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EXISTENCE, UNIQUENESS, AND STABILIZATION RESULTS FOR2

PARABOLIC VARIATIONAL INEQUALITIES ∗
3

Axel Kröner1, Carlos N. Rautenberg2 and Sérgio S. Rodrigues34

Abstract. In this paper we consider feedback stabilization for parabolic variational inequalities of
obstacle type with time and space depending reaction and convection coefficients and show exponential
stabilization to nonstationary trajectories. Based on a Moreau–Yosida approximation, a feedback oper-
ator is established using a finite (and uniform in the approximation index) number of actuators leading
to exponential decay of given rate of the state variable. Several numerical examples are presented
addressing smooth and nonsmooth obstacle functions.
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1. Introduction5

Our goal is the stabilization to trajectories for parabolic variational inequalities, in particular to-6

wards the solution y to the obstacle problem7

⟨ ∂∂ty + (−∆+ 1)y + ay + b · ∇y − f, v − y⟩ ≥ 0, ∀v ≤ ψ, t > 0, (1.1a)8

y ≤ ψ, Gy |Γ = χ, t > 0, y(·, 0) = y◦, (1.1b)9
10

in a bounded domain Ω ⊂ Rd with a regular enough boundary Γ := ∂Ω, where d is a positive integer.11

The obstacle ψ = ψ(x, t) and the functions a = a(x, t) ∈ R, b = b(x, t) ∈ Rd, f = f(x, t) ∈ R,12

χ = χ(x, t) ∈ R, v = v(x, t) ∈ R, and y◦ = y(x), are assumed to be sufficiently regular, for (x, x, t) ∈13

Ω× Γ× (0,+∞); regularity details are specified later. The linear operator G is determined by either14

Dirichlet or Neumann boundary conditions.15

For some pairs (a, b), the solution w issued from a different initial condition w◦ ̸= y◦16

⟨ ∂∂tw + (−∆+ 1)w + aw + b · ∇w − f, v − w⟩ ≥ 0, ∀v ≤ ψ, t > 0, (1.2a)17

w ≤ ψ, Gw |Γ = χ, t > 0, w(·, 0) = w◦, (1.2b)18
19
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may not converge to y as time increases. Our goal is to show that, by means of an feedback control1

input u = K(w − y), we can track y exponentially fast with an arbitrary exponential rate −µ < 0.2

That is, we want to construct an input feedback operator K such that the solution of3

⟨ ∂∂tw + (−∆+ 1)w + aw + b · ∇w − f −K(w − y), v − w⟩ ≥ 0, ∀v ≤ ψ, t > 0, (1.3a)4

w ≤ ψ, Gw |Γ = χ, t > 0, w(·, 0) = w◦, (1.3b)5
6

satisfies, for a suitable constant C ≥ 1,7

|w(t)− y(t)|L2(Ω) ≤ Ce−µt |w◦ − y◦|L2(Ω) , for all (w◦, y◦) ∈ L2(Ω)× L2(Ω), t ≥ 0. (1.4)8

We are interested in the case K : L2(Ω) → UM , where UM ⊂ L2(Ω) is a finite-dimensional subspace,9

given by the linear span of a finite set of actuators UM = {Ψi | 1 ≤ i ≤ m(M)} ⊂ L2(Ω), where m(M)10

is a positive integer which will be appropriately chosen later on. It follows that the control input will11

be of the form12

u(t) = K(w(t)− y(t)) =

Mm∑︂
i=1

ui(t)Ψi ∈ UM .13

14

Further, motivated by real applications, we consider the case in which the actuators are determined15

by indicator functions 1ωi of small subdomains ωi ⊂ Ω,16

Ψi(x) = 1ωi(x) =

{︄
1, if x ∈ ωi,

0, if x ∈ Ω \ ωi,
1 ≤ i ≤Mm.17

Remark 1.1. Note that for simplicity we have taken the diffusion operator as −∆+1. One reason is18

to facilitate the inclusion of Neumann boundary conditions in our investigation where, in particular,19

we ask the operator to be injective. This is not a significant restriction, since we can always transform20

a given dynamics ∂
∂ty − ν∆y + ˜︁ay + h = 0 into ∂

∂τ z + (−∆+ 1)z + (ν−1˜︁a− 1)z + ν−1h = 0 simply by21

rescaling time, τ = νt, z(τ) = y(ν−1τ).22

1.1. Main stabilizability result23

Recall that for Dirichlet and Neumann boundary conditions, the operator G reads, respectively,24

G = 1 and G = ∂
∂n = n · ∇,25

where n = n(x) is the unit outward normal vector to Γ at x ∈ Γ. In either case we set L2(Ω) as a26

pivot space, that is, we identify L2(Ω) with its own dual, L2(Ω)′ = L2(Ω).27

Depending on the choice of G, we define the spaces28

V :=

{︄
H1

0 (Ω), if G = 1,

H1(Ω), if G = ∂
∂n ,

29

and the symmetric isomorphism30

A : V → V ′, ⟨Ay, z⟩V ′,V := (∇y,∇z)L2(Ω)d + (y, z)L2(Ω). (1.5)31
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Throughout the paper, we assume that the subset Ω is bounded, open, and connected, located on1

one side of its boundary Γ = ∂Ω. Furthermore, either Γ is a compact C2-manifold or Ω is a convex2

polygonal domain. The domain of A is defined as D(A) := {z ∈ L2(Ω) | Az ∈ L2(Ω)}, and since Ω is3

regular enough, we have the following characterizations4

D(A) = {z ∈ H2(Ω) | Gz |Γ = 0}. (1.6)5
6

It also follows that A has a compact inverse, and that L2(Ω) = D(A0) and V = D(A
1
2 ). Note that7

A := (−∆+ 1)|D(A) : D(A) → L2(Ω), is the restriction of −∆+ 1 to D(A).8

We shall assume that V and D(A) are endowed, respectively, with the scalar products9

(y, z)V := ⟨Ay, z⟩V ′,V and (y, z)D(A) := (Ay,Az)L2(Ω)10

and associated norms. Note that (y, z)V = (y, z)H1(Ω) coincides with the usual scalar product ofH1(Ω).11

Finally, we denote the increasing sequence of eigenvalues of A by (αi)i∈N, and a complete basis of12

eigenfunctions by (ei)i∈N,13

Aei = αiei, ei ∈ D(A), 0 < αi ≤ αi+1 → +∞.14

Throughout this manuscript, for simplicity, we shall denote the Hilbert Sobolev spaces15

Hs := Hs(Ω) =W s,2(Ω) for s > 0, and L2 := L2(Ω).16

We consider sequences of sets of actuators and eigenfunctions EM of the diffusion operator under17

homogeneous boundary conditions as follows, for some nondecreasing function m : N → N18

(UM )M∈N, UM = {Ψi | 1 ≤ i ≤ m(M)} ⊂ L2(Ω), (1.7a)19

(EM )M∈N, EM = {ei | i ∈ EM} ⊂ D(A) ⊂ L2(Ω), EM = {jMk | 1 ≤ k ≤ m(M} ⊂ N, (1.7b)20
21

where N stands for the set of positive integers and the jMk s are specified later. Further, we denote22

UM = spanUM , EM = spanEM , (1.7c)23

and assume that24

dimUM =Mm = dim EM , L2(Ω) = UM + E⊥
M , and UM

⋂︁
E⊥
M = {0}. (1.7d)25

Due to (1.7d), the oblique projection P
E⊥
M

UM
, in L2(Ω) onto UM along E⊥

M , is well defined as follows: we26

can write an arbitrary h ∈ L2 in a unique way as h = hUM
+ hE⊥

M
with (hUM

, hE⊥
M
) ∈ UM × E⊥

M , then27

we set P
E⊥
M

UM
h := hUM

.28

Our results will follow under general conditions on the dynamics tuple (a, b, f, χ, ψ) and under a29

particular condition on the sequence (UM , EM )M∈N. Such conditions will be presented and specified30

later on. Without entering into more details at this point our main result is the following, whose31

precise statement shall be given in Theorem 4.1.32

Main Result. Let r = r(t) := min(t, 1) for t ≥ 0. Under sufficient regularity of the data and some33

assumptions which will be specified in Section 2.1 we have the following:34
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(i) For every T > 0, there exists a unique solution y ∈ W ((0, T );H1, V ′) of (1.1) with ry ∈1

W ((0, T );H2, L2).2

(ii) For every µ > 0, there are M and λ large enough such that, with Kλ
M := λP

E⊥
M

UM
AP

U⊥
M

EM , the3

solution of the system4 (︂
∂
∂tw + (−ν∆+ 1)w + aw + b · ∇w − f +Kλ

M (w − y), v − w
)︂
L2

≥ 0, ∀v ≤ ψ, t > 0, (1.8a)5

w ≤ ψ, w(0) = w◦, Gw |Γ = χ. (1.8b)6
7

satisfies the inequality (1.4) with C = 1. Furthermore,8 ⃓⃓⃓
Kλ
M

⃓⃓⃓
L(L2)

≤ λˆ︁αM ⃓⃓⃓
P

E⊥
M

UM

⃓⃓⃓2
L(L2)

and (1.9a)9 ⃓⃓⃓
Kλ
M (w − y)

⃓⃓⃓
L2(R+,L2)

≤ λˆ︁αMµ−1
⃓⃓⃓
P

E⊥
M

UM

⃓⃓⃓2
L(L2)

|w◦ − y◦|L2 , (1.9b)10

11

where ˆ︁αM = sup{αi | ei ∈ EM and Aei = αiei}.12

1.2. Previous literature13

The use of oblique projections has been introduced in Kunisch and Rodrigues [15], in the construc-14

tion of explicit feedback operators for stabilization of linear parabolic-like systems under homogeneous15

conditions (f, χ) = 0. Precisely, the feedback in [15] is given by16

KM (t)(y) = P
E⊥
M

UM

(︂
A+Arc(t)− λ1

)︂
y, (1.10)17

18

where UM is the finite-dimensional actuators space and the auxiliary space EM is spanned by a suit-19

able set of eigenfunctions of the diffusion-like operator A. Further Arc is a reaction-convection-like20

operator. Appropriate variations of such feedback are used in Kunisch and Rodrigues [16] to stabilize21

coupled parabolic-ode systems, and in Azmi and Rodrigues [1] to stabilize damped wave equations.22

In Rodrigues [23], the analogous feedback23

KM (t)(y) = P
E⊥
M

UM

(︂
Ay +Arc(t)y +N (t, y)− λy

)︂
, (1.11)24

25

is used to semiglobally stabilize parabolic equations, where the dynamics includes a given nonlinear26

term N (t, ·) and the number of actuators is large enough, depending on the norm |y0|V of the initial27

state in a suitable Hilbert space V ⊆ L2.28

In this paper we investigate the stabilizability of nonautonomous parabolic variational inequalities29

through a limiting argument based on Moreau–Yosida approximations. The latter are semilinear30

parabolic equations and by this reason we could try to use the feedback (1.11). However, the number31

of actuators required by that feedback increases (or may increase) with the norm of the nonlinear term,32

that is, the number of actuators is expected to increase with the Moreau–Yosida parameter. Roughly33

speaking, the number of needed actuators could diverge to +∞ as the Moreau–Yosida parameter does.34

