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Abstract. Total Generalized Variation (TGV) regularization in image reconstruction relies on an
infimal convolution type combination of generalized first- and second-order derivatives. This helps
to avoid the staircasing effect of Total Variation (TV) regularization, while still preserving sharp
contrasts in images. The associated regularization effect crucially hinges on two parameters whose
proper adjustment represents a challenging task. In this work, a bilevel optimization framework
with a suitable statistics-based upper level objective is proposed in order to automatically select
these parameters. The framework allows for spatially varying parameters, thus enabling better
recovery in high-detail image areas. A rigorous dualization framework is established, and for the
numerical solution, a Newton type method for the solution of the lower level problem, i.e. the
image reconstruction problem, and a bilevel TGV algorithm are introduced. Denoising tests con-
firm that automatically selected distributed regularization parameters lead in general to improved
reconstructions when compared to results for scalar parameters.

1. Introduction

In this work we analyze and implement a bilevel optimization framework for automatically se-
lecting spatially varying regularization parameters α := (α0, α1) ∈ C(Ω)2, α > 0, in the following
image reconstruction problem:

(1.1) minimize 1

2

∫

Ω
(Tu− f)2dx+TGV2

α
(u) over u ∈ BV(Ω),

where the second-order Total Generalized Variation (TGV) regularization is given by

TGV2
α
(u) = sup

{

∫

Ω
u div2ϕdx : ϕ ∈ C∞

c (Ω,Sd×d), |ϕ(x)| ≤ α0(x),

|divϕ(x)| ≤ α1(x), for all x ∈ Ω
}

.

(1.2)

Here, Ω ⊆ R
d is a bounded, open image domain with Lipschitz boundary, Sd×d denotes the space of

d×d symmetric matrices, T : L2(Ω) → L2(Ω) is a bounded linear (output) operator, and f denotes
given data which satisfies
(1.3) f = Tutrue + η.

In this context, η models a highly oscillatory (random) component with zero mean and known
quadratic deviation (variance) σ2 from the mean. Further, L2(Ω) denotes the standard Lebesgue
space [1], and | · |, represents the Euclidean vector norm or its associated matrix norm. The space
of infinitely differentiable functions with compact support in Ω and values in Sd×d is denoted
by C∞

c (Ω,Sd×d). Further, we refer to Section 2 for the definition of the first- and second-order
divergences div and div2, respectively.
1Humboldt-Universität zu Berlin, Unter den Linden 6, 10999 Berlin, Germany
2Weierstrass Institute for Applied Analysis and Stochastics (WIAS), Mohrenstrasse 39, 10117 Berlin, Germany
3Department of Mathematical Sciences, George Mason University, Fairfax, VA 22030, USA
4Institute for Mathematical Sciences, Renmin University of China, 100872 Beijing, People’s Republic of China
Emails: hintermueller@wias-berlin.de, papafitsoros@wias-berlin.de, crautenb@gmu.edu, hpsun@amss.ac.cn

1



Noisy TV TGV

Figure 1. Gaussian denoising: Typical difference between TV (piecewise constant)
and TGV reconstructions (piecewise affine)

Originally, the TGV functional was introduced for scalar parameters α0, α1 > 0 only; see [15].
It serves as a higher order extension of the well-known Total Variation (TV) regularizer [24, 54],
preserves edges (i.e., sharp contrast) [50, 58], and promotes piecewise affine reconstructions while
avoiding the often adverse staircasing effect (i.e., piecewise constant structures) of TV [23, 44, 53];
see Figure 1 for an illustration. These properties of TGV have made it a successful regularizer in
variational image restoration for a variety of applications [9, 10, 12, 13, 15, 17, 45, 59]. Extensions to
manifold-valued data, multimodal and dynamic problems [6, 14, 41, 42, 46, 55] have been proposed
as well. In all of these works, the choice of the scalar parameters α0, α1 is made “manually” via a
direct grid search. Alternatively, selection schemes relying on a known ground truth utrue have been
studied; see [19, 25, 26, 27]. The latter approach, however, is primarily of interest when investigating
the mere capabilities of TGV regularization.

While there exist automated parameter choice rules for TV regularization, see for instance [37]
and the references therein, analogous techniques and results for the TGV parameters are very
scarce. One of the very few contributions is [8] where, however, a spatially varying fidelity weight
rather then regularization parameter is computed. Compared to the choice of the regularization
weight in TV-based models, the infimal convolution type regularization incorporated into the TGV
functional significantly complicates the selection; compare the equivalent definition (2.1) below.
Further difficulties arise when these parameters are spatially varying as in (1.2). In that case, by
appropriately choosing α = (α0, α1), one wishes to smoothen homogeneous areas in the image while
preserving fine scale details. The overall target is then to not only select the parameters in order to
reduce noise while avoiding oversmoothing, as in the TV case, but also to ensure that the interplay
of α0 and α1 will not produce any staircasing.

For this delicate selection task and inspired by [37, 39] for TV, in this work we propose a bilevel
minimization framework for an automated selection of α in the TGV case. Formally, the setting
can be characterized as follows:

(1.4)
{

minimize a statistics-based (upper level) objective over (u,α)

subject to u solving (1.1) for a regularization weight α = (α0, α1).

Note here that the optimization variable α enters the lower level minimization problem (1.1) as a
parameter, thus giving rise to u = u(α). We also mention that this optimization format falls into
the general framework which is discussed in our review paper [33] where the general opportunities
and mathematical as well as algorithmic aspects of bilevel optimization in generating structured
non-smooth regularization functionals are discussed in detail.
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Figure 2. Suitability of the functional F (R·) as an upper level objective. Evaluation
of F (Ru) where u solves the TGV denoising problem (1.1) (T = Id), for a variety of
scalar parameters (α0, α1)

As our statistical set-up parallels the one in [37, 39], here we resort to the upper level objective
proposed in that work. It is based on localized residuals R : L2(Ω) → L∞(Ω) with

(1.5) Ru(x) =

∫

Ω
w(x, y)(Tu− f)2(y) dy,

where w ∈ L∞(Ω × Ω) with
∫

Ω

∫

Ωw(x, y)dxdy = 1. Note that Ru(x) can be interpreted as a local
variance keeping in mind that, assuming Gaussian noise of variance σ2, we have that

∫

Ω(Tutrue −
f)2 dx =

∫

Ω η
2 dx = σ2|Ω|. Consequently, if a reconstructed image u is close to utrue then it is

expected that for every x ∈ Ω the value of Ru(x) will be close to σ2. Hence it is natural to consider
an upper level objective which aims to approximately keep Ru within a corridor σ2 ≤ σ2 ≤ σ2 with
positive bounds σ2, σ2. This can be achieved by utilizing the function F : L2(Ω) → R with

(1.6) F (v) :=
1

2

∫

Ω
max(v − σ2, 0)2dx+

1

2

∫

Ω
min(v − σ2, 0)2dx.

The function F (R·) is then indeed suitable as an upper level objective. This is demonstrated in
Figure 2, where we show (in the middle and right plots) the objective values for a series of scalar
TGV denoising results and for a variety of parameters (α0, α1) for the image depicted on the left.
Regarding the choices of σ, σ, w we refer to Section 5. Upon inspection of Figure 2 we find that
the functional F (R·) is minimized for a pair of scalar parameters (α0, α1) that is close to the one
maximizing the peak-signal-to-noise-ratio (PSNR). Note, however, that in order to truly optimize
the PSNR, one would need the ground truth image utrue, which is of course typically not available.
In contrast to this, we emphasize that F (R·) does not involve any ground truth information. Rather,
it only relies on statistical properties of the noise.

For analytical and numerical reasons, rather than having (1.1) as the lower level problem for the
bilevel minimization framework (1.4), one can use alternative formulations, as was done for instance
in [37, 39] for TV models, where the Fenchel predual problem was used instead, see also [33] for
a thorough discussion on the corresponding TGV model. This yields a bilevel problem which is
expressed in terms of dual variables and is equivalent to the one stated in terms of the primal
variable u. In this way, one has to treat a more amenable variational inequality of the first kind
rather than one of second kind in the primal setting in the constraint system of the resulting bilevel
optimization problem. Numerically, one may then utilize very efficient and resolution independent,
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function space based solution algorithms, like (inexact) semismooth Newton methods [47]. The
other option that we will consider in this work, is to minimize the upper level objective subject
to the primal-dual optimality conditions, for which Newton methods can also be applied for their
solution, see for instance [40] for an inexact semismooth Newton solver which operates on the
primal-dual optimality conditions for TV regularization. We should also mention that this approach
requires T ∗T to be invertible, with T ∗ being the adjoint of T , which is true when T is injective with
closed range. We note that this does not exclude the use of our bilevel scheme to inverse problems
whose forward operator does not satisfy this condition. A noninvertibility of T ∗T can for instance
be treated by adding a small regularization term of the form κ

2

∫

Ω u
2 dx, in combination with a

Levenberg-Marquardt algorithmic scheme that sends the parameter κ to zero along the iterations.
Alternatively, instead of Newton, one can resort to first-order methods for solving the lower level
problem for which invertibility of T ∗T is not required. Such approaches are definitely interesting
and necessary for many inverse problems however since they would deviate from the main focus of
our paper which is the automatic computation of spatially distributed regularization weights, we
will keep this invertibility assumption in the following.

The structure of the paper. Basic facts on the TGV functional with spatially varying parameters
along with functional analytic foundations needed for (pre)dualization are the subjects of Section 2.
Section 2.4 is concerned with the derivation of the predual problem of (1.1) and the corresponding
primal-dual optimality conditions. Regularized versions of these conditions are the focus of Section
3. Besides respective primal-dual optimality conditions, we study the asymptotic behavior of these
problems and their associated solutions under vanishing regularization. Section 4 introduces the
bilevel TGV problem for which the primal-dual optimality conditions serve as constraints. The
numerical solution of the proposed bilevel problem is the subject of Section 5. It is also argued
that every regularized instance of the lower level problem can be solved efficiently by employing an
(inexact) semismooth Newton method. The paper ends by a report on extensive numerical tests
along with conclusions drawn from these computational results.

Summarizing, this work provides not only a user-friendly and novel hierarchical variational frame-
work for automatic selection of the TGV regularization parameters, but by making these parameters
spatially dependent it leads to an overall performance improvement; compare, e.g., the results in
Section 5.

2. The dual form of the weighted TGV functional

2.1. Total Generalized Variation. We recall here some basic facts about the TGV functional
(1.2) with constant parameters α0, α1 and assume throughout that the reader is familiar with the
basic concepts of functions of bounded variation (BV); see [2] for a detailed account. For a function
ϕ ∈ C∞

c (Ω,Sd×d) the first- and second-order divergences are respectively given by

(divϕ)i =

d
∑

j=1

∂ϕij
∂xj

, i = 1, . . . , d, and div2ϕ =

d
∑

i=1

∂2ϕii
∂x2i

+ 2
∑

i<j

∂2ϕij
∂xi∂xj

.

