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Abstract

We focus on elliptic quasi-variational inequalities (QVIs) of obstacle type and prove a number of results on the
existence of solutions, directional differentiability and optimal control of such QVIs. We give three existence theorems
based on an order approach, an iteration scheme and a sequential regularisation through partial differential equations. We
show that the solution map taking the source term into the set of solutions of the QVI is directionally differentiable for
general data and locally Hadamard differentiable obstacle mappings, thereby extending in particular the results of our
previous work which provided the first differentiability result for QVIs in infinite dimensions. Optimal control problems
with QVI constraints are also considered and we derive various forms of stationarity conditions for control problems,
thus supplying among the first such results in this area.

Contents

Introduction
1.1 Contributions of the paper . . . . . . . . . . o e e e e e e e e e e e e
1.2 Basic assumptions and nOtations . . . . . . . . .. oL oL e e e e e e e e e e e e e e

Existence for QVIs

2.1 Tterationscheme . . . . . . . . . . o L e e e e e e e e
2.2 Birkhoff-Tartar order approach . . . . . . . . . . . . . e e e e e e e e
2.3 Sequential regularisation by PDEs . . . . . . .. L e

Directional differentiability

3.1 TIteration scheme and expansion formulae . . . . . . . . .. .. ... o
3.2 Passagetothe limit . . . . . . . . . .. L
3.3 Continuity properties of the directional derivative . . . . . . . . . .. ... ... e
3.4 Complementarity characterisation of the directional derivative . . . .. .. ... .. ... ... .....
3.5 Examples of QVIs with multiple solutions . . . . . . . . . . . . 0 i e e e

Existence of optimal controls
4.1 The penalised optimal control problem . . . . . . . . . ... L L

Stationarity

5.1 Bouligand stationarity . . . . . . . . . oL e e e e e e e e e e e e e e e e e e e e e

5.2 Weak C-stationarity . . . . . . o v v v v it e e e e e e e e e e e e e e e e e e e e e e e e
5.2.1 Stationarity for the penalised optimal control problem . . . . . . ... ... ... ... ...,
522 Passagetothelimitp — 0 . . . . . . . . L e

5.3 E-almost C-Stationarity . . . . . o v v v v v e e e e e e e e e e e e e e e e e e e e e

5.4 From &-almost to C-stationarity . . . . . . . . . e e e e e e e e e e

5.5 Strong stationarity . . . . . . .. .. e e e e e e e e e e e e e e e e e e e e e e

W W

N A

10

13
15
16
16

17
18

The authors extend their gratitude to the two referees for their careful reading and excellent comments which helped to greatly improve some

*Weierstrass Institute, Mohrenstrasse 39, 10117 Berlin, Germany (alphonse@wias-berlin.de)
TWeierstrass Institute, Mohrenstrasse 39, 10117 Berlin, Germany (hintermueller@wias-berlin.de)

of the results and presentation. AA and MH were partially supported by the DFG through the DFG SPP 1962 Priority Programme Non-smooth and
Complementarity-based Distributed Parameter Systems: Simulation and Hierarchical Optimization within project 10. MH and CNR acknowledge the
support of Germany’s Excellence Strategy - The Berlin Mathematics Research Center MATH+ (EXC-2046/1, project ID: 390685689) within project
AA4-3. In addition, MH acknowledges the support of SFB-TRR154 within subproject B02, and CNR was supported by NSF grant DMS-2012391.

*Department of Mathematical Sciences and the Center for Mathematics and Artificial Intelligence (CMAT), George Mason University, Fairfax, VA

22030, USA (crautenb@gmu.edu)



A Technical proofs 30

B Sketch proof of Theorem 5.16 31

1 Introduction

Quasi-variational inequalities (QVIs) are generalisations of variational inequalities (VIs) where the constraint set in which
the solution is sought depends on the unknown solution itself. The very nature of the dependency of the constraint set
on the solution intrinsically leads to a complicated and challenging mathematical structure since it significantly amplifies
the nonlinear and nonsmooth nature of VIs. Another attribute that fundamentally distinguishes QVIs from VIs is the lack
of uniqueness of solutions (in general) which then necessitates the consideration of multi-valued or set-valued solution
mappings. QVIs arise in a multitude of models describing phenomena in fields such as biology, physics, economics and
social sciences amongst others. First introduced by Bensoussan and Lions [17, 48] in the study of stochastic impulse
controls, specific applications involving QVIs are thermoforming processes [4, 7], the formation and growth of lakes,
rivers and sandpiles [59, 15, 58, 56, 16], games in the context of generalised Nash equilibrium problems [34, 25, 55], and
magnetisation of superconductors [44, 14, 57, 62]. See [5, 12] for additional details and references.
In this paper, we focus on elliptic QVIs of obstacle type or compliant obstacle problems. These have the form

findy e K(y): (Ay— f,y—v) <0 Vo€ K(y) where K(y) :={v eV :v < P(y)}. (1)

Here f € V*is data, ®: V — V is a given obstacle map, and V' is a reflexive Banach space possessing an ordering <
which is used in the definition of the constraint set (we shall be more precise below). Let us define Q to be the solution
map associated to the QVI in (1) so that it reads y € Q(f). We develop in this paper theory addressing the matters
of existence for (1), directional differentiability of Q and stationarity conditions for optimal control problems with QVI
constraints of the form
1 2 V2

in 2 lly = yally + 5 llully - @

yEQ(u)
Different methodologies exist for the mathematical treatment of existence for QVIs. There is an approach based on order
that was pioneered by Tartar [67] which relies on the existence of subsolutions and supersolutions to guarantee existence
of solutions (typically, one takes O as a subsolution which would hold under sign conditions on the source term). In
certain cases, the QVI can be expressed as a generalized equation and it therefore belongs to a more general problem class
[40, 41, 26, 39, 27]. In problems involving constraints on derivatives (which is not the case under consideration in this
paper), special forms of regularisation of the constraint that modify the partial differential operator may be suitable, see
[62, 52, 10, 11]. For more details, we refer the reader to the survey paper [5]. We discuss in §2 appropriate conditions
on the function spaces and the obstacle map ® for Q(f) to be non-empty. One approach relies on an iteration argument
where a contraction-type property of ® is used. Another existence result is given for source terms bounded from below
by using the aforementioned Birkhoff—Tartar theory, and we also study a sequential regularisation approach of the QVI
by PDEs where the QVI constraint is handled by a penalty term.

Literature on the differentiability and sensitivity analysis for solution maps associated to QVIs in infinite dimensions
is almost non-existent: our contributions [4, 6] appear to be the first ones that address these issues. In [4], we give a first
directional differentiability result for the solution map taking the source term into the set of solutions for non-negative
sources and directions whilst in [6] we studied continuity properties related to minimal and maximal solution mappings
of QVIs. In §3, we derive directional differentiablity results for Q. We extend and improve here our previous work
[4] which provided differentiability results for source and direction terms that are non-negative; in this paper we shall
remove this restriction in our Theorem 3.2, which requires minimal (and locally formulated) assumptions to apply. We
give a characterisations of the QVI that is satisfied by the directional derivative of Q as a complementarity system and
in §3.3 we also prove a continuity result that shows that the derivative depends continuously on the direction under some
assumptions. This gives a comprehensive answer to the question of sensitivity analysis of QVIs under rather general
conditions.

The scarcity of work done on the optimal control of QVIs in infinite dimensions is unsurprisingly even more pro-
nounced; see [2, 6, 23, 24, 54] for some of the very few contributions. In our work [6], in addition to stability properties
we also provided results on the optimal control of minimal and maximal solutions of QVIs. While this article was under
preparation, we note that [72] has appeared wherein the author considers elliptic QVIs and their differential sensitivity
and strong stationarity conditions for the optimal control problem but for Frechet differentiable obstacle maps ®; we
assume only Hadamard differentiability of ® for the differentiability result and we furthermore provide other forms of
stationarity as well as existence/approximation results. For QVIs in the finite dimensional setting, see [53] and the ref-
erences therein. In sharp contrast, control problems with VI constraints have attracted wide attention: see for example
[13,51, 19, 18, 38, 37, 36, 65, 43, 33, 69] and the references therein. We shall consider in §4 the optimal control problem
(2) where existence of the optimal control will be shown using a standard calculus of variations argument. Then we turn
our attention to the derivation of stationarity conditions for the optimal control and state. There are a number of concepts



of stationarity for these types of control problems, see [37] for a discussion. We first work on obtaining Bouligand sta-
tionarity in §5.1, then a form of weak C-stationarity in §5.2, moving on to £-almost C-stationarity conditions in §5.3 by
approximating the QVI control-to-state map through PDEs (as done in §2.3) and then passing to the limit. We discuss in
§5.4 how to upgrade to C-stationarity from £-almost C-stationarity and finally, in §5.5, we provide a strong stationarity
result.

1.1 Contributions of the paper

We summarise the main results of this work.
« QVI:

— Theorems 2.18 and 2.19: existence for (1) via a penalty approach,

— Theorem 3.2: directional differentiability for QVIs for locally Hadamard maps ¢ under local Lipschitz con-
ditions,

— Proposition 2.1: complementarity characterisations of the QVI in (1),
— Proposition 3.12: continuity properties of the QVI satisfied by directional derivative,

— Proposition 3.13: complementarity characterisation of the QVI satisfied by the directional derivative of the
solution map.

¢ Optimal control:
— Theorem 4.1: existence of optimal controls for (2).

 Stationarity conditions for (2):

Proposition 5.2: Bouligand stationarity,

Theorem 5.5: weak C-stationarity,

Theorem 5.11: £-almost C-stationarity,

Proposition 5.15: C-stationarity,

Theorem 5.16: strong stationarity.

1.2 Basic assumptions and notations

We make some standing assumptions that are necessary throughout the paper, except where mentioned otherwise.

We always work with real Banach or Hilbert spaces. Let V' be a Banach space and denote the standard duality pairing
on V* x V by (-,-) = (-, )v-,v. Take A: V — V* to be a linear operator that satisfies the following properties for all
u,v €V:

(Au,v) < Cyllully vy, (boundedness)
(Au,u) > C, ||UH%/ ) (coercivity)
Aut,u™) <0, (T-monotonicity)
y

where C,, C, > 0 are constants. We will frequently suppose that the Banach space V' is a vector lattice for a partial
ordering <. This means that for all u,v € V, the following holds:
(1) uv < u (reflexivity),
(i) v <wvandv < v implies v = v (anti-symmetry),
(iil)) v < wvand v < w implies v < w (transitivity),
@iv) uw < v implies that u + w < v + w and Au < Av for A > 0,
(v) there exists a greatest lower bound inf(u, v) and a least upper bound sup(u, v) belonging to V.

See for example [3, 49] or [61, §4:5] for more details. It should be emphasised that in the context of function spaces over
a bounded Lipschitz domain €2, with < chosen as the usual a.e. ordering, (v) allows for V' = LP(Q) and V = W1P(Q)
for 1 < p < oo butnot V= W?2P(Q) in general. We write the positive cone of V as

Vi={veV:v>0}

(this is convex but not necessarily closed). If V' is a Banach lattice, the projection onto V. (assuming this is well defined)
of an element v € V agrees with sup(0, v), but this is not necessarily the case for a general vector lattice. Note that the
dual space V'* inherits an ordering: we say f < g in V* if and only if (g — f,v) > O forallv € V..

Regarding the obstacle map, we take ®: V' — V' to be given.

The identity operator will be denoted by I. We denote continuous, dense, and compact embeddings of spaces by <,

<—d>, and < respectively. The notation Br(u) will be used to mean the closed ball in V' of radius R centred at .



2 Existence for QVIs

We begin by discussing three existence results for the QVI in (1), reproduced here:
y<®(y): (Ay—fiy—v) <0 YWweV:v<d(y),

involving different approaches. We start by obtaining existence through iteration by solutions of VIs. Then we consider a
translation of the theory by Birkhoff—Tartar for source terms that are bounded from below and we finish by considering a
sequential regularisation approach through PDEs. These existence results entail different assumptions. The third approach
is useful for purposes of numerical realisation. The second approach requires ® to be increasing and bounded below in a
certain sense.

Before we proceed, let us give the following characterisation involving (1).

Proposition 2.1. The QVI in (1) is equivalent to the complementarity system

&= f— Ay, (3a)
£§>0, (3b)
<£a (I)(y) - y> = 07 (3C)
0<®(y) —v. (3d)

Proof. The proof is standard. By definition, & satisfies (§,y — v) > 0 for all feasible v. Setting v = ®(y) and then
v = 2y — ®(y), we obtain the orthogonality condition (3¢) for £. Testing with v = y — ¢ for p € V with ¢ > 0 gives the
stated non-negativity. The reverse direction follows from writing (Ay— f, y—v) = (Ay—f,y—®(y))+{Ay—f, (y) —v)
(where v is a feasible test function) and using the second and third lines in the system. [

2.1 TIteration scheme

We need the following assumption for this section (as an example, V = L%(Q) or H'({2) on a bounded Lipschitz domain
are valid).

Assumption 2.2. Let V be a Hilbert space and a vector lattice with V. closed and suppose that ®: V — V is increasing.

