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EXISTENCE, UNIQUENESS, AND STABILIZATION RESULTS FOR
PARABOLIC VARIATIONAL INEQUALITIES*

AXEL KRONER!, CARLOS N. RAUTENBERG? AND SERGIO S. RODRIGUES?

Abstract. In this paper we consider feedback stabilization for parabolic variational inequalities of
obstacle type with time and space depending reaction and convection coefficients and show exponential
stabilization to nonstationary trajectories. Based on a Moreau—Yosida approximation, a feedback oper-
ator is established using a finite (and uniform in the approximation index) number of actuators leading
to exponential decay of given rate of the state variable. Several numerical examples are presented
addressing smooth and nonsmooth obstacle functions.

2020 AMS Subject Classification. 35K85, 93D15.

1. INTRODUCTION

Our goal is the stabilization to trajectories for parabolic variational inequalities, in particular to-
wards the solution y to the obstacle problem

(%y—l—(—A+1)y—|—ay+b-Vy—f,v—y> >0, Yw<q9¢, t>0, (1.1a)
Yy S wa gy|F =X, t> Oa y(ao) = Yo, (11b)

in a bounded domain Q C R? with a regular enough boundary I' := 99, where d is a positive integer.
The obstacle ¢ = 1 (x,t) and the functions a = a(x,t) € R, b = b(z,t) € R, f = f(z,t) € R,
x =x(7,t) e R, v=wv(z,t) € R, and y, = y(z), are assumed to be sufficiently regular, for (z,7,t) €
Q x I' x (0, +00); regularity details are specified later. The linear operator G is determined by either
Dirichlet or Neumann boundary conditions.

For some pairs (a,b), the solution w issued from a different initial condition ws # yo

(Sw+ (-A+Dw+aw+b-Vw— fo—w) >0, Vo<, t>0, (1.2a)
w S 7% gw‘l" =X, t > O> U)(,O) = Wo, (12b)
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2 A. KrRONER, C. N. RAUTENBERG, AND S. S. RODRIGUES

may not converge to y as time increases. Our goal is to show that, by means of an feedback control
input u = K(w — y), we can track y exponentially fast with an arbitrary exponential rate —u < 0.
That is, we want to construct an input feedback operator K such that the solution of

(%w—l—(—A—I—l)w—l—aw—l—b-Vw—f—lC(w—y),v—w>20, Yo <, t>0, (1.3a)
w < P, gw|I‘ =x, t>0, ’LU(,O) = Wo, (13b)

satisfies, for a suitable constant C > 1,
w(t) = y (O] 2y < Ce™ wo — gl gy forall (wa,ye) € L2(Q) x L2(Q), £20.  (14)

We are interested in the case K: L?(Q2) — Uy, where Uy C L%(Q) is a finite-dimensional subspace,
given by the linear span of a finite set of actuators Uy, = {¥; | 1 <i <m(M)} C L?*(9), where m(M)
is a positive integer which will be appropriately chosen later on. It follows that the control input will
be of the form

M
u(t) = K@w(t) - y(0) = > wi(t)¥; € Unr.

=1

Further, motivated by real applications, we consider the case in which the actuators are determined
by indicator functions 1,, of small subdomains w; C €2,

1 if x € w;, .
Uy(z) = 1o, (2) = 4 1<i< M,
() = Lui(@) {0, if 2 €0\ wi, = M

Remark 1.1. Note that for simplicity we have taken the diffusion operator as —A + 1. One reason is
to facilitate the inclusion of Neumann boundary conditions in our investigation where, in particular,
we ask the operator to be injective. This is not a significant restriction, since we can always transform
a given dynamics %y —vAy+ay+h =0 into (%z +(=A+1)z+ (v~ 'a— 1)z +v~'h = 0 simply by
rescaling time, 7 = vt, 2(7) = y(v~17).

1.1. Main stabilizability result
Recall that for Dirichlet and Neumann boundary conditions, the operator G reads, respectively,

G=1 and G=£Z=nV,

where n = n(Z) is the unit outward normal vector to ' at T € T'. In either case we set L?(f2) as a
pivot space, that is, we identify L?(Q) with its own dual, L?(Q)" = L?(Q).
Depending on the choice of G, we define the spaces

_ JH (), if
V'_{HQ(Q), if

G=1
g

)
9
on’
and the symmetric isomorphism

AV =V, (Ay, 2)v v = (Vy,V2) 2y + (¥, 2) 2()- (1.5)
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STABILIZATION FOR NONAUTONOMOUS PARABOLIC SYSTEMS 3

Throughout the paper, we assume that the subset {2 is bounded, open, and connected, located on
one side of its boundary I' = 9. Furthermore, either I' is a compact C?-manifold or € is a convex
polygonal domain. The domain of A is defined as D(A) = {z € L?(Q) | Az € L*(Q)}, and since  is
regular enough, we have the following characterizations

D(A) = {z € H*(Q) | Gz|p = 0}. (1.6)

It also follows that A has a compact inverse, and that L?(Q2) = D(A%) and V = D(A%). Note that
A= (-A+1)[py DA = L*(9), is the restriction of —A + 1 to D(A).
We shall assume that V' and D(A) are endowed, respectively, with the scalar products

(Y, 2)v = (Ay,2)yv v and  (y,2)pa) = (Ay, A2)12(q)

and associated norms. Note that (y, 2)v = (y, 2) g1 (o) coincides with the usual scalar product of H Q).
Finally, we denote the increasing sequence of eigenvalues of A by («;);en, and a complete basis of
eigenfunctions by (e;)ien,

Ae; = agey, e; € D(A), 0 <a; < @iy — +oo.
Throughout this manuscript, for simplicity, we shall denote the Hilbert Sobolev spaces
H® = H*(Q) =W*%*(Q) for s>0, and L?:=L*Q).

We consider sequences of sets of actuators and eigenfunctions Fj; of the diffusion operator under
homogeneous boundary conditions as follows, for some nondecreasing function m : N — N

(UM)MEN7 Uy = {\I/l ‘ 1< < m(M)} C L2<Q), (1.7&)
(Ex)amen, Enm={ei|i€Ey} cDA) CL?(Q), Ey={M|1<k<m(M}cCN, (1.7b)

where N stands for the set of positive integers and the j,i\/[ s are specified later. Further, we denote
Uy = span Uy, Epm = span Eyy, (1.7¢)
and assume that

dimUy; = My, = dim &y, L*(Q) = Uy + Exy,  and  Un () Eif = {0} (1.7d)

1
Due to ((1.7d)), the oblique projection Pj}j\‘; , in L%(Q2) onto Uy along 37, is well defined as follows: we
can write an arbitrary h € L? in a unique way as h = hy,, + thLl with (hy,,, hé’]\i/[) € Unr % SJ\L/[, then

we set Pziifh = hy,, -

Our results will follow under general conditions on the dynamics tuple (a,b, f, x, %) and under a
particular condition on the sequence (Unr, Ear)mren. Such conditions will be presented and specified
later on. Without entering into more details at this point our main result is the following, whose
precise statement shall be given in Theorem 4.1

Main Result. Let r = r(t) :== min(¢, 1) for t > 0. Under sufficient regularity of the data and some
assumptions which will be specified in Section [2.1] we have the following:
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4 A. KrRONER, C. N. RAUTENBERG, AND S. S. RODRIGUES

(i) For every T > 0, there exists a unique solution y € W((0,T); H, V') of (L)) with ry €
W((0,T); H?, L?).

(ii) For every u > 0, there are M and X\ large enough such that, with IC’\ = )\PUIJSAPSAZ’, the
solution of the system

(%wqt(fVA+1)w+aw+b~waf+lCﬁ4(wfy),UfU))LQ >0, Yw<¢, t>0, (1.8a)
w<vY, w0)=w, Guwlp=x. (1.8b)

satisfies the inequality (1.4) with C = 1. Furthermore,

A
pom d 1.
‘ICM‘L(B) ‘ cay " (1.92)
2
KA (w — <A\a —1(13 M = 1.9b
) v(w—y) L gz = OMH E(Lz)\w Yolr2 s (1.9b)

where apy = sup{a; | e; € Ey and Ae; = e }.

1.2. Previous literature

The use of oblique projections has been introduced in Kunisch and Rodrigues [15], in the construc-
tion of explicit feedback operators for stabilization of linear parabolic-like systems under homogeneous
conditions (f,x) = 0. Precisely, the feedback in [15] is given by

(1)) = B! (A+ Awelt) = A1)y, (1.10)

where U is the finite-dimensional actuators space and the auxiliary space £ is spanned by a suit-
able set of eigenfunctions of the diffusion-like operator A. Further A,. is a reaction-convection-like
operator. Appropriate variations of such feedback are used in Kunisch and Rodrigues [16] to stabilize
coupled parabolic-ODE systems, and in Azmi and Rodrigues [1] to stabilize damped wave equations.
In Rodrigues [23], the analogous feedback

Kar(t)(y) = Pt (Ay + Awe(t)y + N (1,9) = M) (1.11)

is used to semiglobally stabilize parabolic equations, where the dynamics includes a given nonlinear
term N (¢, -) and the number of actuators is large enough, depending on the norm |yo|,, of the initial
state in a suitable Hilbert space V C L2.