In [17] it was shown that a function u ∈ L1(Ω) has finite TGV value if and only if it belongs
to BV(Ω). Here BV(Ω) denotes the Banach space of function of bounded variation over Ω with
associated norm ‖·‖BV(Ω). Moreover, the bounded generalized variation norm ‖·‖BGV := ‖·‖L1(Ω)+

TGV2
α
(·) is equivalent to ‖ · ‖BV(Ω). Similarly to TV, TGV is a convex functional which is lower

semicontinuous with respect to the strong L1 convergence. In [11, 17] it is demonstrated that the
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TGV functional can be equivalently written as
(2.1) TGV2

α
(u) = min

w∈BD(Ω)
α1|Du− w|(Ω) + α0|Ew|(Ω),

where BD(Ω) is the Banach space of functions of bounded deformation, with E denoting the dis-
tributional symmetrized gradient [56, 57]. The asymptotical behavior of the TGV model in image
restoration with respect to scalars α0, α1 was studied in [51]; see also [58]. For instance, when
T = Id and either α0 or α1 converges to zero, then the corresponding solutions of (1.1) converge
(weakly∗ in BV(Ω)) to f . When both of the parameters are sent to infinity, then the solutions
converge weakly∗ to the L2-linear regression solution for f . We further note that the set of affine
functions constitutes the kernel of the TGV functional.

For specific symmetric functions u, there exist combinations of α0, α1 such that TGVα(u) =
α1TV(u). In general one can show that there exists a constant C > 0 such that if α0/α1 > C, then
the TGV value does not depend on α0 and, up to an affine correction, it is equivalent to TV. In
that case the reconstructed images still suffer from a kind of (affine) staircasing effect [51].

The fine structure of TGV reconstructions has been studied analytically mainly in dimension one
in [5, 16, 49, 50, 52]. Under some additional regularity assumptions (compare [58]) it can be shown
that for TGV denoising the jump set of the solution is essentially contained in the jump set of the
data; see [22] for the TV case.

2.2. The space W q
0 (div

2; Ω). Next we introduce several function spaces which will be useful in
our subsequent development. For this purpose, let 1 ≤ q ≤ ∞ and p ∈ Lq(Ω,Rd). Recall that
divp ∈ Lq(Ω) if there exists w ∈ Lq(Ω) such that

∫

Ω
∇ϕ · p dx = −

∫

Ω
ϕw dx, for all ϕ ∈ C∞

c (Ω).

In that case w is unique and we set divp = w. Based on this first-order divergence, we define the
Banach space

W q(div; Ω) :=
{

p ∈ Lq(Ω,Rd) : divp ∈ Lq(Ω)
}

,

endowed with the norm ‖p‖qW q(div;Ω) := ‖p‖q
Lq(Ω,Rd)

+‖divp‖qLq(Ω). Similarly one obtains the Banach
space W q(div2; Ω) as the space of all functions p ∈ Lq(Ω,Sd×d) whose first- and second-order
divergences, divp and div2p, respectively, belong to Lq(Ω). We note that for a p ∈ Lq(Ω,Sd×d), we
have that divp ∈ Lq(Ω,Rd) if there exists an ω ∈ Lq(Ω,Rd) such that

∫

Ω
Eϕ · p dx = −

∫

Ω
ϕ · ω dx, for all ϕ ∈ C∞

c (Ω,Rd),

with Eϕ denoting the L1 function representing the absolutely continuous part of Eϕ, with respect
to the Lebesgue measure. Note that since ϕ is smooth, we have Eϕ = Eϕ. As before ω is unique
and we set divp = ω. Finally div2p ∈ Lq(Ω) if there exists a function v ∈ Lq(Ω) such that

∫

Ω
∇ϕ · divp dx = −

∫

Ω
ϕv dx, for all ϕ ∈ C∞

c (Ω).

This space is equipped with the norm ‖p‖q
W q(div2;Ω)

:= ‖p‖qLq(Ω) + ‖divp‖q
Lq(Ω,Rd)

+ ‖div2p‖qLq(Ω).
We refer to [12] for a more general definition of these spaces. Note that when q = 2 these spaces
are Hilbertian and then the standard notation is H(div; Ω) and H(div2; Ω); see [30]. The Banach
spaces W q

0 (div; Ω) and W q
0 (div

2; Ω) are defined as

W q
0 (div; Ω) = C∞

c (Ω,Rd)
∥·∥Wq(div;Ω)

, W q
0 (div

2; Ω) = C∞
c (Ω,Sd×d)∥·∥Wq(div2;Ω) ,
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with the analogous notation H0(div; Ω) and H0(div
2; Ω) for q = 2. Using the definitions above, the

following integration by parts formulae hold true:
∫

Ω
∇ϕ · p dx = −

∫

Ω
ϕ divp dx, for all p ∈W q

0 (div; Ω), ϕ ∈ C∞(Ω,R),(2.2)
∫

Ω
Eϕ · p dx = −

∫

Ω
ϕ · divp dx, for all p ∈W q

0 (div
2; Ω), ϕ ∈ C∞(Ω,Rd),(2.3)

∫

Ω
∇ϕ · divp dx = −

∫

Ω
ϕ div2p dx, for all p ∈W q

0 (div
2; Ω), ϕ ∈ C∞(Ω,R).(2.4)

2.3. Weighted TGV. Throughout the remainder of this work we use the weighted TGV functional
(1.2) with α0, α1 ∈ C(Ω) and α0(x), α1(x) > α > 0, α ∈ R, x ∈ Ω. We denote by | · | the finite
dimensional Euclidean norm. We note that for an R

ℓ-valued finite Radon measure µ = (m1, . . . ,mℓ),
we denote by |µ| its total variation measure, where for every Borel E ⊆ Ω

|µ|(E) = sup

{

∞
∑

n=0

|µ(En)| : En Borel pairwise disjoint, E =
∞
⋃

n=0

En

}

.

Note also that it can be shown

|µ|(Ω) = sup

{

ℓ
∑

i=1

∫

Ω
ϕi dµi : ϕ ∈ C∞

c (Ω,Rℓ), |ϕ(x)| ≤ 1, for all x ∈ Ω

}

.

We will show that for u ∈ L2(Ω) the space C∞
c (Ω,Sd×d) in (1.2) can be substituted by H0(div

2; Ω)

(and by W d
0 (div

2; Ω) for u ∈ Ld/d−1(Ω)). This fact will be instrumental when deriving the predual
of the TGV minimization problem. For this we need the following result:

Proposition 2.1. The weighted TGV2
α

functional (1.2) admits the equivalent expression

(2.5) TGV2
α
(u) = min

w∈BD(Ω)

∫

Ω
α1 d|Du− w|+

∫

Ω
α0 d|Ew|.

Proof. The proof is analogous to the one for the scalar TGV functional; see for instance [11, Theorem
3.5] or [12, Proposition 2.8]. Here, we highlight only the significant steps. Indeed, given u ∈ L1(Ω),
the idea is to define

U = C1
0 (Ω,R

d)× C2
0 (Ω;Sd×d), V = C1

0 (Ω,R
d),

Λ : U → V, Λ(u1, u2) = −u1 − divu2,

F1 : U → R, F1(u1, u2) = −
∫

Ω
u divu1 + I{|·(x)|≤α1(x)}(u1) + I{|·(x)|≤α0(x)}(u2),

F2 : V → R, F2(v) = I{0}(v).

Here, IS(·) denotes the indicator function of a set S. Now, after realizing that

(2.6) TGV2
α
(u) = sup

(u1,u2)∈U
−F1(u1, u2)− F2(Λ(u1, u2)),

the proof proceeds by showing that the dual problem of (2.6) is equivalent to (2.5) and then applying
the Fenchel duality result [29]. We note that in order to achieve zero duality gap between the primal
and the dual problem the so-called Attouch-Brezis condition needs to be satisfied see [3], that is
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one needs to show that the set
⋃

λ≥0 λ(dom(F2) − Λ(dom(F1))) is a closed subspace of V . Indeed
one can easily see that

⋃

λ≥0

λ(dom(F2)− Λ(dom(F1))) =
{

λ(u1 + divu2) : (u1, u2) ∈ U,

|u1(x)| ≤ α1(x), |u2(x)| ≤ α0(x), ∀x ∈ Ω
}

= V.

Note that for the above equality we crucially used the fact that α1 is bounded away from zero.
The other subtle point is the following density result which is required in order to show that (2.6)

is indeed equal to (1.2):

(2.7)
{ϕ ∈ C∞

c (Ω,Sd×d) : |ϕ(x)| ≤ α0(x), |divϕ(x)| ≤ α1(x), for all x ∈ Ω}∥·∥C2
0

=
{

ψ ∈ C2
0 (Ω,Sd×d) : |ψ(x)| ≤ α0(x), |divψ(x)| ≤ α1(x), for all x ∈ Ω

}

.

Indeed let ψ belong to the second set in (2.7), and let ϵ > 0. Choose 0 < λϵ < 1 such that

(2.8) ‖ψ − λϵψ‖C2
0
< ϵ/2.

Since α0 and α1 are continuous and bounded away from zero there exists αϵ > 0, smaller than the
minimum of α0, α1, such that

|λϵψ(x)| ≤ α0(x)− αϵ, |divλϵψ(x)| ≤ α1(x)− αϵ, for all x ∈ Ω.

From standard density properties there exists a function ϕϵ ∈ C∞
c (Ω,Sd×d) such that the following

conditions hold for all x ∈ Ω:

(2.9) ‖ϕϵ − λϵψ‖C2
0
< ϵ/2, |ϕϵ(x)− λϵψ(x)| ≤ αϵ/2, |divϕϵ(x)− divλϵψ(x)| ≤ αϵ/2,

which implies

(2.10) |ϕϵ(x)| ≤ α0(x)− αϵ/2, |divϕϵ(x)| ≤ α1(x)− αϵ/2, for all x ∈ Ω.

Then, from (2.10) it follows that ϕϵ belongs to the first set in (2.7) and from (2.8) and (2.9) we get
that ‖ψ − ϕϵ‖C2

0
< ϵ. □

Now we are ready to establish the density result needed for dualization. For the sake of the flow
of presentation we defer the proof, which parallels the one of [12, Proposition 3.3], to Appendix A.
Below “a.e.” stands for “almost every” with respect to the Lebesgue measure.

Proposition 2.2. For u ∈ L2(Ω), the weighted TGV functional (1.2) can be equivalently written
as

TGV2
α
(u) = sup

{

∫

Ω
u div2p dx : p ∈ H0(div

2; Ω), |p(x)| ≤ α0(x),

|divp(x)| ≤ α1(x), for a.e. x ∈ Ω
}

.