The lattice and increasing properties are necessary to apply the comparison principle for VIs [61, §4:5]. This as-
sumption also implies the following useful property (whose proof is in Appendix A), which can be thought of as a weak
monotone convergence theorem (in fact, it suffices for V' to be a reflexive Banach space rather than Hilbert for the result).

Lemma 2.3. If {v,} C V is a bounded sequence which is either increasing or decreasing (i.e., either v, < vy41 for all
N, or Uy, > Upy1 for all n), then there exists a v € V such that v, — v in 'V (for the full sequence).

Let S: V* x V — V be the solution mapping of the VI associated to the class of QVIs under consideration, i.e.

y = S(f, ) solves
y<®W): (Ay— fy—v) <0 YoeV:v< o).

Take a source term f € V* and set

yo:i=A"'f
to be the solution of the unconstrained problem. The function y; := S(f, o) satisfies' 1 < yo by the comparison
principle [61, §4:5, Theorem 5.1], and defining
Yn = S(fv yn—l)a

we see that y, < y,_1 by repeated applications of the comparison principle. Hence {y,,} is monotonically decreasing
and each y,, satisfies

Yn € Vyn < P(yn—1) : (Ayn — fiyn —v) <0 Yo eV :iv < P(y,—1). 4

We look for a uniform bound on {y, }. When the obstacle map is such that it always dominates some given function
vg € V, this is easy since we may test with v = vg. Otherwise, we need the following.

Lemma 2.4. [f

C,
|®(v)|l,, < Cx vy, Vv eV whereCx < o (®)]
b

then {yn} is bounded in V.

Heuristically, 1o is considered as a solution of the VI with source f and obstacle equal to co.



Proof. Since y,, < y,,—1 and ® is increasing, P (y,,) < P(y,—1) and so P(y,,) is a valid test function in (4) and we obtain

Callynlly < (Ayn, ®(yn)) + (f+yn — P(yn))
< Gy llynlly 12wn)lly + 11f Ly~ llyn — 2(yn)llv,
< CCx llynlly + (1 + Cx) |1 /]

Vv ynHV

From this, we deduce that y,, is bounded in V' under the condition on C'x in (5). ]
Now we pass to the limit and show that Q: V* = V is such that Q(f) # () under certain circumstances.

Theorem 2.5. Let Assumption 2.2 hold and suppose that

either there exists vo € V such that vg < ®(v) forallv € V, or (5), (6)
if {vn} CV is decreasing with v, = vinV and v < ®(vy,), then v < ®(v). @)

For any f € V'*, there exists a solution y € Q(f) N (—oo, AL f] which is the weak limit of the sequence {y, } defined
above.

Proof. We obtain, thanks to monotonicity and Lemma 2.3 that y,, — y in V' (for the full sequence) for some y. Since
{yn} is decreasing, y,, — yn € V4 where n > m for m fixed. As V is closed and convex, it is weakly sequentially
closed, giving y,, > y. This implies that for arbitrary v* € V with v* < ®(y), we have v* < $(y,,). We take such a v*
as the test function in the VI for y,,, and then pass to the limit to obtain that y satisfies the inequality in (1) and it remains
to be seen that y < ®(y). This follows from passing to the limit in y < y,,, < ®(y,,—1) by making use of (7). O

The assumption (7) is rather weak and it is satisfied if, for example, ®: V' — V is weakly sequentially continuous.

Remark 2.6. For QVIs with more general or different types of constraints one might need to assume Mosco convergence
(see [61, §4:4]) properties of the underlying constraint sets.

Example 2.7. The prototypical example for ® to have in mind is a map given by the inverse of a partial differential
operator such as

O(w) := L™ w + fo,

for example with L: V' — V* a second-order linear elliptic operator on a bounded Lipschitz domain 2 and fo € V. The
validity of elliptic regularity and continuous dependence estimates for L would give compactness properties for ® (and
weak maximum principles would also yield the increasing property for ®). See [4, §1.2] for more details on this and on
an application to fluid flow.

2.2 Birkhoff-Tartar order approach

In this section, we extend Birkhoff—Tartar-type existence results typically used for QVIs with non-negative source terms
to QVIs with source terms that are allowed to be negative. This leads to different assumptions than those made in §2.1.
The bedrock of this technique, as detailed in the introduction, is the result of Tartar [67] that gives existence of fixed points
for increasing maps that possess subsolutions and supersolutions, see also [9, Chapter 15, §15.2]. We need the following
functional setup in this section.

Assumption 2.8. Let V i> H be a continuous and dense embedding of Hilbert spaces and let C' C H be a closed convex
cone satisfying
C={heH:(h,g)g >0forallg e C}. (8)

This induces an ordering defined by
hy < hyifand only if ho — hy € H..

Note that Hy = C. We write h* = Py h to denote the orthogonal projection of h € H onto H, and define h™ :=
h* — h. We assume that v € V implies v € V and that there exists a C' > 0 with ||v" ||y < C||v||v forall v € V.
Finally, suppose that

®: H — V is increasing.

Note that H is a vector lattice (induced by C) and that the ordering induces an ordering for V" in the obvious way and
also an ordering for V* as elucidated in §1.2. Also, —h~ € P_py_h because C satisfies (8).

Let us recall the Birkhoff-Tartar result (see [9, §15.2, Proposition 2]) for increasing maps under the assumptions on
the function spaces in Assumption 2.8.



Theorem 2.9 (Birkhoff—Tartar). Suppose that T: H — H is an increasing map and let h be a subsolution and h be a
supersolution of the map T, i.e., o
h<T(h) and T(h)<h.

If h < h, then the set of fixed points of T in the interval [h, h] is non-empty and has a minimal and a maximal element.
With this at hand, we can study existence for (1).

Theorem 2.10. Let Assumption 2.8 hold and suppose that
there exists vg € V such that vg < ®(vp). 9)

Given f € V* with Avg < f < F for some F € V*, there exist solutions y € Q(f) N [vo, A™LF]. Furthermore, there
exists a minimal and a maximal solution on this interval.

Proof. By the comparison principle, S(f,vg) > S(Avg,vg) = vg, hence vy is a subsolution for S(f,-). Since ® is
increasing, A71F = S(F,®"!(00))’ > S(F,A"'F) > S(f, A7'F) so that A"'F is a supersolution. We also have
vo = S(Avg,vg) < S(F,v) < S(F,®71(00)) = A7LF, i.e., the subsolution lies below the supersolution. Finally,
S(f,-) is increasing due to ® being increasing. The result follows from the Birkhoff-Tartar theorem. O

A typical situation in examples is when ®(0) > 0 and f € V. While the assumption (9) of the existence of such a
vp may appear to be restrictive, note that choosing vy = 0 recovers the setting of [4] which has been successfully applied
to an application in thermoforming. The next example illustrates the existence of such a function vy to a map ® related to
solution maps of elliptic PDEs.

Example 2.11. Let Q C R"™ be a bounded Lipschitz domain and set H = L?(S2). Suppose (V, H,V*) is a Gelfand
triple® with V' a reflexive Banach space. Given a linear, bounded, coercive and T-monotone operator B: V. — V* and a
source term g € V*, let ®(u) = ¢ be defined” as the solution of

Bp =g+ u.

Take any vg € V. We claim that if g is such that

g = Bvg — wo,
in V*, then (9) is satisfied. To see this, set v := ®(vg) so that Bv = g + vo. Adding the same term to both sides, we
obtain B(v — vg) = g + vg — Buvy. Test this with the function (v — vg)~ to obtain

(B(v—v9)",(v—10)") < —{g+v9— Buvg, (v—19)") <0.

2.3 Sequential regularisation by PDEs

In this section, we obtain existence results for (1) by regularising the QVI by PDEs by a penalty approach similar to [47,
§3.5.2, p. 370]. There has been considerable effort on various aspects and methods of regularisation of VIs by PDEs;
see for example [30, §3.2] for an approach similar to what we consider here and [46] and [42, §IV] for a penalisation
involving approximations to the Heaviside graph (see also [61, §5:3] on this).

Assumption 2.12. Let V be a reflexive Banach space and a vector lattice such that V. is closed.

Recall that an operator T': X — X* is hemicontinuous [63, Definition 2.3] if s — (T'(x + sy), ) x~, x is continuous
forall z,y,z € X. For each p > 0,let m,: V — V™ be a hemicontinuous map such that

m,(v) =0ifv <0 (10)
(mp(u) —my(v),u —v) >0 (11)
2z, = zinVand my(z,) = 0inV*(asp —-0) = 2<0 (12)

Remark 2.13. The last condition precludes the possibility of having ‘bad’ choices of m,, such as p(-)*. It is also worth
pointing out that if m, = m for some map m, then (12) implies that

m(z) =0 = 2 <0,

which is the converse of (10), so (12) can be thought of a strengthening of the classical kernel or penalty condition that
one finds in penalty approaches for VIs.

2By S(F, ®~1(00)) we simply mean the solution of the unconstrained problem with source F. No invertibility of & is necessary.

3Recall that V' C H = H* C V* is called a Gelfand triple if V' is a reflexive Banach space continuously and densely embedded into the Hilbert
space H and H has been identified with its dual through the Riesz map.

4The interest in such obstacle mappings is not merely academic, see [4] for some applications.



It is always possible to find such a sequence of maps {m,}, see the next example as well as Example 2.17 for the
Gelfand triple case. For this reason, we will not usually explicitly refer to (10)—(12) in statements of theorems.

Example 2.14 (Existence of m,). Let V and V* be strictly convex’. Indeed, with J:V — V* denoting the duality
mapping® the choice

mp(u) :== J(u— Py_(u))

furnishes such an example where Py : V. — V_ is the metric projection’ onto the set of non-positive elements V_.
Properties (10) and (11) as well as hemicontinuity follow as in [47, §3.5.2, Theorem 5.1, p. 370]. In fact, note that
my(u) = 0 implies that w < 0 (because J is bijective and passes through the origin [73, Proposition 32.22 (a), (b)]).
For (12), denoting m, = m, by monotonicity, we have for every A > 0 and v € V that

(m(z,) —m(z+ ), 2z, — 2 — Av) >0

whence passing to the limit p — 0, using m(z,) — 0 in V* (by hypothesis), (m(z + Av), Av) > 0 and then dividing
through by X\ and sending A\ — 0, by hemicontinuity, we obtain that m(z) = 0 in V* and thus z < 0.

We consider the penalisation®

1
Ay, + ;mp(yp —®(y,) = f (13)

of (1) and study the convergence properties of its solution as p — 0. First, we discuss existence. We recall that a map
T: X — X* is said to be radially continuous [63, Definition 2.3] if s — (T'(z + sy),y)x+ x is continuous for all
z,y € X,and amap R: X — Y between Banach spaces is said to be completely continuous [66, §2] if x,, — zin X
implies that R(x,,) — R(xz)inY.

Proposition 2.15 (Existence for the penalised equation). Under Assumption 2.12, assume

there exists vg € V such that vg < ®(v) forallv € V (14)

and one of the following:
my(I—®): V — V™ is completely continuous, (15a)
my(I—®): V — V™ is monotone, radially continuous and bounded. (15b)

Given f € V*, there exists a solution y, € V of (13). Furthermore, every solution satisfies

191l < C ([ fllv- + llvolly)

where C'is independent of p.

Proof. We have that A + (1/p)m, (I — ®) is a bounded operator (under (15a), recall that completely continuous maps are
bounded). Let us show that it is also coercive. First, by adding and subtracting the same term, observe the formula

(mp(yp — (I)(yp))vyp — o) = (mp(yp — (yp)) — mp(vo — (I’(yp))7yp — o)
0

Y

(by monotonicity (11) and because m, = 0 on (=00, 0] from (10)). Now, using this, we have

2
<Aypayp - 'UO> + <mp(yp - CI)(yp)), Yp — 'UO> > C, ||yPHV -Gy ||ypHV ||U0H\/a

which yields coercivity of the full elliptic operator.

Suppose that (152) is available. By [66, §2, Lemma 2.1], A is a type M operator. Since the sum of a type M operator
and a completely continuous operator is type M [66, §2, Example 2.B], we get that the full elliptic operator is of type M.
Then [66, §2, Corollary 2.2] yields existence. Under (15b), the full elliptic operator is pseudomonotone by [63, Lemma
2.9 and Lemma 2.11] giving existence via [63, Theorem 2.6].

5 All Hilbert spaces (and thus their duals) are strictly convex. In fact, the strict convexity requirement in the assumption is no issue in the setting of
reflexive Banach spaces: by Asplund’s theorem (see e.g., [47, §2.2.2, Theorem 2.5]), V' can be renormed via an equivalent norm making V" and V'*
strictly convex.

%The assumption of strict convexity gives appropriate properties of 7 (such as single-valuedness), see [47, §2.2.2, p. 174] and [73, §32.3d] for more
details.

"This is well defined since we assumed V- (and hence V_) is closed and because V is a reflexive and strictly convex space.

8For the results of this section, it would be sufficient to simply consider the case where each m, = m, but in anticipation of the optimal control
problem that we shall later study (in particular when we derive optimality conditions), it becomes useful to consider this generality now.