In this paper we investigate the stabilizability of nonautonomous parabolic variational inequalities
through a limiting argument based on Moreau—Yosida approximations. The latter are semilinear
parabolic equations and by this reason we could try to use the feedback . However, the number
of actuators required by that feedback increases (or may increase) with the norm of the nonlinear term,
that is, the number of actuators is expected to increase with the Moreau—Yosida parameter. Roughly
speaking, the number of needed actuators could diverge to +o00 as the Moreau—Yosida parameter does.
This would mean that, even in the case we can find a limit feedback operator, that operator could
have an infinite-dimensional range, that is, we would need an infinite number of actuators to be able
to implement the controller. This is of course unfeasible for real world applications. Therefore, we
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STABILIZATION FOR NONAUTONOMOUS PARABOLIC SYSTEMS 5

will use a different feedback operator in ((1.8)), namely,

K = —APSM APH (1.12)

M’
We shall make use of the monotonicity of the nonlinear term associated with the Moreau—Yosida
approximation. Without such monotonicity we do not know whether the feedback in is able
to stabilize parabolic systems for a general class of nonlinearities as in [23]. Moreover, it is also such
monotonicity which will allow us to take the pair (A, M) in independently of the Moreau—Yosida
parameter, and this is why we will be able to take such feedback in the limit variational inequality.

This manuscript introduces the use of oblique projections in the construction of explicit feedback
operators which are able to stabilize parabolic variational inequalities. Moreover, to the best knowledge
of the authors, there are no results on stabilization of parabolic variational inequalities available in
the literature. In spite of this fact we would like to refer the reader to previous works on controlled
parabolic variational inequalities defined on a bounded time interval.

Feedback laws for optimal control of parabolic variational inequalities have been addressed in Popa
[21] and robust feedback laws in Maksimov [19]. In the first reference the author shows that for a
certain class of parabolic variational inequalities the optimal control is given by a feedback law given
by the optimal value function. In the latter reference the author considers a robust control problem
for a parabolic variational inequality in the case of distributed control actions and disturbances, and
establishes a feedback law using piecewise (in time) constant control functions being irrespective of
the unknown effective perturbation.

For stabilization we are often interested in closed-loop (feedback) controls. However, we would
like to refer the reader to several contributions concerning open-loop optimal control of parabolic
variational inequalities (still, in a bounded time interval). Wang [31] considers optimal control prob-
lems for systems governed by a parabolic variational inequality coupled with a semilinear parabolic
differential equation, Ito and Kunisch [13] consider strong and weak solution concepts for parabolic
variational inequalities and study existence. Furthermore the first order optimality system in a La-
grangian framework is derived. Sensitivity analysis is considered in Christof [§]. For optimal control
of elliptic-parabolic variational inequalities with time-dependent constraints see Hofmann, Kubo, and
Yamakaki [12]. Wachsmuth [30] studies optimal control of quasistatic plasticity with linear kinematic
hardening and derives optimality conditions. Chen, Chu, and Tan [7] analyze bilateral obstacle con-
trol problem of parabolic variational inequalities. For time optimal control of parabolic variational
inequalities see Barbu [2], where a variant of the maximum principle for time-optimal trajectories of
control systems governed by certain variational inequalities of parabolic type is derived. Optimal con-
trol problems of parabolic variational inequalities of second kind have been addressed by Boukrouche
and Tarzia [5].

The rest of the paper is organized as follows. In Section [2| we analyze the Moreau—Yosida approxi-
mations. The stabilization of the Moreau—Yosida approximations is addressed in Section [3] Section [4]
is dedicated to the proof of the main stabilization result for the variational inequality. Finally, in
Section [5] several numerical examples are presented for the case of a regular obstacle fulfilling the
theoretical assumptions, and in Section [6] a less regular obstacle v is considered for the sake of com-
parison.

Notation: For an open interval I C R and two Banach spaces X, Y, we write W([; X,Y) =
{y e L*(I; X) | § € L*(I; Y)}, where i = %y is taken in the sense of distributions. This space is a

Banach space when endowed with the natural norm |y[y (7, x,v) (]y\LQ rxt \y]LQ Ly) )1/2. If the
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6 A. KrRONER, C. N. RAUTENBERG, AND S. S. RODRIGUES

inclusions X C Z and Y C Z are continuous, where Z is a Hausdorff topological space, then we can
define the Banach spaces X NY, X x Y, and X + Y, endowed with the norms defined as,

1
(a, b)|xxy = (Jalx + [bI3) 2, lalxny = |(a, a)|xxy,

a = inf ai, a a=a1+a
la|x+y ol EXXy{!( 1, @2)|xxy | 1+az},
respectively. In case we know that X N'Y = {0}, we say that X + Y is a direct sum and we write

X @Y instead. If the inclusion X C Y is continuous, we write X — Y.

The space of continuous linear mappings from X into Y is denoted by £(X,Y). In case X =Y we
write £(X) := £(X, X). The continuous dual of X is denoted X’ := £L(X,R). The space of continuous
functions from X into Y is denoted by C(X,Y). Given a subset S C H of a Hilbert space H,
with scalar product (-,-)p, the orthogonal complement of S is denoted S+ = {h € H | (h,s)g =
0 for all s € S}. Given two closed subspaces F' C H and G C H of the Hilbert space H = F & G,
we denote by PS € L(H, F) the oblique projection in H onto F along G. That is, writing h € H as
h = hp + hg with (hp,hg) € F x G, we have Pgh := hpg. The orthogonal projection in H onto F'is
denoted by Pp € L(H, F). Notice that Pp = PI’?L. By é[al,...,an] we denote a nonnegative function
that increases in each of its nonnegative arguments. Finally, C, C;, i =0, 1, ..., stand for unessential
positive constants.

2. EXISTENCE, UNIQUENESS, AND APPROXIMATION OF THE SOLUTION

We consider here a more general version of system ((1.1)), which will allow us to work with the
controlled system (|1.8)) as well. Namely

(Fry+(-A+ Dy +Qu—fv—y). >0, o<y, t>0, (2.1a)

yﬁﬁb, gy’l" =X t>0) y(ao) = Yo, (21b)
with Q = Q(x,t) :== B(x,t) + b(z,t) - V where B(-,t) € L£(L?) is a general linear bounded mapping,
from L?(Q) into itself.

We show that there exists a solution of (2.1)), which can be approximated by the sequence (yx)ken,
where g, is the solution of the system

Ly + (—A+ D)y, + Qui + k(g — ) = f, Y (0) = Yo, Gyklr =X (2.2)
with

for ve L

o () = v(x), %f v(x) >0,
0, if v(x) <0,
2.1. Assumptions on the data

We assume the following regularity assumptions for the data. Hereafter, we will denote R :=
(0, +00).

Assumption 2.1. The subset € is bounded, open, and connected, located on one side of its bound-
ary T = 00. Furthermore, either T is a compact C*-manifold or Q is a convex polygonal domain.
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STABILIZATION FOR NONAUTONOMOUS PARABOLIC SYSTEMS 7

Under Assumption we have the characterizations (1.6]), this follows from [11, Thms. 2.2.2.3,
2.2.2.5, 3.2.1.3 and 3.2.1.3].

Assumption 2.2. The operator Q in (2.1)) is a sum Q =B +b-V with
Be L®(Ry;L(L%) and be L®(Q xRy

Assumption is satisfied if, for example, B = al with a € L>®( x R}).
Assumption 2.3. The external forces f and x, and initial condition y, in (1.1), satisfy

feli Ry L2, x€T, woeL? and yo <3(-,0).

See Section for the definition of 7 as the trace space of Wio.(Ry; H?, L?). The condition xy € T
specifically means that there exists a function in Wi,.(Ry; H?, L?) such that Gh is equal to y in the
trace sense.

Assumption 2.4. The obstacle satisfies 1 € Wioe(Ry; H, L?) and G| > x — 1 for a suitable real
function n(Z,t) = n(t) independent of T € T" where:

(i) for Dirichlet boundary conditions, n =0,

(ii) for Neumann boundary conditions, n >0 and n € W2 (R,).

loc

Remark 2.5. Notice that for Dirichlet boundary conditions, since we will be looking for a solution
satisfying y| = x and y < %, then the requirement |, > x is necessary. Instead, for Neumann
boundary conditions, we do not claim the necessity of the requirements in Assumption However,
the relaxation of those requirements will, probably, involve extra technical difficulties.

2.2. Trace and lifting operators

For simplicity, we denote
W = Wiee(Ry; H?, L?) and Wy = Wiee(Ry; D(A), L?) € W.
Let us define the trace spaces on the boundary
T = {Ghlp | h e W}, To = {Ghlp | h € Wo} .
Recall that we have (cf. [18, Ch. 1, Thms. 3.2 and 9.6]) for the trace spaces at initial time,
W= y(0) |y € W} = A, W = {y(0) [y € Wo} = V.
Now for any finite time interval (t1,t2), with to > ¢1, we define the Hilbert spaces
Wit i) = W((t1,t2), H*, L?) (2.3)

and the corresponding traces are denoted by Ty, 1,) = Wi, 1) |p
Next for each positive integer j € N we define the time interval I; := (j — 1,5). Observe that for
any x € T we have that x| I € T1;- We consider the extension (lifting) function defined, for X € 7,
by
X eWs, (GEX)p=X and EXeW], with Wi o=Wg,( Wl
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8 A. KrRONER, C. N. RAUTENBERG, AND S. S. RODRIGUES

where the orthogonal space Wf;o to Wy, o is taken with respect to the scalar product of Wr,.

