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Abstract— Snake robots composed of alternating single-axis
pitch and yaw joints have many internal degrees of freedom,
which make them capable of versatile three-dimensional locomo-
tion. In motion planning process, snake robot motions are often
designed kinematically by a chronological sequence of continuous
backbone curves that capture desired macroscopic shapes of
the robot. However, as the geometric arrangement of single-axis
rotary joints creates constraints on the rotations in the robot,
it is challenging for the robot to reconstruct an arbitrary 3D
curve. When the robot configuration does not accurately achieve
the desired shapes defined by these backbone curves, the robot
can have unexpected contacts with the environment, such that
the robot does not achieve the desired motion. In this work,
we propose a method for snake robots to reconstruct desired
backbone curves by posing an optimization problem that exploits
the robot’s geometric structure. We verified that our method en-
ables fast and accurate curve-configuration conversions through
its applications to commonly used 3D gaits. We also demonstrated
via robot experiments that 1) our method results in smooth
locomotion on the robot; 2) our method allows the robot to
approach the numerically predicted locomotive performance of
a sequence of continuous backbone curve.

I. INTRODUCTION

Snake robots are a class of hyper-redundant mechanisms
capable of achieving different types of locomotion by coor-
dinated flexing of their bodies. One of the well-established
snake robot designs is composed of alternating one degree
of freedom (DOF) pitch and yaw bending joints (as shown
in Fig. 1), which allows 3D versatile motion [1]–[4]. Such a
robot design is also called “twist-free” since it does not have
direct actuation of the twist (rotation about the longitudinal
axis of the body) DOF [5]. Inspired by the shapes of biological
snakes with many vertebrae, finite-length continuous backbone
curves are designed to capture desired macroscopic shapes of
robots [6], [7]. Often, the motion of a snake robot is planned
kinematically by a chronological sequence of backbone curves
[8], [9]. Once properly designed, these sequences of backbone
curves have been shown by prior work to generate effective,
biologically-inspired, locomotion such as lateral undulation,
sidewinding, and sinus lifting [6], [10], [11]. In order to
replicate those motions on the physical robot, we have to
match the shape of a robot made up of discrete segments
to the continuous curves. These backbone curves lie in 3D
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Fig. 1: An example of a “twist-free” snake robot design with
alternating single-axis pitch and yaw joints.

space, but the geometric arrangement of single-axis rotary
joints creates constraints on the rotations in the robot, making
this shape-matching problem challenging for twist-free snake
robots. When the body shape does not match the desired
backbone curve, the desired robot-environment contacts are
not achieved. The robot may then have undesired contacts with
the environment, impeding locomotion. This paper presents a
method for twist-free snake robots to accurately reconstruct
desired 3D backbone curves via a constrained optimization
problem. This enables the robot to locomote effectively by
following a sequence of backbone curves.

In prior work, one widely employed method to reconstruct
3D continuous backbone curves with snake robot configura-
tions is to decompose the 3D curve into 2D sub-curves and
separately prescribe the pitch and yaw joint angles by pa-
rameterized sinusoidal functions according to these sub-curves
[12]–[14]. This method simplifies the conversion process
and is easily implemented. However it neglects the intrinsic
twisting properties in the given 3D curve [15], and predefined
sinusoidal functions often cannot provide good approximations
to sub-curves, which can lead to discrepancies between the
resultant robot configuration and the desired backbone curve.
Another branch of approaches to the reconstruction problem
is to discretize the curve by fitting piece-wise linear segments
to the continuous finite-length curve with optimization tools
[16]–[18]. However, such approaches often assume two or
more DOFs of rotation capability at each joint, preventing their
direct application to the alternating-rotation robot geometry. A
method introduced in [8] unified these two types of approaches
by first fitting the robot configurations to the curves with the
optimization algorithm, then smoothing out the fitted joint
angles over time with parameterized sinusoidal functions. This
optimization-based algorithm allows conversions from individ-
ual 3D backbone curves to individual robot configurations, but
the output joint angles are not continuous over time so the
smoothing step is necessary. However, the smoothing process
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does not directly consider the desired backbone curve, such
that the joint angles after smoothing may no longer fit the
given curves.