(2.11)

Remark: By slightly amending the proof of Proposition 2.2, one can also show that if u ∈ Ld/d−1(Ω) ⊃
BV(Ω) then the dual variables p can be taken to belong to W d

0 (div
2; Ω) rather than H0(div

2; Ω).
7



2.4. The predual weighted TGV problem. Now we study the predual problem for the weighted
TGV model with continuous weights, i.e., we use the regularization functional (1.2) or equivalently
(2.11). For T ∈ L(L2(Ω), L2(Ω)) we assume that B := T ∗T is invertible and define ‖v‖2B =

∫

Ω vB−1v,
which induces a norm in L2(Ω) equivalent to the standard one; compare [47]. When T ∗T is not
invertible one can add an extra regularization term of the form κ

2

∫

Ω u
2 dx, for some small κ > 0, to

the objective in (1.1). Then B = κ Id+T ∗T will be invertible, see a similar approach in [37, 39, 47].
We mention that a different set-up, as adopted for instance in [31], assumes T ∈ L(Ld/d−1, L2(Ω)),
since BV(Ω) continuously embeds to Ld/d−1(Ω). Then one readily finds that for d > 2, B cannot
be invertible, in general. Even though invertibility of T ∗T is not necessary when dealing only
with the TGV regularization problem (1.1), additional challenges would arise in our overall bilevel
optimization context, such as, e.g., a lack of uniqueness of the solution for the lower level problem,
i.e., genuine set-valuedness of the regularization-weight-to-reconstruction map cf. the constraint set
in (1.4). In the next proposition we prove zero duality gap for (1.1) and its predual. We note however
that the invertibility assumption on T ∗T is not needed to establish zero duality gap but rather to get
an explicit formulation of the predual problem. An adaptation of the following proposition without
this invertibility assumption can be done for instance by simply adjusting the corresponding proof
of [31, Theorem 5.4] where analogous dualization results for a class of structural TV regularizers
were considered.

Proposition 2.3. Let f ∈ L2(Ω), then there exists a solution to the primal problem

(2.12) minimize 1

2
‖Tu− f‖2L2(Ω) +TGV2

α
(u) over u ∈ BV(Ω),

as well as to its predual problem

minimize 1

2
‖T ∗f − div2p‖2B − 1

2
‖f‖2L2 over p ∈ H0(div

2; Ω)

subject to |p(x)| ≤ α0(x), |divp(x)| ≤ α1(x), for a.e. x ∈ Ω,
(2.13)

and there is no duality gap, i.e., the primal and predual optimal objective values are equal. Moreover,
the solutions u and p of these problems satisfy

Bu = T ∗f − div2p.(2.14)

Proof. We set U = H0(div
2; Ω), V = L2(Ω), Λ : U → V with Λp = div2p, and also F1 : U → R and

F2 : V → R with

F1(p) = I{|·(x)|≤α0(x), for a.e. x}(p) + I{|div·(x)|≤α1(x), for a.e. x}(p),(2.15)

F2(ψ) =
1

2
‖T ∗f − ψ‖2B − 1

2
‖f‖2L2(Ω).(2.16)

Immediately one gets that

(2.17) inf
p∈U

F1(p) + F2(Λp) = inf
p∈H0(div

2;Ω)
|p(x)|≤α0(x)

|divp(x)|≤α1(x)

1

2
‖T ∗f − div2p‖2B − 1

2
‖f‖2L2(Ω).

The problem in (2.17) admits a solution. Indeed, first observe that the objective is bounded from
below. Then note that since 1

2‖T · −f‖2L2(Ω) is continuous at 0 ∈ L2(Ω), its convex conjugate (see
[29] for a general definition) which is equal to 1

2‖T ∗f + ·‖2B − 1
2‖f‖2L2(Ω) is coercive in L2(Ω); see

[7, Theorem 4.4.10]. Hence, any infimizing sequence (pn)n∈N is bounded in H0(div
2; Ω), and thus

8



there exist an (unrelabeled) subsequence and p ∈ H(div2; Ω) such that pn ⇀ p, divpn ⇀ divp and
div2pn ⇀ div2p weakly in L2. We also have that p is a feasible point since the set

{

(h, divh, div2h) : h ∈ H0(div
2; Ω), |h(x)| ≤ α0(x), |divh(x)| ≤ α1(x), for a.e. x ∈ Ω

}

,

is weakly closed. Then p is a minimizer of (2.17) as 1
2‖T ∗f − ·‖2B is weakly lower semicontinuous in

L2(Ω).
We now calculate the expression F ∗

1 (Λ
∗u) + F ∗

2 (−u) for u ∈ V ∗ = L2(Ω). As before one verifies
by direct computation that F ∗

2 (−u) = 1
2‖Tu− f‖2L2(Ω). Moreover,

F ∗
1 (Λ

∗u) = sup
p∈U

{〈Λ∗u, p〉U∗,U − F1(p)} = sup
p∈U

{〈u,Λp〉L2(Ω),L2(Ω) − F1(p)}

= sup
p∈H0(div

2;Ω)
|p(x)|≤α0(x)

|divp(x)|≤α1(x)

∫

Ω
div2p dx = TGV2

α
(u),

where for the last equality we used Proposition 2.2 and its underlying density result. In order to
prove that there is no duality gap, it suffices again to verify the Attouch-Brezis condition and show
that the set

⋃

λ≥0 λ(dom(F2)− Λ(dom(F1))) is a closed subspace of V . It is immediate to see that
dom(F2) = L2(Ω), and hence the condition holds true. Thus, we also get existence of a solution
for the primal problem (2.12). Finally (2.14) follows from the optimality condition (Euler-Lagrange
system) that corresponds to Λp ∈ ∂F ∗

2 (−u). □

The primal-dual optimality conditions for the problems (2.12) and (2.13) read

p ∈ ∂F ∗
1 (Λ

∗u),(2.18)
Λp ∈ ∂F ∗

2 (−u),(2.19)

and we note once again that (2.14) corresponds to (2.19) with F2 and Λ as in the proof of Propo-
sition 2.12. Instead of making the optimality condition that corresponds to (2.18) explicit, we are
interested in the analogous optimality conditions written in the variables u and w of the equivalent
primal weighted TGV problem

(2.20) min
u∈BV(Ω)
w∈BD(Ω)

1

2
‖Tu− f‖2L2(Ω) +

∫

Ω
α1 d|Du− w|+

∫

Ω
α0 d|Ew|.

For this purpose note first that the predual problem (2.13) can be equivalently written as

(2.21)







minimize 1

2
‖T ∗f + divq‖2B − 1

2
‖f‖2L2(Ω) over (p, q) ∈ H0(div

2; Ω)×H0(div; Ω),

subject to − divp = q, |p(x)| ≤ α0(x), |q(x)| ≤ α1(x), for a.e. x ∈ Ω.

The next proposition characterizes the solutions (w, u) and (p, q) of the problems (2.20) and (2.21)
respectively. Before we state it, we note that in its proof we will make use of the following density
results:

Cα0

L2(Ω)
= Kα0 , Cα1

H0(div;Ω)
= Kα1 ,(2.22)

9



where

Cα0 :=
{

(div2ϕ, divϕ) : ϕ ∈ C∞
c (Ω,Sd×d), |ϕ(x)| ≤ α0(x), for all x ∈ Ω

}

,(2.23)

Kα0 :=
{

(div2p, divp) : p ∈ H0(div
2; Ω), |p(x)| ≤ α0(x), for a.e. x ∈ Ω

}

,(2.24)

Cα1 :=
{

ψ : ψ ∈ C∞
c (Ω,Rd), |ψ(x)| ≤ α1(x), for all x ∈ Ω

}

,(2.25)

Kα1 := {q : q ∈ H0(div; Ω), |q(x)| ≤ α1(x), for a.e. x ∈ Ω} .(2.26)

These results can be proven by using the duality arguments of the proof of Proposition 2.2, which
originate from [12], or with the use of mollification techniques; see [35, 36, 38].

Proposition 2.4. The pair (p, q) ∈ H0(div
2; Ω) ×H0(div; Ω) is a solution to (2.21), and (w, u) ∈

BD(Ω)×BV(Ω) is a solution to (2.20) if and only if the following optimality conditions are satisfied:

Bu = T ∗f + divq,(2.27)
q = −divp,(2.28)
|q(x)| ≤ α1(x) for a.e. x ∈ Ω(2.29)
and 〈Du− w, q̃ − q〉 ≤ 0 for every q̃ ∈ H0(div; Ω) with |q̃(x)| ≤ α1(x) for a.e. x ∈ Ω,

|p(x)| ≤ α0(x) for a.e. x ∈ Ω(2.30)
and 〈Ew, p̃− p〉 ≤ 0 for every p̃ ∈ H0(div

2; Ω) with |p̃(x)| ≤ α0(x) for a.e. x ∈ Ω.

Proof. Define X = (X1, X2) = H0(div
2,Ω) × H0(div,Ω), Y = (Y1, Y2) = H0(div; Ω) × L2(Ω),

Λ : X → Y with Λ(p, q) = (q + divp, divq), and F1 : X → R, F2 : Y → R with

F1(p, q) = I{|·(x)|≤α0(x), for a.e. x}(p) + I{|·(x)|≤α1(x), for a.e. x}(q),(2.31)

F2(ϕ, ψ) = I{0}(ϕ) +
1

2
‖T ∗f + ψ‖2B − 1

2
‖f‖2L2(Ω).(2.32)

One checks immediately that min(p,q)∈X F1(p, q) + F2(Λ(p, q)) corresponds to (2.21) with the dual
problem reading min(w,u)∈Y ∗ F ∗

1 (−Λ∗(w, u)) + F ∗
2 (w, u). Observe that since

−〈Λ∗(w, u), (p, q)〉X∗,X = −〈(w, u),Λ(p, q)〉Y ∗,Y = −〈w, divp〉Y ∗

1 ,Y1
− 〈w, q〉Y ∗

1 ,Y1
− 〈u, divq〉Y ∗

2 ,Y2
,

we have

(2.33) F ∗
1 (−Λ∗(w, u)) = sup

p∈H0(div
2;Ω)

|p(x)|≤α0(x)

−〈w, divp〉Y ∗

1 ,Y1
+ sup
q∈H0(div;Ω)
|q(x)|≤α1(x)

−〈w, q〉Y ∗

1 ,Y1
− 〈u, divq〉Y ∗

2 ,Y2
.

Note that the suprema above are always greater or equal to the corresponding suprema over
C∞
c (Ω,Sd×d) ⊂ H0(div

2; Ω) and C∞
c (Ω,Rd) ⊂ H0(div; Ω). One can easily check that there is

no duality gap between these primal and dual problems – the Attouch-Brezis condition is satisfied
– and thus since the primal problem is finite so is the dual. Using the fact that α0 is bounded
from below, this implies in particular that w, seen as distribution through its action on C∞

c (Ω,Rd),
has a distributional symmetrized gradient Ew with bounded Radon norm, and hence it is a Radon
measure. It follows that w ∈ L1(Ω,Rd) yielding w ∈ BD(Ω); see [11], which means that for
ψ ∈ C∞

c (Ω,Rd) we have 〈w,ψ〉Y ∗

1 ,Y1
=
∫

Ωw · ψ dx. Using density of C∞
c (Ω,Rd) in H0(div; Ω) this

also implies 〈w, q〉Y ∗

1 ,Y1
=
∫

Ωw · q dx and similarly 〈w, divp〉Y ∗

1 ,Y1
=
∫

Ωw · divp dx in (2.33). Using
10



now also the density results (2.22) we have

F ∗
1 (−Λ∗(w, u)) = sup

p∈H0(div
2;Ω)

|p(x)|≤α0(x)

−
∫

Ω
w · divp dx+ sup

q∈H0(div;Ω)
|q(x)|≤α1(x)

−
∫

Ω
w · q dx−

∫

Ω
u divq dx

= sup
ϕ∈C∞

c (Ω,Sd×d)
|ϕ(x)|≤α0(x)

−
∫

Ω
w · divϕdx+ sup

ψ∈C∞

c (Ω,Rd)
|ψ(x)|≤α1(x)

−
∫

Ω
w · ψ dx−

∫

Ω
u divψ dx

= sup
ϕ∈C∞

c (Ω,Sd×d)
|ϕ(x)|≤α0(x)

〈Ew, ϕ〉+ sup
ψ∈C∞

c (Ω,Rd)
|ψ(x)|≤α1(x)

〈Du− w,ψ〉,

=

∫

Ω
α0 d|Ew|+

∫

Ω
α1 d|Du− w|.