Regarding the estimate on the solution, we test the equation with 3, — vy and use the above coercivity estimate to find

2
Callyolly < Collyplly lvolly + £ 1y IIypIIV + 1 lly- ||voHv

Ca 3¢, 2
< ?IlypHvﬂLfbllvoller ||fHV* +*||yp||v ||f|

2
VT 9 ”UOHV'

This gives the uniform bound

C, 2 3¢ 1 2 3
2 huolly < (362 + 1) lolf + (327 +3) 16 0

Remark 2.16. The assumptions of the previous lemma are by no means necessary. One could, for example, ask for
(I - ®): V — V tobeinvertible and A1 — ®)~1: V. — V* to be pseudomonotone and coercive instead of (15a) or
(15b) and then apply [63, Theorem 2.6] to obtain the same result.

Let us point out a very common setting.
Example 2.17 (Gelfand triple case). Suppose that

V C H=H" C V*is a Gelfand triple with V < H and H is a vector lattice defined via (8) with H closed, (16)
®: V — H is completely continuous. (17

Set h™ = Py h to be the orthogonal projection in H. We assume that (:)*: V — V.
We can take m,: V — H* = H defined by

and this satisfies (10), (11), (12) and (152). Indeed, (12) follows because Py, : H — H is Lipschitz continuous and the
compact embedding and complete continuity imply (152) (using the fact that the projection operator is continuous in H).

We write the possibly multivalued solution mapping associated to the equation under study as P,: V* = V, so0 (13)
reads y, € P,(f). Now, thanks to the lemma, for every source term f, € V*, the following equation has a solution /,:

1
Ay, + ;mp(yp*q)(yp)) = fp (13)
The next two theorems show that solutions of the regularised problem (13) converge to solutions of the QVI under varying

assumptions.

Theorem 2.18 (Existence and approximation of solutions to the QVI). Let Assumption 2.12, (14), either (15a) or (15b)
and
®: V — V is completely continuous (19)

hold. Take a sequence f, — f in V*. Then there exists a subsequence {p,}, and elements y, € P, (f,.) such that
Yp, — y in'V wherey € Q(f).

Proof. The proof is in four steps and is similar to the proof of Theorem 2.3 of [36].

1. Uniform estimates and feasibility of limit. For each p, let y, be a solution of (18) (such a selection is possible due to
the axiom of choice). By Proposition 2.15, it satisfies the estimate

wolly < C (1folly- + llvolly)

and this is bounded, hence for a subsequence (which we do not attempt to differentiate for ease of reading), y, — yin V
to some y. Rearranging the equality (18),

Hmp(yp - q)(yp))‘ v =P ||fp - Ay/}HV* <Cp

and therefore m,,(y, — ®(y,)) — 0in V* as p — 0. Then (12) implies that y < ®(y).

2. Monotonicity formula. For v € V', we get by adding and subtracting the same term and using the monotonicity of m,,,

<mp(yp - (I)(yp))a Yp — U> = <mp(yp - (I)(yp)) - mp(v - (I)(yp))vyp - (I)(yp) + (I)(yp) - U>
+ (mp(v = 2(y,)),yp — v)
> (my(v—@(yp)),yp — v). (20)



3. Passage to the limit. Test the equation (18) with y, — v for v € V and use (20) to find

1
(Ao, yp) + ;(mp(v = (Yp)), Yo — ) < (fp,yp — V) + (AYp,v). 2n
Now, choose an arbitrary v* € V with v* < ®(y) and select the test function to be
Vp = v — (D(y) + ‘b(yp)'
With this choice, the second term on the left-hand side of the above inequality (21) is equal to zero by (10) and we find

<Aypvyp> < <fpvyp - U,o> =+ <Aypvvp>'

Noting that v, — v* in V' (thanks to the complete continuity (19)) and v, < ®(y,), take the limit inferior as p — 0 above
and use weak lower semicontinuity to gety € Q(f).

4. Strong convergence. Define v, := y + ®(y,) — ®(y) which has the properties

v, = yinV,
UP S (b(yp)7
Yo —0p = (Yo —y) + (2(y) — B(y,)) = 0inV,

the first holding since we already have y, — ¥ in V. Testing (18) appropriately, we have

(A(yp —vp)s Yp — Vp) = (fps Yp — Vp) — %<mp(yp = Q(Yp)),Yp — vp) — (Avp, yp — vp)

and to this we apply the monotonicity formula and coercivity of A to find

1
2
Cq ”yp - vp”v < <fpayp - ”p> - ;<mp(7’p - (I)(yp))vyp - Up> - <Avp7yp - Up>
= <fp7yp - ”p> - <Avpvyp - Up>~ (since vy < (I)(yp))
The right-hand side converges to zero, hence y, — v, — 0 strongly in V, implying y, — y. O

Theorem 2.18 requires the complete continuity condition (19) on ®. Let us consider how this assumption can be
weakened or substituted.

Theorem 2.19. Assume the conditions of Theorem 2.18, except replace the assumption (19) with
(A(), = ®)(-)): V — Ris weakly lower semicontinuous (22)
and assume one of the following:

®: V — V is weakly sequentially continuous, (23)
(16), (17) and f, — fin H.

Then there exists a subsequence {p,, },, and elements y, € P, (f,,) suchthaty, —y e Q(f)inV.

Proof. We modify the third step of the proof of Theorem 2.18 (and, like before, we do not distinguish subsequences of
{p}). We write the final inequality of step 3 as (Ay,,y, —v,) < (fs, Yp — v,), Which, recalling v, = v* — ®(y) + ®(y,),
is

(AYp, yp — @(Yp)) + (Ayp, @(y) —v™) < ([0, Yp — vp)-
By (22), we can take the limit inferior on the left-hand side. Regarding the right-hand side, let us consider the two cases
separately.

(1) Under (23), y, — v, = y —v* in V, and since f, — fin V*, we can pass to the limit on the right-hand side and we
obtain y € Q(f), hence y, — yin V.

(2) In the Gelfand triple case, we write the final term in the inequality above as the inner product (f,, y, — v,) 7 and pass
to the limit easily. O

Remark 2.20. It is not difficult to see that (22) and (23) are weaker assumptions than (19).

The theorem provides only weak convergence but strong convergence can be attained under additional assumptions as
the next remark shows.



Remark 2.21. [If, in addition to the conditions of Theorem 2.19 under the weak sequential continuity condition (23), we
also have
(AD(-), (I = ®)(-)): V — R is weakly lower semicontinuous’ (24)

then y,, — ®(y,,) = y — ®(y) in V. To see this, returning to step 4 of the proof of Theorem 2.18 where we recall
v, =y + ®(y,) — P(y), we start with the calculation

liggglf(Avp, Yp — Vp)

= 1iggglf (Aly = 2(y)), T = 2)(yp) + (y) —y) + (AP(y,), (I — ®)(y,)) + (AP (y,), 2(y) — v))

> (Aly = 2(y)), (T=2)(y) + 2(y) — y) + (A(y), I = @)(y)) + (A®(y), D(y) — v)
07

where for the inequality we used weak continuity for the first and last terms and (24) for the middle term. Now, taking
the limit superior in the final inequality of the proof of Theorem 2.18, using the identity limsup(a,) + liminf(b,) <
lim sup(a,, + b,) and the above calculation, we get

. . 2
lim sup(f,,y, — v,) = limsup (Ca lyp — volly, + (Avy, yp — ”p))
p—0 p—0

> limsup C, ||y, — Up”%/ .
p—0

Since the left-hand side is zero (by (23)), we deduce that y, — v, — 0 and hence y, — ®(y,) =y — ®(y) in V.
We see then that if for example

(I—®)~': V — V exists and is continuous,

we would also get the strong convergence y, — y.

Remark 2.22. If Q(f) is a singleton, then the convergence results of the previous theorems hold for the entire sequence
and not just a subsequence because the limit y = Q(f) is unique.

3 Directional differentiability

In this section, we extend the results of our previous work [4] which dealt with directional differentiability of the source-
to-solution map Q associated to (1) for non-negative source terms and directions. Formally, the goal is to show that the
following limit exists:

lim Q(f + sd) — Q(f).
s—0+ S
This is merely a formal limit since Q: V = V is set valued in general, however in case Q: V — V is single valued, it is
precise. It is important to obtain such a sensitivity result not only for applications but also for the procurement of certain
types of stationarity conditions for optimal control problems with QVI constraints, a topic that we will address in §5.

We will follow closely the approach of our earlier work [4] where we combined an iteration (by VIs) argument with
the directional differentiability result for VIs in Dirichlet space case provided by Mignot [50] but here, we make two
refinements: instead of the order approach for the iterations employed in [4], we shall use a contraction technique similar
to that in §2.1, and secondly, we shall use the VI differentiability result in [71] given under a general vector lattice setting,
which generalises the result in [50]. For this, we begin with the following assumption on the ordering.

Assumption 3.1. Let V be a reflexive Banach space which is a vector lattice induced by a closed convex cone C satisfying
C N —C = {0} and suppose that v, — v in'V implies sup(0, v, ) — sup(0,v) in V.

As before, we will identify C' with V and note that the strong-weak convergence part of the above assumption is
satisfied if there exists a constant M/ > 0 such that ||sup(0,v)||,, < C'||v]|;, for all v € V. To state the main result, we
need to introduce some notation. Recall from (1) the constraint set mapping K: V' = V defined by

Kw):={veV:v<d(w)}.

This is convex and closed (since V. is closed), and associated to this, we define the radial cone of K(w) at a point
u € K(w) by
Rk (w)(u) := {h € V : 35" > 0 such that u 4 sh € K(w) Vs € [0, s*]}

and the corresponding tangent cone Ty () (u) := R (w)(u). Finally, recall the notation Br(y) to stand for the closed
ball in V' of radius R centred at u.

9Note that (23) and (24) imply (22). Indeed, taking the limit inferior of { Awy,, (I—®)(un)) = (A(1—®)un, (I—®)upn) + (AP (un), I—2)(un)),
using superadditivity and weak sequential continuity on the first term and (24) on the second term allows us to deduce the claim.
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Theorem 3.2. Let Assumption 3.1 hold and given f € V* and d € V*, take y € Q(f) satisfying the local assumptions

there exists € > 0 such that ®: B.(y) — V is Lipschitz with Lipschitz constant Cg < C,/(Cy + Cy), (25)
®: V — V is Hadamard directionally differentiable at 1. (26)

Then, for s > 0 sufficiently small, there exists y* € Q(f + sd) N Br(y) (wWhere 0 < R < €) and o = a(d) € V such that
y® =y + sa+o(s)
where s~'o(s) — 0inV as s — 0T and « satisfies the QVI
ac€ KV (a): (Aa—d,a—v) <0 Yve KY(a),
K¥(0) =/ (5)(0) + Taciy () N 1S — Ayl 7
The directional derivative a« = «(d) is positively homogeneous in d.

The proof of this theorem will be given in the next subsections. For now, let us make some observations.

Remark 3.3. (i) The stated assumptions do not force solutions of the QVI to be unique. We will construct examples
demonstrating this fact in §3.5.

(ii) If there exists an € such that ® is Hadamard differentiable on B.(y) and
Vz e B(y),Yv eV, ||[®(z))|, <Cs|vl,, whereCo < Cyu/(Cq+ Ch), (28)
then (25) holds. This is immediate: take u,v € B.(y) and use the mean value theorem to find

1 (u) = (V)| < o 12" (M + (1 = M) (u = v)lly, < Co[lu— vl
€(0,

where we utilised the fact that Mu+ (1 —XN)v € B.(y). It can sometimes be easier to verify (28) than (25) depending
on the problem at hand.

(iii) The derivative « is the unique solution of the QVI (27), see Proposition 3.9.

(iv) All of the required assumptions on ® are local, i.e., they are based at or around a neighbourhood of the chosen
point y and we do not ask for them to hold globally on the whole of V. We may introduce more local assumptions
in the course of the paper and one should bear in mind that such conditions are stated in terms of a fixed element y
which, in later sections, need to be modified appropriately (for example in §5 such assumptions should be evaluated
at the function that we call y* ). This should become apparent from the context.

(v) In the theorem, the existence of a particular y € Q(f) is assumed; conditions under which Q(f) is non-empty were
given in the existence results of §2.

(vi) This theorem generalises and improves the result of Theorem 1.6 in our earlier paper [4]. In particular, the case
f,d € V corresponds to the main result of [4] (which also requires additional assumptions).

(vii) A differentiability result for QVIs also appears in [72, Theorem 5.5]. There, in particular, the author requires
Fréchet differentiability for ® at y. In contrast, we require only Hadamard differentiability. In [72], A can be
nonlinear of Fréchet type; we have taken A to be linear in this paper for simplicity but this can be generalised: see
Remark 3.4.

Remark 3.4. We have taken A to be linear for technical simplicity but an examination of the proofs that follow show that
it would be possible for us to consider nonlinear A that are Hadamard differentiable in this section (a key point would be
to generalise [4, Proposition 1], as we shall come to see in the proceeding). For the stationarity results of section §5.2, A
would need to be continuously Fréchet differentiable. The details and the resulting changes are left to the reader.

Let us give an example of the functional setup which is typical for many applications.