This would mean that, even in the case we can find a limit feedback operator, that operator could35

have an infinite-dimensional range, that is, we would need an infinite number of actuators to be able36

to implement the controller. This is of course unfeasible for real world applications. Therefore, we37
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will use a different feedback operator in (1.8), namely,1

Kλ
M = −λP E⊥

M
UM

AP
U⊥
M

EM . (1.12)2
3

We shall make use of the monotonicity of the nonlinear term associated with the Moreau–Yosida4

approximation. Without such monotonicity we do not know whether the feedback in (1.12) is able5

to stabilize parabolic systems for a general class of nonlinearities as in [23]. Moreover, it is also such6

monotonicity which will allow us to take the pair (λ,M) in (1.12) independently of the Moreau–Yosida7

parameter, and this is why we will be able to take such feedback in the limit variational inequality.8

This manuscript introduces the use of oblique projections in the construction of explicit feedback9

operators which are able to stabilize parabolic variational inequalities. Moreover, to the best knowledge10

of the authors, there are no results on stabilization of parabolic variational inequalities available in11

the literature. In spite of this fact we would like to refer the reader to previous works on controlled12

parabolic variational inequalities defined on a bounded time interval.13

Feedback laws for optimal control of parabolic variational inequalities have been addressed in Popa14

[21] and robust feedback laws in Maksimov [19]. In the first reference the author shows that for a15

certain class of parabolic variational inequalities the optimal control is given by a feedback law given16

by the optimal value function. In the latter reference the author considers a robust control problem17

for a parabolic variational inequality in the case of distributed control actions and disturbances, and18

establishes a feedback law using piecewise (in time) constant control functions being irrespective of19

the unknown effective perturbation.20

For stabilization we are often interested in closed-loop (feedback) controls. However, we would21

like to refer the reader to several contributions concerning open-loop optimal control of parabolic22

variational inequalities (still, in a bounded time interval). Wang [31] considers optimal control prob-23

lems for systems governed by a parabolic variational inequality coupled with a semilinear parabolic24

differential equation, Ito and Kunisch [13] consider strong and weak solution concepts for parabolic25

variational inequalities and study existence. Furthermore the first order optimality system in a La-26

grangian framework is derived. Sensitivity analysis is considered in Christof [8]. For optimal control27

of elliptic-parabolic variational inequalities with time-dependent constraints see Hofmann, Kubo, and28

Yamakaki [12]. Wachsmuth [30] studies optimal control of quasistatic plasticity with linear kinematic29

hardening and derives optimality conditions. Chen, Chu, and Tan [7] analyze bilateral obstacle con-30

trol problem of parabolic variational inequalities. For time optimal control of parabolic variational31

inequalities see Barbu [2], where a variant of the maximum principle for time-optimal trajectories of32

control systems governed by certain variational inequalities of parabolic type is derived. Optimal con-33

trol problems of parabolic variational inequalities of second kind have been addressed by Boukrouche34

and Tarzia [5].35

The rest of the paper is organized as follows. In Section 2 we analyze the Moreau–Yosida approxi-36

mations. The stabilization of the Moreau–Yosida approximations is addressed in Section 3. Section 437

is dedicated to the proof of the main stabilization result for the variational inequality. Finally, in38

Section 5 several numerical examples are presented for the case of a regular obstacle fulfilling the39

theoretical assumptions, and in Section 6 a less regular obstacle ψ is considered for the sake of com-40

parison.41

Notation: For an open interval I ⊆ R and two Banach spaces X, Y , we write W (I; X, Y ) :=42

{y ∈ L2(I; X) | ẏ ∈ L2(I; Y )}, where ẏ := d
dty is taken in the sense of distributions. This space is a43

Banach space when endowed with the natural norm |y|W (I;X,Y ) :=
(︁
|y|2L2(I;X) + |ẏ|2L2(I;Y )

)︁1/2
. If the44
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inclusions X ⊆ Z and Y ⊆ Z are continuous, where Z is a Hausdorff topological space, then we can1

define the Banach spaces X ∩ Y , X × Y , and X + Y , endowed with the norms defined as,2

|(a, b)|X×Y :=
(︁
|a|2X + |b|2Y

)︁ 1
2 , |a|X∩Y := |(a, a)|X×Y ,3

|a|X+Y := inf
(a1, a2)∈X×Y

{︁
|(a1, a2)|X×Y | a = a1 + a2

}︁
,4

5

respectively. In case we know that X ∩ Y = {0}, we say that X + Y is a direct sum and we write6

X ⊕ Y instead. If the inclusion X ⊆ Y is continuous, we write X ↪−→ Y .7

The space of continuous linear mappings from X into Y is denoted by L(X,Y ). In case X = Y we8

write L(X) := L(X,X). The continuous dual of X is denoted X ′ := L(X,R). The space of continuous9

functions from X into Y is denoted by C(X,Y ). Given a subset S ⊂ H of a Hilbert space H,10

with scalar product (·, ·)H , the orthogonal complement of S is denoted S⊥ := {h ∈ H | (h, s)H =11

0 for all s ∈ S}. Given two closed subspaces F ⊆ H and G ⊆ H of the Hilbert space H = F ⊕ G,12

we denote by PGF ∈ L(H,F ) the oblique projection in H onto F along G. That is, writing h ∈ H as13

h = hF + hG with (hF , hG) ∈ F ×G, we have PGF h := hF . The orthogonal projection in H onto F is14

denoted by PF ∈ L(H,F ). Notice that PF = PF
⊥

F . By C [a1,...,an] we denote a nonnegative function15

that increases in each of its nonnegative arguments. Finally, C, Ci, i = 0, 1, . . . , stand for unessential16

positive constants.17

2. Existence, uniqueness, and approximation of the solution18

We consider here a more general version of system (1.1), which will allow us to work with the19

controlled system (1.8) as well. Namely20 (︁
∂
∂ty + (−∆+ 1)y +Qy − f, v − y

)︁
L2 ≥ 0, ∀v ≤ ψ, t > 0, (2.1a)21

y ≤ ψ, Gy |Γ = χ, t > 0, y(·, 0) = y◦, (2.1b)22
23

with Q = Q(x, t) := B(x, t) + b(x, t) · ∇ where B(·, t) ∈ L(L2) is a general linear bounded mapping,24

from L2(Ω) into itself.25

We show that there exists a solution of (2.1), which can be approximated by the sequence (yk)k∈N,26

where yk is the solution of the system27

∂
∂tyk + (−∆+ 1)yk +Qyk + k(yk − ψ)+ = f, yk(0) = y◦, Gyk |Γ = χ, (2.2)28

29

with30

v+(x) :=

{︄
v(x), if v(x) > 0,

0, if v(x) ≤ 0,
for v ∈ L2.31

2.1. Assumptions on the data32

We assume the following regularity assumptions for the data. Hereafter, we will denote R+ :=33

(0,+∞).34

Assumption 2.1. The subset Ω is bounded, open, and connected, located on one side of its bound-35

ary Γ = ∂Ω. Furthermore, either Γ is a compact C2-manifold or Ω is a convex polygonal domain.36
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Under Assumption 2.1 we have the characterizations (1.6), this follows from [11, Thms. 2.2.2.3,1

2.2.2.5, 3.2.1.3 and 3.2.1.3].2

Assumption 2.2. The operator Q in (2.1) is a sum Q = B + b · ∇ with3

B ∈ L∞(R+;L(L2)) and b ∈ L∞(Ω× R+)
d.4

Assumption 2.2 is satisfied if, for example, B = a1 with a ∈ L∞(Ω× R+).5

Assumption 2.3. The external forces f and χ, and initial condition y◦ in (1.1), satisfy6

f ∈ L2
loc(R+;L

2), χ ∈ T , y◦ ∈ L2, and y◦ ≤ ψ(·, 0).7
8

See Section 2.2 for the definition of T as the trace space of Wloc(R+;H
2, L2). The condition χ ∈ T9

specifically means that there exists a function in Wloc(R+;H
2, L2) such that Gh is equal to χ in the10

trace sense.11

Assumption 2.4. The obstacle satisfies ψ ∈ Wloc(R+;H
2, L2) and Gψ |Γ ≥ χ − η for a suitable real12

function η(x, t) = η(t) independent of x ∈ Γ where:13

(i) for Dirichlet boundary conditions, η = 0,14

(ii) for Neumann boundary conditions, η ≥ 0 and η ∈W 1,2
loc (R+).15

Remark 2.5. Notice that for Dirichlet boundary conditions, since we will be looking for a solution16

satisfying y |Γ = χ and y ≤ ψ, then the requirement ψ |Γ ≥ χ is necessary. Instead, for Neumann17

boundary conditions, we do not claim the necessity of the requirements in Assumption 2.4. However,18

the relaxation of those requirements will, probably, involve extra technical difficulties.19

2.2. Trace and lifting operators20

For simplicity, we denote21

W :=Wloc(R+;H
2, L2) and W0 :=Wloc(R+; D(A), L2) ⊂ W.22

Let us define the trace spaces on the boundary23

T := {Gh|Γ | h ∈ W} , T0 := {Gh|Γ | h ∈ W0} .24
25

Recall that we have (cf. [18, Ch. 1, Thms. 3.2 and 9.6]) for the trace spaces at initial time,26

W [t=0] := {y(0) | y ∈ W} = H1, W [t=0]
0 := {y(0) | y ∈ W0} = V.27

28

Now for any finite time interval (t1, t2), with t2 > t1, we define the Hilbert spaces29

W(t1,t2) :=W ((t1, t2), H
2, L2) (2.3)30

and the corresponding traces are denoted by T(t1,t2) = W(t1,t2) |Γ.31

Next for each positive integer j ∈ N we define the time interval Ij := (j − 1, j). Observe that for32

any χ ∈ T we have that χ|Ij ∈ TIj . We consider the extension (lifting) function defined, for ˜︁χ ∈ TIj33

by34

Ej ˜︁χ ∈ WIj , (GEj ˜︁χ)|Γ = ˜︁χ, and Ej ˜︁χ ∈ W⊥
Ij ,0, with WIj ,0 := WIj

⋂︂
W0 |Ij ,35
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where the orthogonal space W⊥
Ij ,0

to WIj ,0 is taken with respect to the scalar product of WIj .1

This defines the extension operator, Ej ∈ L(TIj ,WIj ), which is a right inverse for the trace operator2

(G(·))|Γ ∈ L(WIj , TIj ). We endow TIj with the scalar product induced by the trace mapping3

(χ1, χ2)TIj := (Ejχ1,E
jχ2)WIj

.4

This allows to introduce the extension E : T → W defined by concatenation5

Eχ(t) := (E⌈t⌉χ|I⌈t⌉)(t),6

where ⌈t⌉ is the positive integer satisfying ⌈t⌉ − 1 < t ≤ ⌈t⌉.7

Remark 2.6. Note that for any h ∈ W satisfying Gh|Γ = χ we have that Eχ− h ∈ W0. In particular8

we have that Eχ(t)− h(t) ∈ V , for all t ≥ 0.9

Remark 2.7. Several existence results for parabolic variational inequalities can be found in the liter-10

ature. However, though we borrow some ideas and arguments from classic references (e.g, [3,4,6,10])11

we could not find in the literature, the existence results for obstacles as general as in Assumption 2.4.12