This defines the extension operator, & € E(’T]j,W[j), which is a right inverse for the trace operator
(G())|p € LOWV1,,T1;). We endow T;; with the scalar product induced by the trace mapping

(x15x2)73, = (X1, €x2)w, -

This allows to introduce the extension €: 7 — W defined by concatenation
ex(t) = (xl, )0,

where [t] is the positive integer satisfying [t] — 1 <t < [¢].

Remark 2.6. Note that for any h € W satisfying Gh| = x we have that &x —h € W)p. In particular
we have that €x(¢) — h(t) € V, for all t > 0.

Remark 2.7. Several existence results for parabolic variational inequalities can be found in the liter-
ature. However, though we borrow some ideas and arguments from classic references (e.g, [3},4,6./10])
we could not find in the literature, the existence results for obstacles as general as in Assumption [2.4]
For example in [4, Ch. 3, Sect. 2.2, Thm. 2.2], for Dirichlet boundary conditions it is assumed that
the boundary trace of the obstacle is static (independent of time). In [6, Sect. II] the triple (a, b, ) is
time-independent.

2.3. On the Moreau—Yosida approximation

We present the main result concerning Moreau—Yosida approximations for parabolic variational

inequalities. We start by denoting, for a given function ¢ & LfOC(RJr, L?), the convex sets

C7:={ve L*(0,T);H") |v<¢}, for T >0, (2.4a)
and
C% = {v e L}, .(Ry; HY) [ v < ¢} (2.4b)
We set
Z,={z2e W(0,T);H", V') | rz € W((0,T); H? L*},
where

r(t) == min{¢,1}, ¢t>0.

Theorem 2.8. Let Assumptions|2. 1! hold true, T > 0, and suppose (f,) C L?((0,T); L?) converges
weakly to some f in L*((0,T); L?). Then, for a given k € N. there exists one, and only one, weak
solution yi, € Z, for

Suk+ A+ Dy + Que +k(ye — )" = fo,  Guklr=x.  vk(0) = 1o. (2.5)
Moreover, the sequence (yi) of solutions satisfy

O ey~ ¢ Gk —ex) ——— Fy-¢ 2.6
U= OX Y T gt Wk — €x) O gty — €x), (2.6)
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STABILIZATION FOR NONAUTONOMOUS PARABOLIC SYSTEMS 9
for some y € Z, with
yeCy,  y(0)=yo,  Gylr=x (2.7)
and, for an arbitrary v € ZTHC% with v —y € C((0,T]; V), we have
(%y +(-A+1)y+Qy—f,v—y)v v >0, almost everywhere in (0,T). (2.8)

Furthermore, we have

r(yr, — €X) rly —€x), Srlyn—€x)) ———— 2(r(y— €x)), (2.9

L2((0,7);D(A)) L2((0,T);L?)
and, for arbitrary v € L?((0,T); L?),

(%y +(-A+1)y+Qy— f,v— y)L2 >0, almost everywhere in (0,T). (2.10)

Finally, y is unique the only element in Z, satisfying (2.7) and (2.8)), and we have

d - ¢ — Ev). 2.11
Yk W Y an (Y X) W r(y X) ( )

The proof of Theorem [2.8]is given in several steps, which we include in several lemmas.

Lemma 2.9. Let Assumptions hold true. Let us fiz k € N. There exists one, and only one,
solution y, € W((0,T); HL, V') for (2.5), furthermore ry, € W((0,T); H?, L?).

Proof. We sketch the proof which follows from standard arguments. By a lifting argument (cf. |22}
Def. 3.1]) we can reduce the problem to the case of homogeneous boundary conditions, where we
can prove the existence of weak solutions, in W ((0,7),V,V’), as a weak limit of suitable Galerkin
approximations. Weak solutions are understood in the classical sense [17,29]. Strong solutions
in W((0,7), H?,L?) can be proven for more regular initial conditions 3, € V, see [23, Sect.4.3].
For our initial conditions in 3, € L?\ V, we can use the smoothing property of parabolic-like equa-
tions to conclude that ry, € W((0,T), H?, L?), see [29, Ch. 3, Thm. 3.10] and [20, Lem. 2.6]. Note
that 7(0)yx(0) = 0 € V at initial time. O

Note that by direct computations
(h,h*)p2 = |n*]3,, forall he L2 (2.12)
Let us denote
CQ = Qoo+ £(m 7)) - (2.13)
Lemma 2.10. Let Assumptions hold true. Then, the solution yi for (2.5)) satisfies
2 2 2
2k | (U = )" Lo,y 2y + Ukl Lo (0.1, 22) + Wkl 0.1y 1)
Vel 2 2 2 2
= C[CQvT] (|y°’L2 + ‘QEX‘W(O,’D + ’fk|L2((0,T),L2) - ‘MW((O,T),H%V’)) ?

with 6[CQ 7] independent of k.
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10 A. KrRONER, C. N. RAUTENBERG, AND S. S. RODRIGUES
Proof. Recall that ¢ € W((0,T); H?, L?) by Assumption Now we set
vi=Ex — (Ex — )",
which implies v € W((0,7T); H*, L?). Also, v — v > 0, because

1/)—1}:0, if @X2¢7
Yp-—v=1—E, if E <.

(2.14)

Furthermore under Dirichlet boundary conditions we also have that v|. = x, because (Ex—¢) ™| =0,

due to x < 9| in Assumption Hence, we have
pr=yr—v e W((0,T);V.L%), wv<u,

and

P+ Ape + Qpr + k(yp — )" = hi,,
with

hy = fr — %v — (A +1)v—Qu.
After testing the dynamics with 2p; to obtain

L 1pkl72 + 2 |pwly + 26wk — )T pr) 2 = 2(—Qpk + b, D)y, v -

Observe that, due to (2.15) we have py > yr — ¢ and

(ys =) o) e = | (o — ) |

and by using Assumption and the Young inequality, and recalling (2.13)), it follows that

2
L lonl2e + |pelZ + 2k | (g — ) F| 70 < 263 |pil2e + 2 Ryl
< Cleg) (Ipele + 1mef3 )
By the Gronwall Lemma it follows that
2 Val 2 2
Pl 0022 < Clog ) (IEO)NE2 + IhlEo1y01)

and by integration of (2.17)), and using ([2.18a)), we find

2 —
\Pk|%2((o,T),V) + 2k |(yr, — w)+‘L2((O,T),L2) =< Cleg1] (’Pk(0)1%2 + ‘hk‘%Q((O,T),V’)> :

Now, note that from (2.16)), (2.15)), (2.14)), (2.16), and L? < V', we have

|hk|%2((O,T),V’) B é[CQ] (|fk|%2((O,T),V’) + |U|%/V((O,T),H1,V’))

_ ) , \
< C[CQ] (|fk“L2((O,T),V/) + |€X|W(O,T) + W‘W((O,T),Hl,vf)) ,

(2.15)

(2.16)

(2.17)

(2.18a)

(2.18b)

(2.19a)

(2.19D)
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STABILIZATION FOR NONAUTONOMOUS PARABOLIC SYSTEMS 11

(cf. (2.3)), and
|yk|i°°((0,T),L2) + |yk|iz((07T)7H1)
<2 \pk@oo((o,T),Lz) +2 |U‘%°°((0,T),L2) +2 ‘pk&?((O,T),V) +2 ’v‘%z((U:T%Hl)
< Clog ] (IO + 1€x83, 1, + UikBaomyam + 19 am) - (2.19¢)
Notice also that
Pk ()% = |y (0) = v(0)]72 < 2 yol7> +2[€x(0) — (€x(0) = w(0))* ;. (2:194)

Hence, the result follows from (2.18)) and (2.19). O

The following lemma establishes that we are able to identify a pseudo-distance function with an
strictly negative normal derivative.

Lemma 2.11. Let Assumption hold true. Then, there exists ¢ € H*(Q) (N C%(Q)NCLQ) and
constant cg < 0 satisfying

&(x) >0 forall xe€Q, (2.20a)
a%f‘r (z) <ce  for almost all T €T. (2.20b)

Proof. In the case (2 is of class C?, we can choose £ = pdr as the product of the distance to the boundary
function, dr(z) = min.{|x — z|gs min z € I'}, and of a suitable cut-off function p. From [9, Appendix,
Lem. 1 and Eq. (A7)], see also [14, Sect. 13.3.4], we know that dr € C?(I's) for a suitable small
enough 6 > 0 and I'; == {z € Q | dp(x) < §}, and also that % = 1. For p we choose a smooth
function satisfying 0 < p <1, such that p(x) = 0 for all z € Q\T'2s, and p(z) =1 for all z € T's.

In the case 2 is a convex polygonal domain we can choose xg EJQ and ’

E(@) = — |& — zo|ga + max |z — zofga, €,
z€Q
It is clear that & € C?(Q) and that ¢ > 0. It remains to prove that ¢ strictly decreases on I' in the
direction of the outward normal n. To this purpose let T € I' and let F' be a face of I' contained in

the affine hyperplane H and such that Z € F. Up to an affine change of variables (a translation and
a rotation) we can suppose that 0 €  and

290=0 and H={(s,z2,23,...,2q) | (x2,23,...,24) € R} with s> 0.