Example 3.5 (The case of a Dirichlet space). Suppose that H := L?(X;u) where X is a locally compact, separable
metric space and . is a positive Radon measure on X with full support'®, and let V. C H be a dense subspace. The
ordering on these spaces is given by the usual a.e. ordering of functions.

Assume that there exists a symmetric, positive semidefinite bilinear form £: 'V x V' — R such that endowing V with

('7')V = (" )H +§('7 )

10T hat is,  is a non-negative Borel measure which is finite on compact sets and strictly positive on non-empty open sets.
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makes it a Hilbert space. Furthermore, we assume the Markov property'’
ifu €V thent :=min(u",1) € V and (a1, 1) < &(u,u)

and the density
VACX) S CuX)  and  VNC(X)3V.

The pair (V,€) is known as a regular Dirichlet form and V is the so-called Dirichlet space. This framework allows us to
define the notions of capacity, quasi-continuity and related concepts, see [28, §2.1] and [32, §3] for more details.

In this setting, Mignot proved'’the polyhedricity of sets of obstacle type in [50, Theorem 3.2] and the differentiability
of VI solution maps associated to such constraint sets in [50, Theorem 3.3]. We also have an explicit expression for the
critical cone appearing in (27) via [50, Lemma 3.2]:

K¥(w) :={p € V:p < ®(y)(w) g.e. on A(y) and (Ay — f, o — @' (y)(w)) = 0}.

Here, ‘q.e.’ stands for quasi-everywhere and a statement holds quasi-everywhere if it holds everywhere except on a set of
capacity zero, and A(y) refers to the active or coincidence set of the solution y to the QVI related to an obstacle map ,
Le.,

Aly) = {z e X :y(z) = ®(y)(x)} foryeV.
We in fact take the quasi-continuous representatives of the functions appearing in the definition so that A(y) is quasi-
closed and defined up to sets of capacity zero. It is important to note that the set of points defining the active set is taken

over X in the context of some Sobolev spaces over a domain ), this can sometimes be X = Q and not merely ), see [4,
§1.2] for more details.

Before we proceed, let us provide some notation. Define the critical cone
KY = Ty (v) N [f — Ay)*, (29)

and observe the relation
K¥(w) = @' (y)(w) + LY.

Recall that the polar cone of a set M C V is defined as

M°={geV*:(gv) <0 Yve M}

3.1 Iteration scheme and expansion formulae

To prove Theorem 3.2, we employ an iteration and passage to the limit approach like in our previous work [4]. We fix an
arbitrary f € V* and take an arbitrary but fixed y € Q(f)"’. Pick a direction d € V* and construct, similarly to §2.1, the
sequence

Yo =Y,

Y o= S(f +sdyy 1)
The idea here is to expand each y; in terms of y, a directional derivative and a remainder term (both of these would
depend on n) and then to pass to the limit in such an expansion. The natural way to proceed would be to obtain a uniform
bound on {y, } which would result in the existence of a weakly convergent subsequence {y; }. This is not enough to
identify the limit of {y;; } due to the (n — 1) index in the definition of y,,, so one would need convergence of the whole
sequence which holds true when, for example, one has monotonicity. However, in contrast to the sequence considered in
§2.1, we do not obtain any monotonicity of {y2} since we do not assume a sign on d nor do we assume monotonicity of
®. Therefore, for convergence of the full sequence, we instead look for a contraction of the map associated to {yZ} on
some small ball.

(30)

Lemma 3.6. Assume the Lipschitz property (25). Then forany 0 < R <€, S(f+sd,): Br(y) — Bgr(y) is a contraction
whenever
s < Cy|ldllyt R(1— (1+ CoC; M) Co).

Proof. Letv € Bg(y); we want to show that S(f + sd,v) € Br(y). Observe that, using y = S(f,y) and continuous
dependence (e.g. [4, Equation (21)]),
[S(f +sd,v) =yl < (1+CoCq ) [|®(v) = @)y + Cq s l|dlly -
< (14 GG M08 [lv = ylly + Cy s |ld]ly - (since v,y € Br(y) C Be(y))
<(1+CCHCeR+C s |y s

' This is also known as the unit contraction property.

121n fact, Mignot uses a weaker setting of positivity-preserving forms rather than the Dirichlet form setting described here with also some other weaker
conditions.

13Again, see §2 for existence of such y.
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and, using the fact that (1 + C,C;1)Cg equals a constant strictly less than 1, the right-hand side is bounded above by R.
This shows that S(f + sd, -) maps Br(y) into itself. To see that the map is a contraction, take v, w € Bg(y) and observe
that

IS(f + sd,v) = S(f + sd,w)lly, < (1+Ca ) | @(v) = B(w)]ly, < Ca(1+C'Cy) [lv —wlly, - O

Hence, under (25), we have that each y$ € Bpg(y). By applying the Banach fixed point theorem, we obtain the
following existence and convergence result.

Proposition 3.7. Given f,d € V* and y € Q(f), under (25) and sufficiently small s > 0, there exists y°* € Q(f + sd) N
Br(y) such that y5 — y° in'V (where y2 is defined in (30)).

Since we want to study differentiability of QVIs, we need some differentiability for the constraint set mapping. We
will henceforth assume the Hadamard differentiability at y condition (26). Now, making use of [71, Theorems 4.18 and
5.2] we can expand y; = S(f + sd,y) as follows:

yi =y +sa1+oi(s),

where s7 101 (s) — 0as s — 0% and a; = OS(f,y)(d) is the directional derivative of S(-, %) in the direction d, and this
satisfies the VI (recall ¥ from (29))

ag €KY (Aay —dyap —v) <0 Vo e kY.
To acquire an expansion formula for a general ¥, define for n > 1,
an = ®'(y)(an-1) + 0S(f,y)(d — AL’ (y)(om-1)).
In exactly the same way as in [4, Proposition 2], we obtain the following result.
Proposition 3.8. Under (25) and (26), for n > 1,
Yo =Y+ san + 0on(s) (31)
where s 10, (s) = 0as s — 07 and a,, = v, (d) is positively homogeneous in the direction d and satisfies the VI

Qnp S ’Cy(an—l) : <A0¢n - da Qp — <P> S O VQD S Ky(an—l)v
KY(ap—1) == KY + &' (y)(ap_1)-

See (35) for the precise definition of 0,,. The proof of this proposition, which we omit here, is by induction and makes
use of the expansion formula of [4, Proposition 1], which tells us that

Ypi1 = S(f +8d,y + san +0n(s)) =y + 5('(y)(an) + S(f,y)(d = AP (y)(an))) + 0nt1(s).

It remains then to pass to the limit in (31) and to identify the corresponding limits.

3.2 Passage to the limit
Observe that the conditions (25) and (26) imply that

®'(y): V — V is Lipschitz with Lipschitz constant C;, < Cy/Cp, 32)

which is precisely what is needed for the coming intermediary results. In particular, it allows for the Banach fixed point
theorem to be amenable to show the convergence of {«,, } as the next proposition demonstrates. But first, let us prove that
(32) is indeed a consequence. From the expansion formula ®(y + sh) = ®(y) + s®'(y)(h) + o(s; h) where o(-, h) is a
remainder term, we find

19/ () () — @) )y <~ |9y -+ 5h) — By + sl + + ol d) — ols: B}

Without loss of generality, we may assume that at least one of h and d is non-zero. We see that if s < €/(||h||,, + ||d||;,),
we have y + sh, y + sd € B.(y) and therefore, by (25),

12" (y)(h) = @' (W)()lly < Co ||k = dll, + % llo(s; d) = o(s; h)|ly, -

Taking s — 0T we obtain the statement after noting that Cop < C.

Proposition 3.9. Under (26) and (32), o, — «in'V where « is the unique solution of the QVI (27).
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Proof. Denote by T': V' — V the solution map v — [ of the inequality
BEKY(y):(AB—d,B—¢) <0 VpeKY(y).

This has a unique solution by the Lions—Stampacchia theorem [61, §4:3, Theorem 3.1], hence 7" is well defined.
Consider 1,72 € V with 81 := T'(v1) and By := T'(72). Testing the inequality for 5; with the feasible element
B2 — @' (y)(v2) + ®'(y)(y1) and vice versa and then combining both of the resulting inequalities, we find

(A(BL = B2), B1 — B2+ @' (y)(12) — @' (y)(11)) <0,

which implies, using (32),

C
181 — Bally < C—Z 19 () (72) — &' () (1)l < 72 = lly -

This shows that T': V' — V is a contraction. Therefore, thanks to the Banach fixed point theorem, the iterative sequence
Br :=T(Bn-1), b1 := a1, is such that 3,, = «a,, (by uniqueness of solutions) and «,, — « strongly in V' where « is the
fixed point of 7. O

Thanks to this result, it follows that 0,,(s) — 0*(s) in V for some 0*(s). We can send n — oo in (31) to obtain

y® =y +sa+o0"(s),

and it is left for us to show that o* is a remainder term. The idea in [4] was to show that the convergence s~ o, (s) = Oas

s — 07T is uniform in n, which is sufficient to commute the limits s — 0 and n — oo for s710,,(s), giving the desired
behaviour s~ 1o* (s) > 0ass — 0T. This was done in [4, Lemma 14], the proof of which we will now adapt under the
context of our current (more general) setting. For this, we need some more notation. For v € V and hy € V, we define
the remainder term associated to ®

I(s,h, hs;v) := ®(v + shy) — ®(v) — s® (v)(h), (33)

and since ® is Hadamard differentiable at y, if h, — hin V as s — 0T, then s‘lf(s, hyhs;y) — 0as s — 0. We write

I(s,h,h;v) = (s, h;v) when hy = h. Now let Sy: V* — V be the map f — u of the following VI with zero lower
obstacle:
ueVy:(Au— flu—v) <0 YveV,.

In a similar fashion to /. , we denote the remainder term associated to the expansion formula of Sy by 6:
6(s, hy hs; f) = So(f + shs) = So(f) — sS(f)(h).
Proposition 3.10. Under (25) and (26), s~ 10*(s) — 0 as s — 0.

Proof. Since y+ s, +0,(s) = y5 € Be(y) and {a, } is bounded, let us say by M, if s < M ~'e, then y + sav, € Be(y)
too. Hence, from (33) and the Lipschitz property (25), we have

(5, s+ 57 o)) | < (i, an + 57 0nl5)iw) = Us iy + s aniw)lly

= [[@(y + s(an + 57 0n(s))) — @y + sow)|, + (s, ans )l
< Ca [lon(s)lly + (115, an; y)lly - (34)

We see from [4, Equation (34) and Proposition 1] that o,, has the definition

On(s) = [(s7an—1aan—1 + Silon—l(s);y)

—0(s, AD' (y) (atn_1) — d, AD' (y) (1) — d + AsfllA(s,an_l, 1+ 5 L0, 1(5)); A®(y) — f). (35)

For ease of reading, let us omit the base point from the expressions for ] ,1, 6 and o from now on. That is, we write [ (yy0)
instead of {(-,-,;y) and likewise for the other terms. In the above equality, taking norms and, on the right-hand side,
using (34) on the first term and the corresponding estimate

Hé(s, hvh + S_th)HV S Ca_l ”hSHV* + ||0(37h)||v

for Sy and its remainder term (see [4, Lemma 1]) on the second term, we find

lon(s)lly < Ca llon—1()ly + 1i(s: 1)l + € Co [i(5. Q1,1 + 57 01 ()| + llo(s A (y)(@a-1) = )
< Ca(14C7'Cy) llon-1(8)ly + (1 + €7 Co) (s, an—1)lly + llo(s, AP (y) (1) = D)
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where we again used (34) on the penultimate term in the first line to obtain the second inequality. Defining
an(s) = llon(s)lly,  and  bu(s) = (1L+C ) i(s, an)lly + llo(s, AP’ (y) () — d)ly,

the above can be recast as
an(s) < Can—_1(s) + bp_1(s)

for some C' < 1 by the assumption on Cp in (25). Solving this recurrence inequality gives
an(s) < C" ai(s) +C"2by(s) + C" 3bay(s) + ...+ Cby_o(s) + by_1(s). (36)

Now, consider

S S S

bu1(s) _ (1+C'C) [lUs, an1)lly 4 llos, A @) (an—1) = D)y

By Proposition 3.9, a,, — « strongly in V, thus {a,—1} and {A®’(y)(a,—1) — d} are compact sets in V' and V*
respectively. Since the remainder terms [ and o appearing in the displayed equality above arise from the Hadamard (and
hence compact) differentiability of ® and the solution map .Sy associated to VIs, it follows that I(s,v)/s and o(s, h)/
s both converge to zero uniformly for v and h belonging to {c,,—1} and {A®'(y)(a,—1) — d} respectively. Because
{an-1} C {an—1}and {AP'(y)(an-1) — d} C {AP'(y)(cn,—1) — d}, we have that

l h
@ — O uniformly iny € {a,—1}  and ols,h)

— 0 uniformly in h € {A®' (y)(cvn,_1) — d},

which then gives
bn,1 (S)
S
This, along with (36) and the geometric series estimate C" 2 +C" 3 +.. . +C+1=(1-C"1)/(1-C) <1/(1-C)
implies that for every e > 0, there exists an sy independent of n such that

[lon(s)

”V < e whens < s
S

— 0 uniformly in n.

which means precisely that s~10,,(s) — 0 as s — 07 uniformly in n. Finally, recalling that o,,(s) converges in V, taking
the limit as n — oo in the above inequality, we deduce that s~ 10*(s) — 0 as s — 0. O

This concludes the proof of Theorem 3.2.