Here we used the fact that since the distribution Du − w has a finite Radon norm, due to α1

being bounded away from zero, it can be represented by an R
d-valued finite Radon measure and

in particular u ∈ BV(Ω). Furthermore, as in the proof of Proposition 2.3 we have F ∗
2 (w, u) =

1
2‖Tu− f‖2L2(Ω).

The fact that there is no duality gap is ensured by Propositions 2.1, 2.2 and 2.3. We now turn
our attention to the optimality conditions

(p, q) ∈ ∂F ∗
1 (−Λ∗(w, u)),(2.34)

Λ(p, q) ∈ ∂F ∗
2 ((w, u)).(2.35)

It can be checked again that (2.35) gives (2.27) and (2.28). We now expand on (2.34). We have
that (p, q) ∈ ∂F ∗

1 (−Λ∗(w, u)) which is equivalent to −Λ∗(w, u) ∈ ∂F1(p, q), that is F1(p, q) = 0 and

〈−Λ∗(w, u), (p̃− p, q̃ − q)〉X∗,X ≤ F1(p̃, q̃)

⇐⇒ −〈w, div(p̃− p)〉 − 〈w, q̃ − q〉 − 〈u, divq̃ − divq〉 ≤ F1(p̃, q̃)

⇐⇒ 〈Ew, p̃− p〉 ≤ I{|·(x)|≤α0(x), f.a.e.x}(p̃)

〈Du− w, q̃ − q〉 ≤ I{|·(x)|≤α1(x), f.a.e.x}(q̃)

⇐⇒ 〈Ew, p̃− p〉 ≤ 0

〈Du− w, q̃ − q〉 ≤ 0,

with the last two inequalities holding for any p̃ ∈ H0(div
2; Ω) with |p̃(x)| ≤ α0(x) for a.e. x ∈ Ω and

for any q̃ ∈ H0(div; Ω) with |q̃(x)| ≤ α1(x) for a.e. x ∈ Ω. Hence we obtain (2.29) and (2.30). □

3. A series of regularized problems

3.1. Regularization of the primal problem. With the aim of lifting the regularity of u and w
to avoid measure-valued derivatives, we next consider the following regularized version of the primal
weighted TGV problem (2.20):

minimize 1

2
‖Tu− f‖2L2(Ω) +

∫

Ω
α1|∇u− w|dx+

∫

Ω
α0|Ew|dx

+
µ

2
‖∇u‖2L2(Ω) +

ν

2
‖w‖2H1(Ω,Rd) over (w, u) ∈ H1(Ω,Rd)×H1(Ω),

(3.1)

for some constants 0 < µ, ν � 1. Existence of solutions for (3.1) follows from standard arguments.
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Observe that (3.1) is equivalent to min(w,u)∈X̂ Q1(w, u) + Q2(R(w, u)) where X̂ = H1(Ω,Rd) ×
H1(Ω), Ŷ = L2(Ω,Sd×d) × L2(Ω,Rd), R : X̂ → Ŷ with R(w, u) = (Ew,∇u − w), Q1 : X̂ → R,
Q2 : Ŷ → R with Q(w, u) = 1

2‖Tu − f‖2L2(Ω) +
µ
2‖∇u‖2L2(Ω,Rd)

+ ν
2‖w‖2H1(Ω,Rd)

and Q2(ψ, ϕ) =
∫

Ω α1|ϕ|dx+
∫

Ω α0|ψ|dx. Note that the Attouch-Brezis condition is satisfied since dom(Q2) = Y .

Proposition 3.1. The pairs (w, u) ∈ H1(Ω,Rd) × H1(Ω) and (p, q) ∈ L2(Ω,Rd×d) × L2(Ω,Rd)
are solutions to (3.1) and its predual problem, respectively, if and only if the following optimality
conditions are satisfied:

Bu− µ∆u+∇∗q − T ∗f = 0 in H1(Ω)∗,(3.2)
νw − ν∆w − q + E∗p = 0 in H1(Ω,Rd)∗,(3.3)










|q| ≤ α1,

α1(∇u− w)− q|∇u− w| = 0 if |q(x)| = α1(x),

∇u− w = 0 if |q(x)| < α1(x),

(3.4)











|p| ≤ α0,

α0Ew − p|Ew| = 0 if |p(x)| = α0(x),

Ew = 0 if |p(x)| < α0(x),

(3.5)

where the multiplications are regarded component-wise.
Proof. The proof follows again easily by calculating the corresponding primal-dual optimality con-
ditions. □

Next we study the relationship between the solutions of (2.20) and (3.1) as the parameters µ, ν
tend to zero.
Proposition 3.2. Let µn, νn → 0 and let (wn, un)n∈N be a sequence of solution pairs of the problem
(3.1). Then un

∗
⇀ u∗ and wn

∗
⇀ w∗ in BV(Ω) and BD(Ω) respectively, where (w∗, u∗) is a solution

pair for (2.20). The convergence of wn is up to a subsequence.
Proof. For convenience of notation, define the energies

En(w, u) =
1

2
‖Tu− f‖2L2(Ω) +

∫

Ω
α1|∇u− w|dx+

∫

Ω
α0|Ew|dx+

µn
2
‖∇u‖2L2(Ω) +

νn
2
‖w‖2H1(Ω,Rd),

E(w, u) =
1

2
‖Tu− f‖2L2(Ω) +

∫

Ω
α1d|Du− w|+

∫

Ω
α0d|Ew|.

We have

1

2
‖Tun − f‖2L2(Ω) +

∫

Ω
α1|∇un − wn|dx+

∫

Ω
α0|Ewn|dx ≤ En(wn, un) ≤ En(0, 0) ≤

1

2
‖f‖2L2(Ω).

(3.6)

Thus, the sequences (un)n∈N and (wn)n∈N are bounded in BV(Ω) and BD(Ω), respectively. In order
to see this, note that by setting αi := minx∈Ω αi(x), i = 0, 1, we get

TGV2
α0,α1

(un) = min
w∈BD(Ω)

α1‖∇un − w‖M + α0‖Ew‖M

≤
∫

Ω
α1|∇un − wn|dx+

∫

Ω
α0|Ewn|dx ≤ 1

2
‖f‖2L2(Ω).

Hence, (un)n∈N is bounded in the sense of second-order TGV. Again using [7, Theorem 4.4.10], we
get that 1

2‖T · −f‖2L2(Ω) is coercive, since it is the convex conjugate of 1
2‖T ∗f + ·‖2B − 1

2‖f‖2L2 which
12



is continuous at 0 ∈ L2(Ω). This implies further that this sequence is bounded both on L2(Ω) and
BV(Ω). The bound on (wn)n∈N in BD(Ω) then follows from (3.6).

From compactness theorems in those spaces (for BD(Ω) see for instance [57, Remark 2.4]) we have
that there exist u∗ ∈ BV(Ω)∩L2(Ω) and w∗ ∈ BD(Ω) such that unk

∗
⇀ u∗ in BV(Ω) and weakly in

L2(Ω), and wnk

∗
⇀ w∗ in BD(Ω) along suitable subsequences. Due to the lower semicontinuity of the

functional E with respect to these convergences, we have for any pair (w̃, ũ) ∈ H1(Ω,Rd)×H1(Ω)

E(w∗, u∗) ≤ lim inf
k→∞

E(wnk
, unk

) ≤ lim inf
k→∞

Enk
(wnk

, unk
) ≤ lim inf

k→∞
Enk

(w̃, ũ) = E(w̃, ũ).(3.7)

Recall now that LD(Ω) = {w ∈ L1(Ω,Rd) : Ew ∈ L1(Ω,Rd×d)} is a Banach space endowed with the
norm ‖w‖LD(Ω) = ‖w‖L1(Ω,Rd)+ ‖Ew‖L1(Ω,Rd×d) and that C∞(Ω,Rd) is dense in that space; see [56,
Proposition 1.3]. From this, in combination with the fact that C∞(Ω) is dense in W 1,1(Ω) ∩ L2(Ω)
we have that for every (ŵ, û) ∈ LD(Ω)× (W 1,1(Ω) ∩ L2(Ω)) there exists a sequence

(ŵh, ûh)h∈N ∈ C∞(Ω,Rd)× C∞(Ω) ⊆ H1(Ω,Rd)×H1(Ω),

such that E(ŵh, ûh) → E(ŵ, û). Hence, since (3.7) holds we have that

(3.8) E(w∗, u∗) ≤ E(ŵ, û), for all (ŵ, û) ∈ LD(Ω)× (W 1,1(Ω) ∩ L2(Ω)).

Finally, by following similar steps as in the proof of [58, Theorem 3], we can show that for every
(w, u) ∈ BD(Ω)×(BV(Ω)∩L2(Ω)) there exists a sequence (wh, uh)h∈N ∈ LD(Ω)×(W 1,1(Ω)∩L2(Ω))
such that

‖uh − u‖L2(Ω) → 0,

∫

Ω
α1|∇uh − wh|dx→

∫

Ω
α1d|Du− w|,

∫

Ω
α0|Ewh|dx→

∫

Ω
α0d|Ew|,

which implies again that E(wh, uh) → E(w, u). This, together with (3.8) yields

E(w∗, u∗) ≤ E(w, u), for all (w, u) ∈ BD(Ω)× BV(Ω).

This yields that (w∗, u∗) is a solution pair for (2.20). Finally, from the uniqueness of the solution
u∗ for (2.20) we get that the whole initial sequence (un)n∈N converges to u∗ weakly∗ in BV(Ω).
The uniqueness follows from the fact that T is injective and hence the functional 1

2‖T · −f‖2L2(Ω) is
strictly convex. □

We now proceed to the second level of regularization of the problem (3.1), which, in addition to
lifting the regularity of u and w, respectively, also smoothes the non-differentiable constituents. For
this purpose, we define the following primal problem, which will also be treated numerically, below:

minimize 1

2
‖Tu− f‖2L2(Ω) +

∫

Ω
α1φγ(∇u− w)dx+

∫

Ω
α0φγ(Ew)dx

+
µ

2
‖∇u‖2L2(Ω) +

ν

2
‖w‖2H1(Ω,Rd) over (w, u) ∈ H1(Ω,Rd)×H1(Ω).