In this case, we find that

2 2
£(z) = — |z|ga —|—m€aﬁxlz]Rd , n=(1,0,0,...,0) and 6%15’1“ = a%g\r = —2x7.
z
Therefore at an arbitrary point T € H we find that %g\r () = —271 = —2s. Note that s is the

distance from 0 to H.
Therefore we can conclude that for every point T in the (boundary) interior of a face F' we have
that a%ﬂr (z) = —2sp where sp > 0 is the distance from z( to the hiperplane Hp containing F'.
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12 A. KrRONER, C. N. RAUTENBERG, AND S. S. RODRIGUES

Since the number of faces is finite, a%ﬂr < max{—2sp | F'is a face of I'} =: ¢¢ < 0, for all boundary
points living in one face only. Note that if T lives in the intersection of two faces then the normal
derivative is not well defined (not continuously, at least), however the set of such points has vanishing
(boundary) measure. That is, %5 I (Z) < e <0 for almost every boundary point Z. O

Lemma 2.12. Letce <0 and§ € H? be as in Lemma|2.11, andn > x—G | be as in Assumption 2./
Then, for

™ . = 07 ng = 17
Goi=y—v+ns, with &= _ (2.21)
_Cg 157 ng = %7
where yi, is the solution for (2.5)), we have that
(&G — (=16 Gm <2|w—n€| [GFl.  Ge{l
Proof. Observe that
(& Gy — (% = 1€, G
= (% G 2wy + (A = D@ =€), G52 — (5 (@ = n6), G 2y
= (5m®X — gm¥ + 1558 G )2y + (A = 1)@ = n€), ¢F) 2 (2.22)
Note that
Grp=0, if G=1, and Zex=y, if G=2. (2.23a)
Now, by using (2.20b)) and (2.21)),
RCX — o+ g€ = X — gmlp F il Sx— &l -0 <0, i G=2 (2.23b)
and, by (12.23)), we have that

with an equality in the case G = 1. Thus, by (2.22) and ([2.24) we obtain

(€0 Gy — (6 = n€ G < (A = 1) — )

12 ‘Clj‘]ﬁ <2 ’¢) - nElHQ ‘C:‘Lg ) (2.25)

which ends the proof. O
Lemma 2.13. Let Assumptions hold true. Then, the solution yy for (2.5) satisfies

2 2
k2| (g — w)Jr‘LQ((O,T),LQ(Q)) + [ o — QEX)’H((O,T),V/)

Yol 2 2 2 2 2
< C[CQ,T] <|3/0|L2 + |€X‘W(0,T) + |fk|L2((07T)7L2) + |7’[}|W(0,T) + ‘77|W1»2(0,T)> )

with 6[CQ 7] independent of k.
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Proof. Let us choose c¢¢ < 0 and § as in Lemma implying in particular that & € H?. We also

have n > x — G|, due to Assumption Then, we set (; as in (2.21)).

Observe that both (i and C,j are in H'. Furthermore, in the case of Dirichlet boundary conditions

we also have Clj € H} as a corollary of Assumption Therefore,
eV, for Ge {2, 1}
Let us denote now s, =y — €x. We find
s+ Asa + Qg + k(yk — )T = g, 21,(0) = o, Gyl =0,
with
%o = Yo — €x(0),  gr = fr — FEX — (-A+1)Ex — QEx.
Testing the dynamics with C,j, gives us

0= Gex, G )2 + Ga GHv + k((ye — V)T, G 2 + (Qsar — gry G ) 12
= Gop + Tex — 0+ 0, G2 + G+ Ex — ¥ +0E, G + k((ye — )T, G012
+ Qo — gp — SEXH Y —0E, ¢z + (—Ex + ¥ —nE, G m

which is equivalent to

0= (Cro Gz + Gy G ) + E((yk — )T, G5 1o
Qg — g — S+ —0E, G e + (—CEx + 9 —nE, G ) -

(2.26)

(2.27a)

(2.27b)

Then, using Stampacchia Lemma [28, Lem. 1.1]) and Lions-Magenes Lemma [29, Ch. 3, Sect. 1.4,

Lem. 1.2], we arrive at
2 2
S 16 + 2160y + 26 — )7, G)e
= 2(—Qs% + gk + FEX — Y+ 06, ) r2 — 2(—Ex + ¥ — 0, ) -
Next, we use the relations in (2.27)) to obtain
2 2
a6 e + 210G 5 + 2k = 9) 7, G0)1e
=2(=Qur + fr — (A + )& = + 7€, )2 — 2(=Ex + ¢ —n&, ¢ ) m
= 2(=Qux + fo — ¥+ 06, G )2 — 200 — €, G i + 255 € G 2
and, using Lemma [2.12 we find
2 2
S G + 210G + 26 — )7, G
< 2A=Qui + fe = ¥+ i6, Gz + 4w — ] 167

S2(‘—ka+fk—¢+ﬁg'm+2‘¢—77§A‘H2> [eares
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14 A. KrRONER, C. N. RAUTENBERG, AND S. S. RODRIGUES

Time integration of (2.31)) gives us
2 2 2 -
’CI:_(T)‘LQ - ‘C;(O)‘B +2 ‘C:‘LQ((O,T),V) +2k((yr — )", C;)LQ((O,T),LQ) <22 ‘C;‘LQ((O,T),LQ)

with

== <’—ka +fi— P+ T'IE‘LQ((O’T)’LQ) +2 ’1/1 B ng‘m((o,T),H?)) 7

from which, together with the fact that, due to Assumption at time ¢ = 0 we have glj(o) -
(yo — 1(0))T = 0, we obtain

2k |((yr — )" G r20,m),12) [ = 26wk — )75 G r20,m),22) < 22 (G | L2 (0.m).12)
which, together with L*((0,7), L?) = (L*((0,T), L*))', give us |(yx — ¥) " p2((0.1) 2y < k7 'E, thus
k ‘(yk - ¢)+’L2((O,T),L2)
S E S 6[0@] (’yk|L2((07T)7L2) + |fk‘L2((07T),L2) + |¢|W(0,T) + )né\‘W(QT)) . (232)

Next, from ([2.27)) we also find that

2
v’

ey = |Asap + Qg + k(y — V)T — g

which together with (2.32)), s, = yx — €x, and L? — V', give us

’?'fk|%2((o,T),v') <C (‘yk‘%Q((O,T),Hl) + \(’—’X’?/V(O,T) + |fk‘%2((O,T),L2) + W?/V(O,T) + ’W’%VLQ(O,T)) :

with C' = C . Finally, we can finish the proof by using Lemma [2.10 U
[CQ ) |‘g] HQ]

Remark 2.14. We can see that the constant G[CQ 7] in the statement of the Lemma [2.13[ will also

depend on ‘E‘HQ as C

, but since essentially §A depends only on the spatial domain 2, we
[CQ7T’ EA]H2]

omit the dependence on ’E'HQ in the statement of Lemma [2.13| and throughout the manuscript.

Lemma 2.15. Let Assumptions hold true, with in addition yo — €x(0) € V. Then the
solution yy for (2.5)) satisfies

‘yk@?((o,T),HQ) + ’yk|%°°((07T)vH1)

= (1. 12 2 2 2
<cC <‘yO|H1 &b py T rlz20,1).02) + WW(O,T)) ; (2.33)

with a constant C independent of k.
[T,CQ]

Proof. Testing the dynamics in (2.27)) with 245, where >, = yr, — €y, it follows that

2 [seklpoay + & [rly = 209k — Qoar — Ky — ¥) T, Asay) 2.
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STABILIZATION FOR NONAUTONOMOUS PARABOLIC SYSTEMS 15

Then, the Young inequality gives us
2
kD) + & 1plt < ok — Qoak — k(ye — ) )]s
and from the Gronwall Lemma and integration over (0,7") we obtain
27 + |2l < ol + o — Qo = k(i — ) )|
k1L2((0,1),D(A4)) klLeo((0,1),v) = [#ely T [k k Yk L2((0,T),L2)

Finally, we can conclude the proof by using Lemmas [2.10] and and recalling the identities

in (2-275). O

In Lemma [2.16| we require the extra regularity for the initial condition in order to have strong solu-
tions for the parabolic equation. This extra requirement is needed due to the compatibility conditions
mentioned in Remark However, due to the smoothing property of parabolic equations, it turns
out that for strictly positive time ¢ > 0 we will have that yi(t) € V when y, € H. This fact is explored
in the following result.