Remark 3.11. Ir is worth noting that the complete continuity assumption (19) is not needed for the result (the strong
convergence of {y2} assured by the application of the Banach fixed point theorem allowed us to circumvent complete
continuity). Furthermore, complete continuity of ®' (y) is not needed for the characterisation of the directional derivative;
continuity suffices (which is guaranteed since Hadamard derivatives are continuous with respect to the direction), unlike
in §5.1 and §5.2 of [1].

3.3 Continuity properties of the directional derivative

We now study the conditions under which continuity of the map taking the direction d into the directional derivative « in
(27) is assured. We recall (27) for convenience:

aeK¥a): (Ada—d,aa—v) <0 WYve KLY(w),
KY (w) == KY + @' (y)(w).

Proposition 3.12. Under (32), d — «(d) is continuous from V* to V. That is, if d; — d in V*, then
o —a inV
where o; and o are the solutions of (27) with source terms d; and d respectively.
Proof. The element o associated to d; satisfies
a; € KY(aj) - (Ao —dj, o5 —v) <0 Vo € KY(ay).

Take 7,k € N and in the inequality for «;, take the test function v = ay — ®’(y)(ow) + ®'(y)(e;) which is clearly
feasible, whilst in the inequality for o, set v = a; — ®(y)(e;) + ¢’ (y) () to obtain

(Aaj = dj, o5 — ey, + @' (y) (o) — @' (y) (a)) <0,
(Ao, — di, i — o + @' (y) () — @' (y)(ar)) < 0.
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Adding these, we find
(Al — ap) = (dj — di), 05 — ag + @' (y) (o) — @' (y)(an)) <0,
which implies, using (32),

2
Callaj — axlly, < lldj — dilly.
+ lldk — djlly
< |ldj — dklly. |

aj — aglly + Cy [l — agly |97 (y) (ax) — @' (y) ()l
' (y)(ew) — @' (y) ()l
a; — aglly + CCr llak — aylly, + Cr lldi — djlly. low — ey, -

Manipulating, we find that {«; } is a Cauchy sequence and thus there exists an & € V' with
aj —a inV.

Now, in the inequality for a;, choose the test function v; := v — ®’(y) () + @' (y)(;) where v is such that v € K¥(a).
It follows that v; — v in V. This allows us to pass to the limit and we get

(Ao —d,a—v) <0 Yve KY(w)

and it remains to be seen that « € K¥(«), which is evident since the critical cone is closed. O

3.4 Complementarity characterisation of the directional derivative

We now look for an analogue of the complementarity characterisation of Proposition 2.1 for the QVI (27) satisfied by the
directional derivative.

Proposition 3.13. The QVI (27) is equivalent to the complementarity system

a—'(y)(a) € Y, (37a)
§a=d— Aa, (37b)
§a € (KY)°, (37¢)
(€a, @' (y) () —a) = 0. (37d)

Proof. As noted above, « — ®’(y)(«a) belongs to the set K¥. Define £, := d — Aa which by definition satisfies
a—d'(y)(a) e KY: ((g,a—v) >0 YveV:v— & (y)(a) € KY.

Taking v = ®'(y)(«) here and then v = 2« — ®'(y)(«) (which is feasible since v — ®'(y)(«) is twice a function that
belongs to KY) shows the orthogonality condition (37d).

Let w € KY and select v = o + w (this is feasible since v — ®’'(y)(a) = @ — ¢’ (y)(a) + w € KY + KY and the
tangent cone, being a convex cone, is closed under addition). With this choice, we obtain

(€a,w) <0 VYw e KY,

meaning precisely that £; € (K¥)°. The reverse direction holds by the same trick as in the proof of Proposition 2.1.  [J

3.5 Examples of QVIs with multiple solutions

In this section, we construct explicit examples of QVIs with non-unique solutions such that the assumptions of Theorem
3.2 are satisfied, thus verifying that multiplicity of solutions is not lost under our assumptions.

Example 1 Let 2 C R” be a bounded Lipschitz domain and set V := H¥*(Q) with H = L?(f2) forming a Gelfand
triple. Below, all norms and inner products that appear are over .

Pick 6 > 0 and select a sequence {y,}_, of smooth functions satisfying ||y, — ym||> > 462 for each m,n €
{1,...,N} withm # n and N > 2 fixed. Take a smooth cutoff function » € C*°(R) with 0 < v < 1 and

s _ 82 £2
o(t) = 1 .%fte( 9%,6%),
0 :if [t] > 262

For a parameter y € V, define the map ®,: V' — V by

®, (u) = v([lu—yl*)y
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and set
N
(b(u) = Z ¢yn (u)
1

Note that ®: V' — V and ®(y,,) = y» (because ®,, (¥m) = Yndnm). Let the elliptic operator A: V' — V* have the
property that Ay,, € H for each n and define the pointwise a.e. maximum f := max(Ay, -, Ayn) € H. Then the
QVI

findu < ®(u): (Au— fiu—v) <0 YoeV:v<P(u)

has multiple solutions and indeed each y,, € Q(f) is a solution. To see this, simply observe that Ay, — f < 0 and
Yn —0 = P(y,) —v >0forallv € V withv < O(y,).
It follows from the expression ®; (u)(h) = 2yv'(|ju — y|I*)(h,u — y) that

N
® (w)(h) = Y 2yt (lu = yall*) (B w = yn)

and hence ®'(Bj(y,)) = 0 and thus (28) is trivially satisfied (hence also (25) and (32) by Remark 3.3 (ii) and the
digression at the start of §3.2). Hence, all the requirements of Theorem 3.2 have been met and we obtain for every d € V*
the existence of of y7, € Q(f + sd) and o, € V such that

S
lim —— = qy,.
s—0+ S

Let us also note that in addition, ®'(y,,): V — V is completely continuous.

Example 2 A second example, without the need for the source term f to be defined in terms of {y,, }, can be given under
the same initial setting as above. Forn = 1,..., N, take 1, € V to be given distinct obstacles such that the associated
solutions y,, € V of the VIs

yngwn:<Ayn_f7yn_U>§O YoeV:v< i,

are distinct too. We suppose that § is chosen such that ||y, — ym [|> > 462, which is possible since the v, are distinct
functions. With v as above, define now ®,,: V' — V by

@ (u) == v(|lu— ynHz)wn

and set
N

D (u) := Z D, (u).

n=1

We have ®(y,,) = 1, and each y, is again a solution of the QVI associated to ® with source term f, i.e., y, € Q(f).

Furthermore,
N

®'(w)(h) = Y 202/ (lu = yal*)(hyw = )

n=1

and we can argue as before to derive the other properties and results.

4 Existence of optimal controls

We now address the optimal control problem (2). Regarding the function space context in this section, we take

(i) V — H to be a continuous embedding of reflexive Banach spaces,

(i) U to be a reflexive Banach space with U <5 v,
(iii) U,q C U to be a non-empty and weakly sequentially closed'* set.

Given v > 0 and a desired state y; € H, define J: H x U — R by

1 2 v 2
J(y,w) = 5 lly = yally + 5 ully
2 2
and consider the problem (2) which we recall here:

in J .
i, S
yeQ(u)

4That is, if u, — win U with up, € U,g, then u € Ugyg.
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Theorem 4.1. Let Assumption 2.12 hold, suppose that Q(u) is non-empty"> for every u € U,q and let the feasbility
condition (6) and the complete continuity (19) hold. Then there exists an optimal control u* € U,q and associated state
y* € Q(u*) to the problem (2).

Proof. Let u,, € Ugyq be an infimising sequence with y,, € Q(uy,), i.e.,

I (Yn, un i ,u).
Unun) = Inf J(y,u)
yeQ(u)

Then {u, } and {y, } are bounded in U and V respectively (the latter arises from (6)) and therefore, there exists a subse-
quence such that
Up;, = u"inU and Yn; =y in V.

By assumption, u* also belongs to U,q4. Since the y,, are solutions of QVIs, we have the following estimate

Hy"j - ynkHv <cC (Hu"j - unkHv + H(I)(y”j) - (I)(y"k)Hv) :

In the limit, the first term on the right-hand side vanishes due to the compact embedding, and the second term vanishes
too because ¢ is completely continuous due to (19). Thus {yy, } is Cauchy in V" and y,,;, — y* in V. Taking an arbitrary
v € V such that v < ®(y*), we set v, := v — ®(y*) + ®(yn;) and use this as a test function in the QVI for y,,, in
which we can pass to the limit to find y* € Q(u*). To see that this pair is optimal, we observe that (dispensing with the
subsequence notation now), using the continuity of the embedding V' — H,

*,u*) < liminf nn<1. nyUn) = i s Wj. O
J"u?) < Hminf J(yn, un) < M J(yn, un) = min J(y,u)

yeQ(u)
Regarding regularity of the optimal control, see Theorem 5.11. In general there is no uniqueness for the optimal

control and state regardless of whether Q is single valued or not.

4.1 The penalised optimal control problem

Let us return to the context of §2.3 and consider for each p > 0 the penalisation of (2):

1
min J(y,,u) suchthat Ay, + —m,(y, — ®(y,)) = u. (38)
u€Uqa 14

We remind the reader that m,, is taken to satisfy (10)—(12). Recalling the map P, from §2.3, we can write the equation
above as y, € P,(u). The reason for considering this problem is because we will use this to derive stationarity conditions
in the next section but first let us check that this minimisation problem suitably approximates (2).

Proposition 4.2. Let Assumption 2.12, (14), (15a) and (19) hold and suppose that Q is single valued. Then there exist
optimal pairs (y5,, uy) of (38) and an optimal pair (y*,u*) of (2) such that

(Y, up) = (y*,u™)inV x U.

Proof. First, observe that P,(u) is non-empty for all v € U,q by Proposition 2.15 (after possibly renorming V', see
Example 2.14). Now, let (y;, u;j) denote an optimal pair of (38), which exists by standard arguments (like in the proof of
Theorem 4.1) making use of (152a) (to show weak continuity of the solution map). By definition,

J(y,,uy) < J(wp,u) Vu € Ua, Yw, € Py(u). (39)

Given any 4 € U,q, we pick a subsequence {g,, } such that P, (a) > §,, — ¢ where § € Q(a); this is possible by

Theorem 2.18. The inequality (39) implies that J(y; ,u} ) is bounded above by J(7,, , %) which in turn is bounded

uniformly in p,, because g, is bounded in V' by the estimate of Proposition 2.15:

Hence for another subsequence (which we shall relabel)

v lly <€ (s, 1y + ol )

u;n —u* in Uy,

* * .
Yy, —~ Yy inV,

15See §2.
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for some (u*,y*) that we need to show is an optimal pair. By following steps 3 and 4 in the proof of Theorem 2.18,
Y, —y" =Q(u")inV (since u; — u”in V*). Hence (y*,u") is a feasible point of (2). Then observe that for (7, @)
being any optimal point of (2),

J(g,a) < J(y*,u*) <liminf J(y; ,u; ) <limsup J(y, ,u, ) <limsupJ(w, ,4) Yw, €P, (i)
n—00 n— 00 n—00
with the last inequality by (39). Now it becomes necessary for Q to be single-valued since then, § = Q(@) and it must
be the case that we can select a sequence {w}, } such thatw; € P, (@)andw) — ginV (by Theorem 2.18), and we
find

TG, i) < Iy ) < lim Iy, up,) < J(5 ).

Because J(§, @) is the minimal value and hence is either independent of (¢, @) or uniquely determined by (g, @), the
subsequence principle shows that J (y;, u;) — J(g,4) (for the entire sequence). Furthermore, the above inequality
shows that (y*,u*) is optimal and we get u, — u* in H since we have weak convergence and convergence of the
norm. O

Regarding the assumption in this lemma that Q is single valued, this is the case if, for example, ® is (globally)
Lipschitz with Lipschitz constant strictly smaller than C, /(C, + C}), see the discussion around [4, Equation (21)]. An
alternative condition for uniqueness for QVIs in a specific setting is given in [45].

Let us see how the results of this section change if we do not assume complete continuity of : V' — V.

Remark 4.3. (1) We can drop (19) from Theorem 4.1 in favour of the conditions in Theorem 2.19 as long as in the
Gelfand triple regime (16) we assume U — H. Examining the proof of Theorem 4.1, the feasibility of the limit of the
infimising sequence follows exactly as in the proof of Theorem 2.19. The Cauchy estimate is not necessary. Weak lower
semicontinuity of the norm allows us to retain the final line in the proof.

(2) If we drop (19) from Proposition 4.2 in favour of V <% H and the conditions in Theorem 2.19 as long as in the Gelfand
triple regime (16) we assume U — H, we would get y, — y* in'V (i.e., a weak convergence). To see this, we simply need
to modify the proof to use Theorem 2.19 instead of Theorem 2.18. The compact embedding into H is needed to bound
from above the term limsup,, , . J(w}, ,a) by J(§,1).