(Pγ)

Here φγ denotes the Huber-regularized version of the Euclidean norm. That is, for a vector v ∈ S,
S = R

d or R
d×d and γ > 0 we use

(3.9) φγ(v)(x) =

{

|v(x)| − 1
2γ if |v(x)| ≥ γ,

1
2γ |v(x)|2 if |v(x)| < γ,

with | · | denoting either the Euclidean norm in R
d or the Frobenius norm in R

d×d. We mention
that this type of Huber regularization of TV-type terms in the primal problem corresponds to an
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L2 regularization of the dual variables in the predual [18, 40]. In order to illustrate this consider
the following denoising problem (Pγ) without any H1 regularization:
(3.10)
minimize 1

2
‖u− f‖2L2(Ω) +

∫

Ω
α1dφγ1(Du− w) +

∫

Ω
α0dφγ2(Ew) over (w, u) ∈ BD(Ω)× BV(Ω),

where
∫

Ω
α1dφγ1(Du− w) =

∫

Ω
α1φγ1(∇u− w)dx+

∫

Ω
α1d|Dsu|,

∫

Ω
α0dφγ1(Ew) =

∫

Ω
α0φγ2(Ew)dx+

∫

Ω
α0d|Esw|.

Here Dsu and Esw denote the singular parts with respect to the Lebesgue measure of Du and Ew
respectively, following the Lebesgue decomposition Du =

∫

Ω∇u dx+Dsu and Ew =
∫

ΩEw dx+Esw.
The corresponding predual problem of (3.10) is given by

maximize − 1

2
‖f + divq‖2L2(Ω) −

γ0
2

∫

Ω

1

α0
|p|2dx− γ1

2

∫

Ω

1

α1
|q|2dx+

1

2
‖f‖2L2(Ω),

over (p, q) ∈W d
0 (div

2; Ω)×W d
0 (div; Ω),

subject to q = −divp, |p(x)| ≤ α0(x), |q(x)| ≤ α1(x).

(3.11)

The proof is similar to the one of Proposition 2.4 with

F1(p, q) = I{|·(x)|≤α0(x)}(p) + I{|·(x)|≤α1(x)}(q)−
γ0
2

∫

Ω

1

α0
|p|2dx− γ1

2

∫

Ω

1

α1
|q|2dx,

and in the dualization process we use the fact that for an S-valued measure µ we have,
∫

Ω
αdφγ(µ) = sup

{∫

Ω
ϕdµ− I{|·(x)|≤α(x)}(ϕ)−

γ

2

∫

Ω

1

α
|ϕ|2dx : ϕ ∈ C∞

c (Ω, S)

}

;

see for instance [28].
Returning to the (doubly) regularized primal problem (Pγ), we are primarily interested in its

associated first-order optimality conditions.

Proposition 3.3. We have that the pairs (w, u) ∈ H1(Ω,Rd)×H1(Ω) and (p, q) ∈ L2(Ω,Rd×d)×
L2(Ω,Rd) are solution to (Pγ) and its predual problem, respectively, if and only if the following
optimality conditions are satisfied:

Bu− µ∆u+∇∗q − T ∗f = 0 in H1(Ω)∗,(3.12)
νw − ν∆w − q + E∗p = 0 in H1(Ω,Rd)∗,(3.13)
max(|∇u− w|, γ1)q − α1(∇u− w) = 0 in L2(Ω,Rd),(3.14)
max(|Ew|, γ0)p− α0Ew = 0 in L2(Ω,Sd×d).(3.15)

(3.16)

The proof of Proposition 3.3 follows from calculating the corresponding primal-dual optimality
conditions as in Proposition 3.1. Finally, in order to avoid constraint degeneracy and for the sake of
differentiability for the bilevel scheme in the next section, we also employ here a smoothed version
maxδ(·, γ) of max and its derivative, denoted by Xδ, defined as follows for r ≥ 0 and for 0 < δ

2 < γ:
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maxδ(r, γ) =











γ
1
2δ (r +

δ
2 − γ)2 + γ,

r

Xδ(r, γ) =











0 if r ≤ γ − δ
2 ,

1
δ (r +

δ
2 − γ) if γ − δ

2 < r < γ + δ
2 ,

1 if r > γ + δ
2 .

Thus we arrive at the following regularized optimality conditions:

Bu− µ∆u+∇∗q − T ∗f = 0 ,(Opt1)
νw − ν∆w − q + E∗p = 0 ,(Opt2)
maxδ(|∇u− w|, γ1)q − α1(∇u− w) = 0 ,(Opt3)
maxδ(|Ew|, γ0)p− α0Ew = 0 .(Opt4)

Note that these would correspond to the optimality conditions of an analogue problem to (Pγ)
where the Huber function φγ is substituted by an analogous C2 version φγ,δ, having the property
∇φγ,δ(x) = x/maxδ(|x|, γ) pointwise, and which do not write down explicitly here. The relevant
approximation result now follows, where we have set γ0 = γ1 = γ for simplicity.

Proposition 3.4. Let (w, u, q, p) and (wγ,δ, uγ,δ, pγ,δ, qγ,δ) satisfy the optimality conditions (3.2)–
(3.5) and (Opt1)–(Opt4), respectively. Then, as γ, δ → 0, we have uγ,δ → u strongly in H1(Ω),
wγ,δ → w strongly in H1(Ω,Rd) as well as divqγ,δ → divq and qγ,δ + divpγ,δ → q + divp weakly∗ in
H1(Ω)∗ and H1(Ω,Rd)∗, respectively.

Proof. By subtracting first two equations of the optimality system of Proposition 3.1 and 3.3,
respectively, we get for all v ∈ H1(Ω), ω ∈ H1(Ω,Rd)

∫

Ω
B(u− uγ,δ)v dx+ µ

∫

Ω
∇(u− uγ,δ)∇v dx =

∫

Ω
(qγ,δ − q)∇v dx,(3.17)

ν

∫

Ω
(w − wγ,δ)ω dx+ ν

∫

Ω
∇(w − wγ,δ)∇ω dx =

∫

Ω
(q − qγ,δ)ω dx+

∫

Ω
(pγ,δ − p)Eω dx.(3.18)

When using v = u− uγ,δ and ω = w − wγ,δ in the equations above and adding them up we get

(3.19) ‖u− uγ,δ‖2B−1 + µ‖∇u−∇uγ,δ‖2L2(Ω,Rd) + ν‖w − wγ,δ‖2H1(Ω,Rd) = R1 +R2,

where

R1 :=

∫

Ω
(qγ,δ − q)⊤[∇u− w − (∇uγ,δ − wγ,δ)] dx, R2 :=

∫

Ω
(pγ,δ − p)⊤E(w − wγ,δ) dx.

We now estimate R1 and R2. Consider the partitions of Ω into disjoint sets (up to sets of measure
zero) Ω = A ∪ I = Aγ,δ ∪ Iγ,δ, where

A = {x ∈ Ω : |∇u− w| > 0}, I = Ω \ A,

Aγ,δ =

{

x ∈ Ω : |∇uγ,δ − wγ,δ| > γ +
δ

2

}

, Iγ,δ = Ω \ Aγ,δ.

We estimate R1 separately on the disjoint sets Aγ,δ ∩ A, Aγ,δ ∩ I, Iγ,δ ∩ A and Iγ,δ ∩ I. Recall
that |q(x)| ≤ α1(x), as well as |qγ,δ(x)| ≤ α1(x) for almost every x ∈ Ω. Starting from Aγ,δ ∩A and
noticing that

q = α1
∇u− w

|∇u− w| , qγ,δ = α1
∇uγ,δ − wγ,δ
|∇uγ,δ − wγ,δ|

,
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it follows that pointwise on Aγ,δ ∩ A (with argument x left off for ease of notation) we have
(qγ,δ − q)⊤[∇u− w − (∇uγ,δ − wγ,δ)] = qγ,δ(∇u− w)− α1|∇uγ,δ − wγ,δ| − α1|∇u− w|+ q(∇uγ,δ − wγ,δ)

≤ α1|∇u− w| − α1|∇uγ,δ − wγ,δ| − α1|∇u− w|+ α1|∇uγ,δ − wγ,δ|
= 0.

Turning now to the set Aγ,δ ∩ I and recalling ∇u− w = 0 we have
(qγ,δ − q)⊤[∇u− w − (∇uγ,δ − wγ,δ)] ≤ −α1|∇uγ,δ − wγ,δ|+ |q||∇uγ,δ − wγ,δ| ≤ 0.

For the set Iγ,δ ∩ A, note that

|∇uγ,δ − wγ,δ| ≤ γ +
δ

2
, ∇uγ,δ − wγ,δ =

γ

α1
qγ,δ.

Thus, we can estimate
(qγ,δ − q)⊤[∇u− w − (∇uγ,δ − wγ,δ)] ≤ qγ,δ(∇u− w)− α1|∇u− w| − qγ,δ(∇uγ,δ − wγ,δ) + q(∇uγ,δ − wγ,δ)

≤ α1|∇u− w| − α1|∇u− w| − qγ,δ(∇uγ,δ − wγ,δ) + q(∇uγ,δ − wγ,δ)

≤ (2γ + δ)α1

Similarly, for the set Iγ,δ ∩ I we get
(qγ,δ − q)⊤[∇u− w − (∇uγ,δ − wγ,δ)] ≤ 2(γ + δ)α1.

Combining the above estimates we have

R1 ≤
∫

Ω
(2γ + δ)α1 dx→ 0

and for R2 we similarly get
R2 ≤

∫

Ω
(2γ + δ)α0 dx→ 0.

Hence, from (3.19) and the fact that ‖ · ‖B−1 is equivalent to ‖ · ‖L2(Ω), we obtain the desired
convergences for uγ,δ and wγ,δ. From this result and using (3.17) and (3.18) we get that for every
v ∈ H1(Ω) and for every ω ∈ H1(Ω,Rd) we have

∫

Ω
vdivqγ,δ dx→

∫

Ω
vdivq dx and

∫

Ω
ω(qγ,δ + divpγ,δ) dx→

∫

Ω
ω(q + divp) dx,

as γ, δ → 0. This completes the proof. □

Finally, the following approximation result holds true, when all the parameters µ, ν, γ, δ tend to
zero.

Proposition 3.5. Let µn, νn, γn, δn → 0, and denote by uµn,νn,γn,δn ∈ H1(Ω) the solution of (Opt1)–
(Opt1) with (µ, ν, γ, δ) = (µn, νn, γn, δn). Then uµn,νn,γn,δn

∗
⇀ u∗ in BV(Ω), where u∗ solves (2.20).

Proof. It is easy to show that uµn,νn,γn,δn → u∗ in L1(Ω). Indeed, we have
‖uµn,νn,γn,δn − u∗‖L1(Ω) ≤ ‖uµn,νn,0,0 − u∗‖L1(Ω) + ‖uµn,νn,γn,δn − uµn,νn,0,0‖L1(Ω).