Lemma 2.16. Let Assumptions hold true and let yy, solve (2.5). Then, it follows that
2 2 d 2
’ryk’L2((0,T),H2) + ’ryk’Loo((O,T),Hl) + ‘&(Tykﬂw((o,T),L?)
= 2 2 2 2
< T (Iyelze +Ir€xByg o, + Infulia oo + M Byem ) -
with a constant C’[Tch] independent of k.
Proof. Multiplying the dynamics in (2.27) by 2r2Asg,, it follows that
% |r%k|%/ — (%7’2) \%k]%, +2 ]r%k]%(A) =2(rgr — Qs — Tk(yp — V)T, Ase) 2.
Then, the Young inequality together with max{|r| ., ["|f®,)} =1 give us
2
|T%k|2D(A) + L rsali < gk — Qs — k(ye — ) V)| 1 + Irsali
and from the Gronwall Lemma and integration over (0,7") we obtain
roe7 + [ < |gx — Qoa — kly — )"
kIL2((0,T),D(A)) klLee((0,1),v) = |9k k Yk L2((0,T),L%)
Further we have that
2 . 2
|§i(rsa) |2 = |Arsa + Qroge + rk(a — 6)* — rgi — (7)o 2

We can conclude the proof by using ryi = rs, + r&y, (2.27h)), and Lemmas and O

We are now ready to conclude the proof of Theorem
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16 A. KrRONER, C. N. RAUTENBERG, AND S. S. RODRIGUES

Proof of Theorem[2.§ Existence: From Lemmas and there exists a subsequence yy 1) of yx,
such that the following weak limits hold

—¢ —¢ ey — SEy —————— j— d¢ 2.34
Yn(k) X L2((0T).V) Yy X Ynk) — @t ©X L2((0.T) V) Y—T3CX ( a)
r(Yn(r) — €X) G0 — €X) ——— 2, (2.34b)

L2((0,T),D(A)) L2((0,T),L?)

for suitable y € W((0,T), H*, V') and z € W((0,T),D(A), L?). Necessarily we have z = r(y — €x)
and the strong limits

S E— - &) — —¢ 2.35a
Yn(k) L2((0.T).12) Y, T(yn(k) X) L2((0.7).V) r(y X)’ ( )
T(yn(k) X) c(0,1,L2) T(y X)v ( )

where we have used, in particular the Aubin-Lions-Simon Lemma [27, Sect. 8, Cor. 4].
For the sake of simplicity, let us still denote the subsequence yy, ;) by yx. By Lemma it follows

that (k2 |(yx — ) *[72((0.r).02)Jken is bounded, thus

2 . 2
’(y - w)—‘r}L?((O,T),L?) = khm ‘(yk - ¢)+’L2((O,T),L2) =0

—+00

and, since y € L?((0,T); H'), we obtain that y € Cw, see (2.4). Now, for an arbitrary v € Cw, we
find, for almost every ¢t € (0,T),
(7 (Goe+ (=2 + Vi + Que — fi) . r(v — )
=~k (r(ye — )" (v —yr)) 1o
=k ((yk - ¢)+7 TZ(yk - w))[ﬂ +k ((yk - ¢)+7 7“2(1/1 - U))L2 )

L2

which gives us
(r (%yk + (A +1)yr + Qu. — fk) ,r(v— yk))L2 >0, (2.36)

because 72k (yr — V) (yx — ¥) > 0 and 72k(yr — ¥) T (¢ —v) >0, due to v € C;,li.
Observe that, with g == r(yx, — €x) and ¢ :== r(y — €x), for the left-factor in (2.36]), we find

r(Gye+ (=A+ Vye + Que — fr)
= Gy, + Aqy + Qar, — 7 fi +1( + A+ Q)Ex — (7)(yr — €x),
and we have the weak limit in L?((0,7), L?) given by
G+ Ag+Qq—rf+r(§+A+QEx — (My— &) =7 (GFy+ (-A+1)y+Qy—f)
and also the strong limit for the right-factor in as follows

_
& oy !
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These limits allow us to take the limit for the integrated product in (2.36)), and obtain

T
/0 (r(Gy+(A+1y+Qy—1).rlv—y) dt
T

= lim (r(%yk + (A 4+ 1)y + Qui — fr), (v — yk))H di
k—+o00 Jo

>0, forall veCY (2.37)

Let us fix arbitrary v € C#, t € (0,7), 6 € (0,min{¢t,T — ¢}). Note that the integrand &, =
(r (%y +(-A+1)y+Qy— f) ,7“(1)—3/))142 is an integrable function, &, € L'(0,7T). By the Lebesgue
differentiation theorem [26, Ch. 7, Thm. 7.7], the set of Lebesgue points
1 t* 446
Ly =<t 0, T t*) = lim — t)dt
v 6(7 )|£h( ) 6{%2(5 t*_(sév() )

has full measure. We define the functions

v ite(@-67+9)
B )y, ifte(0,i—0)U@E+0,T).

We have vz 4(t,x) € C#. From ([2.37)), it follows that
i+6 T
[ amar= [ (v Gyt A+ 1+ Qu=£)rlos =) (0> 0
t_
and as a consequence we have

(r(Gu+(-A+Dy+Qy—f) rw—y) ()20, forall ¢ eg,

L2
which implies the inequality in (2.7)), because 72 = min{t?,1} > 0 for time ¢ > 0.

Uniqueness: Let us assume that w € CéﬁﬂW((O,T),Hl,V’), with rw € W((0,T), H?, L?) also
satisfies (2.7). In this case we find the relations

G+ (-A+Ly+Qy—fiw—y)220, (w+(-A+Dw+Quw— f,y—w);2 >0,
which lead us to, with z ==y — w,
(24+ Az +Qz,2);2 <0, foralmostall te(0,7), =z(0)=0,
with z(¢t) € V for all ¢ € [0,T]. Thus
di 12072 + 2125 < 20q |2l |2l e < 215 + CF |2172 (2.38)

and the uniqueness follows from Gronwall’s Lemma.
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18 A. KrRONER, C. N. RAUTENBERG, AND S. S. RODRIGUES

Convergence: Finally we show that the strong limits in (2.35)) hold for the (entire) sequence y.
We argue by contradiction. Let us denote S := {L2((0,T),V),C([0,T], L?)}.

Suppose that r(y; — €x) — r(y — €x) does not hold, for some S € S. (2.39)
Under assumption (2.39)), there would exist € > 0 and a subsequence g, () of yx such that

|7 Yoy (k) — €X) = 1(y — Ex)| g = & (2.40)

However since {¥,} = {ys,(x)} is a subsequence of {yx} we would be able to follow the arguments
above and arrive to analogous limits as in ([2.34)) and (2.35)), for a suitable subsequence {¥, )} of {7}
and a limit i in the place of y. In particular, we would arrive to

Yo (s1 (k) T> Y,

where moreover 7 solves (2.7)). By (2.40) we would have that 7 # y, which contradicts the uniqueness
of the solution proven above. That is, the assumption in (2.39) leads us to a contradiction. Therefore,
we can conclude that (2.11]) holds true. The proof is finished. O

3. STABILIZATION OF A SEQUENCE OF PARABOLIC EQUATIONS

The solution of (1.1) can be approximated by the sequence (yi)ren as stated in Theorem [2.8
where y; solves

Dy — vAyg + ayy, + b - Vg + k(g —0)* = f, (3.1a)
uk(0) =yo, Gyl = x. (3.1b)

This follows from Theorem 2.8 with @ =al +b-V, and f; = f.
We investigate the stabilizability to trajectories for system (3.1]). We consider the sequence (wg)ken,
where w;, solves

P +_ Exr 4 pHii
Wk — VAwy + awg + b - Vwy, + k(wy, — )" = f = AP AP M (wr — yi), (3.2a)

M Em

’U)k(O) = Wo, gw|1" = X’ (32b)

L L
where PXM € L(L?) and P ¢ L(L?) are suitable oblique projections in L?, which we shall construct
gMJ_ L Em L L
so that Pjﬁ;’ APZJ;’ € L(L?). Then again from Theorem with Q = al—i—b-V—i—/\PLi]\‘; AP?AT, and f =

f+ )\Pzi\f‘lj AP? AJ/‘? Yk, it follows that the solution of can be approximated by the sequence (wg)gen-
At this point, it is important to underline that the triple (A,Ups, Epr) can be chosen independently
of k, as we shall show later on.

In this section we will see y; as our target solution and consider the difference zp = wy — yi from
the controlled solution wy to the target. With initial condition z, = wo — yo, we find that zj satisfies

i L
%Zk —vAz+az, +b-Vz + k ((Zk + Yg — ¢)+ — (yr — ¢)+) = _)\P;A]ZAP«?ATZ’“ (3.3a)
2k(0) = zo, Gz|p = 0. (3.3b)
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For a given p > 0, our goal here, see (1.4)), is to find a scalar A > 0, a space of actuators Uy, and
an auxiliary space &y, such that

w(t) = (t)] 2 < Co P o — ol o, forall (wo,ye) € L2 x L2, £>0 (3.4)
for a suitable C' > 1.

3.1. The oblique projections

We specify here how we can appropriately choose the spaces of actuators Uy, and auxiliary eigen-

functions £y, so that the feedback operator —)\Pflg APgL ? is stabilizing for large enough A > 0. Since
the stabilization results will hold for large enough M, we will rather consider a sequence of pairs of
subspaces (Unr, Err)men as in .