For example in [4, Ch. 3, Sect. 2.2, Thm. 2.2], for Dirichlet boundary conditions it is assumed that13

the boundary trace of the obstacle is static (independent of time). In [6, Sect. II] the triple (a, b, ψ) is14

time-independent.15

2.3. On the Moreau–Yosida approximation16

We present the main result concerning Moreau–Yosida approximations for parabolic variational17

inequalities. We start by denoting, for a given function φ ∈ L2
loc(R+, L

2), the convex sets18

Cφ
T := {v ∈ L2((0, T );H1) | v ≤ φ}, for T > 0, (2.4a)19

20

and21

Cφ
∞ := {v ∈ L2

loc(R+;H
1) | v ≤ φ}. (2.4b)22

23

We set24

Zr := {z ∈W ((0, T );H1, V ′) | rz ∈W ((0, T );H2, L2)},25
26

where27

r(t) := min{t, 1}, t ≥ 0.28
29

Theorem 2.8. Let Assumptions 2.1–2.4 hold true, T > 0, and suppose (fk) ⊂ L2((0, T );L2) converges30

weakly to some f in L2((0, T );L2). Then, for a given k ∈ N. there exists one, and only one, weak31

solution yk ∈ Zr for32

∂
∂tyk + (−∆+ 1)yk +Qyk + k(yk − ψ)+ = fk, Gyk |Γ = χ, yk(0) = y◦. (2.5)33

Moreover, the sequence (yk) of solutions satisfy34

yk − Eχ −−−−−−−⇀
L2((0,T );V )

y − Eχ, ∂
∂t(yk − Eχ) −−−−−−−−⇀

L2((0,T );V ′)

∂
∂t(y − Eχ), (2.6)35

36
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for some y ∈ Zr with1

y ∈ Cψ
T , y(0) = y◦, Gy |Γ = χ, (2.7)2

3

and, for an arbitrary v ∈ Zr
⋂︁
Cψ
T , with v − y ∈ C((0, T ];V ), we have4

⟨ ∂∂ty + (−∆+ 1)y +Qy − f, v − y⟩V ′,V ≥ 0, almost everywhere in (0, T ). (2.8)5
6

Furthermore, we have7

r(yk − Eχ) −−−−−−−−−⇀
L2((0,T );D(A))

r(y − Eχ), ∂
∂t(r(yk − Eχ)) −−−−−−−−⇀

L2((0,T );L2)

∂
∂t(r(y − Eχ)), (2.9)8

9

and, for arbitrary v ∈ L2((0, T );L2),10 (︁
∂
∂ty + (−∆+ 1)y +Qy − f, v − y

)︁
L2 ≥ 0, almost everywhere in (0, T ). (2.10)11

12

Finally, y is unique the only element in Zr satisfying (2.7) and (2.8), and we have13

yk −−−−−−−−→
L2((0,T );L2)

y and r(yk − Eχ) −−−−−−−→
C([0,T ];L2)

r(y − Eχ). (2.11)14

15

The proof of Theorem 2.8 is given in several steps, which we include in several lemmas.16

Lemma 2.9. Let Assumptions 2.1–2.4 hold true. Let us fix k ∈ N. There exists one, and only one,17

solution yk ∈W ((0, T );H1, V ′) for (2.5), furthermore ryk ∈W ((0, T );H2, L2).18

Proof. We sketch the proof which follows from standard arguments. By a lifting argument (cf. [22,19

Def. 3.1]) we can reduce the problem to the case of homogeneous boundary conditions, where we20

can prove the existence of weak solutions, in W ((0, T ), V, V ′), as a weak limit of suitable Galerkin21

approximations. Weak solutions are understood in the classical sense [17, 29]. Strong solutions22

in W ((0, T ), H2, L2) can be proven for more regular initial conditions y◦ ∈ V , see [23, Sect.4.3].23

For our initial conditions in y◦ ∈ L2 \ V , we can use the smoothing property of parabolic-like equa-24

tions to conclude that ryk ∈ W ((0, T ), H2, L2), see [29, Ch. 3, Thm. 3.10] and [20, Lem. 2.6]. Note25

that r(0)yk(0) = 0 ∈ V at initial time. □26

Note that by direct computations27

(h, h+)L2 =
⃓⃓
h+

⃓⃓2
L2 , for all h ∈ L2. (2.12)28

29

Let us denote30

CQ := |Q|L∞(R+,L(H1,L2)) . (2.13)31

Lemma 2.10. Let Assumptions 2.1–2.4 hold true. Then, the solution yk for (2.5) satisfies32

2k
⃓⃓
(yk − ψ)+

⃓⃓2
L2((0,T ),L2)

+ |yk|2L∞((0,T ),L2) + |yk|2L2((0,T ),H1)33

≤ C[CQ,T ]

(︂
|y◦|2L2 + |Eχ|2W(0,T )

+ |fk|2L2((0,T ),L2) + |ψ|2W ((0,T ),H1,V ′)

)︂
,34

35

with C[CQ,T ] independent of k.36
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Proof. Recall that ψ ∈W ((0, T );H2, L2) by Assumption 2.4. Now we set1

v := Eχ− (Eχ− ψ)+, (2.14)2

which implies v ∈W ((0, T );H1, L2). Also, ψ − v ≥ 0, because3

ψ − v = 0, if Eχ ≥ ψ,

ψ − v = ψ − Eχ, if Eχ ≤ ψ.
4

Furthermore under Dirichlet boundary conditions we also have that v |Γ = χ, because (Eχ−ψ)+ |Γ = 0,5

due to χ ≤ ψ |Γ in Assumption 2.4. Hence, we have6

pk := yk − v ∈W ((0, T );V,L2), v ≤ ψ, (2.15)7

and8

ṗk +Apk +Qpk + k(yk − ψ)+ = hk,9
10

with11

hk := fk − d
dtv − (−∆+ 1)v −Qv. (2.16)12

13

After testing the dynamics with 2pk to obtain14

d
dt |pk|

2
L2 + 2 |pk|2V + 2k((yk − ψ)+, pk)L2 = 2⟨−Qpk + hk, pk⟩V ′,V .15

16

Observe that, due to (2.15) we have pk ≥ yk − ψ and17

((yk − ψ)+, pk)L2 ≥
⃓⃓
(yk − ψ)+

⃓⃓2
L2 ,18

and by using Assumption 2.2 and the Young inequality, and recalling (2.13), it follows that19

d
dt |pk|

2
L2 + |pk|2V + 2k

⃓⃓
(yk − ψ)+

⃓⃓2
L2 ≤ 2C2

Q |pk|2L2 + 2 |hk|2V ′20

≤ C[CQ]

(︂
|pk|2L2 + |hk|2V ′

)︂
. (2.17)21

22

By the Gronwall Lemma it follows that23

|pk|2L∞((0,T ),L2) ≤ C[CQ,T ]

(︂
|pk(0)|2L2 + |hk|2L2((0,T ),V ′)

)︂
, (2.18a)24

25

and by integration of (2.17), and using (2.18a), we find26

|pk|2L2((0,T ),V ) + 2k
⃓⃓
(yk − ψ)+

⃓⃓2
L2((0,T ),L2)

≤ C[CQ,T ]

(︂
|pk(0)|2L2 + |hk|2L2((0,T ),V ′)

)︂
. (2.18b)27

28

Now, note that from (2.16), (2.15), (2.14), (2.16), and L2 ↪−→ V ′, we have29

|hk|2L2((0,T ),V ′) ≤ C[CQ]

(︂
|fk|2L2((0,T ),V ′) + |v|2W ((0,T ),H1,V ′)

)︂
(2.19a)30

≤ C[CQ]

(︂
|fk|2L2((0,T ),V ′) + |Eχ|2W(0,T )

+ |ψ|2W ((0,T ),H1,V ′)

)︂
, (2.19b)31

32
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(cf. (2.3)), and1

|yk|2L∞((0,T ),L2) + |yk|2L2((0,T ),H1)2

≤ 2 |pk|2L∞((0,T ),L2) + 2 |v|2L∞((0,T ),L2) + 2 |pk|2L2((0,T ),V ) + 2 |v|2L2((0,T ),H1)3

≤ C[CQ,T ]

(︂
|pk(0)|2H + |Eχ|2W(0,T )

+ |fk|2L2((0,T ),V ′) + |ψ|2W ((0,T ),H1,V ′)

)︂
. (2.19c)4

5

Notice also that6

|pk(0)|2H = |yk(0)− v(0)|2L2 ≤ 2 |y◦|2L2 + 2
⃓⃓
Eχ(0)− (Eχ(0)− ψ(0))+

⃓⃓2
L2 . (2.19d)7

8

Hence, the result follows from (2.18) and (2.19). □9

The following lemma establishes that we are able to identify a pseudo-distance function with an10

strictly negative normal derivative.11

Lemma 2.11. Let Assumption 2.1 hold true. Then, there exists ξ ∈ H2(Ω)
⋂︁
C2(Ω)

⋂︁
C1(Ω) and12

constant cξ < 0 satisfying13

ξ(x) ≥ 0 for all x ∈ Ω, (2.20a)14

∂
∂nξ |Γ (x) ≤ cξ for almost all x ∈ Γ. (2.20b)15

16

Proof. In the case Ω is of class C2, we can choose ξ = ρdΓ as the product of the distance to the boundary17

function, dΓ(x) = minz{|x− z|Rd min z ∈ Γ}, and of a suitable cut-off function ρ. From [9, Appendix,18

Lem. 1 and Eq. (A7)], see also [14, Sect. 13.3.4], we know that dΓ ∈ C2(Γδ) for a suitable small19

enough δ > 0 and Γδ := {x ∈ Ω | dΓ(x) ≤ δ}, and also that ∂dΓ
∂n = 1. For ρ we choose a smooth20

function satisfying 0 ≤ ρ ≤ 1, such that ρ(x) = 0 for all x ∈ Ω \ Γ 2δ
3
, and ρ(x) = 1 for all x ∈ Γ δ

3
.21

In the case Ω is a convex polygonal domain we can choose x0 ∈ Ω and22

ξ(x) = − |x− x0|2Rd +max
z∈Ω

|z − x0|2Rd , x ∈ Ω,23

It is clear that ξ ∈ C2(Ω) and that ξ ≥ 0. It remains to prove that ξ strictly decreases on Γ in the24

direction of the outward normal n. To this purpose let x ∈ Γ and let F be a face of Γ contained in25

the affine hyperplane H and such that x ∈ F . Up to an affine change of variables (a translation and26

a rotation) we can suppose that 0 ∈ Ω and27

x0 = 0 and H = {(s, x2, x3, . . . , xd) | (x2, x3, . . . , xd) ∈ Rd−1} with s > 0.28