According to Proposition 3.2 it holds that ‖uµn,νn,0,0 − u∗‖L1(Ω) → 0. The other term tends to zero
according to equation (3.19) of Proposition 3.4. There, the estimates for R1, R2 are not affected if
we substitute u and uγ,δ by uµn,νn,0,0 and uµn,νn,γn,δn , respectively. In other words, the estimate

‖uµn,νn,0,0 − uµn,νn,γn,δn‖2L2(Ω) ≤ C(2γn + δn)|Ω|‖α0 + α1‖∞
holds for some C > 0 and hence ‖uµn,νn,γn,δn − uµn,νn,0,0‖L1(Ω) → 0.
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To finish the proof and show that the convergence is weak∗ in BV(Ω), it suffices to establish that
∫

Ω |∇uµn,νn,γn,δn dx| is uniformly bounded in n; see [2, Proposition 3.13]. Observe first that, if φγ,δ
is the C2 regularized Huber function, that corresponds to the δ-smoothing of max, then as in the
proof of Proposition 3.2 we get

(3.20)
∫

Ω
α1φγ,δ(∇uµn,νn,γn,δn − wµn,νn,γn,δn)dx+

∫

Ω
α0φγ,δ(Ewµn,νn,γn,δn)dx ≤ 1

2
‖f‖2L2(Ω).

As in (3.9) we also have that φγ,δ(·) ≥ | · | − 1
2γ, and hence we obtain

(3.21)
∫

Ω
α1|∇uµn,νn,γn,δn−wµn,νn,γn,δn |dx+

∫

Ω
α0|Ewµn,νn,γn,δn |dx ≤ 1

2
‖f‖2L2(Ω)+

(‖α1‖∞ + ‖α0‖∞)|Ω|γn
2

≤ K,

for some constant K > 0. Then, as in the proof of Proposition 3.2, we get that (uµn,νn,γn,δn)n∈N is
bounded in TGV which, together with the L1 bound, gives the desired bound in TV. □

4. The bilevel optimization scheme

In this section we will adapt the bilevel optimization framework developed in [37, 39] in order to
automatically select the regularization functions α0 and α1. The main idea is to minimize a suitable
upper level objective over both the image u and the regularization parameters α0, α1 subject to
u being a solution to a (regularized) TGV-based reconstruction problem with these regularization
weights.

It is useful to recall the definitions of the localized residual R and the function F as stated in the
introduction:

(4.1) Ru(x) =

∫

Ω
w(x, y)(Tu− f)2(y)dy,

where w ∈ L∞(Ω× Ω) with
∫

Ω

∫

Ωw(x, y) dxdy = 1 and

(4.2) F (v) :=
1

2

∫

Ω
max(v − σ2, 0)2dx+

1

2

∫

Ω
min(v − σ2, 0)2dx,

for some appropriately chosen σ2, σ2.
We thus end up to the following bilevel minimization problem:

(4.3)







































min J(u, α0, α1) := F (R(u)) +
λ0
2
‖α0‖2H1(Ω) +

λ1
2
‖α1‖2H1(Ω),

over (u, α0, α1) ∈ H1(Ω)×A0
ad ×A1

ad,

subject to (u,w) = argmin
(ũ,w̃)

1

2
‖T ũ− f‖2L2(Ω) +

∫

Ω
α1φγ,δ(∇ũ− w̃)dx+

∫

Ω
α0φγ,δ(Ew̃)dx

+
µ

2
‖∇ũ‖2L2(Ω) +

ν

2
‖w̃‖2H1(Ω,Rd).

Utilizing the regularized primal-dual first-order optimality characterization (Opt1)–(Opt4) of the
solution to the lower level problem of (4.3), we arrive at the following mathematical program with
equilibrium constraints (MPEC, for short) which is equivalent to (4.3):

17



(PTGV)















































min J(u, α0, α1) := F (R(u)) +
λ0
2
‖α0‖2H1(Ω) +

λ1
2
‖α1‖2H1(Ω),

over (u, α0, α1) ∈ H1(Ω)×A0
ad ×A1

ad,

subject to Bu− µ∆u+∇∗q − T ∗f = 0,

νw − ν∆w − q + E∗p = 0,

maxδ(|∇u− w|, γ1)q − α1(∇u− w) = 0,

maxδ(|Ew|, γ0)p− α0Ew = 0.

Note that in view of the equivalence of (4.3) and (PTGV), we will still refer the latter as the bilevel
TGV problem. A few words about (PTGV) are in order. Here, αi are forced to be contained in the
box constraint sets

Ai
ad := {αi ∈ H1(Ω) : αi ≤ αi ≤ αi}, i = 0, 1,(4.4)

with αi, αi ∈ L2(Ω) and 0 < ϵ ≤ αi(x) < αi(x) − ϵ in Ω for some ϵ, ϵ > 0, i = 0, 1. Note
that the H1 regularity on the parameter functions α0, α1 facilitates the existence and differential
sensitivity analysis as established in [37, 39] for the TV case. Note, however, that this setting does
not guarantee a priori that these functions belong to C(Ω), the regularity required for applying the
dualization results of the previous sections. Nevertheless, under mild data assumptions, one can
make use of the following regularity result of the H1–projection onto the sets A0

ad and A1
ad; see [39,

Corollary 2.3] for a proof.

Proposition 4.1. Let Ω ⊂ R
ℓ with ℓ = 1, 2, 3 be a bounded convex set and let Aad := {α ∈ H1(Ω) :

α ≤ α ≤ α}, where α, α ∈ H2(Ω) such that α ≤ α and ∂α
∂ν = ∂α

∂ν = 0 in H1/2(∂Ω). Then if

ω∗ = PAad
(ω) := argmin

α∈A

1

2
‖α− ω‖2H1(Ω),

it holds
ω ∈ H2(Ω) and ∂ω

∂ν
= 0 ⇒ ω∗ ∈ H2(Ω) and ∂ω∗

∂ν
= 0.

In particular, if α0, α0, α1, α1 as well as the initializations for α1 and α0 are constant functions,
then along the projected gradient iterations of Algorithm 2, the weights are guaranteed to belong
to H2(Ω) which (for dimension d ≤ 2) embeds into C(Ω).

We briefly note that in the TV case it can be shown [31, 33] that W 1,1 regularity for the regu-
larization parameter α suffices to establish a dualization framework. A corresponding result is not
yet known for TGV, even though one expects that it could be shown by similar arguments. Hence,
here we will also make use of the H1–projection regularity result as described above.

Regarding the box constraints (4.4) in [26] it was shown that for a PSNR-optimizing upper level
objective J̃(u, α) = ‖u(α)− f‖2L2(Ω) subject to H1 and Huber regularized TV and TGV denoising
problems, under some mild conditions on the data f , the optimal scalar solutions α and (α0, α1) are
strictly positive. As depicted in Figure 2 the upper level objective discussed here appears close to
optimizing the PSNR, keeping the parameters strictly positive via (4.4) seems, however, necessary
for the time being.

We now briefly discuss how to treat the bilevel problem (PTGV). Let (α0, α1) 7→ u(α0, α1) denote
the solution map for the lower level problem, equivalently of the optimality conditions (Opt1)–
(Opt4). Then the problem (PTGV) admits the following reduced version

min Ĵ(α0, α1) := J(u(α0, α1), α0, α1) over α0 ∈ A0
ad, α1 ∈ A1

ad.(4.5)
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Similarly to the TV case [37], one can show that the reduced functional Ĵ : H1(Ω)×H1(Ω) → R is
differentiable. We can then apply the KKT framework in Banach spaces [60]:

(4.6)
{

minimize J (x) over x ∈ X,

subject to x ∈ C and g(x) = 0,

where V,A, Z are Banach spaces, X = V ×A, J : X → R and g : X → Z are Fréchet differentiable
and continuous differentiable functions, respectively, and C ⊂ X is a non-empty, closed convex set.
In the bilevel TGV problem (PTGV) we have V = H1(Ω)×H1(Ω,Rd)×L2(Ω,Rd), L2(Ω,Sd×d), A =
H1(Ω)×H1(Ω), C = V ×A0

ad×A1
ad, and Z = H1(Ω)∗×H1(Ω,Rd)∗×L2(Ω,Rd), L2(Ω,Sd×d). Here g :

X → Z is defined by the optimality conditions (Opt1)–(Opt4). Finally, for x = (u,w, q, p, α0, α1) :=
(x, α0, α1), we have J (x) = J(u, α0, α1). Note that the framework of (4.6) guarantees the existence
of an adjoint variable x∗ ∈ V with the help of which an optimal solution of (PTGV) can be charac-
terised. This adjoint variable also allows the computation of the derivative of the reduced objective
Ĵ ′ in an amenable way, see next section.

We will skip here the proofs for the differentiability of the functions g and the reduced objective J
as well as the existence proofs for (PTGV). These results can be shown similarly to the corresponding
assertions for TV; see [37, Thm. 6.1, Prop. 6.2, Prop. 6.3].

5. Numerical implementation

In this section we will describe a Newton method for the lower level problem, a projected gradient
algorithm for the solution of the discretized version of the bilevel problem (PTGV), as well as provide
corresponding numerical examples in denoising.

5.1. Newton solver for the lower level problem. Before we proceed to devising of a projected
gradient algorithm for the solution of the bilevel problem, we discuss first a primal-dual Newton
algorithm for the solution of the first-order optimality conditions (Opt1)–(Opt4) re-written here for
the sake of readability:

Bu− µ∆u− divq − f = 0,(5.1)
νw − ν∆w − q − divp = 0,(5.2)

maxδ(|∇u− w|, γ1)q − α1(∇u− w) = 0,(5.3)
maxδ(|Ew|, γ0)p− α0Ew = 0.(5.4)

A few words on the discrete involved quantities are in order. Images (d = 2) are considered as
elements of Uh := {u |u : Ωh → R} where Ωh = {1, 2, . . . , n} × {1, 2, . . . ,m} is a discrete cartesian
grid that corresponds to the image pixels. The mesh size, defined as the distance between the grid
points, is set to h = 1/

√
nm. We define the associated discrete function spaces Wh = Uh × Uh,

Vh = Uh×Uh×Uh, so that p ∈ Vh with p = (p11, p12, p22). For the discrete gradient and divergence
we have, ∇ : Wh → Vh and div : Vh → Wh satisfying the adjoint relation ∇ = −div⊤, setting zero
values at the ghost points. The discretized symmetrized gradient Ew is defined as 1

2(∇w+(∇w)⊤).
For the discretized versions of the Laplacian, we use the standard five-point stencils with zero
Neumann boundary conditions, by setting the function values of ghost grid points to be the same
with the function value of the nearest grid point in Ωh. Note that these act on the primal variables
u and w, which satisfy natural boundary conditions in contrast to the dual variable.