In the one-dimensional case, * = (0,L;) C R, L; > 0, as actuators we take the indicator func-
tions 1w}- (1), j €{1,2,..., M}, defined as follows,

L L . 2j—1)L
= (¢j — 5kt cjnkyy o= G DIL (3.5)

1, if Q' Nw;
1i(z) =3 ifzy €9 oy, wh
) 0, ifac\wl,

As eigenfunctions we take the first M eigenfunctions e} of —vA +1: D(A) — L*(Q') (i.e., the first
eigenfunctions of A),
(—vA+1)e; = ogej, Gejlp=0,  je{1,2,...,M}, (3.6)

L

where the « :

s are the ordered eigenvalues, repeated accordingly to their multiplicity,

0<l<aj<m<---<a<aj;<..., jeN
d
In the higher-dimensional case, for nonempty rectangular domains Q* = [] (0,L,) C R%, L, >0

n=1
we take cartesian product actuators of the above actuators 1w;_r and eigenfunctions e as follows. We

J
define M := {1,2,..., M} and take
Uy = span{l x |j € Md} and &y = spaun{ejX BES Md}, (3.7)
J

and w® = {(21,22,...,2q) € X | 7, € W] } and €] (z1,22,...,74) =

; ] e; (zn). Notice that we

d
=1

d
can also write 1wj>< = n];[l lw;n (2n).

In particular, by setting the eigenvalue
apr = max{q; | there is ¢ € &y such that Ap = oo}, (3.8a)
and the Poincaré-like constant

Bar, = min { e ) heUsNV, h+# o} , (3.8b)
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we have
L? = Uy @ &3, A Bar, = oo, (3.8¢)
and also L
Zuzpl P e =: Cp < +o00. (3.8d)

See [23, Sect. 2.2] and [24], Sect. 5] for more details. For the one-dimensional case we refer to |25
Thms. 4.4 and 5.2], for higher-dimensional rectangular domains see [15, Sect. 4.8.1].

Remark 3.1. For nonrectangular domains Q C R?, with d > 2, we still not know whether we can
choose the actuators (as indicator functions) so that the properties in are satisfied. So we cannot
guarantee that an oblique projection based feedback will stabilize our system. In spite of this fact, we
refer the reader to [15,16], where numerical simulations show the the stabilizing performance of such
a feedback for equations evolving in a spatial nonrectangular domain.

3.2. On the nonlinearity
We gather key properties of the nonlinear operator in (3.3]).

Ni(z) € (L L), Ni(2) =k ((z+ye =) = (me —9)F). (3.9)
Lemma 3.2. The nonlinear operator 1 bounded, as
Ng(21) = Ni(22)| 2 < k|21 — 2|12,  for all (z1,29) € L? x L%
Proof. With (21, 22) € L? x L?, we find that
Ni(z1) = Ni(z2) =k ((z1+ e — )T — (2 + e —)F) (3.10)

Note that h — h™ = max(h,0) is a globally Lipschitz continuous functions with unitary Lipschitz
constant, and thus |h — h3|r2 < |hy — he|z2 for all hy, hy € L?. Therefore,

Wi(21) = Ni(22)|p2 < k[(21 +yk — ) — (22 + Yk — V)| 12 = klz1 — 22|12,
which finishes the proof. O
Lemma 3.3. The nonlinear operator (3.9)) is monotone,

(Ni(21) — Ni(22), 21 — z2)12 > 0, for all (z1,2) € L? x L2

Proof. Note that z + G(2) := 21 is monotone in L?(Q). Hence, z — G(z — (1) — (2 is also monotone
for arbitrary ¢; and (3 in L?(Q), which finishes the proof. O

3.3. Stabilizability result
For simplicity, let us denote
Are =al+b-V, Crc = |ArC|L°°(R+,E(V,L2)) )

€L L
K = — AP AP, (3.11)
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Theorem 3.4. Let Assumptions hold true, with B = al. Let the sequence (Unr,Enr)mren be
constructed as in Section [3.1. Then, for every given u > 0, there are large enough constants A > 0
and M € N such that, for every k € N, the system
Zp+ Az + Apezi + Nk(zk) = IC%JZ]C, 2k(0) = 2o, (3.12[k])
is exponentially stable with rate —u. For all z, € L?, the solution satisfies
|2k ()] 2 < e P79 |2(8)| 2, t >8> 0. (3.13)

Moreover, the feedback operator IC}/[ and control input /Cﬁ/[zk satisfy the estimate

~ 12
L2®y L) <Aapp Cp |zl 2 - (3.14)

‘ICME(LQ) < AauC%  and ‘/C}M
where aipr and Cp are as in (3.8]). Furthermore, we can choose
A~ é[wcrc} and M ~ é[wcrc}. (315)

Remark 3.5. Note that the feedback operator K3, in is independent of (k, ), because (A, M)
in can be chosen independently of (k, ). The upper bound in for the norm of the control
input IC?/Izk is also independent of (k,). The monotonicity stated in Lemma plays a key role on
such independences on k.

Remark 3.6. Inequality (3.13) implies that ¢ ~ |24(t)|32 is strictly decreasing at time t = s,
if |25(s)[72 > 0. Of course, if |z (s)|72 = 0 then |z (t)|72 = 0 for all t > 0, see [24, Sect. 4].

Proof of Theorem[3.4) Following the arguments in [24, Sect. 4], we decompose the solution of sys-
tem (3.12[k])) into oblique components as

1
zr = 0 + Oy, with 0 = ng\yzk and O = szg 2.

Observe that form (3.12[k[), Lemma and the Young inequality, we obtain that

L2lre = =2 2ly — 2(Avezk, 26) vy — 2 (Nio(2k), 2) 2 + 2 (/cjm, zk)L2 (3.16)
< =22k} — 2(Avezis 2)vr v — 2N (Afg, O1) 12 (3.17)
< =2|zklp + 1 l2kly + 97 CR zkl7a — 20|65
< —(2—m) |zl + 7 O |zkl7s — 20 |0k[3,  forall 4 > 0. (3.18)
Now we observe that, by the young inequality, we obtain for all v5 > 0
—|2kly = = 1Ok + Okl§, = = |Ok[5 — 10k[3 — 2(Ok, O1)v
< —1Okly = 108l + 72 |Oly + 9 16kly = —(1 = 92) [Okly, = (L= ) l6kl3. (3.19)
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Combining (3.18]) and (3.19) we obtain, for all (y1,72) € (0,2) x R4,

lzplia < 2= 1)Q —22) 16kly — @A+ 2= 7))@ =% D) 10kl} + 17 CE |27
<—(2-m)1 =) 6kl — A= (2= 7)) (33t = 1) |0kl} + 297 CL(1Ok|72 + |0k]72)

Now, we can choose 1 € (0,2) and 7o € (0,1), and X satisfying 2\ — (2 —41)(75 ' — 1) > 0. For such
choices, using (3.8)), we find

Llzplie < —(2=)1 —2)Buy [Okl72 — (A= 2 =) (35" = 1)) a1 Okl72
+ 297 CL(|Ok[F2 + |0k]72)

< —E1(M) |03 — Ea(M) |6k}, (3.20)
where o = min{“:'—“g ‘ h € V\{O}}, and
L
E1(M) = (2= 7)(1 —72)Bm, — 277 'CL, (3.21a)
2200 = (20— (2= )75 — 1)) o — 297 'C2, (3.21D)

Recall that, due to (3.8) we have that Mlim Bum, = +oo. Let us be given an arbitrary given p > 0
—+00

and let us choose ;1 and 2 as above, satisfying
v €(0,2) and 9 € (0,1). (3.22a)
Then, subsequently we can choose A > 0 and M € N large enough satisfying
A~ (2—m)(y = 1) >0, Z2(\)>4p, and Z;(M) > 4. (3.22b)
Form , with the choices in , we arrive at
S 12rl3e < —4p (160kf32 + 104[32 ) < —2lf32 (3.23)

which implies ((3.13)).
It remains to show the boundedness of the feedback control, with (y1,7y2, A, M ) as in

We see that P P PgM, because P, Mh =P M(Pth + Pel h) = P, MPth for all h € L2
Here Pg,, = PgM Iy stands for the orthogonal projection in L? onto £y;. Using (3 we obtain that

Em

the feedback operator K7, satisfy

2| /\’ Pl )\‘P M pe AP, PR

M o2y 5M o2 e ALey F 51\1 £(L2)
< A|pm Py, AP Pl <) j 3.24
— ’ Unr £L2)‘ SJM gM‘E(L2) SM E(Lz) — (XM’ L{]\/[ L:(LQ) ( ‘ a’)
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and corresponding control Kﬁzk

i < zay |PEH[ < xan | PEM| T et gy
‘ M=k L2(Ry,L2) — QM‘ Unt | £(12) 2kl L2y L2y < O‘M‘ Unt | 112y |20 2 ; e
a1 | pEi)?
= Awp ‘PuMlﬁ(LQ)\Zo!sz (3.24b)

where a)y is as in (3.8). Finally, with Cp is as in (3.8)), we also obtain the bounds

~ 12
L2 < Xayp Cplzoly2 - (3.25)

The proof is finished. O

1@‘ < AayC%,  and ]/cA
’ M L(LQ) = AapyUp an MRk

4. STABILIZATION OF THE VARIATIONAL INEQUALITY

Here we prove the main result, which we can write now in a more precise form as follows.

Theorem 4.1. Let Assumptions hold true, let ;1 > 0, and let the pairs (Unr, Ear) be constructed
as in Section . Further let y € Wioe(Ry; HY, V') with ry € Wiee(Ry; H?, L?) solve (1.1)). Then
for M and X\ large enough the solution w of system (1.8)) satisfies

lw(t) —y(t)| 2 < e M |wo — Yol 2, t>0. (4.1)
Furthermore, with ay; and Cp as in (3.8)) the control satisfies

<Nanp ' Chlwo —yole (42)

‘IC?/[L(H) < XayC%  and ’K@(w —v)

L2(R+,L2)

Proof. Let us fix A > 0 and M € N so that Theorem [3.4] holds true. Note that A > 0 and M € N are
independent of k.

