdα

}︃

= sup
p∈C1(Ω)d∩VΓN

(Ω)

{︄
−
ˆ
Ω
pDu−

ˆ
Ω
|p|qdα+

ˆ
ΓD

γ0(u)p · ν dHd−1

}︄

= sup
p∈C1(Ω)d∩VΓN

(Ω)

{︃
−
ˆ
Ω
pDu−

ˆ
Ω
|p|qdα

}︃

≤ sup
p∈C1(Ω)d∩VΓN

(Ω)

{︃ˆ
Ω
|p|q|Du|p −

ˆ
Ω
|p|qdα

}︃
≤ 0,

and the proof is complete. □

Finally, note that it follows identically as before that the polar function of F is given by

F ∗(u) :=
1

2
∥u∥2L2(Ω) − (f, u). (5.16)

Hence, the duality result of proposition 5.6 also holds in the case where α is a measure, with ∇
replaced by D.

6. A Finite Element Method with Applications

The purpose of this section is to illustrate the applicability of the proposed primal-dual approach
to solve Problems (P) and (P∗). We assume throughout this section that p = q = 2.

Recall that Problem (P) in the case that α ∈ L∞(Ω)+ is given by

min
1

2

ˆ
Ω
|u(x)|2 dx−

ˆ
Ω
f(x)u(x) dx over u ∈W 1,∞

ΓD
(Ω), s.t. |∇u|2 ≤ α a.e. (6.1)

and that the pre-dual problem (P∗) is given by

min
1

2
∥div p− f∥2L2(Ω) +

ˆ
Ω
α(x)|p(x)|2 dx over p ∈ VΓN

(Ω) . (6.2)
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Now the first order (necessary and sufficient) optimality condition corresponding to (6.2) in the
strong form is given by: Find p : Ω → Rd satisfying

−∇ (div p− f) + ∂
(︂
∥α|p|2∥L1(Ω)

)︂
∋ 0 in Ω,

p · ν = 0 on ΓN ,
(6.3)

where ∂ denotes the subdifferential operator. In order to solve (6.3), recall from the extremality
conditions (5.13), that if u∗ and p∗ are solutions to (6.1) and (6.2), respectively, they satisfy

u∗ := −div p+ f a.e. in Ω . (6.4)

Then, a primal-dual system arises from (6.3) and (6.4), which in the weak form becomes the
following variational inequality of second kind: Find (p, u) ∈ VΓN

(Ω)× L2(Ω) such that(︁
u,−div (v − p)

)︁
+

ˆ
Ω
α(x)|v(x)|2 dx−

ˆ
Ω
α(x)|p(x)|2 dx ≥ 0 for all v ∈ VΓN

(Ω), (6.5)

(u,w) + (div p, w) = (f, w) for all w ∈ L2(Ω) . (6.6)

Due to their nonlinear and nonsmooth nature, it is challenging to solve (6.5)–(6.6).
We shall proceed by introducing the Huber-regularization for ϕ(p) := |p|2 in the last term under

the integral in (6.2). This regularization is C1 with piecewise differentiable first order derivative.
Therefore one can use Newton type methods to solve the resulting regularized system. For a given
parameter τ > 0, the Huber regularization of ϕ is given by

ϕτ (p) :=

{︄
|p|2 − 1

2τ, |p|2 > τ,
1
2τ |p|

2
2, |p|2 ≤ τ .

As τ → 0, ϕτ (p) → ϕ(p). Moreover, ϕτ (·) is continuously differentiable with derivative given by

ϕ′τ (p) :=

{︄
p

|p|2 , |p|2 > τ
1
τ p, |p|2 ≤ τ .

Replacing ϕ(·) = | · |2 in (6.2) by ϕτ (·), the regularized primal-dual system corresponding to
(6.5)–(6.6) is given by

(u,−divv) +

ˆ
Ω
αϕ′τ (p) · v = 0, for all v ∈ VΓN

(Ω), (6.7)

(u,w) + (div p, w) = (f, w), for all w ∈ L2(Ω). (6.8)

Notice, that ϕ′τ (·) is piecewise differentiable and the second order derivative is given by

ϕ′′τ (p) =:=

⎧⎨⎩ 1
|p|2

(︂
Id×d − pp⊤

|p|22

)︂
, |p|2 > τ ,

1
τ Id×d, |p|2 ≤ τ ,

where Id×d is the d× d identity matrix.
A few words are in order concerning the approximating problem (6.7) and (6.8). In particular, it

should be noted that the regularization of the α-weighted L1-norm is performed once the primal-
dual system is formed and not at an earlier stage. In contrast, if we had regularized the α-weighted
L1-norm in (6.2), then this would reflect with an additional Tikhonov-type regularization on (6.1)
(see for example [28] for a similar problem). The proposed setup in (6.7) and (6.8) can be considered
as a hybrid approach, and its analysis is an open problem that requires additional considerations.