In this work, we propose a method for snake robots with
an alternating single-axis pitch and yaw joints design to
reconstruct desired 3D backbone curves. We develop the
constrained optimization algorithm in such a way that it
exploits the geometric structure of the robot. We test our
reconstruction approach on 3D backbone curves common in
the literature [6], [13], [19], [20]. By comparing individual
robot configurations with the given backbone curves, we show
that our reconstruction method allows the robot configurations
to match the given curves more precisely than the state-
of-the-art method presented in previous literature [8], [12]–
[14]. We also conduct physical robot experiments where we
apply our method in real-time while executing 3D gaits. We
experimentally validate that our method ensures that small
changes in the desired backbone curves result in small changes
in the robot configuration, thus the commanded joint angles
vary smoothly. We then demonstrate that our method allows
the robot to approach the numerically predicted motion of a
sequence of desired continuous backbone curves.

II. RELATED WORK

There are two primary approaches in prior work for recon-
struction of the 3D continuous backbone curves with discrete
robot configurations in snake robot locomotion.

The first dominant approach to the configuration reconstruc-
tion problem is to decompose the 3D curve into 2D sub-
curves and derive pitch and yaw joint angles separately with
simple heuristics. Widely employed in gait design and control
for snake robot with alternating single-axis pitch and yaw
joints [12]–[14], this approach first decomposes the desired
3D backbone curves to two 2D sub-curves in the vertical plane
and the horizontal plane, and fits the vertical and horizontal
body shape of the robot to the sub-curves by prescribing the
pitch and yaw joint angles with two parameterized sinusoidal
equations. This approach is simple to implement, but, during
the decomposition process the twisting properties of the de-
sired curves are often neglected, and predefined parameterized
sinusoidal equations often cannot provide good approxima-
tions to sub-curves. Thus, the given curves cannot be fully
replicated, leading to errors between the robot configurations
and the desired curves.

The other dominant approach to the reconstruction problem
is discretization of the 3D curve by fitting piece-wise linear
segments to the continuous finite-length curve with opti-
mization tools. Chirikjian and Burdick [16] proposed modal
functions for describing arbitrary 3D backbone curves and
developed algorithms for fitting discrete serial mechanisms
to desired curves. Mochiyama et al. [17] considered the
discretization problem as a shape-tracking control problem by
deriving a control law for the joints such that the robot con-
verges to the desired shape. Anderson [18] derived analytical
expressions for the relative orientations of the links in the
configuration with a bisection search method. However, these
approaches assume a mechanism with universal joints, i.e.,

at least two intersecting rotation axes at each joint, making
it challenging to directly implement these approaches on the
alternating-rotation robot geometry.

Hatton and Choset [8] proposed the state-of-the-art method
to solve the reconstruction problem for the snake robots with
alternating-rotation geometry by combining the two major
types of approaches, outperforming previous approaches in
reconstruction accuracy. First, an optimization problem was
formulated that fixed one endpoint of the robot and consecu-
tively optimized joint angles to “pull” the rest of links towards
the desired backbone curve. Solving this optimization problem
produces conversions from individual 3D backbone curves
to individual robot configurations. However, when applied
to a chronological sequence of the desired backbone curve,
the joint angles outputs were not smooth over time, which
cannot produce a continuous motion on the robot. To address
the discontinuity in the optimizer outputs, a post-processing
smoothing step was used in which, parameterized sinusoidal
equations were fit to the trajectories that the optimization
algorithm produced. However, since the smoothing process
does not directly consider the desired backbone curve, errors
often emerge in the process of fitting the joint angle trajectories
to sinusoidal functions, which can result in shapes that no
longer fit the desired backbone curves well.