5 Stationarity

In this section, we shall derive various forms of necessary conditions satisfied by optimal controls and states. Let us first
formally define some concepts of stationarity which are motivated by analogous concepts from the VI case and also by
the results that we shall obtain later.

Let (y,u) € V x H be a solution of the optimal control problem (2) where V < H with V' a reflexive Banach space
and H a Hilbert space, U,q C H is non-empty and weakly sequentially closed (in the context of the previous section, we
have assumed U = H).

Inspired by the results we obtain in §5.2 in a general function space setting, we say that (y, u) is a weak C-stationarity
point of (2) if there exists (p, £, \) € V x V* x V* such that

y+ (1= (y)" A+ A"p = ya,
Ay—u+£=0,

wE Upg: (vu—p,u—v)g <0 Vo€ U,
(A\,p) > 0.

The function p is said to be the adjoint state and ) is the Lagrange multiplier associated to the adjoint state equation (the
first equation above).

Let us now restrict the discussion to when H = L?({2) on a domain 2 C R". Certain sets associated to the lower-level
QVI problem in (2) are important in stating the following stationarity conditions. Denoting £ := u — Ay (see Proposition
2.1), let us formally define then the following sets:

A = {y = ®(y)} is the active (or coincidence) set,
T :={y < ®(y)} is the inactive set,

As := {£ > 0} is the strongly active set,
B :={y = ®(y)} N {& = 0} is the biactive set.

These definitions are merely heuristic due to the (in general) low regularity of £, see for example [69, §3 and Appendix
A] or [33] for a rigorous approach to define these objects.
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We say that (y,u) € V x H is a C-stationarity point of (2) if (y, ) is a solution of (2) and there exists (p, &, \) €
V x V* x V* such that

y+ ([I—2'(y) A+ A'p = yq, (40a)

Ay —u+€ =0, (40b)

£20in V", y<o(y), (y-—2(y) =0, (40c)
€ Upg: (vu—p,u—v)g <0 Vv €& Uy, (40d)
(€p")=(&p7)=0 (40e)

(Ap) 20, (Ay—2(y)) =0, (40f)

Mv)y=0 YveV:iv=0ae onQ\Z (40g)

Note that we use the condition (40e) in lieu of the more commonly seen condition p = 0 a.e. in {£ > 0} due to the low
regularity of &.

Remark 5.1. It is worth remarking that in certain works [65], rather than the inequality constraint in (40f), the stronger
condition
(A, ¥p) >0 for all sufficiently smooth and non-negative 1 41)

is required in order to satisfy C-stationarity; this is a direct analogy of the corresponding (element-wise) condition in the
finite dimensional setting in [64]. We will also consider the obtainment of (41) in Proposition 5.13.

The condition (40g) is in practice difficult to check due to the fact that in general, A possesses only the low V*
regularity. Therefore, one looks for a weaker concept. In the first instance, for an almost C-stationarity point, (40g) is
replaced by

Mv)y=0 YweV:v=0ae onQ\Z, vz € Hi(T).

More generally, an £-almost C-stationarity point, the concept of which was introduced by Hintermiiller and Kopacka in
[36, 35], satisfies (40a)—(40f) but now (40g) is replaced with
V7 >0,3ET CZwith|Z\E"|<7:(\v)=0 YveV:v=0ae onQ\E".

This is a condition that arises from an application of Egorov’s theorem as we shall see later.
Now, in the other direction, a point which satisfies (40a)—(40c) and additionally

p>0 q.e.onBandp=0q.e. on A,
MNv)y >0 YveV:v>0qe onBandv=0q.e. onAs,

is called a strong stationarity point, which is typically the most stringent notion of stationarity possible and requires
differentiability of the control-to-state map to be obtainable.

In the proceeding sections, we will show that there exist weak C-stationarity, (£-almost) C-stationarity and strong sta-
tionarity points under various assumptions. We will, however, first start in §5.1 with the so-called Bouligand stationarity
which is a primal condition and is defined below. It also requires differentiability of Q.

5.1 Bouligand stationarity

In the case where Q is directionally differentiable from the results of §3, we have the following Bouligand stationarity (or
B-stationarity) characterisation of the optimal control, see [50, §5] and [51, Lemma 3.1] for the VI case. To start, define
the radial cone of U,4 at ©* and the tangent cone respectively by

Ruy,,(w*) ={h € H :3s" > 0such that u* + sh € Uyq Vs € [0,s*]} and Ty,,(v"):=Ruy,,(u*).

Proposition 5.2 (Bouligand stationarity). Let U,q be non-empty and (y*,u*) be a local minimiser of (2) and let the
assumptions'® of Theorem 3.2 hold. Then

(n,y" —ya)m +v(u',h)gp >0 VheTy,, (u"), 42)
where avy, is the directional derivative given uniquely through Theorem 3.2 as the solution of (27) with source h.

Proof. Take h in the radial cone of U,q4 at u* so that it is an admissible direction. Using this direction term, we define
ys as given by Theorem 3.2 after having initially selected y* € Q(u*). This satisfies y; = y* + say + o(s) where ay,
is the directional derivative (uniquely determined thanks to Proposition 3.9) and o is a remainder term. It follows that
(u* + sh,ys) can be made arbitrarily close to (u*,y*) if s is sufficiently small (since ys — y* = say + o(s) and the

16These assumptions should be evaluated locally at y*, of course.
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right-hand side tends to zero in V). Hence, by definition of local minimiser, we have J(ys, u* + sh) > J(y*,u*) for s
sufficiently small. Writing this inequality out, we get

0 < llys — yallyy + vllu™ + shllf = ly* = yalls — v w115
= Nyl = Iy 17 + 20" = 9o, ya) iz + vs® 1Al + 2vs(u”, B .
This leads to
0 < ly* + san +o(s) 7 — ly* |5 — 2(san + o(s), ya) ur + vs* k][ 3 + 2vs(u®, h)

= |lsapn + O(S)H?{ +2(sa, +0(8),y" —ya)u + vs? ||hH?{ +2us(u*, h)g

=2 Hozh + 5710(5)||i[ + 2(sap +0(8),y* —ya)m + vs? ||h||§{ + 2uvs(u*, h)g.
Dividing by s and sending to zero, the above yields

0 <2(ap,y* —ya)o +2v(u*,h)g Yh € Ry,,(u"),

and by density and the continuity result of Proposition 3.12, also for h € Ty, (u*).

5.2 Weak C-stationarity

In this section we will show a type of weak C-stationarity for the optimal pair by passing to the limit in the stationarity
system satisfied by the optimal pair of the PDE regularisation of the QVI. Recall the notations and framework of §2.3 and
§4.1 where we studied the convergence of solutions of certain PDEs to a solution of the associated QVI and the associated
optimal control problems. In this section, we again take

(y*,u™) to be an arbitrary local minimiser of (2).

In addition to the basic setup of Assumption 2.12, we need the following fundamental conditions related to ®, in which
we also recall two assumptions that were stated earlier for the convenience of the reader.

Assumption 5.3. Assume that

there exists vg € V such that vy < ®(v) forallv € V, (14)
®: V — V is completely continuous, (19)
there exists € > 0 such that ®: V' — V is continuously Fréchet differentiable on B.(y"*), (43)

Q is single valued.

We also introduce the following invertibility assumptions; these are stated separately from above since they will come
in use later in another section. Note that these types of conditions are also needed in [72].

Assumption 5.4. Assume that

(I—®'(2)): V — Visinvertible for z € Be(y*), (44)
A(I—®'(2))"': V = V* is uniformly bounded and uniformly coercive in z € B.(y*). (45)

The main result of this section is the following theorem which shows that local minimisers are weak C-stationarity
points.

Theorem 5.5 (Weak C-stationarity). Suppose that
U,q is non-empty, closed and convex and V S Ho Viisa Gelfand triple. (46)
In addition to Assumptions 2.12, 5.3 and 5.4, suppose that m,, satisfies along with (10)—(12) the conditions

my: H — V* is continuous 47
my: V. — V™ is continuously Fréchet differentiable. (48)

Then there exist multipliers (p*,£*,\*) € V- x V* x V* satisfying the weak C-stationarity system

y' o+ (= (y") A+ ATp" =y, (492)

Ay —u* + € =0, (49b)

E=20inVe y<e(y), (y" —2(y")) =0, (49¢)
u* €Upq: (vu* —p*,u” —v)g <0 Yu € Uyq, (494d)

(A", p*)y > 0. (49¢)
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Here, we have assumed the existence of C'! maps m,, — this will have to be verified on a case-by-case basis (we leave
the possibility of being able to define such maps satisfying the conditions (10)—(12) and (47)—(48) in the general setting
to the interested reader, who may find [3 1] useful for this purpose). However, let us note that in the most common case of
interest where the function spaces involve functions over domains in R™ with the usual ordering, it is usually possible to
construct sufficiently smooth m,, see for example §5.3.

Remark 5.6. (i) We assumed the complete continuity (19) to utilise the strong convergence result of Theorem 2.18. It
would be interesting to see how the calculations below can be adapted in the case where (we do not have complete
continuity and) we only have weak convergence from Theorem 2.19.

(ii) Due to the Gelfand triple setup and complete continuity of ® here, we find from (47) that the complete continuity of
m, condition (15a) is satisfied.

(iii) The meaning of (45) is that for all z € B.(y*), the operator A(1 — ®'(2)) ™! has a boundedness constant C} and a
coercivity constant C!, both of which are independent of z. A consequence is that

(I—®'(2))"': V — V is bounded uniformly for all z € B.(y*). (50)

Since ® is C*, we automatically have that (1 — ®'(z)) ™! is bounded; (50) clarifies that the bound is uniform.

Let us proceed with proving this result.

5.2.1 Stationarity for the penalised optimal control problem

Recall the penalised problem (38) that approximates (2):

1
rn{i]n J(yp,u) suchthat Ay, + —-m,(y, — 2(y,)) = u. (38)
u€Uad 14

Under Assumption 5.3 and (15a), Proposition 4.2 is applicable. For the moment and for purposes of a simpler exposition,
let us assume that
(y*,u") is the optimal point of (2) given in Proposition 4.2 (51)

(we will discard this later on). Via the proposition, we obtain the existence of minimisers (y;, u;) of (38) such that
(Yp,uy,) = (¥*,u")in V x H.
Thus, for any € > 0, we can find a pg such that p < pg implies
Y, € Be(y")

(this is why it has been possible to formulate most assumptions on ¢ only locally). To derive stationarity conditions for
the penalised problem (38), we check the Zowe—Kurcyusz constraint qualification [74] (see also the Robinson condition
[60]). To do so, we make the necessary surjectivity assumption (52) below regarding existence for the linearised equation
— we discuss instances where it holds in Remark 5.8.

Lemma 5.7. Assume (43), (48), (46) and suppose that
* 1 * * *
Then, for such p and any optimal point (y;, u:‘,) of (38), there exists p;, € V' such that

** 1 k) * * K\ |k k *
A Pyt ;(I_(I)/(yp)) m/p(yp _(I)(yp)) Pp=Yd — Yp» 53)
(Uu; _p;7u: - U)H <0 Vo € Ugq-

Proof. We introduce the following notation:

1
X =VxH, gz)=glyu):=Ay+ ;mp(y —®(y)) — u,
z, = (yp,uy), Clx,) = {k(v—y,,h—uy):veV,he&Uiyk >0}

The map g: X — V*, being a composition of C'' maps, is continuously Fréchet differentiable at =, and we must check
that ¢’ (z,)C(x,) = V*, butsince C := V' x {0} C C(z,), it suffices to verify ¢'(z,)C' = V*. Observing that

9'(x,)(y,0) = Ay + %m;(yz —O(y;))y — @' () (v)),
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it follows that we need existence for the PDE in (52) and this is guaranteed by assumption for p sufficiently small.
Calculating the adjoint ¢’ (x,)*: V — X* of ¢’ via

(9" () (y,u),v) = (Ay,v) + %(m;(y;'i —0(y))(y — @' (y;)(y)),v) — (u,v)
= {3 A%0) . (= () (4 = B(0) ") — (0,0,
we find )
ey (0) = (470 L= @) - 2570 0.

Applying, for example, [68, Theorem 6.3], we get the existence of pj, € V such that J'(z,) — ¢'(z,)"p}, € C(z,)°, ie.,
forall £ > 0,

* 1 *\\ * * *\\ %k sk * %k *
(yp = Ya + ;(I — ' (y;)) m,(y, — ®(y,)) 'y + A'ppyk(er —y,)) >0 Ve €V,
(vup, — py, k(ca —uy))m >0 Veg € Ugg-
As c; € V can be chosen arbitrarily, we find the stated result. O

Remark 5.8. The conditions of Assumption 5.4 are clearly sufficient to guarantee the surjectivity condition (52); and
in fact (45) can be replaced with asking for A(I — ®'(2))~1: V' — V* to be coercive for all z € B.(y*). Indeed, first
observe that the bounded inverse theorem guarantees that A(1 — ®'(2))~1: V. — V* is bounded for z € B(y*). Now,
the equation

* — 1 * *
has a unique solution w € V' by the Lax-Milgram theorem, leading to existence of z := (I — ®'(y%))~'w € V satisfying
the equation in (52).
5.2.2 Passage to the limit p — 0
Now the objective is to pass to the limit in (53) as p — 0 for which we shall need some technical results.
Lemma 5.9. Under Assumption 5.4, if z, — z and q, — q in V with z,,, 2 € Bc(y*), then
I—@'(2,) g = 1—=@'(2))"'q inV, (54)
(A(1 = @(2)) " ,0) < liminf (A= ' (20)) 4, ). (55)
n—oo
The convergence in (54) is strong if ¢, — qin V.