VARIATIONAL PROBLEMS WITH DISTRIBUTIONAL AND WEAK GRADIENT CONSTRAINTS 23

6.1. Finite Element Discretization. We discretize p and u using the lowest order Raviart-
Thomas (RT0) and piecewise constant (P0) finite elements, respectively. Whenever needed, the
integrals are computed using Gauss-quadrature which is exact for polynomials of degree less than
or equal to 4. For each fixed τ , we solve the discrete saddle point system (6.7)–(6.8) using Newton’s
method with backtracking line-search strategy. We stop the Newton iteration when each residual
in L2(Ω)-norm is smaller than 10−8. Each linear solve during the Newton iteration is done using
direct solve. Starting from τ = 10, a continuation strategy is applied where in each step we reduce
τ by a factor of 1.30 until τ is less than or equal to 10−6. We initialize the Newton’s method
by zero. To compute solution for next τ , we use the solution corresponding to previous τ as the
initial iterate for the Newton’s method. The number of iterations remains stable in all cases for
Examples 1 and 2 for each mesh size h, and for each τ less than 6 iterations are needed to achieve
termination conditions. The situation is different for Example 3, where as h ↓ 0, αh approximates
a Borel measure; here the number of iterations deteriorate as h ↓ 0.

6.2. Numerical Examples. Next, we report results from various numerical experiments. In all
examples we consider Ω = (0, 1) × (0, 1) and we assume that ΓN = ∅, ΓD = ∂Ω, and hence
pure Dirichlet boundary conditions on u on the entire boundary are set. In the first example, we
construct exact solutions (p, u) when f and α are constants. We compare these exact solutions with
our finite element approximation. These experiments validate our finite element implementation
for constant α and f and provide optimal rate of convergence. Additionally, we solve (P∗) and (P)
first for a fixed α and vary f and next we fix f and vary α. In our second experiment, we consider a
more generic f with different features such as cone, valley and flat regions. In our final experiment,
we consider α to be a measure.

Example 1. Note initially that if α and f are constants, it is possible to calculate an exact solution.
By setting

m(x) := min
{︁
f, α(x− 1), α(x− 0)

}︁
,

the exact u and p are given as:

u(x, y) = min{m(x),m(y)},

and

p(x, y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(︃

1
α(m(y)−m(x))sgn(0.5− x)

(︂
f − 1

2

(︁
m(x) +m(y)

)︁)︂
, 0

)︃⊤
, if |x− 0.5| > |y − 0.5|,(︃

0, 1α(m(x)−m(y))sgn(0.5− y)
(︂
f − 1

2

(︁
m(x) +m(y)

)︁)︂)︃⊤
, otherwise.

Notice that in this example, u is again Lipschitz continuous. In Figure 2 (top panel), we have
shown the ∥p − ph∥L2(Ω) and ∥u − uh∥L2(Ω) when Ω = (0, 1)2, f = 1, and α = 1. We observe
optimal rate of convergence in both cases. In the bottom row, the left panel shows uh, the middle
panel shows |∇uh|2, and the right panel shows ph. We observe that, in this example, the gradient
constraints are active in the entire region. Notice that at the corners (which are sets of measure
zero), gradient is undefined.

Next, we fix the number of ph and uh unknowns to be 197,120 and 131,072, respectively. Figure 3
shows our results for 3 different experiments. In all cases, we have used a fixed α = 1. The rows
correspond to uh, |∇uh|2, and ph. Each column correspond to f = 1, f = 0.25, and f = 0.1. As
expected, for a large value of f , we observe steep slope, but for smaller values of f , plateau regions
appear. We also observe that the active region shrinks as f decreases since the gradient is zero at
the top of the plateau. The dual variable ph also changes significantly with f .
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Figure 2. Example 1: Top panel - We have shown the L2(Ω)-error between the
computed solution (uh,ph) and the exact solution (u,p). The optimal linear rate
of convergence is observed. Bottom panel: Computed uh (left), |∇uh|2 (middle),
ph (right). Notice that we are touching the constraints in the entire region, except
where the gradient is undefined. We have omitted the plots of the exact (u,p) as
they look exactly same as (uh,ph).