III. METHODS

We address the problem of converting from a 3D continuous
backbone curve to an alternating-pitch-and-yaw robot config-
uration by posing an optimization problem that exploits the
geometric structure of the robot. We divide our reconstruction
strategy into three steps: 1) sampling the desired joint positions
in the robot’s work-space based on the given backbone curve,
2) deriving the constraints based on the robot’s geometric
structure, designing the objective function, and running an
optimization algorithm to obtain optimal joint positions in
work-space, and 3) translating the optimal joint positions in
work-space to joint angles in joint space that can be executed
by the robot.
A. Sampling the backbone curve

In gait design or motion planning for a snake robot, a finite-
length continuous backbone curve defines the robot body’s
desired shape. To simplify the optimization process without
losing the shape properties of the given 3D backbone curve,
we sample a set of points from the curve. The 3D Cartesian
coordinates of the samples are denoted by C0, C1, ..., Cn+1,
where n is the number of joints on the robot and Ci =
[Ci,x, Ci,y, Ci,z]

T ∈ R3. C0 and Cn+1 are the anterior and
posterior endpoints of the curve, and C1, ..., Cn evenly divide
the curve into n+1 segments with the same arc length. Thus,
samples Ci serve as the desired positions for the robot joints
(C1 to Cn) and anterior and posterior endpoints of the robot
(C0 and Cn+1).
B. Robot joint position optimization

We next construct the objective function for the optimization
problem. We use n+2 coordinates C ′0, C

′
1, ..., C

′
n+1 to denote

the positions for the anterior endpoint of the robot, n joints



of the robot, and the posterior endpoint of the robot. We can
thus find the optimal robot configuration by minimizing the
objective function

n+1∑
i=0

‖Ci − C ′i‖
2
, (1)

i.e., the sum of squares of distances from n joints and two
endpoints of the robot to the corresponding samples on the
desired backbone curve.

We then derive the constraints for the optimization problem
based on the geometric structure of the robot. For convenience
we denote the n + 1 links by vectors j′i = C ′i − C ′i−1 for
1 ≤ i ≤ n + 1 pointing from one joint center to the next.
At each joint, the two links j′i and j′i+1 belong to the same
rotational plane Pi (1 ≤ i ≤ n). To describe the direction of
the planes Pi, we associate a unit normal vector ni ∈ R3 to
each of them, which yields a constraint

(i) ‖ni‖ = 1 for 1 ≤ i ≤ n.
The robot geometry of alternating pitch and yaw joints im-

plies that any two consecutive rotational planes are orthogonal
in R3, yielding

(ii) ni−1 · ni = 0 for 2 ≤ i ≤ n.
For 1 ≤ i ≤ n, the two links j′i and j′i+1 both belong to the

plane Pi and the normal vector ni is orthogonal to Pi. Thus
ni is orthogonal to both j′i and j′i+1. Now for 2 ≤ i ≤ n, the
three vectors j′i,ni,ni−1 are pairwise orthogonal. Therefore
j′i is parallel to the cross product ni−1 × ni. Thus we have
the constraint that
(iii) C ′i − C ′i−1 = j′i = l · (ni−1 × ni) for 2 ≤ i ≤ n,
where l is the length of each link.

Suppose that we have the vectors j′i fixed, then the inter-
nal shape of the robot is determined, and the value of the
objective function will only depend on the choice of C ′i. For
convenience, we let di = Ci + (C ′0 − C ′i), then the objective
function becomes:

n+1∑
i=0

‖Ci − C ′i‖
2
=

n+1∑
i=0

[(C ′0 − di) · (C ′0 − di)]

=
n+1∑
i=0

[C ′0 · C ′0 − 2C ′0 · di + di · di]

= (n+ 2)C ′0 · C ′0 − 2C ′0 ·

(
n+1∑
i=0

di

)
+

n+1∑
i=0

(di · di)

= (n+ 2)

(
C ′0 −

∑n+1
i=0 di
n+ 2

)
·

(
C ′0 −

∑n+1
i=0 di
n+ 2

)

+

[
n+1∑
i=0

(di · di)−
1

n+ 2

(
n+1∑
i=0

di

)
·

(
n+1∑
i=0

di

)]
.

The term in the last square bracket is a constant, therefore the
objective function attains the minimum if and only if C ′0 =∑n+1

i=0 di
n+2 , which is equivalent to

∑n+1
i=0 C

′
i =

∑n+1
i=0 Ci. As a

necessary mathematical constraint that ensures the objective
function to attain the minimum, we have
(iv)

∑n+1
i=0 C

′
i =

∑n+1
i=0 Ci.

A physical interpretation of this mathematical constraint is that
the centroid of n joints and two endpoints of the robot should
overlap with the centroid of their corresponding samples on
the desired backbone curve.