The system of equations (5.1)–(5.4) can be shortly written as gpd(x) = 0, where x = (u,w, q, p).
We compute the derivative of gpd at a point x = (u,w, q, p) as the following block-matrix:
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Dgpd(x) = Dgpd(u,w, q, p) =

[

A B
C D

]

,

where
(5.5)

A =

[

B − µ∆ 0
0 ν(I −∆)

]

, B =

[

−div 0
−I −div

]

, D =

[

maxδ(|∇u− w|, γ1) 0
0 maxδ(|Ew|, γ0)

]

,

(5.6) C =

[

−α1∇+ qXδ(|∇u− w|, γ1) ∇u−w
|∇u−w| · ∇ α1I + qXδ(|∇u− w|, γ1) ∇u−w

|∇u−w| · (−I)
0 −α0E + pXδ(|Ew|, γ0) Ew|Ew| · E

]

.

Given xk, the Newton iteration for solving the system of equations (5.1)–(5.4), or gpd(x) = 0 for
short, reads

xk+1 = xk −DF(xk)−1F(xk),

which can also be written as

(5.7) Dgpd(x
k)xk+1 = Dgpd(x

k)xk − gpd(x
k).

Here it is convenient to introduce the notation

Dgpd(x
k) = Dgpd(u

k, wk, qk, pk) =

[

A B
Ck Dk

]

since only the submatrices C and D depend on k. Note that the right-hand side Dgpd(xk)xk−gpd(xk)
of the linear system (5.7) can be written as

Dgpd(x
k)xk −F(xk) =

(

bk1
bk2

)

,

where

bk1 = (f, 0)⊤ , and bk2 =
(

qkXδ(|∇uk − wk|, γ1)|∇uk − wk|, pkXδ(|Ewk|, γ0)|Ewk|
)⊤

.

Notation-wise, the components that appear in bk2 should be regarded as the diagonals of the corre-
sponding diagonal matrices that we mentioned before, multiplied component-wise. By introducing
the notation xk1 = (uk, wk)⊤, xk2 = (qk, pk)⊤, the Newton system (5.7) can be written as

(5.8)
[

A B
Ck Dk

](

xk+1
1

xk+1
2

)

=

(

bk1
bk2

)

.

The above system can be simplified utilizing the Schur complement: First solve for the primal
variables xk+1

1 = (uk+1, wk+1) and then recover the dual ones xk+1
2 = (qk+1, pk+1). This yields

(A−BD−1
k Ck)x

k+1
1 = bk1 −BD−1

k bk2,

xk+1
2 = D−1

k (bk2 − Ckx
k+1
1 ).

The folllowing result then holds.

Lemma 5.1. If (qk, pk) belong to the feasible set, i.e., |qk| ≤ α1 and |pk| ≤ α0 component-wise,
then the matrix Sk := (A−BD−1

k Ck) is positive definite and for the minimum eigenvalues we have
λmin(Sk) ≥ λmin(A) > 0. Furthermore, S−1

k is bounded independently of k.
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Algorithm 1
Newton algorithm for the solution of the regularized TGV primal problem (Pγ)

while some stopping criterion is not satisfied do
Solve the linear system for xk+1

1 = (uk+1, wk+1)

(A−BD−1
k Ck)x

k+1
1 = bk1 −BD−1

k bk2

Update x̃k+1
2 = (q̃k+1, p̃k+1) as follows

x̃k+1
2 = D−1

k (bk2 − Ckx
k+1
1 )

Compute qk+1, pk+1 as projections of q̃k+1, p̃k+1 onto the feasible sets {q : |q| ≤ α1}, {p : |p| ≤ α0}
end while

The proof of Lemma 5.1 follows the steps of the analogous proof in [40] and is hence omitted.
Summarizing, the Newton method for the solution of the (5.1)–(5.4) is outlined in Algorithm 1.
Here we have followed [40] and project in every iteration the variables q, p onto the feasible sets
such that the result of Lemma 5.1 holds.

The projections onto the feasible sets are defined respectively as

(5.9) q =
q̃

max
{

1, |q̃|α1

} , p =
p̃

max
{

1, |p̃|α0

} ,

with the equalities above to be considered component-wise.

5.2. The numerical algorithm for (PTGV). We now describe our strategy for solving the dis-
cretized version of the bilevel TGV problem (PTGV). We note that in most of the experiments we
will keep α0 a scalar – this is justified by the numerical results; see the relevant discussion later on.
We will always mention the small modifications on the algorithm when α0 is a scalar. We will also
make use here of the discrete Laplacian with zero Neumann boundary conditions ∆ : Uh → Uh which
is used to act on the weight function α1. These are the desired boundary conditions for α0, α1 as
dictated by the regularity result for the H1–projection in [39, Corollary 2.3]. For a function u ∈ Uh
we define the discrete ℓ2 norm as

‖u‖2ℓ2(Ωh)
= h2

∑

(i,j)∈Ωh

|ui,j |2.

For the discrete H1 norm applied to the weight function α1 we use

‖α1‖H1(Ωh) = h
√

α⊤
1 (I −∆)α1,

while the dual norm is defined as

‖r‖H1(Ωh)∗ = ‖(I −∆)−1r‖H1(Ωh) = h
√

r⊤(I −∆)−1r

based on the H1 → H1(Ω)∗ Riesz map α 7→ r = (I −∆)α. For the discrete version of the averaging
filter in the definition of the localized residuals (4.1) we use a filter of size nw × nw, with entries
of equal value whose sum is equal to one. With these definitions the discrete version of the bilevel
TGV (PTGV), is the following:
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(PhTGV)

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






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





















minimize 1

2
‖(R(u)− σ2)+‖2ℓ2(Ωh)

+
1

2
‖(σ2 −R(u))+‖2ℓ2(Ωh)

+
λ0
2
‖α0‖2H1(Ωh)

+
λ0
2
‖α1‖2H1(Ωh)

,

over (u, α0, α1) ∈ Uh × (A0
ad)h × (A1

ad)h,

subject to Bu− µ∆u− divq − f = 0,

νw − ν∆w − q − divp = 0,

maxδ(|∇u− w|, γ1)q − α1(∇u− w) = 0,

maxδ(|Ew|, γ0)p− α0Ew = 0.

Here the box constraint sets are defined as

(A0
ad)h = {α0 ∈ Uh : α0 ≤ (α0)i,j ≤ α0, for all (i, j) ∈ Ωh},

(A1
ad)h = {α1 ∈ Uh : α1 ≤ (α1)i,j ≤ α1, for all (i, j) ∈ Ωh}.

The discretized versions of (5.1)–(5.4) and the upper level objective are still denoted by gpd(x) = 0
and J respectively.

Regarding the choice of the lower and upper bounds for the local variance σ2 and σ2, respectively,
we follow here the following rules, where σ2 is the variance of the “Gaussian” noise contaminating
the data:

(5.10) σ2 = σ2

(

1 +

√
2

nw

)

, σ2 = σ2

(

1−
√
2

nw

)

.

The formulae (5.10) are based on the statistics of the extremes; see [39, Section 4.2.1].
We now proceed by describing the algorithm for the numerical solution of (PhTGV). In essence, we

employ a discretized projected gradient method with Armijo line search. We briefly describe how
the discrete gradient of the reduced objective functional is computed with the help of the adjoint
equation. The corresponding discretized version of the latter

Dxgpd(x
∗)⊤ = −DxJ(x),

where x∗ := (u∗, w∗, q∗, p∗) is the adjoint variable, reads

(5.11)
[

A⊤ C⊤

B⊤ D⊤

]









u∗

w∗

q∗

p∗









=









−2(u− f)
(

w ∗
(

(R(u)− σ2)+ − (σ2 −R(u))+
))

0
0
0









:=

(

b∗1
b∗2

)

,

where the matrices above were defined in (5.5) and (5.6). The equation can be solved again for
x∗1 := (u∗, w∗) first and then subsequently for x∗2 := (q∗, p∗) as follows

(

A⊤ − C⊤(D⊤)−1B⊤
)

x∗1 = b∗1,

x∗2 = (D⊤)−1(b∗2 −B⊤x∗1).
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The derivatives of the reduced objective with respect to α0 and α1, respectively, are

Ĵ ′
α0
(α0, α1) = (Dα0gpd)

⊤x∗ +Dα0J(α0, α1)(5.12)

=
[

Id Id 2Id
]









0
0

0
−diag(Ew)

















u∗

w∗

q∗

p∗









+ λ0(Id−∆)α0(5.13)

= −
[

Id Id 2Id
]

diag(Ew)p∗ + λ0(Id−∆)α0,

Ĵ ′
α1
(α0, α1) = (Dα1gpd)

⊤x∗ +Dα1J(α0, α1)(5.14)

=
[

Id Id
]









0
0

−diag(Du− w)
0

















u∗

w∗

q∗

p∗









+ λ1(Id−∆)α1,

= −
[

Id Id
]

diag(Du− w)q∗ + λ1(Id−∆)α1,

where x = (u,w, q, p) solves gpd(x) = 0 for α0, α1. The corresponding reduced gradients are

∇αi
Ĵ(α0, α1) = (I −∆)−1Ĵ ′

αi
(α0, α1), i = 0, 1.(5.15)

We note that in the case of a scalar α0, we set λ0 = 0. Then, Ĵ ′
α0
(α0, α1) = −[1 1 21]diag(Ew)p∗,

and ∇α0 Ĵ(α0, α1) = Ĵ ′
α0
(α0, α1). Here 1 denotes a matrix of size 1 × nm with all entries equal

to one. In summary, the projected gradient algorithm for the solutions of (PhTGV) is described in
Algorithm 2

We lastly note that the projections P(A0
ad

)h
, P(A1

ad
)h

are computed as described in [39, Algorithm
4], that is via the semismooth Newton method developed in [32]. We only mention that the original
discretized H1–projection problem P(Aad)h(α̃) given by

(5.16)







min
1

2
‖α− α̃‖2H1(Ωh)

:=
h2

2
(α− α̃)⊤(I −∆)(α− α̃),

over α ∈ (Aad)h = {α ∈ Uh : α ≤ αi,j ≤ α},

is approximated by the following penalty version:

(5.17) min
α∈Uh

1

2
‖α− α̃‖2H1(Ωh)

+
1

ϵα

(

1

2
‖(α− α)+‖2ℓ2(Ωh)

+
1

2
‖(α− α)+‖2ℓ2(Ωh)

)

,

with some small ϵα > 0. For the projection regarding a scalar α0, we simply set P(A0
ad

)h
(α0) =

max(min(α0, α0), α0).