In this case, we find that29

ξ(x) = − |x|2Rd +max
z∈Ω

|z|2Rd , n = (1, 0, 0, . . . , 0) and ∂
∂nξ |Γ = ∂

∂x1
ξ |Γ = −2x1.30

Therefore at an arbitrary point x ∈ H we find that ∂
∂nξ |Γ (x) = −2x1 = −2s. Note that s is the31

distance from 0 to H.32

Therefore we can conclude that for every point x in the (boundary) interior of a face F we have33

that ∂
∂nξ |Γ (x) = −2sF where sF > 0 is the distance from x0 to the hiperplane HF containing F .34
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Since the number of faces is finite, ∂
∂nξ |Γ ≤ max{−2sF | F is a face of Γ} =: cξ < 0, for all boundary1

points living in one face only. Note that if x lives in the intersection of two faces then the normal2

derivative is not well defined (not continuously, at least), however the set of such points has vanishing3

(boundary) measure. That is, ∂
∂nξ |Γ (x) ≤ cξ < 0 for almost every boundary point x. □4

Lemma 2.12. Let cξ < 0 and ξ ∈ H2 be as in Lemma 2.11, and η ≥ χ−Gψ |Γ be as in Assumption 2.4.5

Then, for6

ζk := yk − ψ + ηˆ︁ξ, with ˆ︁ξ := {︄
0, if G = 1,

−c−1
ξ ξ, if G = ∂

∂n ,
(2.21)7

8

where yk is the solution for (2.5), we have that9

( ∂∂nEχ, ζ
+
k )L2(Γ) − (ψ − ηˆ︁ξ, ζ+k )H1 ≤ 2

⃓⃓⃓
ψ − ηˆ︁ξ ⃓⃓⃓

H2

⃓⃓
ζ+k

⃓⃓
L2 , G ∈ {1, ∂

∂n}.10
11

Proof. Observe that12

( ∂∂nEχ, ζ
+
k )L2(Γ) − (ψ − ηˆ︁ξ, ζ+k )H113

= ( ∂∂nEχ, ζ
+
k )L2(Γ) + ((∆− 1)(ψ − ηˆ︁ξ), ζ+k )L2 − ( ∂∂n(ψ − ηˆ︁ξ), ζ+k )L2(Γ)14

= ( ∂∂nEχ− ∂
∂nψ + η ∂

∂n
ˆ︁ξ, ζ+k )L2(Γ) + ((∆− 1)(ψ − ηˆ︁ξ), ζ+k )L2 . (2.22)15

16

Note that17

ζ+k |Γ = 0, if G = 1, and ∂
∂nEχ = χ, if G = ∂

∂n . (2.23a)18

Now, by using (2.20b) and (2.21),19

∂
∂nEχ− ∂

∂nψ + η ∂
∂n

ˆ︁ξ = χ− ∂
∂nψ |Γ + η ∂

∂n
ˆ︁ξ |Γ ≤ χ− ∂

∂nψ |Γ − η ≤ 0, if G = ∂
∂n

(2.23b)20

and, by (2.23), we have that21

( ∂∂nEχ− ∂
∂nψ + η ∂

∂n
ˆ︁ξ, ζ+k )L2(Γ) ≤ 0, if G ∈ {1, ∂

∂n}, (2.24)22
23

with an equality in the case G = 1. Thus, by (2.22) and (2.24) we obtain24

( ∂∂nEχ, ζ
+
k )L2(Γ) − (ψ − ηˆ︁ξ, ζ+k )H1 ≤

⃓⃓⃓
(∆− 1)(ψ − ηˆ︁ξ)⃓⃓⃓

L2

⃓⃓
ζ+k

⃓⃓
L2 ≤ 2

⃓⃓⃓
ψ − ηˆ︁ξ ⃓⃓⃓

H2

⃓⃓
ζ+k

⃓⃓
L2 , (2.25)25

26

which ends the proof. □27

Lemma 2.13. Let Assumptions 2.1–2.4 hold true. Then, the solution yk for (2.5) satisfies28

k2
⃓⃓
(yk − ψ)+

⃓⃓2
L2((0,T ),L2(Ω))

+
⃓⃓
d
dt(yk − Eχ)

⃓⃓2
L2((0,T ),V ′)

29

≤ C[CQ,T ]

(︂
|y◦|2L2 + |Eχ|2W(0,T )

+ |fk|2L2((0,T ),L2) + |ψ|2W(0,T )
+ |η|2W 1,2(0,T )

)︂
,30

31

with C[CQ,T ] independent of k.32
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Proof. Let us choose cξ < 0 and ξ as in Lemma 2.11 implying in particular that ξ ∈ H2. We also1

have η ≥ χ− Gψ |Γ, due to Assumption 2.4. Then, we set ζk as in (2.21).2

Observe that both ζk and ζ+k are in H1. Furthermore, in the case of Dirichlet boundary conditions3

we also have ζ+k ∈ H1
0 as a corollary of Assumption 2.4. Therefore,4

ζ+k ∈ V, for G ∈ { ∂
∂n ,1}. (2.26)5

Let us denote now κk = yk − Eχ. We find6

κ̇k +Aκk +Qκk + k(yk − ψ)+ = gk, κk(0) = κ◦, Gκk |Γ = 0, (2.27a)7
8

with9

κ◦ = y◦ − Eχ(0), gk := fk − d
dtEχ− (−∆+ 1)Eχ−QEχ. (2.27b)10

11

Testing the dynamics with ζ+k , gives us12

0 = (κ̇k, ζ+k )L2 + (κk, ζ+k )V + k((yk − ψ)+, ζ+k )L2 + (Qκk − gk, ζ
+
k )L213

= (κ̇k + d
dtEχ− ψ̇ + η̇ˆ︁ξ, ζ+k )L2 + (κk + Eχ− ψ + ηˆ︁ξ, ζ+k )H1 + k((yk − ψ)+, ζ+k )L214

+ (Qκk − gk − d
dtEχ+ ψ̇ − η̇ˆ︁ξ, ζ+k )L2 + (−Eχ+ ψ − ηˆ︁ξ, ζ+k )H115

16

which is equivalent to17

0 = (ζ̇k, ζ
+
k )L2 + (ζk, ζ

+
k )H1 + k((yk − ψ)+, ζ+k )L218

+ (Qκk − gk − d
dtEχ+ ψ̇ − η̇ˆ︁ξ, ζ+k )L2 + (−Eχ+ ψ − ηˆ︁ξ, ζ+k )H1 .19

20

Then, using Stampacchia Lemma [28, Lem. 1.1]) and Lions-Magenes Lemma [29, Ch. 3, Sect. 1.4,21

Lem. 1.2], we arrive at22

d
dt

⃓⃓
ζ+k

⃓⃓2
L2 + 2

⃓⃓
ζ+k

⃓⃓2
V
+ 2k((yk − ψ)+, ζ+k )L223

= 2(−Qκk + gk +
d
dtEχ− ψ̇ + η̇ˆ︁ξ, ζ+k )L2 − 2(−Eχ+ ψ − ηˆ︁ξ, ζ+k )H1 .24

25

Next, we use the relations in (2.27) to obtain26

d
dt

⃓⃓
ζ+k

⃓⃓2
L2 + 2

⃓⃓
ζ+k

⃓⃓2
V
+ 2k((yk − ψ)+, ζ+k )L227

= 2(−Qyk + fk − (−∆+ 1)Eχ− ψ̇ + η̇ˆ︁ξ, ζ+k )L2 − 2(−Eχ+ ψ − ηˆ︁ξ, ζ+k )H128

= 2(−Qyk + fk − ψ̇ + η̇ˆ︁ξ, ζ+k )L2 − 2(ψ − ηˆ︁ξ, ζ+k )H1 + 2( ∂∂nEχ, ζ
+
k )L2(Γ) (2.28)29

30

and, using Lemma 2.12 we find31

d
dt

⃓⃓
ζ+k

⃓⃓2
L2 + 2

⃓⃓
ζ+k

⃓⃓2
V
+ 2k((yk − ψ)+, ζ+k )L2 (2.29)32

≤ 2(−Qyk + fk − ψ̇ + η̇ˆ︁ξ, ζ+k )L2 + 4
⃓⃓⃓
ψ − ηˆ︁ξ ⃓⃓⃓

H2

⃓⃓
ζ+k

⃓⃓
L2 (2.30)33

≤ 2
(︂⃓⃓⃓
−Qyk + fk − ψ̇ + η̇ˆ︁ξ ⃓⃓⃓

L2
+ 2

⃓⃓⃓
ψ − ηˆ︁ξ ⃓⃓⃓

H2

)︂ ⃓⃓
ζ+k

⃓⃓
H2 . (2.31)34

35
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Time integration of (2.31) gives us1 ⃓⃓
ζ+k (T )

⃓⃓2
L2 −

⃓⃓
ζ+k (0)

⃓⃓2
L2 + 2

⃓⃓
ζ+k

⃓⃓2
L2((0,T ),V )

+ 2k((yk − ψ)+, ζ+k )L2((0,T ),L2) ≤ 2Ξ
⃓⃓
ζ+k

⃓⃓
L2((0,T ),L2)

2
3

with4

Ξ :=

(︃⃓⃓⃓
−Qyk + fk − ψ̇ + η̇ˆ︁ξ ⃓⃓⃓

L2((0,T ),L2)
+ 2

⃓⃓⃓
ψ − ηˆ︁ξ ⃓⃓⃓

L2((0,T ),H2)

)︃
,5

6

from which, together with the fact that, due to Assumption 2.3, at time t = 0 we have ζ+k (0) =7

(y◦ − ψ(0))+ = 0, we obtain8

2k
⃓⃓
((yk − ψ)+, ζ+k )L2((0,T ),L2)

⃓⃓
R = 2k((yk − ψ)+, ζ+k )L2((0,T ),L2) ≤ 2Ξ

⃓⃓
ζ+k

⃓⃓
L2((0,T ),L2)

,9
10

which, together with L2((0, T ), L2) = (L2((0, T ), L2))′, give us |(yk − ψ)+|L2((0,T ),L2) ≤ k−1Ξ, thus11

k
⃓⃓
(yk − ψ)+

⃓⃓
L2((0,T ),L2)

12

≤ Ξ ≤ C[CQ]

(︃
|yk|L2((0,T ),L2) + |fk|L2((0,T ),L2) + |ψ|W(0,T ) +

⃓⃓⃓
ηˆ︁ξ ⃓⃓⃓

W(0,T )

)︃
. (2.32)13

14

Next, from (2.27) we also find that15

|κ̇k|2V ′ =
⃓⃓
Aκk +Qκk + k(yk − ψ)+ − gk

⃓⃓2
V ′16

which together with (2.32), κk = yk − Eχ, and L2 ↪−→ V ′, give us17

|κ̇k|2L2((0,T ),V ′) ≤ C
(︂
|yk|2L2((0,T ),H1) + |Eχ|2W(0,T ) + |fk|2L2((0,T ),L2) + |ψ|2W(0,T ) + |η|2W 1,2(0,T )

)︂
.18

with C = C[CQ,|ˆ︁ξ|H2 ]
. Finally, we can finish the proof by using Lemma 2.10. □19