Now we have formalized an optimization problem that
exploits the geometric structure of the robot

minimize
C′i

n+1∑
i=0

‖Ci − C ′i‖
2

subject to constraints (i), (ii), (iii) and (iv).

The constrained nonlinear optimization problem can be
solve by standard gradient-descent algorithms such as MAT-
LAB’s built-in function fmincon [21]. This implementation
returns a local minimum of the objective function and works
well in our experiments. In the optimization process for a
continuous sequence of desired backbone curve examples, we
chose zero configuration coordinates (Ci = 0) as the initial
value for the first desired backbone curve example. Then
we used the output optimal configuration coordinates of the
current desired backbone curve example as the initial seed for
the next desired backbone curve example.
C. Joint angle translation

Our optimization procedure outputs the coordinates
C ′0, C

′
1, ..., C

′
n+1 ∈ R3, which denote the optimal positions for

n joints, the anterior and the posterior endpoints of the robot in
the work-space. We translate the coordinates to the robot joint
angles in the joint space so that the result can be implemented
on the physical robot. The absolute value of the joint angle
is characterized by the inner product of two consecutive links
at the joint. The orientation of the rotations within the plane
Pi can be specified by the direction of the normal vector ni,
which is known after solving the optimization problem.

IV. RESULTS

A. Quality of backbone curve-robot configuration conversion

We first tested the proposed 3D curve reconstruction method
on the virtual twist-free alternating-rotation robot model to
evaluate the quality of converting the desired backbone curve
to the robot configuration. To verify the effectiveness of the
reconstruction on different types of 3D backbone curves, we
tested it on the backbone curves for three widely studied
3D gaits – sidewinding [10], [13], [14], sinus lifting [11],
[19], and helical rolling [20], [22]. As a comparison, we also
implemented the approach that is commonly used in the snake
robots with an alternating-rotation geometry – prescribing the
pitch and yaw joint angles with two parameterized sinusoidal
equations (hereafter we refer to this approach as “the sinu-
soidal equation method”), as in [8], [12]–[14] discussed in
Section II. We measured the discrepancies between the robot
configurations by our reconstruction method and the desired
curves and the discrepancies between the robot configurations
by the sinusoidal equation method and the desired curves. The
discrepancy between the robot configuration and the desired
curve is evaluated by the sum of squares distances error
criterion D =

∑n+1
i=0 ‖Ci − C ′i‖

2, where Ci are the positions
for desired backbone curve samples and C ′i are the positions
of the joints and two endpoints of the robot.
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Fig. 2: (a) Comparisons for the robot configurations by our reconstruction method and the sinusoidal equation method, and the desired
backbone curves in (a1) a sidewinding gait, (a2) a sinus lifting gait, and (a3) a helical rolling gait. All coordinates are normalized by the body
length (BL) of the robot. our reconstruction method allows more accurate curve-configuration conversions. (b) A comparison of averaged
discrepancies between the robot configurations and the desired backbone curves for selected sidewinding, sinus lifting and helical rolling
gaits among 200 backbone curve examples on the virtual robot model. Discrepancies are evaluated by the sum of squares distances error
between the positions of the robot’s joints and the positions of corresponding samples on the desired backbone curve. Error bars indicate
the standard deviation. Our method achieves an error between the desired and achieved curves that is an order of magnitude lower than the
sinusoidal equation method.

1) Sidewinding: The desired finite-length continuous back-
bone curves in 3D Cartesian space for sidewinding were
achieved with parametric equations.

y = Ay sin(ωyx+ ft)

z = Az sin(ωzx+ ft+ φ),
(2)

where we fixed x ∈ [0, 1], Ay = π/4, Az = π/3, ωy = ωz =
2π, f = 1, and φ = −π/2. A sequence of 200 backbone curve
examples in a gait cycle were then achieved by varying t. A
comparison of the robot configuration by our reconstruction
method, the robot configuration by the sinusoidal equation
method, and the desired backbone curve is shown in Fig. 2(a1),
the coordinates are normalized by the body length of the robot
(BL). For the 200 backbone curve examples, the averaged sum
of squares distances error for the robot configurations by our
reconstruction method is 0.0010±0.0003 BL2, while the same
measure for the sinusoidal equation method is 0.0579±0.0378
BL2, as illustrated in Fig. 2(b).