In Figure 4 we again show results from 3 different experiments. In all cases, we have used a fixed
f = 1. The rows correspond to uh, |∇uh|2, and ph. Each column corresponds to

α = 1, α = 0.5, and α =

{︃
0.75, y ≤ 1− x,
1.0, otherwise,

respectively. In all cases, we observe that the gradient constraints are active in the entire domain
(except on a set of measure zero). For the case of piecewise constant α, nonsmoothness in ph is
clearly visible.
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Figure 3. Example 1 (fixed α, varying f). The rows correspond to uh, |∇uh|2,
and ph. The columns represent f = 1, 0.25, and 0.1. In all cases, we observe that
the gradient constraints are active but the activity region shrinks as f decreases,
this is expected since the gradient on the plateau region is zero. The behavior of p
also changes considerably with f .

Example 2. In this example, we set

f = 10−3 + u0,

where

u0 :=

⎧⎪⎨⎪⎩
min{0.2, 0.5(x2 + y2)}, y ≤ 1− x,

max
{︂
1− 5

√︁
(x− 0.7)2 + (y − 0.7)2,min

{︁
0.2, 0.5(x2 + y2)

}︁}︂
, 1− x < y,

0 otherwise .

Moreover, we set α = 2.5. Figure 5 (left panel), shows a plot of f . Figure 5 (right panel) shows
the computed solution uh. In Figure 6, we have shown |∇uh|2 (left panel), and ph (right panel).
Notice that, the gradient constraints are active. Moreover, we also observe significant flat regions,
where the gradient is zero.

In Figure 7 have also displayed uh, |∇uh|2 and ph when α = 1.5.
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Figure 4. Example 1 (fixed f , varying α). The rows correspond to uh, |∇uh|2,
and ph. The first two columns represent constant α = 1 and 0.5. The third column
corresponds to α with jump discontinuity. In all cases, we observe that the gradient
constraints are active in the entire region, except on a set of measure zero. Moreover,
discontinuity in p in the last column is clearly visible.

Example 3. In this example, we consider f given by

f(x, y) =

{︃
0.25 (x, y) ∈ Ω, 0.5 ≤ y,
0 otherwise.

The main novelty and challenge in this example is the fact that we let α to be a measure. Specificallyˆ
Ω
v dα =

ˆ
Ω
v dx+ 102

ˆ
ω
v dH1,

for all v ∈ C∞
c (Ω) and where ω := {(x, y) ∈ Ω : y = 0.5}, i.e., α consists in the Lebesgue measure

dx and a weighted line measure on ω.
Let h denotes the meshsize, then αh is approximated as

dαh =

(︃
1 +

χωh(x, y)

h

)︃
dx,

where
ωh := {(x, y) ∈ Ω : 0.5− 102h ≤ y ≤ 0.5, x ∈ (0, 1)}.
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Figure 5. Example 2 (α = 2.5). Left panel: f . Right panel: the computed
solution uh.

Figure 6. Example 2 (α = 2.5). Left panel: |∇uh|2. Right panel: the computed
solution ph.

As h ↓ 0, we approximate the measure in the sense that
´
Ω v dα

h →
´
Ω v dα for all v ∈ C∞

c (Ω).

When h = 8.4984 × 10−5, the results are shown in Figure 8 (top row). Finally, when h =
2.1412×10−5 the results are provided in Figure 8 (bottom row). We notice that as h ↓ 0, we indeed
approximate the measure: In fact, we observe a clear discontinuity on the solution u, the size of
the jump is below 100 which is the upper bound on the distributional gradient on ω.

7. Some Open Problems

Two main open problems/research directions have emerged based on this current work:

• To the best of our knowledge, it is not known in which sense the sequence of Borel measures
{αn} should converge to a measure α so that the solutions to the respective variational
problems (P) (associated to αn) converge to the solution associated to α. See Remark 3.5
for a digression about this issue.

• The analysis of the system (6.7) and (6.8), and its approximation properties to the original
variational problem is a current topic of research.
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Figure 7. Example 2 (α = 1.5). Top row: uh and |∇uh|2. Bottom row: ph.
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