Remark 2.14. We can see that the constant C[CQ,T ] in the statement of the Lemma 2.13 will also20

depend on
⃓⃓⃓ˆ︁ξ ⃓⃓⃓

H2
as C[CQ,T,|ˆ︁ξ|H2 ]

, but since essentially ˆ︁ξ depends only on the spatial domain Ω, we21

omit the dependence on
⃓⃓⃓ˆ︁ξ ⃓⃓⃓

H2
in the statement of Lemma 2.13 and throughout the manuscript.22

Lemma 2.15. Let Assumptions 2.1–2.4 hold true, with in addition y◦ − Eχ(0) ∈ V . Then the23

solution yk for (2.5) satisfies24

|yk|2L2((0,T ),H2) + |yk|2L∞((0,T ),H1)25

≤ C
(︂
|y◦|2H1 + |Eχ|2W(0,T )

+ |fk|2L2((0,T ),L2) + |ψ|2W(0,T )

)︂
, (2.33)26

27

with a constant C[T,CQ] independent of k.28

Proof. Testing the dynamics in (2.27) with 2Aκk, where κk = yk − Eχ, it follows that29

2 |κk|2D(A) +
d
dt |κk|

2
V = 2(gk −Qκk − k(yk − ψ)+, Aκk)L2 .30

31
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Then, the Young inequality gives us1

|κk|2D(A) +
d
dt |κk|

2
V ≤

⃓⃓
gk −Qκk − k(yk − ψ)+)

⃓⃓2
L2 ,2

3

and from the Gronwall Lemma and integration over (0, T ) we obtain4

|κk|2L2((0,T ),D(A)) + |κk|2L∞((0,T ),V ) ≤ |κ◦|2V +
⃓⃓
gk −Qκk − k(yk − ψ)+)

⃓⃓2
L2((0,T ),L2)

.5
6

Finally, we can conclude the proof by using Lemmas 2.10 and 2.13, and recalling the identities7

in (2.27b). □8

In Lemma 2.16 we require the extra regularity for the initial condition in order to have strong solu-9

tions for the parabolic equation. This extra requirement is needed due to the compatibility conditions10

mentioned in Remark 2.6. However, due to the smoothing property of parabolic equations, it turns11

out that for strictly positive time t > 0 we will have that yk(t) ∈ V when y◦ ∈ H. This fact is explored12

in the following result.13

Lemma 2.16. Let Assumptions 2.1–2.4 hold true and let yk solve (2.5). Then, it follows that14

|ryk|2L2((0,T ),H2) + |ryk|2L∞((0,T ),H1) +
⃓⃓
d
dt(ryk)

⃓⃓2
L2((0,T ),L2)

15

≤ C
(︂
|y◦|2L2 + |rEχ|2W(0,T )

+ |rfk|2L2((0,T ),L2) + |rψ|2W(0,T )

)︂
,16

17

with a constant C[T,CQ] independent of k.18

Proof. Multiplying the dynamics in (2.27) by 2r2Aκk, it follows that19

d
dt |rκk|

2
V − ( d

dtr
2) |κk|2V + 2 |rκk|2D(A) = 2(rgk − rQκk − rk(yk − ψ)+, rAκk)L2 .20

21

Then, the Young inequality together with max{|r|L∞(R+) , |ṙ|L∞(R+)} = 1 give us22

|rκk|2D(A) +
d
dt |rκk|

2
V ≤

⃓⃓
gk −Qκk − k(yk − ψ)+)

⃓⃓2
L2 + |rκk|2V ,23

24

and from the Gronwall Lemma and integration over (0, T ) we obtain25

|rκk|2L2((0,T ),D(A)) + |rκk|2L∞((0,T ),V ) ≤
⃓⃓
gk −Qκk − k(yk − ψ)+)

⃓⃓2
L2((0,T ),L2)

.26
27

Further we have that28 ⃓⃓
d
dt(rκk)

⃓⃓2
L2 =

⃓⃓
Arκk +Qrκk + rk(κk − ϕ)+ − rgk − (ṙ)κk

⃓⃓2
L2 .29

We can conclude the proof by using ryk = rκk + rEχ, (2.27b), and Lemmas 2.10 and 2.13. □30

We are now ready to conclude the proof of Theorem 2.8.31
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Proof of Theorem 2.8. Existence: From Lemmas 2.10 and 2.16, there exists a subsequence yn(k) of yk,1

such that the following weak limits hold2

yn(k) − Eχ −−−−−−−⇀
L2((0,T ),V )

y − Eχ, ẏn(k) − d
dtEχ −−−−−−−−⇀

L2((0,T ),V ′)
ẏ − d

dtEχ, (2.34a)3

r(yn(k) − Eχ) −−−−−−−−−⇀
L2((0,T ),D(A))

z, d
dt(r(yn(k) − Eχ)) −−−−−−−−⇀

L2((0,T ),L2)
ż, (2.34b)4

5

for suitable y ∈ W ((0, T ), H1, V ′) and z ∈ W ((0, T ),D(A), L2). Necessarily we have z = r(y − Eχ)6

and the strong limits7

yn(k) −−−−−−−−→
L2((0,T ),L2)

y, r(yn(k) − Eχ) −−−−−−−→
L2((0,T ),V )

r(y − Eχ), (2.35a)8

r(yn(k) − Eχ) −−−−−−−→
C([0,T ],L2)

r(y − Eχ), (2.35b)9

10

where we have used, in particular the Aubin-Lions-Simon Lemma [27, Sect. 8, Cor. 4].11

For the sake of simplicity, let us still denote the subsequence yn(k) by yk. By Lemma 2.10, it follows12

that (k2 |(yk − ψ)+|2L2((0,T ),L2))k∈N is bounded, thus13 ⃓⃓
(y − ψ)+

⃓⃓2
L2((0,T ),L2)

= lim
k→+∞

⃓⃓
(yk − ψ)+

⃓⃓2
L2((0,T ),L2)

= 014

and, since y ∈ L2((0, T );H1), we obtain that y ∈ Cψ
T , see (2.4). Now, for an arbitrary v ∈ Cψ

T , we15

find, for almost every t ∈ (0, T ),16 (︂
r
(︁
∂
∂tyk + (−∆+ 1)yk +Qyk − fk

)︁
, r(v − yk)

)︂
L2

17

= −k
(︁
r(yk − ψ)+, r(v − yk)

)︁
L218

= k
(︁
(yk − ψ)+, r2(yk − ψ)

)︁
L2 + k

(︁
(yk − ψ)+, r2(ψ − v)

)︁
L2 ,19

20

which gives us21 (︂
r
(︁
∂
∂tyk + (−∆+ 1)yk +Qyk − fk

)︁
, r(v − yk)

)︂
L2

≥ 0, (2.36)22
23

because r2k(yk − ψ)+(yk − ψ) ≥ 0 and r2k(yk − ψ)+(ψ − v) ≥ 0, due to v ∈ Cψ
T .24

Observe that, with qk := r(yk − Eχ) and q := r(y − Eχ), for the left-factor in (2.36), we find25

r
(︁
∂
∂tyk + (−∆+ 1)yk +Qyk − fk

)︁
26

= q̇k +Aqk +Qqk − rfk + r( d
dt +A+Q)Eχ− (ṙ)(yk − Eχ),27

28

and we have the weak limit in L2((0, T ), L2) given by29

q̇ +Aq +Qq − rf + r( d
dt +A+Q)Eχ− (ṙ)(y − Eχ) = r

(︁
∂
∂ty + (−∆+ 1)y +Qy − f

)︁
30
31

and also the strong limit for the right-factor in (2.36) as follows32

qk −−−−−−−−→
L2((0,T ),L2)

q.33

34
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These limits allow us to take the limit for the integrated product in (2.36), and obtain1 ∫︂ T

0

(︂
r
(︁
∂
∂ty + (−∆+ 1)y +Qy − f

)︁
, r(v − y)

)︂
L2

dt2

= lim
k→+∞

∫︂ T

0

(︁
r( ∂∂tyk + (−∆+ 1)yk +Qyk − fk), r(v − yk)

)︁
H

dt3

≥ 0, for all v ∈ Cψ
T . (2.37)4

5

Let us fix arbitrary v ∈ Cψ
T , t ∈ (0, T ), δ ∈ (0,min{t, T − t}). Note that the integrand ξv :=6 (︂

r
(︁
∂
∂ty + (−∆+ 1)y +Qy − f

)︁
, r(v−y)

)︂
L2

is an integrable function, ξv ∈ L1(0, T ). By the Lebesgue7

differentiation theorem [26, Ch. 7, Thm. 7.7], the set of Lebesgue points8

Lv :=

{︄
t∗ ∈ (0, T ) | ξh(t∗) = lim

δ↘0

1

2δ

∫︂ t∗+δ

t∗−δ
ξv(t) dt

}︄
,9

has full measure. We define the functions10

vt,δ :=

{︄
v, if t ∈ (t− δ, t+ δ)

y, if t ∈ (0, t− δ)
⋃︁
(t+ δ, T ).

11

We have vt,δ(t, x) ∈ Cψ
T . From (2.37), it follows that12

∫︂ t+δ

t−δ
ξv(t) dt =

∫︂ T

0

(︂
r
(︁
∂
∂ty + (−∆+ 1)y +Qy − f

)︁
, r(vt,δ − y)

)︂
L2
(t) dt ≥ 013

and as a consequence we have14 (︂
r
(︁
∂
∂ty + (−∆+ 1)y +Qy − f

)︁
, r(v − y)

)︂
L2
(t∗) ≥ 0, for all t∗ ∈ Lv,15

16

which implies the inequality in (2.7), because r2 = min{t2, 1} > 0 for time t > 0.17

Uniqueness: Let us assume that w ∈ Cψ
T

⋂︁
W ((0, T ), H1, V ′), with rw ∈ W ((0, T ), H2, L2) also18

satisfies (2.7). In this case we find the relations19

(ẏ + (−∆+ 1)y +Qy − f, w − y)L2 ≥ 0, (ẇ + (−∆+ 1)w +Qw − f, y − w)L2 ≥ 0,20
21

which lead us to, with z := y − w,22

(ż +Az +Qz, z)L2 ≤ 0, for almost all t ∈ (0, T ), z(0) = 0,23
24

with z(t) ∈ V for all t ∈ [0, T ]. Thus25

d
dt |z|

2
L2 + 2 |z|2V ≤ 2CQ |z|H1 |z|L2 ≤ |z|2V + C2

Q |z|2L2 , (2.38)26
27

and the uniqueness follows from Gronwall’s Lemma.28
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Convergence: Finally we show that the strong limits in (2.35) hold for the (entire) sequence yk.1

We argue by contradiction. Let us denote S := {L2((0, T ), V ), C([0, T ], L2)}.2

Suppose that r(yk − Eχ) −−−−→
S

r(y − Eχ) does not hold, for some S ∈ S. (2.39)3
4

Under assumption (2.39), there would exist ε > 0 and a subsequence ys1(k) of yk such that5 ⃓⃓
r(ys1(k) − Eχ)− r(y − Eχ)