2) Sinus lifting: We achieved sinus lifting backbone curves
by setting the parameters in (2) as x ∈ [0, 1], Ay = Az = π/4,
ωy = 2π, ωz = 3π, f = 1, and φ = π/2. Similar to
the method described in the previous section, we performed
comparisons over 200 backbone curve examples, one of which
is as depicted in Fig. 2(a2). The average of the sum of
squares distances error for the robot configurations by our
reconstruction method is 0.0007±0.0002 BL2, which is much
smaller than the same measure for the sinusoidal equation
method 0.0510± 0.0297 BL2, as shown in Fig. 2(b).

3) Helical rolling: Backbone curves for a helical rolling
gait can also be achieved with parameters x ∈ [0, 1], Ax =
Ay = π/3, ωx = ωy = 4π, φ = π/2, and f = 1 in (2). A
sequence of 200 desired backbone curve examples covering
a full gait cycle were collected by varying t in the same
manner used in previous sections. The comparison between
an example of the desired curve and the robot configurations
is demonstrated in Fig. 2(a3). The robot configurations by
our reconstruction method achieve a 0.0012 ± 0.0003 BL2

averaged sum of squares distances error to the desired curves

over 200 examples, compared to 0.0747±0.0422 BL2 obtained
by the sinusoidal equation method, as shown in Fig. 2(b).

Larger discrepancies in the sinusoidal equation method
suggest that although the sinusoidal equation method replicates
the projection of the desired 3D backbone curve onto the
horizontal and vertical planes, but does not necessarily result in
an accurate approximation of the full 3D backbone curve. By
directly solving the optimization problem in the full 3D space,
our reconstruction method achieves significantly smaller dis-
crepancies between the output and desired backbone curves
than does the sinusoidal equation method, such that the robot
body can better approximate the desired 3D shape.

B. Real-time implementation in physical robot locomotion

We performed the reconstruction method in real-time to
create joint angle set-points for a snake robot. In the following
robot experiments, a snake robot composed of sixteen identical
actuated one DOF bending joints was used, as shown by
Fig. 1. The joints are arranged such that the neighboring
modules’ axes of rotation are torsionally rotated ninety degrees
relative to each other, yielding an alternating-pitch-and-yaw
twist-free geometry. In each joint, a low-level PID controller
is embedded, which controls the actuators to follow the joint
angle set points. Experiments were conducted on flat, smooth,
hard ground, where we assume the ground reaction forces are
given by kinetic Coulomb friction. For each experiment, we
conducted five trials for each gait tested, and we commanded
the snake robot to execute two full gait cycles for each trial.
We tracked the snake robot’s trajectory via eight reflective
markers attached evenly along the backbone of the robot and
an OptiTrack motion capture system.

To test the effectiveness of our reconstruction method in
real-time, we conducted experiments of the robot executing a
series of sidewinding gaits with varying temporal frequencies
(gait speeds) with the our reconstruction method, and with
the sinusoidal equation method, respectively. Following the
gait design reported in [14], desired 3D backbone curves
were composed by sinusoidal waves in horizontal plane and
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Fig. 3: An example comparison of output joint angle trajectories for
the same sequence of backbone curves by different optimization al-
gorithms for the sidewinding gait with f = 1 Hz. Red trajectories are
achieved by running the sinusoidal equation method (implementing
the “annealed chain fitting” optimization algorithm introduced in [8]).
Blue trajectories are achieved by running the proposed optimization
algorithm in this work. The joint angle trajectories output by the
method we proposed in this work are smooth, which are able to be
used directly on the robot to produce a continuous locomotion, while
the joint angle trajectories by the sinusoidal equation method are not
smooth, which need a post-processing step of smoothing.

sigmoid-filtered sinusoidal waves in vertical plane, prescribed
by

y = Ay sin(ωyx+ ft)

z = Azσ[sin(ωzx+ ft+ φ)],
(3)

where σ(t) = 1
1+e−γt . We fixed γ = 4, Ay = π/4,

Az = π/3, ωy = ωz = 2π, and φ = −π/2. We varied
the temporal frequency f ∈ (0, 2] Hz to achieve a family
of sidewinding gaits with different gait speeds to test the real-
time performance of our reconstruction method. The expected
motion for these gaits is pure translation without body rotation.