5.3. Numerical examples in denoising. We now discuss some weighted TGV numerical ex-
amples, with regularization weights produced automatically by Algorithm 2. We are particularly
interested in the degree of improvement over the scalar TGV examples. We are also interested
in whether the statistics-based upper level objective enforces an automatic choice of regularization
parameters that ultimately leads to a reduction of the staircasing effect. Our TGV results are also
compared with the bilevel weighted TV method of [37, 39]. In order to have a fair comparison, we
use a Huber TV regularization for the corresponding lower lever problem, with the latter substituted
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Algorithm 2
Discretized projected gradient method for the bilevel TGV problem (PhTGV)

Input: f , α0, α0, α1, α1, σ, σ, λ0, λ1, µ, ν, γ0, γ1, δ, nw τ00 , τ01 , 0 < c < 1, 0 < θ− < 1 ≤ θ+
Initialize: α0

0 ∈ (A0
ad)h, α0

1 ∈ (A1
ad)h and set k = 0.

repeat
Use the Algorithm 1 to compute the solution xk = (uk, wk, qk, pk) of the lower level problem

gpd(u
k, wk, qk, pk) = 0

Solve the adjoint equation (5.11) for (u∗, w∗, q∗, p∗)
Compute the derivative of the reduced objective with respect to α0 and α1 as in (5.13)
and (5.14)
Compute the reduced gradients

∇αi
Ĵ(αk0 , α

k
1) = (I −∆)−1Ĵ ′

αi
(αk0 , α

k
1), i = 0, 1

Compute the trial points
αk+1
i = P(Ai

ad
)h

(

αki − τki ∇αi
Ĵ(αk0 , α

k
1)
)

, i = 0, 1

while
Ĵ(αk+1

0 , αk+1
1 ) > Ĵ(αk0 , α

k
1)

+ c
(

Ĵ ′
α0
(αk0 , α

k
1)

⊤(αk+1
0 − αk0) + Ĵ ′

α1
(αk0 , α

k
1)

⊤(αk+1
1 − αk1)

)

do (Armijo line search)
Set τk0 := θ−τ

k
0 , τk1 := θ−τ

k
1 and re-compute

αk+1
i = P(Ai

ad
)h

(

αki − τki ∇αi
Ĵ(αk0 , α

k
1)
)

, i = 0, 1

end while
Update τk+1

0 = θ+τ
k
0 , τk+1

1 = θ+τ
k
1 and k := k + 1

until some stopping condition is satisfied

by the TV primal-dual optimality conditions,
u− divp− f = 0

max(|∇u|, γ)p− α∇u = 0,

where α is now the spatially dependent regularization parameter for TV. We use the same values
for the Huber parameter γ both in bilevel TV and bilevel TGV. The associated test images are
depicted in Figure 3 with resolution n = m = 256. The first one is the well-known “Cameraman”
image which essentially consists of a combination of piecewise constant parts and texture. The
next two images, “Parrot” and “Turtle” contain large piecewise affine type areas, thus they are
more suitable for the TGV prior. The final image “hatchling” is characterized by highly oscillatory
patterns of various kinds, depicting sand in various degrees of focus.

Parameter values: For the lower level primal-dual TGV problem we used µ = 0, ν = 1, δ = 10−5,
γ0 = γ1 = 10−3, and a mesh size h = 1. For the H1–projection, we set ϵα = 10−6, and we also
weighted the discrete Laplacian ∆ with 6× 104. For the lower and upper bounds of α0 and α1 we
set here α0 = 10−2, α0 = 10 and α1 = 10−4, α1 = 10. We also set λ1 = 10−11 and when we spatially
varied α0 we also set λ0 = 10−11. We used a normalized nw×nw filter for w (i.e., with entries 1/n2w),
with nw = 7. The local variance barriers σ2 and σ2 were set according to (5.10). For our noisy
images we have σ2 = 10−2, and thus the corresponding values for (σ, σ) are (0.00798, 0.01202). For
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Cameraman Parrot Turtle Hatchling

Figure 3. Test images, resolution 256× 256

the Armijo line search the parameters were τ00 = 0.05, τ01 = 100, c = 10−9, θ− = 0.25, θ+ = 2. We
solved each lower level problem until the residual of each of the optimality conditions (5.1)–(5.4)
had Euclidean norm less than 10−4. MATLAB’s backslash was used for the solution of the linear
systems.

We note that the initialization of the algorithm needs some attention. As it was done in [39] for
the TV case, α0

0 and α1
0 must be large enough in order to produce cartoon-like images, providing

the local variance estimator with useful information. However, if α0 is initially too large then
there is a danger of falling into the regime, in which the TGV functional and hence the solution
map of (at least the non-regularized) lower level problem does not depend on α0. In that case the
derivative of the reduced functional with respect to α0 will be close to zero, thus making no or
little progress with respect to its optimal choice. Indeed this was confirmed after some numerical
experimentation. Note that an analogous phenomenon can occur also in the case where α0 is much
smaller than α1. In that case it is the effect of α1 which vanishes. This has been shown theoretically
in [51, Proposition 2] for dimension one, but numerical experiments indicate that this phenomenon
persists also in higher dimensions. In our examples we used α0

1 = 0.25 and α0
0 = 0.2. Regarding

the termination of the projected gradient algorithm, we used a fixed number of iterations n = 40.
Neither the upper level objective nor the argument changed significantly after running the algorithm
for more iterations; see for instance Figure 4. The same holds true for the corresponding PSNR and
SSIM values. We also note that a termination criterion as in [39] based on the proximity measures
‖P(Ai

ad
)h

(

αki −∇αi
Ĵ(αk0 , α

k
1)
)

− αki ‖H1(Ωh), i = 0, 1, is also possible here.
We note that due to the line search, the number of times that the lower level problem has to be

solved is more than the number of projected gradient iterations. For instance for the four examples
Figure 4 the lower level problem had to be solved 58, 57, 57, and 57 times respectively, with typically
8-12 Newton iterations needed per each lower level problem, This resulted in each bilevel problem
(40 projected gradient iterations) requiring approximately 45-50 times the CPU time needed to
solve one instance of the lower level problem. We note however that in general after 8-9 projected
gradient iterations the PSNR and SSIM values of the reconstruction were essentially reaching their
top values, requiring about 6-8 times the CPU time needed for the lower level problem. Further
improvement with respect to computational times can be achieved using faster descent methods
than the one we used here, like for instance [4, 48].

For the first series of examples we keep the parameter α0 scalar, whose value nevertheless is
determined by the bilevel algorithms. We depict the examples in Figure 5. The first row shows
the noisy images, while the second contains the bilevel TV results. The third row depicts the best
scalar TGV results with respect to SSIM, where we have computed the optimal scalars α0, α1 with
a manual grid method. The fourth row shows the results of (PhTGV). Detailed sections of all the
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Cameraman
Parrot
Turtle
Hatchling

Figure 4. Upper level objective values vs projected gradient iterations for the prob-
lem (PhTGV) (right) of Figure 5 (scalar α0, spatial α1)

σ2 = 0.01 Cameraman Parrot Turtle Hatchling
scalar TV (best PSNR) 27.69, 0.7962 29.25, 0.8354 29.49, 0.8032, 27.75, 0.7701
scalar TV (best SSIM) 27.44, 0.8118 28.93, 0.8508 29.38, 0.8112 27.62, 0.7759
bilevel TV spatial α 27.78, 0.8264 29.18, 0.8550 29.74, 0.8237 27.52, 0.7722
scalar TGV (best PSNR) 27.68, 0.7813 29.47, 0.8504 29.63, 0.8223 28.05, 0.7950
scalar TGV (best SSIM) 27.44, 0.8135 29.09, 0.8611 29.50, 0.8303 27.88, 0.8066
bilevel TGV scalar α0, scalar α1 27.63, 0.8063 29.41, 0.8560 29.63, 0.8200 27.70, 0.7851
bilevel TGV scalar α0, spatial α1 27.67, 0.8135 29.56, 0.8629 29.81, 0.8328 27.98, 0.8012
bilevel TGV spatial α0, spatial α1 27.68, 0.8151 29.58, 0.8643 29.76, 0.8328 27.97, 0.8009

Table 1. PSNR and SSIM comparisons for the images of Figure 5. Every cell
contains the corresponding PSNR and SSIM value.

images of Figure 5 are highlighted in Figure 6. The weight functions α1 for the bilevel TV and the
bilevel TGV algorithms are shown in Figure 7. In Table 1 we report all PSNR and SSIM values
of the best scalar methods (scalar TV, scalar TGV) with respect to both quality measures, the
corresponding values of the bilevel TV and TGV algorithms, as well as the ones the correspond
to solving the bilevel TGV with the statistics-based upper level objective (4.2) but using scalar
parameters only (third row from the end in Table 1). For the latter case, we used no additional
regularization for the weights in the upper level objective. We also report the PSNR and SSIM
values of the computed results when both α0, α1 are spatially varying (last row), which we discuss
later on in this section. We next comment on the results for each image.
Cameraman: Here both the best PSNR and SSIM are obtained by the bilevel TV algorithm. This
is probably not surprising due to the piecewise constant nature of this image. However, the bilevel
TGV algorithm improve upon its scalar version with respect to both measures.
Parrot: Here the best results with respect to both PSNR and SSIM are achieved by the bilevel
TGV algorithm, (PhTGV). There is significant improvement over all TV methods, which is due to
the parameters being chosen in a way such that the staircasing effect diminishes. Furthermore,
we observe improvement over the scalar TGV result especially around the parrot’s eye, where the
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PSNR=20.00, SSIM=0.3304 PSNR=20.04, SSIM=0.2773 PSNR=19.99, SSIM=0.2448 PSNR=20.00, SSIM=0.3349

PSNR=27.78, SSIM=0.8264 PSNR=29.18, SSIM=0.8550 PSNR=29.74, SSIM=0.8237 PSNR=27.52, SSIM=0.7722

PSNR=27.44, SSIM=0.8135 PSNR=29.09, SSIM=0.8611 PSNR=29.50, SSIM=0.8303 PSNR=27.88, SSIM=0.8066

PSNR=27.67, SSIM=0.8135 PSNR=29.56, SSIM=0.8629 PSNR=29.81, SSIM=0.8328 PSNR=27.98, SSIM=0.8012

Figure 5. First row: noisy images. Second row: bilevel TV. Third row: Best scalar
TGV (SSIM). Fourth row: bilevel TGV

weights α1 drop significantly; see the second column of Figure 7.
Turtle: We get analogous results here as well, with the bilevel TGV (PhTGV) producing the best
results both with respect to PSNR and SSIM. There is a significant reduction of the staircasing
effect, while the weight α1 drops in the detailed areas of the image (head and flipper of the turtle).
Hatchling: In this image, the best PSNR and best SSIM are achieved by the scalar TGV when
its parameters are manually optimized with respect to each measure (using the ground truth).
However, the (ground truth-free) bilevel TGV achieves a better SSIM and PSNR value compared to
these two results respectively, achieving a better balance with respect to these measures. Similarly
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Noisy

Bilevel TV

Best scalar TGV reconstructions (SSIM)

Bilevel TGV

Figure 6. Details of the reconstructions shown in Figure 5

the scalar TV results are generally better than the ones of bilevel TV. We attribute this to the
fact that the natural oscillatory features of the image are interpreted as noise by the upper level
objective. Nevertheless, all the bilevel methods are able to locate and preserve better the eyes area,
i.e., sand in focus, with the weight α1 dropping there significantly.

We remark that in all four examples, the ground truth-free bilevel TGV with at least one spatially
varying parameter always produces better results with respect to both PSNR and SSIM, than the
corresponding ground truth-free bilevel TGV with both parameters being scalar, compare the third
last with the second last row of Table 1.
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