⃓⃓
S ≥ ε. (2.40)6

However since {yk} := {ys1(k)} is a subsequence of {yk} we would be able to follow the arguments7

above and arrive to analogous limits as in (2.34) and (2.35), for a suitable subsequence {ys2(k)} of {yk}8

and a limit y in the place of y. In particular, we would arrive to9

ys2(s1(k)) −−−−→S
y,10

11

where moreover y solves (2.7). By (2.40) we would have that y ̸= y, which contradicts the uniqueness12

of the solution proven above. That is, the assumption in (2.39) leads us to a contradiction. Therefore,13

we can conclude that (2.11) holds true. The proof is finished. □14

3. Stabilization of a sequence of parabolic equations15

The solution of (1.1) can be approximated by the sequence (yk)k∈N as stated in Theorem 2.8,16

where yk solves17

∂
∂tyk − ν∆yk + ayk + b · ∇yk + k(yk − ψ)+ = f, (3.1a)18

yk(0) = y◦, Gy |Γ = χ. (3.1b)19
20

This follows from Theorem 2.8 with Q = a1+ b · ∇, and fk = f .21

We investigate the stabilizability to trajectories for system (3.1). We consider the sequence (wk)k∈N,22

where wk solves23

∂
∂twk − ν∆wk + awk + b · ∇wk + k(wk − ψ)+ = f − λP

E⊥
M

UM
AP

U⊥
M

EM (wk − yk), (3.2a)24

wk(0) = w◦, Gw |Γ = χ, (3.2b)25
26

where P
U⊥
M

EM ∈ L(L2) and P
U⊥
M

EM ∈ L(L2) are suitable oblique projections in L2, which we shall construct27

so that P
E⊥
M

UM
AP

U⊥
M

EM ∈ L(L2). Then again from Theorem 2.8, withQ = a1+b·∇+λP
E⊥
M

UM
AP

U⊥
M

EM , and fk =28

f +λP
E⊥
M

UM
AP

U⊥
M

EM yk, it follows that the solution of (1.3) can be approximated by the sequence (wk)k∈N.29

At this point, it is important to underline that the triple (λ,UM , EM ) can be chosen independently30

of k, as we shall show later on.31

In this section we will see yk as our target solution and consider the difference zk := wk − yk from32

the controlled solution wk to the target. With initial condition z◦ := w◦− y◦, we find that zk satisfies33

∂
∂tzk − ν∆zk + azk + b · ∇zk + k

(︁
(zk + yk − ψ)+ − (yk − ψ)+

)︁
= −λP E⊥

M
UM

AP
U⊥
M

EM zk, (3.3a)34

zk(0) = z◦, Gzk |Γ = 0. (3.3b)35
36
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For a given µ > 0, our goal here, see (1.4), is to find a scalar λ > 0, a space of actuators UM , and1

an auxiliary space EM , such that2

|wk(t)− yk(t)|L2 ≤ Ce−µt |w◦ − y◦|L2 , for all (w◦, y◦) ∈ L2 × L2, t ≥ 0 (3.4)3

for a suitable C ≥ 1.4

3.1. The oblique projections5

We specify here how we can appropriately choose the spaces of actuators UM and auxiliary eigen-6

functions EM , so that the feedback operator −λP E⊥
M

UM
AP

U⊥
M

EM is stabilizing for large enough λ > 0. Since7

the stabilization results will hold for large enough M , we will rather consider a sequence of pairs of8

subspaces (UM , EM )M∈N as in (1.7).9

In the one-dimensional case, Ω1 = (0, L1) ⊂ R, L1 > 0, as actuators we take the indicator func-10

tions 1ω1
j
(x1), j ∈ {1, 2, . . . ,M}, defined as follows,11

1ω1
j
(x1) :=

{︄
1, if x1 ∈ Ω1

⋂︁
ω1
j ,

0, if x1 ∈ Ω1 \ ω1
j ,

ω1
j := (cj − rL1

2M , cj+
rL1
2M ), cj :=

(2j−1)L1

2M . (3.5)12

As eigenfunctions we take the first M eigenfunctions e1j of −ν∆ + 1 : D(A) → L2(Ω1) (i.e., the first13

eigenfunctions of ∆),14

(−ν∆+ 1)e1j = α1
je

1
j , Ge1i |Γ = 0, j ∈ {1, 2, . . . ,M}, (3.6)15

where the α1
j s are the ordered eigenvalues, repeated accordingly to their multiplicity,16

0 < 1 ≤ α1
1 < α1

2 < · · · < α1
j < α1

j+1 < . . . , j ∈ N.17

In the higher-dimensional case, for nonempty rectangular domains Ω× =
d∏︁

n=1
(0, Ln) ⊂ Rd, Ln > 018

we take cartesian product actuators of the above actuators 1ωn
j
and eigenfunctions enj as follows. We19

define M := {1, 2, . . . ,M} and take20

UM = span{1ω×
j
| j ∈ Md} and EM = span{e×j | j ∈ Md}, (3.7)21

22

and ω×
j := {(x1, x2, . . . , xd) ∈ Ω× | xn ∈ ωnjn} and e×j (x1, x2, . . . , xd) :=

d∏︁
n=1

enjn(xn). Notice that we23

can also write 1ω×
j
=

d∏︁
n=1

1ωn
jn
(xn).24

In particular, by setting the eigenvalue25

ˆ︁αM := max{αi | there is ϕ ∈ EM such that Aϕ = αiϕ}, (3.8a)26
27

and the Poincaré-like constant28

βM+
:= min

{︂
|h|V
|h|L2

⃓⃓⃓
h ∈ U⊥

M

⋂︁
V, h ̸= 0

}︂
, (3.8b)29

30
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we have1

L2 = UM ⊕ E⊥
M , lim

M→+∞
βM+ = +∞, (3.8c)2

3

and also4

sup
M≥1

⃓⃓⃓
P

E⊥
M

UM

⃓⃓⃓
L(L2)

=: CP < +∞. (3.8d)5

See [23, Sect. 2.2] and [24, Sect. 5] for more details. For the one-dimensional case we refer to [25,6

Thms. 4.4 and 5.2], for higher-dimensional rectangular domains see [15, Sect. 4.8.1].7

Remark 3.1. For nonrectangular domains Ω ⊂ Rd, with d ≥ 2, we still not know whether we can8

choose the actuators (as indicator functions) so that the properties in (3.8) are satisfied. So we cannot9

guarantee that an oblique projection based feedback will stabilize our system. In spite of this fact, we10

refer the reader to [15, 16], where numerical simulations show the the stabilizing performance of such11

a feedback for equations evolving in a spatial nonrectangular domain.12

3.2. On the nonlinearity13

We gather key properties of the nonlinear operator in (3.3).14

Nk(z) ∈ C(L2, L2), Nk(z) := k
(︁
(z + yk − ψ)+ − (yk − ψ)+

)︁
. (3.9)15

Lemma 3.2. The nonlinear operator (3.9) is bounded, as16

|Nk(z1)−Nk(z2)|L2 ≤ k |z1 − z2|L2 , for all (z1, z2) ∈ L2 × L2.17
18

Proof. With (z1, z2) ∈ L2 × L2, we find that19

Nk(z1)−Nk(z2) := k
(︁
(z1 + yk − ψ)+ − (z2 + yk − ψ)+

)︁
. (3.10)20

21

Note that h ↦→ h+ = max(h, 0) is a globally Lipschitz continuous functions with unitary Lipschitz22

constant, and thus |h+1 − h+2 |L2 ≤ |h1 − h2|L2 for all h1, h2 ∈ L2. Therefore,23

|Nk(z1)−Nk(z2)|L2 ≤ k|(z1 + yk − ψ)− (z2 + yk − ψ)|L2 = k|z1 − z2|L2 ,24
25

which finishes the proof. □26

Lemma 3.3. The nonlinear operator (3.9) is monotone,27

(Nk(z1)−Nk(z2), z1 − z2)L2 ≥ 0, for all (z1, z2) ∈ L2 × L2.28
29

Proof. Note that z ↦→ G(z) := z+ is monotone in L2(Ω). Hence, z ↦→ G(z − ζ1)− ζ2 is also monotone30

for arbitrary ζ1 and ζ2 in L2(Ω), which finishes the proof. □31

3.3. Stabilizability result32

For simplicity, let us denote33

Arc := a1+ b · ∇, Crc := |Arc|L∞(R+,L(V,L2)) ,34

Kλ
M := −λP E⊥

M
UM

AP
U⊥
M

EM . (3.11)35
36
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Theorem 3.4. Let Assumptions 2.1–2.4 hold true, with B = a1. Let the sequence (UM , EM )M∈N be1

constructed as in Section 3.1. Then, for every given µ > 0, there are large enough constants λ > 02

and M ∈ N such that, for every k ∈ N, the system3

żk +Azk +Arczk +Nk(zk) = Kλ
Mzk, zk(0) = z◦, (3.12[k])4

5

is exponentially stable with rate −µ. For all z◦ ∈ L2, the solution satisfies6

|zk(t)|L2 ≤ e−µ(t−s) |zk(s)|L2 , t ≥ s ≥ 0. (3.13)7

Moreover, the feedback operator Kλ
M and control input Kλ

Mzk satisfy the estimate8 ⃓⃓⃓
Kλ
M

⃓⃓⃓
L(L2)

≤ λˆ︁αMC2
P and

⃓⃓⃓
Kλ
Mzk

⃓⃓⃓
L2(R+,L2)

≤ λˆ︁αMµ−1C2
P |z◦|L2 . (3.14)9

10

where ˆ︁αM and CP are as in (3.8). Furthermore, we can choose11

λ ∼ C [µ,Crc] and M ∼ C [µ,Crc]. (3.15)12

Remark 3.5. Note that the feedback operator Kλ
M in (3.11) is independent of (k, ψ), because (λ,M)13

in (3.15) can be chosen independently of (k, ψ). The upper bound in (3.14) for the norm of the control14

input Kλ
Mzk is also independent of (k, ψ). The monotonicity stated in Lemma 3.3 plays a key role on15

such independences on k.16

Remark 3.6. Inequality (3.13) implies that t ↦→ |zk(t)|2L2 is strictly decreasing at time t = s,17

if |zk(s)|2L2 > 0. Of course, if |zk(s)|2L2 = 0 then |zk(t)|2L2 = 0 for all t ≥ 0, see [24, Sect. 4].18