Let yi and wy, be the solutions of the Moreau—Yosida approximations (3.1)) and (3.2)), respectively.
For the difference between the solution w of ([1.8) and the solution y of (1.1 we find

w(t) = y(O)l 2 < [w(t) —wp )|z + [wk(t) = yr()| L2 + [yx(t) =y ()] L2 (4.3a)

Let us now be given arbitrary ¢ >0, o> 1, T > 0, and t € [0, 7.

Now for the pair (y,y) we apply Theoremwith (fx, Q) = (f,al+b-V), and for the pair (wg, w)
we apply Theorem with (fi, Q) = (f + K3yk,al +b-V + K},). In this way we obtain that, for
large enough k = k(e,T'), we have

Pk = Yleqoryrzy S € and  r(wp —w)leory,2) S € with  r(t) = minft, 1}. (4.3b)
and, since zp = wy — yp satisfies , that is , by using Theorem |3.4] we obtain
lwi(t) — yr ()2 < e ™ |wo — yo| 2, for every k € N. (4.3c)
Hence, by selecting k large enough, from we obtain that, at time ¢t =T > 0,

w(T) = y(T)| 2 < 2max{z, e +e " |wo — yolps .
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Choosing now € := %min{T, 1}o— 1)e # jwo — Yol 2, We arrive at
[w(T) = y(T)| 2 < (0 = e ™ |wo — yol 2 + ™ Jwo — yo| 12 = 0e™ Jwo — Yol 2.
Furthermore, since T' > 0 and g > 1 are arbitrary we arrive at
lw(t) —y(t)| ;2 < e " |wo — Yoz, t>0.

Finally proceeding as in (3.24)), we find

A ~ Eir|? ~ 12
"CM(U} - p) LR+ L7) < Aoy ‘PL{M £ [w = plroes L2y < Amp™ Cp [wo = Yol 2,
with aps and Cp as in (3.8)), which finishes the proof. O

5. NUMERICAL SIMULATIONS

We consider Moreau—Yosida approximations of one-dimensional parabolic variational inequality in
the spatial open interval 2 = (0,1) C R, and impose homogeneous Neumann boundary conditions,
for simplicity.

%yk +(~vA+ Dy +ayp +b-Vyp — f+k(yr — )T =0, t>0, (5.1a)
anvkle =0, yk(-,0) = yo. (5.1b)
For the parameters, we have chosen
v=0.1, f(z,t) = —sin(t)z, (5.2a)
a(z,t) = -6+ 2+ 2[sin(t + o), b(x,t) = cos(t)x? (5.2b)
and
P(z,t) = 2+ cos(t) + cos (10mz(z — 1) (z — % cos(5t))) . (5.2c)

Recall that by Theorem 2.8, we have that y; gives us an approximation of the solution y of the
variational inequality with the same data parameters. See also Remark [T}
The targeted trajectory y is the one issued, at initial time ¢ = 0, from the state

y(x,0) = yo(x) = 3 cos(mz), (5.3)
and we want to target such trajectory starting, again at time ¢ = 0, from the state

w(z,0) = wo(x) = —1. (5.4)
Again by Theorem [2.8, we have that wy solving

Swg, + (—vA + Dwy, + awg +b- Vg, — f = Kip(wy — yp) + k(wp, —¢)" =0, t>0,  (5.5a)
%wklr =0, wk(+,0) = wo, (5.5Db)

gives us an approximation of the solution w of the controlled variational inequality with the same data
parameters.



0 N o o

10

11
12
13
14
15
16
17
18
19
20
21
22
23
24

25

26
27

STABILIZATION FOR NONAUTONOMOUS PARABOLIC SYSTEMS 25

Initial states are plotted in Figure [I}

For a fixed M € N we take M, = M actuators as in [15] which are indicator functions 1 of the
J

subdomains
wi' = 3t — oo o + or)> JE€{l2,... M}
In particular, note that the total volume covered by the actuators is independent of M. It is given
by %0, which is 10% of the total volume of the spatial domain.
As auxiliary space of eigenfunctions we take the first eigenfunctions of the Laplace operator, under
the imposed Neumann boundary conditions, namely

6;'\4 = COS((j — 1)71‘56), j € {1,2, ... ,M}.

The obstacle (-, t) satisfies 8%1/1 = 0 at every t > 0. Recall that our Assumption requires

that %w > —n for a suitable positive function —n € VV&)E (R4) > 0 hence it is satisfied.

Furthermore, we can see that Assumptions 2.4] are satisfied. Therefore all the hypothesis of
Theorems [3.4] are satisfied. Hereafter we present the results of simulations illustrating the stability
result stated in the thesis of Theorem [3.41

As we have mentioned above, by solving systems and , by Theorem with a relatively
large Moreau—Yosida parameter k = kj;y we expect to obtain a relatively good approximation of
the behavior of the limit solutions for the corresponding variational inequalities. Depending on the
simulation example, we have taken kjsy in the interval [500,20000).

For the discretization, we considered a finite element spatial approximation based on the classical
piecewise linear hat functions, where the closure [0, 1] of the spatial interval has been discretized with a
regular mesh with 2001 equidistant points. Subsequently the closure [0, +00) of the temporal interval
has been discretized with a uniform time-step tsp > 0 and a Crank-Nicolson/Adams-Bashforth
scheme was used. Depending on the simulation we have taken tgep, € {1074,107°}.

In the figures below we denote H := L?(Q).

5.1. Stabilizing performance of the feedback control

In Figure [2| we can see that with 5 actuators and A = 4 the explicit oblique projection feedback
control we propose in this manuscript is able to stabilize the solution w = wj of the Moreau—Yosida

States at t = 0

4
3§_’\/
ol
11
ol

tstep = 0.0001

kyvy = 1000
M, =5
A =
S
—p(e,t)
-2 y(-, 1)
[ u)(-,t)
-3 . . . . -
0 0.2 0.4 0.6 0.8 1

x €

FIGURE 1. Initial states.
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log(Jw(t) — y(®)|%) 10 log (| Kar(w(#) — y(8))[~@)
0 _
tatep = 0.0001
Eyvy = 1000
-20 1 My, =5 or
A=4
40 10t
-60 -20 1
-80 : : : ; -30 s ‘ s |
0 1 2 3 4 0 1 2 3 4
time ¢ time ¢

Fi1GURE 2. Norms of difference to target and control.

approximation, with k& = kyry = 1000, to the corresponding targeted uncontrolled solution approxi-
mation y = yg.

Time snapshots of the corresponding trajectories and control are shown in Figures|3| It is interesting
to observe, at time ¢ = 0.05, the 5 bumps on the shape of the controlled solution, which are pointing
towards the targeted one. The spatial location of these bumps coincide with spatial location of the
actuators, and they show the action of the feedback control pushing the controlled solution towards
the targeted one.

5.2. On the Moreau—Yosida parameter kyry

The goal of this section is to show that it is very likely that the Moreau—Yosida approximation with
parameter kyy = 500 in the above simulation give us already a good approximation of the behavior
of the limit solution of the variational inequality. Indeed, in Figure [4, we can see that the norm of the
difference to the target presents an analogous evolution for the considered parameters kyrys.

In Figure [5| we see that the obstacle constraint violation decreases as kyry increases, as we expect,
since at the limit we must have a vanishing constraint violation. Furthermore, from Lemma we
have that & [(yx — )" [r2(ax (o)) < C for a suitable constant C' independent of k. Figure ows
that the violation decreases (at each instant of time) as k increases.

In Figure [6] we see a time snapshot of the controlled trajectories and control, where we see a small
difference between the controlled trajectories for the several kjsys. A similar behavior was observed
for the corresponding targeted trajectories, for simplicity we plotted only the targeted trajectory y
corresponding to kpry = 500 (which, at that instant of time, is already almost indistinguishable form
the controlled states with the naked eye).

5.3. Necessity of both large M and large A

From our result, for stability it is sufficient to take large M and large A\. Here, we present simulations
showing that such condition is also necessary.
5.3.1. Necessity of large enough M

In Figure [7] we see that with a single actuator we cannot stabilize the system, even for the relatively
large A = 50. Furthermore, for small time we cannot see a considerable change in the norm of the
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States at ¢t = 0.05

4 w
2 .
totep = 0.0001
, Eary = 1000
ol .7 . - M, =5
b ” S ‘~~~.-_ AN=4
2 [m—tp(e 1) LT Se_Le-
y('7t)
---w(,t)
-4 w w w w w
0 0.2 0.4 0.6 0.8 1
x €
4 States at ¢t = 0.5

O N \s~
o N “~\
-4 . . . . .
0 0.2 0.4 0.6 0.8 1
x €

States at t = 1.5

0 0.2 0.4 0.6 0.8 1
x €

Control at t = 0.05
200

150 -
100 +
50 1

-50 ”

-100 ¢

0 0.2 0.4 0.6 0.8
x €

Control at t = 0.5

0 0.2 0.4 0.6 0.8
x e Q)

Control at ¢t = 1.5
0.02

0.015+
0.01 ¢

0.005 ¢

0 d L
-0.005 - “

-0.01 ‘ ‘ ‘ ‘
0 0.2 0.4 0.6 0.8
x €

FicUure 3. Time snapshots of trajectories and control. Larger time

27

difference to the target for the several As. This allow us to extrapolate that one actuator is not enough

to stabilize the system.