To verify that the joint angle sequence output by our
optimization algorithm can produce a continuous locomotion
of the robot, we first examined the smoothness of joint angle
trajectories and compared them with the joint angle trajectories
output by the sinusoidal equation method (implementing an
optimization algorithm annealed chain fitting introduced in
[8]) given the same sequence of backbone curves. Fig. 3
visualized the example joint angle trajectories by two methods.
We calculated the averaged difference between neighbouring
joint angles over the chronological sequence of 200 robot
configurations in a full gait cycle. Taking the gait with f = 1
Hz as an example, we found that the sinusoidal equation
method resulted in an average joint angle change between
time steps of 10.4 degrees, whereas our reconstruction method
resulted in only 1.6 degrees change between time steps. The
numerical comparisons of the smoothness for all tested gaits
see Table I. This comparison demonstrated the joint angle
trajectories output by the sinusoidal equation method are not
smooth, so that they require a post-processing smoothing step.
The trajectories output by our reconstruction method do not
need a smoothing step and can be used directly on the robot
to produce a continuous motion.

We then studied the robot’s locomotion by measuring the
robot’s body displacement and body rotation. We compared
the motion of the gaits by our reconstruction method and the
gaits by the sinusoidal equation method with the desired mo-
tion from a numerical prediction. In the numerical prediction,
the contact state pattern is prescribed with the assumption
that the robots’ configuration is a 3D continuous curve [23].
The displacement is calculated by numerically integrating the
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Fig. 4: The averaged body displacement and body rotation of the
robot over a gait cycle for the sidewinding gaits with different
temporal frequencies. The error bars are standard deviations.
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Fig. 5: Example video frame sequences of the robot experiments of
the sidewinding gait at f = 1 Hz (a) with our reconstruction method,
and (b) with the sinusoidal equation method. The desired motion for
the robot is to translate from left to right without body rotation. Here
time t is measured in terms of complete gait cycle period T .

equations of motion for the continuous curve throughout one
period based on the resistive force theory [24], [25], which has
been demonstrated as a reliable method to provide predictions
for snake robot locomotion [13], [26], [27]. Fig. 4 shows the
quantitative results of the robot’s body displacement and body
rotation over a gait cycle versus temporal frequency f . We
found that the robot’s body displacement and body rotation
with our method agree with the numerical predictions, which
indicates that our method allows the discrete robot to approach
the performance of a desired motion of a sequence of desired
continuous backbone curves. In contrast, the robot’s body
displacement of gaits by the sinusoidal equation method can-
not reach the predictions, and large unexpected body rotation
emerges during the gait cycle. The results also demonstrated
that the reconstruction method enables the robot to perform
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Fig. 6: An example comparison of contact state patterns for the
sidewinding gait at f = 1 Hz: (a) the desired contact state pattern
of the robot, (b) the contact state pattern of the robot executing the
gait by our reconstruction method, and (c) the contact state pattern of
the robot executing the gait by the sinusoidal equation method. The
contact state pattern of the gait by our reconstruction method shares
a higher similarity (89.4%) with the desired contact state pattern than
the gait by the sinusoidal equation method (57.2%).

robustly over different temporal frequencies (gait speeds) as
predicted, while the robot’s locomotion with the sinusoidal
equation method varies as temporal frequency changes. We
reported numerical results in Table I. Example video frame
sequences of the robot experiments of executing the gaits
by our reconstruction method and by the sinusoidal equation
method with f = 1 Hz are shown in Fig. 5, which illustrates
that the gait by our reconstruction method generates larger
body displacement and less body rotation.