In order to not disturb the flow of the paper, the proof of this lemma has been placed in Appendix A. As an immediate
corollary to Lemma 5.9, for sequences w, — w and g, — ¢ in V, we have

Jim (I— @'(y7)) " 'w, = (I—@'(y")) " winV, (56)
(", (L= @'(y")) "' Q)n < liminf(yp, (I— ' (y;) " qp)m, (57)
(ya, 1= @' (y")) ') > lim sup(yg, (I ' (y5)) " ap) m- (58)

We are now ready to conclude.

Proof of Theorem 5.5. First, note that Proposition 2.1 directly gives (49¢). Assumption 5.4 implies the surjectivity condi-
tion (52) (see Remark 5.8), therefore the stationarity conditions in (53) for the penalised problem are available.
Now, the weak form of the equation for pj, is

* * 1 * * * >k * *
(A*pr, o) + ;(m;(yp —®(y) Py (L= (y3))e) = (ya — vy 0)u Ve V.

By defining v := (I — ®(y}))¢, thanks to the invertibility assumption (44), this can be transformed to

(A= @' (y;) " v,pp) + %<m’p(yﬁ = ®(y;)) Py 0) = (ya—y,, (L= (y;) ")y Yo eV.

23



Selecting v = pj, using the coercivity (45), the monotonicity of 1, (which implies that (m/,(v)(h),h) > 0 for all
v, h € V), Young’s inequality with y > 0 and the uniform boundedness of (I — ®'(y*)) ! assured by (50), we obtain
%12 %112 (12
Collpplly = Cllva = w3ll + 7 lleblly -

Selecting v sufficiently small so that the right-most term is absorbed onto the left, we obtain a bound on {p;ﬁ} independent
of p. This gives rise to the convergence (for a subsequence that has been relabelled)

p; —p* inV.
Define

* 1 * ®\\ %, %
>\p = ;m,/o(yp - (b(yp)) Pp>

* 1 %\ * * Y ) * % * ¥
i ;(I — @' (y;)) m(yy — (y3)) D) = ya — v, — A*pj,
1

£ = ;mp(yZ — @(y,)) = u, — Ay,

the latter two of which, since their right-hand sides converge, satisfy the following convergences both in V*:
py, = p" =y —y" — A'p"* and §, > & =u" — Ay, (59)

Again using monotonicity of m,,,

* *\\ — * 1 * *\\ % %k *
<:up’ (I - CI)/(yp)) 1pp> = ;<m/p(yp - (I)(yp)) pp’pp> >0,
and taking the limit superior of this, recalling the definition of p*, we obtain

0 =lim sup{ya, (1 = ®'(y}))™"pp) — lim inf(yp, (T @'(5))™"pp) — Hm inf (A = &' (55))""2) 25)

<{ya—y", (1= (y")'p") — (A - @'(y")~'p",p")

(using the weak semicontinuity results (55), (57) and (58))

= (W, (1= @'(y")~"p").

Finally, writing the VI relating u;ﬁ and p; in (53) as
(vup,up =) = (up —0,p5) <O Vo € Usa,

using the strong convergence of uy in H (and hence also in V*) and the weak convergence of p7 in V', we can pass to the
11ml(tj.ollecting the results (and recalling that the inverses and adjoints of bounded linear operators commute), we have
shown the satisfaction of (49b)—(49d) and

(I—2'(y")) " u"p") 20,
Setting \* := (I — ®'(y*)*) "1 u* we get the system (49).
Thus far, we have only shown the existence of a stationarity point and not that every local minimiser is such a point

since we assumed (51). Suppose now that (y*,u*) is an arbitrary local minimiser (instead of (51)) as claimed in the
statement of the theorem. Denote by ~ the radius such that «* is the minimiser on U,q N Bf? (u*) (the latter object is the

closed ball in H of radius ~y with centre u*). Consider for J(y,, u) := J(y,,u) + |lu — u* H?{ the problem

. 1
ueUaﬁlw%lﬁ(u*) J(yp,u) suchthat Ay, + ;mp(yp - d(y,)) =u. (60)

Denote by (¥, @,) a minimiser of this problem. It follows from J(7,, u,) < J(y,(u*),u*) and P,(u*) 3 y,(u*) — y*
that
lim sup J (g, @) < J(y*, u).
p—0
On the other hand, from uniform bounds, we obtain the existence of 4 such that %, — @ in H and yj, — Q(d) =:ginV,
giving (by the identity lim sup(a,,) + lim inf(b,,) < lim sup(a,, + b,,) and using weak lower semicontinuity)

lim sup J (g, @,) > J(§, @) + limsup ||@, — u*||5, > J(y*, u*) + limsup ||@, — u*|3,,
p—0 p—0 p—0
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with the last inequality because (y*, «*) is a local minimiser and @ € B}? (u*). Combining these two inequalities shows
that & = u* and @, — w* in H. The latter fact implies that for p sufficiently small, @, € Bf (u*) automatically and
hence the feasible set in (60) can be taken to be just U,4. For such p (assuming of course that the local conditions in
Assumptions 5.3 and 5.4 hold around y*), the same arguments as above can be used to derive stationarity conditions for
(60) and in passing to the limit in those conditions, we will find that (y*, u*) satisfies the same conditions as above. [

The proof reveals that the stationarity point satisfying (51) can be characterised as a limit of the following subse-
quences (which we have relabelled):
y, —y* inV,
u, —u* in H,
p, = p" inV,
pim(y; — ®(yp)) = & in VY,
p~tml(ys — ®(y5))p, — A* in V¥,

where (y7, uy, p),) are as in Lemma 5.7.

5.3 £&-almost C-stationarity

We specialise to the case where H is an L? space on a bounded domain with box constraints, which allows us to improve
the weak C-stationarity system.
Assumption 5.10. Let Q C R"™ be a bounded Lipschitz domain, set H := L?(X)) and take V € {H(Q), H} ()} and
assume the Gelfand triple (V, H, V*) structure. Finally, we take U,q to be of the box constraint type

Uss ={u € H :ug <u < upae inl} (61)
for given functions u,,up € H.

The assumption can be generalised, see Remark 5.12.
As before, we denote by
(y*,u") an arbitrary local minimiser of (2).

Theorem 5.11 (£-almost C-stationarity). Let Assumptions 5.3, 5.4 and 5.10 hold. Then there exist multipliers (p*,£*, \*) €
V x V* x V* satisfying the £-almost C-stationarity system

Y+ (1= (y")" N + A"p" = ya, (62a)

Ay* —u* +€=0, (62b)

& =0inVe, y <), .y —2(y)) =0, (62c)
u € Upg: (vu' —p*,u* —v) <0 Yo € Uy, (62d)

€ @) =E0))=0 (62¢)

(A%p") =0, (A y"—2(y")) =0, (62f)

V7> 0,3E" CZwith|Z\E"|<7:(A,0)=0 YWweV:v=0ae onQ\E". (62g)

In addition, if ug,up € V then the optimal control has the regularity u* € V.

To prove the theorem, we choose a particular m, (that appeared in the work of Hintermiiller and Kopacka [36] for
VIs), namely the superposition operator defined through the real-valued function

0 r<0
m,(r) Em(a§<(0,~) = g 0<r<e (63)
g T—5 ITZ>6

here, € = ¢(p) > 0 is chosen such that {¢(p)} is bounded. The parameter ¢ is a smoothing parameter utilised for ensuring
differentiability at 0. By [22, Lemmas 2.83, 2.87, 2.88, 2.90] and the fact that m, € C(R) with m; € [0, 1], we obtain
relevant lattice properties for the spaces involved and differentiability properties for m,. That m, satisfies (10), (11)
and (47) is clear. Let us check condition (12). Since {e(p)} is bounded, we have (for a subsequence that we relabelled)
€(p) — € for some € > 0 and we get

)

max(0, z) — max(0, z,)
€ <(p)

<C <Hm§lx(0, z) — max(0, ZP)H + ‘ max(0, z,) — max(0, z,)
v ‘ ‘ uo e (p)

3 _
<0 (lls= 2l + e o)

—0

25



with the final inequality due to Lipschitz properties given in [36, Lemma 2.1 (v), (vi)] and the convergence due to the

compact embedding V' <% H . Hence we find z < 0. Finally, by the regularity of m, (which has a bounded derivative)
we have that m,, : HY(Q)) — H is C! (see, e.g. [21, Proposition 4]), thus we have (48). This shows that m, is a valid
choice.

Remark 5.12. Assumption 5.10 can be generalised as follows. Let Q@ C R™ be a bounded Lipschitz domain, set H :=
L?(Q) and take V to be a separable Hilbert space with V < H and (V,H,V*) a Gelfand triple. We assume that V is
such that ()" : V' — V is continuous and that the superposition operator m,, takes V' into H with m,: V — H being
ct.

The requirement for the Nemytskii operator to be Fréchet differentiable is in general a delicate issue.

Proof of Theorem 5.11. Elements of the proof are similar to that of [36, Theorem 3.4] but the more complicated problem
structure in this paper requires additional work.

1. Weak C-stationarity. Observing that Assumption 5.10 implies (46), (47) and (48) (as discussed above), we have the
weak C-stationarity result of Theorem 5.5 immediately at hand.

2. Regularity of optimal control. Owing to the characterisation of the VI relating uj; and py, given in [42, §I1.3], thanks to
the strong convergence in H of pj, and continuity of ()T: H — H, we find that

*\ T * + + +
et B) (E ) (o 2) ) o
14 14 14 14 14 14

It follows that u* € V if u, and u; belong to V.

3. Orthogonality condition. For the condition on y* — ®(y*) in (62f), observe that since m;, vanishes on (—oc0, 0],

* *\)— * *\)|— 1 * *\\ ko k(% *\) —
(i, (I = @' (y;)) "y, — 2(y;)) ") = ;/Qm;(yp — @(y,)) Py, — 2(y,))” =0,
which, due to the continuity of (-)~: V — V and the joint sequential continuity result of (56) implies that

(", (L= 2" (y") " (y" — 2(y"))7) =0,
and since y* < ®(y*), the negative part above can be dropped.

4. £-almost statement. Since y;, — y* in V, y» — ®(y;) — y* — ®(y*) pointwise a.e. in {2 for a subsequence that we do
not relabel. Take = € Q such that y*(x) — ®(y*)(x) < 0, then there exists a p = p(z) such that if p < p, then

o (2) — By (@) < 547 () — By )(x) <O

and hence p~'m/ (y,(x) — ®(y,)(x)) = 0 for p < p. Thatis, p~'m/,(y,(z) — ®(y,)(x)) — 0 pointwise a.e. on
{y* < ®(y*)} and by Egorov’s theorem, for every 7 > 0, there exists B™ C {y* < ®(y*)} with |B"| < 7 such that this
convergence also holds uniformly on {y* < ®(y*)} \ B".

Take v € V with v = 0 a.e. on {y* = ®(y*)} U B". By the uniform convergence, for any v > 0, there exists p such
that if p < p,

1
7m;)(yp - (I)(yp))pzv < Y HPZUHLl(Q) .

e 1= @) )| = | [
P g {y*<®(y*)}n(BT)e P

The norm on the right-hand side is bounded uniformly and the left-hand side converges to |{u*, (I—®'(y*))~'v)| (thanks
to pj; — p* in V* from (59) and the strong convergence of (I — @’(y;))_lv in V given by (56)), thus giving

(", (T= @' (y") " 'v)| < Cy
for a constant C' > 0. Since this holds for every v, we obtain (62g) (simply set E™ :=Z \ B7).
5. Relation between £* and p*. In order to show the remaining statement (62¢), let us introduce the sets
Mi(p) :={0<y, —®(y,) <e} and  Ms(p):={y, — D(y,) = €}.
Since (&5, 45 — (y;)) = (§",y — (y)) = 0, we find

60— o) = /Q Moy — D) (4 — B(y7)
1

(y; — @(y;))° 1/ . e )
) 9. 7 - - = - ® 64
p /Ml(p) 2¢ + P () (yp (Z/p) 2) (yp (yp)) (64)

— 0,
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and as both integrands in (64) are non-negative, each integral must individually converge to zero too. Hence

3
2

— 0 and

Xt (p) (Y — @(y5)) H X (p) (Y — @(y) — 5)

Nz NG

where for the second convergence we used the fact that y; — ®(y;) > y5 — ®(y;) — €/2 > 0. We calculate

| (yp —@(y3)* ., 1
<£papp>:7/ : L pp+7/
P J i (p) 2¢ P

‘ -0, (65)

* * € *
(v; — o)) - 5) v

M2 (p)
B }/XM (y; — ®(y;))*"” (y;‘,—@(yZ))”QXM p*+/ Xans () (U5 = P(p) = §) Xaa(0)P)
2 9 1(p) \//TE \/ﬁ 1(p)Pp Q \/ﬁ \/p
Ul )(y,’§—<1>(y;))‘°’/2 (y2—¢(y,§))1/2XM()p* || Xtz (5 = 2(w5) = 5) szm(p)PZH
ol Jpe o NG Vi
(66)

Now, using (65), the first factor in each term above converges to zero and hence the above right-hand side will converge
to zero if we are able to show that the second factor in each term remains bounded. Since 1% and (I — ®'(y%))~'p} are
bounded (the latter due to (50)), so is their duality product, and therefore

C > [y, 1= (y;)) " 'pp)]

]Am@—mmmw

1

p

1/ vy —2(5) .o ©2
== (p,)” + (py)

P’ Mi(p) € P e ?