In Figure [8| we present time snapshots of trajectories and control. We see that by taking a larger A
we cannot see a strong enough influence on the evolution of the trajectory to expect (or, hope for) a

stabilization effect for large values of .
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log(Jw(t) — y(t)|%)

log (1153, (w(t) — y(8)|L=(a))

0 10
——— tatep = 0.0001
\\ M, =5

20 t N\ A=
-40 |
-60 | Eary = 500

........... kary = 1000

vy = 2000
-80 ‘ ‘ ‘ ‘
0 1 2 3 4
time ¢
FIGURE 4. Norms of difference to target and control
max,cq max{y(x,t) — Y(x,t),0 max,cqo max{w(x,t) — Y(x,t),0
0.08. e {y(z,t) (x,1),0} 0.08 - e {w(z,?) (x,1),0}
kmy = 500 tstep = 0.0001
----------- Fay = 1000 M, =5
0.06 [ =~ fwy = 2000 A= 0.06 |
ooat [\ | 0.04 |
0.02 . 002} |
0 0
0 1 2 3 4 0 1 2 3 4

time ¢

FIGURE 5. Largest magnitude of obstacle constraint violation

5.3.2. Necessity of large enough A

In Figure [0 we see that with A = 1 we cannot stabilize the system, even if we take 20 actuators.
Furthermore, for small time we cannot see a considerable change in the norm of the difference to the
target for the several M,s. This allow us to extrapolate that it is necessary to take A > 1 if we want
to stabilize the system.

In Figure we present time snapshots of trajectories and control. We see that with 10 and 20
actuators we cannot see a strong enough change on the evolution of the trajectory to expect (or, hope
for) a stabilization effect for large values of M,.

5.3.3. On the achievement of an arbitrarily small exponential decreasing rate —p < 0

From our result we can reach an arbitrarily small exponential decreasing rate —u, provided we take
both M, and A large enough. This is shown in Figure where we see that with (M, \) = (10,6)
we obtain a smaller exponential rate than with (M,, \) = (4,3). We also observe that with (M,, A\) =
(2,2) we are also able to stabilize the system, however this case does not fully confirm our result, where
we can also guarantee that the norm of the difference to the targeted trajectory is strictly decreasing.



A W N =

© 0 N O

11
12
13
14

STABILIZATION FOR NONAUTONOMOUS PARABOLIC SYSTEMS 29

In the zoomed subplot, in Figure we can see that for small time the norm of the difference in not
strictly decreasing, for (M,,\) = (2,2).

The time snapshots in Figure [12| also confirm that with a pair (M,, A) with larger coordinates, we
obtain a faster convergence of the controlled trajectory w to the targeted one .

5.4. The uncontrolled dynamics

Here we show that the uncontrolled dynamics is unstable. That is, a control is necessary to stabilize
the system to the targeted trajectory. In Figure[I3|the symbol FeedOn denotes the time interval where
the feedback control is switched on. Thus, outside this time interval the free (uncontrolled) dynamics
is followed. We see that the free dynamics is exponentially unstable, as the norm of the difference
to the target increases exponentially when the control is switched off. On the other hand, when the
control is switched on we see that such norm decreases exponential, confirming again our theoretical
stabilizability results.

Time snapshots in Figure show again that the trajectory w corresponding to the free dynam-
ics FeedOn = (0,0) is not approaching the targeted one y as time increases (cf. Figure [1)).

w(t) at t = 1.5 Ky (w(t) —y(t)) at t =1.5
351 0.02¢ M
_d)('at)
= y('vt)
3 ——kmy = 500
e By = 1000 0.01
2.5 Eary = 2000
2 [ -
taep — 0.0001 \ 0 | =
1.5r M, =5 |
A=4 b
1 : : : : : -0.01 : : : : :
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
x e time ¢
FIGURE 6. Time snapshots of trajectories and controls
s log(|w(t) — y(t)|%) 65 log (|3, (w(t) — y(2))| =)
— =5 adl
4.5 v x=20 A= 6 :
A=s50 A
ab 5.5
a5 gz 5}
3t =
25+
/ Fary = 1000
21/ M, =1
1.5 ‘ ‘ ‘ ‘ ‘
0.2 0.4 0.6 0.8 1

time ¢

F1GURE 7. Norms of difference to targeted state and of control
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5.5. Evolution of the contact set and the Moreau—Yosida parameter

Here, we investigate the evolution of the contact (or, active) set. In Figure E we see that the
behavior of the norm of the difference to target and of the control is similar for the several Moreau—
Yosida parameters, with some differences for time ¢ > 1.5. So, the considered parameters give us
already a good picture of the qualitative behavior of the limit difference and control as kyry diverges
to +o0.

The time snapshots in Figure show that the smallest value of kyry already captures a good
picture of the likely limit behavior for the parabolic variational inequality.

From Figure[l7 we can conjecture also that the magnitude of the violation of the obstacle constraint
converges to zero as kny — 0o. That is, at the limit such magnitude will vanish, as we expect due to
the theoretical results.

Finally, in Figures 23| and we can see the evolution of the obstacle constraint violation set. It is
interesting to observe that with the smallest value of kyy = 5000 considered, we can already capture
a good picture of the likely limit contact set evolution for the parabolic variational inequality. The
evolution is not simple, for example the number of contact connected components change with time,
this can simply be explained from the fact that the moving obstacle and its shape (cf. Figure |3 and
other time snapshots) are not simple themselves.

6. NUMERICAL SIMULATIONS FOR A NONSMOOTH OBSTACLE

Note that the stability result for the sequence of kyry-Moreau—Yosida approximations hold true for
obstacles which live in LIQOC(Q x Ry ), and in particular we have a weak limit for the pair z; = yp — wg,
Thus, we may ask ourselves if yi and wj also converge separately and if each of these limits satisfy
(a weaker formulation of) the variational inequality. Next, we present results of simulations which
suggest that this may be indeed the case for obstacles in C'([0,4+00), L?(2)). This means that our
result can probably be extended to less regular obstacles. Such extension is an interesting problem
for future investigation. Note that, if possible, such extension is nontrivial and thus will likely require
a considerably different proof.

The following simulations correspond to the setting as in with the exception that we take a
nonsmooth obstacle. Namely, we modify the smooth obstacle in , by changing it to constant

w(t) at t = 0.75 Ky (w(t) —y(t)) at t = 0.75
5 . 50
ol 40 -
30+
adl WD)
A y( ) 207
- it step — 1l€- —_A=5
10 M:: 1 v A = 20 10 +
kay = 1000 A =50
15 ‘ ‘ ‘ ‘ ‘ 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
x e Q x €

F1GURE 8. Time snapshots of trajectories and controls
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functions on the spatial set [0, 15] U[35, 1]. More precisely, we take the obstacle
%, if x € [0, 1—10 ;
Y, t) = ¢ 2+ cos(t) + cos (10mz(z — 1) (z — T cos(51))), ifz € (35, 5);
— 15 it e [£,1].

In Figure [20] we cannot see a considerable difference in the behavior of the norm of the difference
to target and of the control for the several Moreau—Yosida parameters. The same holds for the time
snapshots in Figure So we can conjecture that the considered parameters give us already a good
picture of the behavior of the limit difference and control as kyry diverges to +oc.

From Figure 22| we can conjecture also that the magnitude of the violation of the obstacle constraint
converges to zero as kyy — 00.

All the above suggest that a variational inequality will be satisfied at a limit. But, this remains to
be proven for nonsmooth obstacles.



10
11
12
13
14

32

A. KrRONER, C. N. RAUTENBERG, AND S. S. RODRIGUES

log(|w(t) —y(t)I%) 10. log (1153, (w(t) — y(8)|L=(a))
0 tatep = 0.0001
Fary = 1000
-20 [ Zoom ’ \\
40+ | el \
1 ~o ‘.
o 0.05 S
time ¢ .
60 — (1,0 = (22)
i (Mg, \) = (4,3) | "= mm el A
- == (Mys,2) = (10,6)
-80 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 1 2 3 4 0 1 2 3 4
time ¢ time ¢
FiGURE 11. Norms of difference to targeted state and of control
w(t) at t = 0.25 Ky (w(t) —y(t)) at t = 0.25
, S ACIORT0)

™. N tstep = 0.0001 501 @ oo M
Kary = 1000 i i

0 n n ::
0 ': :: - :' !
I n il
2 )= S :

........... ) = — " "
- = = (M,,)\) = (10,6) i i

-4 : : : : = -50 : - : : ;

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

x € Q x e N

FIGURE 12. Time snapshots of trajectories and controls

Finally, in Figures and we can see the evolution of the obstacle constraint violation sets.

Again, the smallest value of kyry provides us already with good picture of such evolutions. However,
note that by taking the largest value we are able to “sharpen” the picture, in particular it confirms
that locally the contact is made at the single (discontinuity) point x = 0.8 during a suitable interval
of time, where t = 1.5 is included, as we see in the snapshot in Figure We also observe that the
discontinuity of the obstacle at the spatial points x € {0.1,0.8} is somehow reflected in Figures
and 241
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