Proof of Theorem 3.4. Following the arguments in [24, Sect. 4], we decompose the solution of sys-19

tem (3.12[k]) into oblique components as20

zk = θk +Θk, with θk := P
U⊥
M

EM zk and Θk := P EM
U⊥
M

zk.21

Observe that form (3.12[k]), Lemma 3.3, and the Young inequality, we obtain that22

d
dt |zk|

2
L2 = −2 |zk|2V − 2⟨Arczk, zk⟩V ′,V − 2 (Nk(zk), zk)L2 + 2

(︂
Kλ
Mzk, zk

)︂
L2

(3.16)23

≤ −2 |zk|2V − 2⟨Arczk, zk⟩V ′,V − 2λ (Aθk, θk)L2 (3.17)24

≤ −2 |zk|2V + γ1 |zk|2V + γ−1
1 C2

rc |zk|
2
L2 − 2λ |θk|2V ,25

≤ −(2− γ1) |zk|2V + γ−1
1 C2

rc |zk|
2
L2 − 2λ |θk|2V , for all γ1 > 0. (3.18)26

27

Now we observe that, by the young inequality, we obtain for all γ2 > 028

− |zk|2V = − |Θk + θk|2V = − |Θk|2V − |θk|2V − 2(Θk, θk)V29

≤ − |Θk|2V − |θk|2V + γ2 |Θk|2V + γ−1
2 |θk|2V = −(1− γ2) |Θk|2V − (1− γ−1

2 ) |θk|2V . (3.19)30
31
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Combining (3.18) and (3.19) we obtain, for all (γ1, γ2) ∈ (0, 2)× R+,1

d
dt |zk|

2
L2 ≤ −(2− γ1)(1− γ2) |Θk|2V −

(︁
2λ+ (2− γ1)(1− γ−1

2 )
)︁
|θk|2V + γ−1

1 C2
rc |zk|

2
L22

≤ −(2− γ1)(1− γ2) |Θk|2V −
(︁
2λ− (2− γ1)(γ

−1
2 − 1)

)︁
|θk|2V + 2γ−1

1 C2
rc(|Θk|

2
L2 + |θk|2L2)3

4

Now, we can choose γ1 ∈ (0, 2) and γ2 ∈ (0, 1), and λ satisfying 2λ− (2− γ1)(γ
−1
2 − 1) > 0. For such5

choices, using (3.8), we find6

d
dt |zk|

2
L2 ≤ −(2− γ1)(1− γ2)βM+ |Θk|2L2 −

(︁
2λ− (2− γ1)(γ

−1
2 − 1)

)︁
α1 |θk|2L27

+ 2γ−1
1 C2

rc(|Θk|
2
L2 + |θk|2L2)8

≤ −Ξ1(M) |Θk|2V − Ξ2(M) |θk|2V , (3.20)9
10

where α1 := min
{︂

|h|V
|h|L2

⃓⃓⃓
h ∈ V \ {0}

}︂
, and11

Ξ1(M) := (2− γ1)(1− γ2)βM+ − 2γ−1
1 C2

rc, (3.21a)12

Ξ2(λ) :=
(︁
2λ− (2− γ1)(γ

−1
2 − 1)

)︁
α1 − 2γ−1

1 C2
rc, (3.21b)13

14

Recall that, due to (3.8) we have that lim
M→+∞

βM+ = +∞. Let us be given an arbitrary given µ > 015

and let us choose γ1 and γ2 as above, satisfying16

γ1 ∈ (0, 2) and γ2 ∈ (0, 1). (3.22a)17
18

Then, subsequently we can choose λ > 0 and M ∈ N large enough satisfying19

2λ− (2− γ1)(γ
−1
2 − 1) > 0, Ξ2(λ) ≥ 4µ, and Ξ1(M) ≥ 4µ. (3.22b)20

21

Form (3.20), with the choices in (3.22), we arrive at22

d
dt |zk|

2
L2 ≤ −4µ

(︂
|Θk|2L2 + |θk|2L2

)︂
≤ −2µ |zk|2L2 , (3.23)23

24

which implies (3.13).25

It remains to show the boundedness of the feedback control, with (γ1, γ2, λ,M) as in (3.22).26

We see that P
E⊥
M

UM
= P

E⊥
M

UM
PEM , because P

E⊥
M

UM
h = P

E⊥
M

UM
(PEMh + PE⊥

M
h) = P

E⊥
M

UM
PEMh, for all h ∈ L2.27

Here PEM := P EM⊥
EM stands for the orthogonal projection in L2 onto EM . Using (3.13) we obtain that28

the feedback operator Kλ
M satisfy29 ⃓⃓⃓

Kλ
M

⃓⃓⃓
L(L2)

= λ
⃓⃓⃓
P

E⊥
M

UM
AP

U⊥
M

EM

⃓⃓⃓
L(L2)

= λ
⃓⃓⃓
P

E⊥
M

UM
PEMAPEMP

U⊥
M

EM

⃓⃓⃓
L(L2)

30

≤ λ
⃓⃓⃓
P

E⊥
M

UM

⃓⃓⃓
L(L2)

|PEMAPEM |L(L2)

⃓⃓⃓
P

U⊥
M

EM

⃓⃓⃓
L(L2)

≤ λˆ︁αM ⃓⃓⃓
P

E⊥
M

UM

⃓⃓⃓2
L(L2)

(3.24a)31

32
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and corresponding control Kλ
Mzk1 ⃓⃓⃓

Kλ
Mzk

⃓⃓⃓
L2(R+,L2)

≤ λˆ︁αM ⃓⃓⃓
P

E⊥
M

UM

⃓⃓⃓2
L(L2)

|zk|L2(R+,L2) ≤ λˆ︁αM ⃓⃓⃓
P

E⊥
M

UM

⃓⃓⃓2
L(L2)

|z◦|L2

∫︂ +∞

0
e−µt dt2

= λˆ︁αMµ−1
⃓⃓⃓
P

E⊥
M

UM

⃓⃓⃓2
L(L2)

|z◦|L2 , (3.24b)3

4

where ˆ︁αM is as in (3.8). Finally, with CP is as in (3.8), we also obtain the bounds5 ⃓⃓⃓
Kλ
M

⃓⃓⃓
L(L2)

≤ λˆ︁αMC2
P , and

⃓⃓⃓
Kλ
Mzk

⃓⃓⃓
L2(R+,L2)

≤ λˆ︁αMµ−1C2
P |z◦|L2 . (3.25)6

The proof is finished. □7

4. Stabilization of the variational inequality8

Here we prove the main result, which we can write now in a more precise form as follows.9

Theorem 4.1. Let Assumptions 2.1–2.4 hold true, let µ > 0, and let the pairs (UM , EM ) be constructed10

as in Section 3.1. Further let y ∈ Wloc(R+;H
1, V ′) with ry ∈ Wloc(R+;H

2, L2) solve (1.1). Then11

for M and λ large enough the solution w of system (1.8) satisfies12

|w(t)− y(t)|L2 ≤ e−µt |w◦ − y◦|L2 , t ≥ 0. (4.1)13

Furthermore, with ˆ︁αM and CP as in (3.8) the control satisfies14 ⃓⃓⃓
Kλ
M

⃓⃓⃓
L(L2)

≤ λˆ︁αMC2
P and

⃓⃓⃓
Kλ
M (w − y)

⃓⃓⃓
L2(R+,L2)

≤ λˆ︁αMµ−1C2
P |w◦ − y◦|L2 , (4.2)15

16

Proof. Let us fix λ > 0 and M ∈ N so that Theorem 3.4 holds true. Note that λ > 0 and M ∈ N are17

independent of k.18

Let yk and wk be the solutions of the Moreau–Yosida approximations (3.1) and (3.2), respectively.19

For the difference between the solution w of (1.8) and the solution y of (1.1) we find20

|w(t)− y(t)|L2 ≤ |w(t)− wk(t)|L2 + |wk(t)− yk(t)|L2 + |yk(t)− y(t)|L2 (4.3a)21
22

Let us now be given arbitrary ϵ > 0, ϱ > 1, T > 0, and t ∈ [0, T ].23

Now for the pair (yk, y) we apply Theorem 2.8 with (fk, Q) = (f, a1+b ·∇), and for the pair (wk, w)24

we apply Theorem 2.8 with (fk, Q) = (f + Kλ
Myk, a1 + b · ∇ + Kλ

M ). In this way we obtain that, for25

large enough k = k(ϵ, T ), we have26

|r(yk − y)|C([0,T ],L2) ≤ ϵ and |r(wk − w)|C([0,T ],L2) ≤ ϵ, with r(t) = min{t, 1}. (4.3b)27
28

and, since zk := wk − yk satisfies (3.3), that is (3.12[k]), by using Theorem 3.4, we obtain29

|wk(t)− yk(t)|L2 ≤ e−µt |w◦ − y◦|L2 , for every k ∈ N. (4.3c)30
31

Hence, by selecting k large enough, from (4.3) we obtain that, at time t = T > 0,32

|w(T )− y(T )|L2 ≤ 2max{ 1
T , 1}ϵ+ e−µT |w◦ − y◦|L2 .33

34



24 A. Kröner, C. N. Rautenberg, and S. S. Rodrigues

Choosing now ϵ := 1
2 min{T, 1}(ϱ− 1)e−µT |w◦ − y◦|L2 , we arrive at1

|w(T )− y(T )|L2 ≤ (ϱ− 1)e−µT |w◦ − y◦|L2 + e−µT |w◦ − y◦|L2 = ϱe−µT |w◦ − y◦|L2 .2
3

Furthermore, since T > 0 and ϱ > 1 are arbitrary we arrive at4

|w(t)− y(t)|L2 ≤ e−µt |w◦ − y◦|L2 , t ≥ 0.5
6

Finally proceeding as in (3.24), we find7 ⃓⃓⃓
Kλ
M (w − p)

⃓⃓⃓
L2(R+,L2)

≤ λˆ︁αM ⃓⃓⃓
P

E⊥
M

UM

⃓⃓⃓2
L(L2)

|w − p|L2(R+,L2) ≤ λˆ︁αMµ−1C2
P |w◦ − y◦|L2 ,8

with ˆ︁αM and CP as in (3.8), which finishes the proof. □9

5. Numerical simulations10

We consider Moreau–Yosida approximations of one-dimensional parabolic variational inequality in11

the spatial open interval Ω = (0, 1) ⊂ R, and impose homogeneous Neumann boundary conditions,12

for simplicity.13

∂
∂tyk + (−ν∆+ 1)yk + ayk + b · ∇yk − f + k(yk − ψ)+ = 0, t > 0, (5.1a)14

∂
∂nyk |Γ = 0, yk(·, 0) = y◦. (5.1b)15

16

For the parameters, we have chosen17

ν = 0.1, f(x, t) = − sin(t)x, (5.2a)18

a(x, t) = −6 + x+ 2 |sin(t+ x)|R , b(x, t) = cos(t)x2 (5.2b)19
20

and21

ψ(x, t) = 2 + cos(t) + cos
(︁
10πx(x− 1)

(︁
x− 1

4 cos(5t)
)︁)︁
. (5.2c)22

Recall that by Theorem 2.8, we have that yk gives us an approximation of the solution y of the23

variational inequality with the same data parameters. See also Remark 1.1.24

The targeted trajectory y is the one issued, at initial time t = 0, from the state25

y(x, 0) = y◦(x) = 3 cos(πx), (5.3)26
27

and we want to target such trajectory starting, again at time t = 0, from the state28

w(x, 0) = w◦(x) = −1. (5.4)29
30

Again by Theorem 2.8, we have that wk solving31

∂
∂twk + (−ν∆+ 1)wk + awk + b · ∇wk − f −Kλ

M (wk − yk) + k(wk − ψ)+ = 0, t > 0, (5.5a)32

∂
∂nwk |Γ = 0, wk(·, 0) = w◦, (5.5b)33

34

gives us an approximation of the solution w of the controlled variational inequality with the same data35

parameters.36
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Initial states are plotted in Figure 1.1