To further investigate how our reconstruction method im-
pacts the robot’s locomotion, we compared the robot’s contact
state patterns during a gait cycle with the desired contact
state pattern that generated by the numerical prediction of the
desired gait. We obtained the contact state patterns for the
gaits with our reconstruction method and the gaits with the
sinusoidal equation method from the tracked motion data. At
each time step, if a marker’s height lied below the average of
height of the tracking markers, we considered its correspond-
ing body section to be in contact with the ground; otherwise,
we considered the body section of the robot to be not in
contact. We found that the contact state patterns for the gaits
by our reconstruction method share a high similarity with the
desired contact state patterns while the contact state patterns
by the sinusoidal equation method not. The comparisons of
similarity percentages for all the gaits we tested are reported
in Table I. For example, for the gait with f = 1 Hz, our
method yields an averaged 89.4% overlap, while the number
for the gaits by the sinusoidal equation method is 57.2%, the
contact state patterns for this gait are illustrated in Fig. 6. This
comparison indicates that the reconstruction method allows
more accurate conversions from the desired backbone curves
to robot configurations. Therefore, the robot can achieve a
contact state pattern that shares a higher similarity with the
desired pattern, which enables the robot to achieve the desired
locomotion of a sequence of desired continuous backbone
curves.

V. CONCLUSION

In this paper, we presented a reconstruction method that
can realize 3D continuous backbone curve on discrete snake
robots with a twist-free alternating pitch and yaw joints design.
Our analysis showed that our reconstruction method allows
more accurate curve-configuration conversions than the state-
of-the-art when applied to three types of gaits widely used

Gait S (deg) D (BL) R (deg) CSPS (%)Method f (Hz)

Our
reconstruction

method

0.2 0.38 0.575 2.12 91.5
0.4 0.62 0.570 2.26 91.1
0.6 0.99 0.569 2.22 89.7
0.8 1.27 0.570 2.02 90.2
1.0 1.64 0.571 1.85 89.4
1.2 2.01 0.573 1.92 88.2
1.4 2.52 0.573 1.75 86.5
1.6 3.14 0.577 1.63 88.1
1.8 3.79 0.580 1.51 86.8
2.0 4.53 0.580 1.67 87.3

The
sinusoidal
equation
method

0.2 2.72 0.381 16.32 70.9
0.4 3.91 0.383 16.34 65.5
0.6 5.50 0.384 16.44 63.3
0.8 8.03 0.397 15.21 65.8
1.0 10.42 0.404 10.80 57.2
1.2 13.29 0.415 11.43 60.0
1.4 15.86 0.421 9.76 52.0
1.6 18.58 0.417 10.23 51.7
1.8 20.90 0.414 10.36 46.4
2.0 24.11 0.418 9.88 48.9

TABLE I: Robot performance comparisons of the gaits family (as
in (3), expected to generate pure translation without rotation) by our
reconstruction method and by the sinusoidal equation method with
metrics of smoothness (average joint angle change between timesteps,
denoted as S, lower is better), averaged displacement per gait cycle
(D, higher is better), body rotation per gait cycle (R, lower is better),
and contact state pattern similarity (CSPS, higher is better) with
the desired pattern. Over the full range of frequencies, our method
performed better than the sinusoidal equation method by all of these
metrics.

in snake robot locomotion. We also conducted physical robot
experiments to compare our reconstruction method and the
sinusoidal equation method, in which the robot was com-
manded to execute a family of sidewinding gaits with different
temporal frequencies. We experimentally validated our opti-
mization algorithm enables that small changes in the desired
backbone curves only result in small changes in the robot
configuration, which lead to continuous robot locomotion. By
comparing the body displacement and rotation, we found that
the gaits from our reconstruction method outperformed the
gait by the sinusoidal equation method, generating larger body
displacement and less undesired body rotation. Furthermore,
we verified the robot’s locomotive performance and contact
state pattern, when executing the gaits from our reconstruction
method, match with the numerical prediction of the desired
motion generated by a sequence of desired continuous back-
bone curves, while the gaits by the sinusoidal equation method
do not. Our reconstruction method produces more accurate
conversions from the desired continuous backbone curves to
discrete robot configurations. Thus, this method allows twist-
free snake robots with robust, simple, single-axis rotary joints
to locomote using a sequence of continuous backbone curves.

The proposed reconstruction method focuses on the specific
snake robot design of alternating pitch and yaw joints. Future
work will investigate the extension of this idea to the applica-
tions on other twist-free mobile limbless robots and continuum
manipulators. Further, we hope to integrate the reconstruction
method into the shape-based compliant control framework for
snake robot locomotion [28], [29], where it can help the robot
comply to challenging 3D terrains and irregular 3D obstacles.
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