For a fixed M ∈ N we take Mσ = M actuators as in [15] which are indicator functions 1ωM
j

of the2

subdomains3

ωMj = (2j−1
2M − 1

20M ,
2j−1
2M + 1

20M ), j ∈ {1, 2, . . . ,M}.4

In particular, note that the total volume covered by the actuators is independent of M . It is given5

by 1
10 , which is 10% of the total volume of the spatial domain.6

As auxiliary space of eigenfunctions we take the first eigenfunctions of the Laplace operator, under7

the imposed Neumann boundary conditions, namely8

eMj = cos((j − 1)πx), j ∈ {1, 2, . . . ,M}.9

The obstacle ψ(·, t) satisfies ∂
∂nψ = 0 at every t ≥ 0. Recall that our Assumption 2.4 requires10

that ∂
∂nψ ≥ −η for a suitable positive function −η ∈W 1,2

loc (R+) ≥ 0 hence it is satisfied.11

Furthermore, we can see that Assumptions 2.1–2.4 are satisfied. Therefore all the hypothesis of12

Theorems 3.4 are satisfied. Hereafter we present the results of simulations illustrating the stability13

result stated in the thesis of Theorem 3.4.14

As we have mentioned above, by solving systems (5.1) and (5.5), by Theorem 4.1, with a relatively15

large Moreau–Yosida parameter k = kMY we expect to obtain a relatively good approximation of16

the behavior of the limit solutions for the corresponding variational inequalities. Depending on the17

simulation example, we have taken kMY in the interval [500, 20000].18

For the discretization, we considered a finite element spatial approximation based on the classical19

piecewise linear hat functions, where the closure [0, 1] of the spatial interval has been discretized with a20

regular mesh with 2001 equidistant points. Subsequently the closure [0,+∞) of the temporal interval21

has been discretized with a uniform time-step tstep > 0 and a Crank–Nicolson/Adams–Bashforth22

scheme was used. Depending on the simulation we have taken tstep ∈ {10−4, 10−5}.23

In the figures below we denote H := L2(Ω).24

5.1. Stabilizing performance of the feedback control25

In Figure 2 we can see that with 5 actuators and λ = 4 the explicit oblique projection feedback26

control we propose in this manuscript is able to stabilize the solution w = wk of the Moreau–Yosida27

0 0.2 0.4 0.6 0.8 1
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-2

-1

0

1

2

3

4

Figure 1. Initial states.
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Figure 2. Norms of difference to target and control.

approximation, with k = kMY = 1000, to the corresponding targeted uncontrolled solution approxi-1

mation y = yk.2

Time snapshots of the corresponding trajectories and control are shown in Figures 3. It is interesting3

to observe, at time t = 0.05, the 5 bumps on the shape of the controlled solution, which are pointing4

towards the targeted one. The spatial location of these bumps coincide with spatial location of the5

actuators, and they show the action of the feedback control pushing the controlled solution towards6

the targeted one.7

5.2. On the Moreau–Yosida parameter kMY8

The goal of this section is to show that it is very likely that the Moreau–Yosida approximation with9

parameter kMY = 500 in the above simulation give us already a good approximation of the behavior10

of the limit solution of the variational inequality. Indeed, in Figure 4, we can see that the norm of the11

difference to the target presents an analogous evolution for the considered parameters kMYs.12

In Figure 5 we see that the obstacle constraint violation decreases as kMY increases, as we expect,13

since at the limit we must have a vanishing constraint violation. Furthermore, from Lemma 2.13 we14

have that k |(yk − ψ)+|L2(Ω×(0,T )) ≤ C for a suitable constant C independent of k. Figure 5 shows15

that the violation decreases (at each instant of time) as k increases.16

In Figure 6 we see a time snapshot of the controlled trajectories and control, where we see a small17

difference between the controlled trajectories for the several kMY s. A similar behavior was observed18

for the corresponding targeted trajectories, for simplicity we plotted only the targeted trajectory y19

corresponding to kMY = 500 (which, at that instant of time, is already almost indistinguishable form20

the controlled states with the naked eye).21

5.3. Necessity of both large M and large λ22

From our result, for stability it is sufficient to take largeM and large λ. Here, we present simulations23

showing that such condition is also necessary.24

5.3.1. Necessity of large enough M25

In Figure 7 we see that with a single actuator we cannot stabilize the system, even for the relatively26

large λ = 50. Furthermore, for small time we cannot see a considerable change in the norm of the27
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Figure 3. Time snapshots of trajectories and control. Larger time

difference to the target for the several λs. This allow us to extrapolate that one actuator is not enough1

to stabilize the system.2

In Figure 8 we present time snapshots of trajectories and control. We see that by taking a larger λ3

we cannot see a strong enough influence on the evolution of the trajectory to expect (or, hope for) a4

stabilization effect for large values of λ.5
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Figure 4. Norms of difference to target and control
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Figure 5. Largest magnitude of obstacle constraint violation

5.3.2. Necessity of large enough λ1

In Figure 9 we see that with λ = 1 we cannot stabilize the system, even if we take 20 actuators.2

Furthermore, for small time we cannot see a considerable change in the norm of the difference to the3

target for the several Mσs. This allow us to extrapolate that it is necessary to take λ > 1 if we want4

to stabilize the system.5

In Figure 10 we present time snapshots of trajectories and control. We see that with 10 and 206

actuators we cannot see a strong enough change on the evolution of the trajectory to expect (or, hope7

for) a stabilization effect for large values of Mσ.8

5.3.3. On the achievement of an arbitrarily small exponential decreasing rate −µ < 09

From our result we can reach an arbitrarily small exponential decreasing rate −µ, provided we take10

both Mσ and λ large enough. This is shown in Figure 11, where we see that with (Mσ, λ) = (10, 6)11

we obtain a smaller exponential rate than with (Mσ, λ) = (4, 3). We also observe that with (Mσ, λ) =12

(2, 2) we are also able to stabilize the system, however this case does not fully confirm our result, where13

we can also guarantee that the norm of the difference to the targeted trajectory is strictly decreasing.14
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In the zoomed subplot, in Figure 11, we can see that for small time the norm of the difference in not1

strictly decreasing, for (Mσ, λ) = (2, 2).2

The time snapshots in Figure 12 also confirm that with a pair (Mσ, λ) with larger coordinates, we3

obtain a faster convergence of the controlled trajectory w to the targeted one y.4

5.4. The uncontrolled dynamics5

Here we show that the uncontrolled dynamics is unstable. That is, a control is necessary to stabilize6

the system to the targeted trajectory. In Figure 13 the symbol FeedOn denotes the time interval where7

the feedback control is switched on. Thus, outside this time interval the free (uncontrolled) dynamics8

is followed. We see that the free dynamics is exponentially unstable, as the norm of the difference9

to the target increases exponentially when the control is switched off. On the other hand, when the10

control is switched on we see that such norm decreases exponential, confirming again our theoretical11

stabilizability results.12

Time snapshots in Figure 14 show again that the trajectory w corresponding to the free dynam-13

ics FeedOn = (0, 0) is not approaching the targeted one y as time increases (cf. Figure 1).14
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Figure 6. Time snapshots of trajectories and controls
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Figure 7. Norms of difference to targeted state and of control
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5.5. Evolution of the contact set and the Moreau–Yosida parameter1

Here, we investigate the evolution of the contact (or, active) set. In Figure 15 we see that the2

behavior of the norm of the difference to target and of the control is similar for the several Moreau–3

Yosida parameters, with some differences for time t ≥ 1.5. So, the considered parameters give us4

already a good picture of the qualitative behavior of the limit difference and control as kMY diverges5

to +∞.6

The time snapshots in Figure 16 show that the smallest value of kMY already captures a good7

picture of the likely limit behavior for the parabolic variational inequality.8

From Figure 17 we can conjecture also that the magnitude of the violation of the obstacle constraint9

converges to zero as kMY → ∞. That is, at the limit such magnitude will vanish, as we expect due to10

the theoretical results.11

Finally, in Figures 23 and 24 we can see the evolution of the obstacle constraint violation set. It is12

interesting to observe that with the smallest value of kMY = 5000 considered, we can already capture13

a good picture of the likely limit contact set evolution for the parabolic variational inequality. The14

evolution is not simple, for example the number of contact connected components change with time,15

this can simply be explained from the fact that the moving obstacle and its shape (cf. Figure 3 and16

other time snapshots) are not simple themselves.17

6. Numerical simulations for a nonsmooth obstacle18

Note that the stability result for the sequence of kMY-Moreau–Yosida approximations hold true for19

obstacles which live in L2
loc(Ω×R+), and in particular we have a weak limit for the pair zk = yk−wk,20

Thus, we may ask ourselves if yk and wk also converge separately and if each of these limits satisfy21

(a weaker formulation of) the variational inequality. Next, we present results of simulations which22

suggest that this may be indeed the case for obstacles in C1([0,+∞), L2(Ω)). This means that our23

result can probably be extended to less regular obstacles. Such extension is an interesting problem24

for future investigation. Note that, if possible, such extension is nontrivial and thus will likely require25

a considerably different proof.26

The following simulations correspond to the setting as in (5.2) with the exception that we take a27

nonsmooth obstacle. Namely, we modify the smooth obstacle in (5.2c), by changing it to constant28
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Figure 8. Time snapshots of trajectories and controls
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Figure 10. Time snapshots of controlled state

functions on the spatial set [0, 1
10 ]

⋃︁
[ 810 , 1]. More precisely, we take the obstacle1

ψ(x, t) =

⎧⎪⎨⎪⎩
31
10 , if x ∈ [0, 1

10 ];

2 + cos(t) + cos
(︁
10πx(x− 1)

(︁
x− 1

4 cos(5t)
)︁)︁
, if x ∈ ( 1

10 ,
8
10);

− 5
10 , if x ∈ [ 810 , 1].

2

In Figure 20 we cannot see a considerable difference in the behavior of the norm of the difference3

to target and of the control for the several Moreau–Yosida parameters. The same holds for the time4

snapshots in Figure 21. So we can conjecture that the considered parameters give us already a good5

picture of the behavior of the limit difference and control as kMY diverges to +∞.6

From Figure 22 we can conjecture also that the magnitude of the violation of the obstacle constraint7

converges to zero as kMY → ∞.8

All the above suggest that a variational inequality will be satisfied at a limit. But, this remains to9

be proven for nonsmooth obstacles.10
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Figure 12. Time snapshots of trajectories and controls

Finally, in Figures 23 and 24 we can see the evolution of the obstacle constraint violation sets.1

Again, the smallest value of kMY provides us already with good picture of such evolutions. However,2

note that by taking the largest value we are able to “sharpen” the picture, in particular it confirms3

that locally the contact is made at the single (discontinuity) point x = 0.8 during a suitable interval4

of time, where t = 1.5 is included, as we see in the snapshot in Figure 21. We also observe that the5

discontinuity of the obstacle at the spatial points x ∈ {0.1, 0.8} is somehow reflected in Figures 236

and 24.7
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