1

vy —®(yy), 1 .
= */ Xan (o) (pp)" + */ Xas(p) (P))-
P Ja P Jo

Both of the terms on the right-hand side are individually bounded uniformly in p as the integrands are non-negative. This
fact then implies from (66) that

(€ p") =0.
Replacing p7, by (p:;)‘* in (66) and in the above calculation, we also obtain in the same way (utilising the fact that v,, — v
in V implies that v} — v* in V)

(€. @) =0
Conclusion. Finally, setting \* := (I — ®'(y*)*)~111*, we have shown the desired system (62). O

We conclude this section by showing that the alternative (stronger) condition (4 1) occasionally used in literature for
defining a C-stationarity point can be achieved under additional assumptions.

Proposition 5.13 (Satisfaction of alternative criterion in C-stationarity). For q, — q in V, under the conditions of
Theorem 5.11 and

liminf(A*q,, (1 - @' (y;)) "' (¥g,)) > (A"q, 1= '(y*)) " (vq)) Vo € WH™(Q) with ) > 0, (67)

n—o0

the inequality condition in (62f) can be strengthened to
(A, p™) >0 Voo € WH(Q) with ¢ > 0.

Proof. Testing the equation for p with (I — ®'(y%)) =" (¢p}), noticing that ¢p% — +p* in V and making use again of
(57) and (58) in a similar way to the proof of Theorem 5.5,

nr;fgpw:, I—@'(y;)) " (vp})) = hr;lj(l)lp@d» (I—@'(y3)) " (vp))) — liminf{y7, (T - ' (y5) " (vp)))

— liminf(A"p], (1 = @' (7))~ (¢;))

< (ya—y" (L= @' (y") " (¥p*)) — (A"p, (1= @' (y*) " (vp"))
(using (67) for the last term)

= (W, (1= (y") " (vp*))
= (A", ¢p*).
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On the other hand, we have

lim sup (5, (1— @' (y3)) " (vp})) = lim sup(A;, ¥p;) = hmsup/ ml(ys — ®(y5))(p;)*Y >0
p—0 p— p—0

which implies the result. O
Remark 5.14. Let us consider when assumption (67) of the previous proposition holds. Suppose that A is of the form
ou Ov - ou
(Au,v) Hzl/aij[maxj—i-i_zl/ﬂbiaxiv—i—/gcouv Yu,v € V, (68)

with Qij = aj; € 0071((2), b; € Wl’OO(Q), Cco € LOO(Q) and

Z ai]‘fifj > C|f|2 a.e. (69)

ij=1

for some C' > 0 and co > X\ > 0 a.e. with X a constant such that A is coercive.
Taking v as in the above proposition, let z, = (I — @' (y%)) " (¥q,). By (54), z, = z := (I - ®'(y*)) " (¢g*) in V.
We have, as done in [65, Lemma 3.6] and [70, Lemma 4.5],

<A*va (I - q)/(y;))il(pr» = <A*Qp7 Zp>
= (qp, Azp)

82 (‘3q
5 [ 2 [

1,j=1

. . c . . .
Using the convergences q, — q and z, — z in'V, the compactness of V. — H and the regularity of 1, it is easy to pass
to the limit in all but the first term. For that term, we need a weak lower semicontinuity of the form

L aI- () (V)  , ()" (a) &
tmint 3 [ o, T >y R dn

7,7=1

A condition ensuring this is the complete continuity of 1 — ®'(y): V. — V (examining the proof of Lemma 5.9 shows
that this condition would turn the convergence in (54) into a strong convergence so that z, — z in V and hence we can
directly pass to the limit in that term).

5.4 From £-almost to C-stationarity

In order to upgrade to C-stationarity, we need an additional condition given in the next proposition. The assumption
preserves generality but is strong, however, we will explore an example below of a reasonable situation where it holds.

Proposition 5.15 (C-stationarity). Let the assumptions of Theorem 5.11 hold and assume that
Yp — @y,) = y" = (y7) in L=(Q).
Then (62g) can be strengthened to
AN0)=0 YveV:v=0ae on{y" =2(y")}.

Proof. By assumption, the convergence of % —®(y7) to y* —®(y*) is uniform and hence p~'m/, (y,(x) —®(y,)(z)) = 0
uniformly a.e. globally on {y* < ®(y*)}. This means that the argument in the proof of Theorem 5.11 can be repeated
without recourse to Egorov’s theorem. O

Sobolev embeddings are the most obvious paths to achieve the assumption of the above proposition. We demonstrate
this now with an example. Take the dimension n < 4 and suppose that the (bounded Lipschitz) domain €2 and operator A
are such that

y € Hy(Q)NH*(Q) = Aye L*(Q)

and'’
y € H*(Q),

y € Hy(Q),Ay € L*(Q) =
’ 19l 2 ) < CUWll 20y + 14Ul L2(0))-

17These are elliptic regularity conditions. When §2 is a C1>! domain and A is of the form (68) with a;; € C°(Q) N W1°(Q), b;, co € L (),
co > 0 with the strict ellipticity (69), Theorem 9.15 of [29] can be applied and it implies the first condition. The second follows from [29, Lemma 9.17].
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We take V = H& () and use the fact that m,: V' — V (recall that m,, has been chosen in (63); see [22, §2.2.3] for when
this type of property could hold for other maps). Suppose that ®: VV* — V is given by the solution mapping of an elliptic
equation, i.e., ®(y) is defined as the solution ¢ of

B(¢)=y

where B is a second-order elliptic operator with sufficient properties guaranteeing well posedness in H} () (with a
continuous dependence estimate), and when y € L?(Q), in the space H?(2) N HZ () including a regularity estimate of
the form

1l 2y < CllYll L2y -

Due to this, we immediately have that ®(y;) € H 2() with a uniform bound:
||(I)(y;)”H2(Q) <G Hy;HL2(Q) < Ca. (70)

Defining z =y — ®(y3) € Hj(Q), we write the equation for y* as

1
Az + ;mp(z) =uy, — Ad(y;).

It follows from rearranging this equation that Az € H, thus z € H?(Q) and the equation holds in a pointwise a.e. sense.
Suppose for simplicity that A = —A is the Dirichlet Laplacian. Test with —Az and use

[ me=an) = [ mprvae =0

to obtain
2
I-Az]F < |

uy, — Ad(yy)

Dividing through by ||—Az||;, the resulting right-hand side is bounded due to (70), and using the regularity condition
above, we obtain uniform boundedness in H?(Q) of z = y% — ®(y}). By the Sobolev embedding [I, Theorem 6.3]

H2(Q) <5 C%(Q) for some a € (0, 1), we get yy — ®(y;) — y* — @(y*) in that Holder space (and thus in L>°(£2)).

5.5 Strong stationarity

We now give strong stationarity conditions for (2) in the setting of V = H}(Q), H = L?(Q) and U,,4 of the box constraint
form (61).

Let us first of all provide some background and context. Strong stationarity for the VI obstacle problem in the absence
of constraints on the control was the focus of the classical works by Mignot [50, Theorem 5.2] and Mignot and Puel [51].
The approach in the latter work is as follows. By using the results on the differentiability of the solution map associated
to VIs of Mignot [50], the Bouligand stationarity condition (for example, see Proposition 5.2) reads

(an,yv* —ya)g +v(u*,h)g >0 VYheH

where a, denotes the directional derivative of the solution map with respect to the direction h. The key idea of Mignot
and Puel in [51] is to use the fact that the optimal control ©* in fact belongs to V' (in the unconstrained case, this follows
from B-stationarity; otherwise this is a regularity result in certain situations or one may need to simply assume this) and
to extend, by continuity, the above inequality to

(an,y* —ya)ug +v(u*,h) >0 YheV* (71)

so that the set of feasible directions has been enlarged to V*. Then, by writing the duality productin (71) as (AA™1h, vu*)
and using properties of the projection operator with respect to the bilinear form generated by A onto the critical cone, it
is shown [51, Theorem 3.3] that this inequality is equivalent to a strong stationarity system.

The presence of control constraints complicates the derivation of strong stationarity conditions. In the VI setting,
by using the above-mentioned technique of Mignot and Puel of enlarging the set of feasible directions onto the dual
space in combination with a fine analysis of the various resulting objects and sets, strong stationarity conditions for VI
optimal control problems subject to box constraints were obtained by Wachsmuth in [69]. The author also showed that
certain restrictions are required on the control bounds in order to obtain a positive answer for strong stationarity, and
counterexamples were given showing that violating those conditions can lead to a lack of strong stationarity. These
necessary conditions (which are stated in (72)—(74) below) in the context of admissible sets as in (61) are implied [69,
Lemma 5.3] by the condition

Ug, Up € Hl(Q) with ug < 0 < uy g.e. on
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(recall Example 3.5 for the meaning of q.e.) which in turn implies that the control space must allow for negative functions,
meaning that one ultimately needs existence and directional differentiability results for QVIs with source terms and
directions that may be strictly negative'®.

Let (y*,u*) be a local optimal pair of (2). As in [51], we make the fundamental assumption that «* € V and we
refer to Theorem 5.11 from the previous section for the satisfaction of this assumption. Let us take U,q as stated in (61)
where we include the possibility of taking u, = —oo and u;, = oo, in which case the problem becomes one with no
constraints and we can argue as in [51]. Outside of this case, we proceed as in [69]. Let the assumptions of Theorem 3.2
hold and denote by j: H — V* the inclusion map through the Riesz isomorphism. Then, as done in [69], the Bouligand
stationarity condition (42) can be extended to

-V
(Oémy* - yd) + V<h7U*> >0 Vh € ]TUad(u*)

This is starting point of the steps leading to the strong stationarity conditions in [69] for the VI case.
Defining the (quasi-closed) coincidence sets

Uy i={x€Q:u"(z) = us(x)} and Uy :={z € Q:u"(z) = up(x)}
and arguing identically to the proof of [69, Lemma 4.3], we obtain the following sign conditions on u*:
u* =0q.e. on A;(y*) N (Q\ (U, UTy)),

)
u* < 0q.e. on A, (y*) N Uy,
u* >0q.e. on (As(y") NU,) U (B(y") N (Q\Ty))
where B(y*) = A(y*) \ As(y*) is the biactive set.
Let cap(A) denote the capacity of a Borel subset A of {2 with respect to H} () (see [20, Definition 6.47]). We have

the following strong stationarity characterisation, the proof of which involves modifications of [69] and is sketched in
Appendix B.

Theorem 5.16 (Strong stationarity). Let (y*,u*) be a local minimiser of (2) with u* € V.
Assume Assumption 3.1, (19), the local assumptions'® (25), (32) and suppose that

®: V — V is Frechet differentiable at y*,

cap(U, N B(y*)) =0, (72)
up > 0 g.e. on B(y™), (73)
u* =0gqg.e on As(y"). (74)

Then (y*,u*) is a strong stationarity point, i.e., there exist multipliers (p*,£*, \*) € V. x V* X V* such that

Y+ I = (") )N+ AP =y,
Ay* —u* 4+ =0,
€20V, g <o), (€5 — By =0,
u €Upg: (vu* —p",u" —v) <0 Yo € Uy,
p* >0 gq.e onB(y")andp* =0 q.e. on As(y*),
A0y >0 YoeV:v>0gqe onB(y")andv =0gq.e on As(y").

Note also that, whilst this work was under preparation, a related result has recently been obtained in [72] however
only in the absence of control constraints (i.e., U,q is taken to be the whole space).

A Technical proofs

Proof”’of Lemma 2.3. Take an arbitrary subsequence {vn, }; this remains uniformly bounded hence we can extract a
weakly convergent subsequence such that vy,; — vin V' to some v.

Select an arbitrary f € V. and set I, := (f,v,) which is a monotonic sequence (since f is non-negative) and also
bounded. Hence the monotone convergence theorem applies and we obtain the existence of [ such that [,, — [. Since also
In;, — 1, we conclude that | = (f, v).

80ur theory of differentiability for QVIs in the earlier paper [4] (which was for non-negative sources and directions) could not be immediately used
to obtain strong stationarity by arguing in this fashion since the setting of [4] would have forced U, to be selected such that U,y C H4. This is why
the development of the results of §2 and §3 are crucial.

19These, of course, should be evaluated at 3*.

20We thank Jochen Gliick for the idea of the proof.
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Take another subsequence of {v,,}, say {v,,, }, then by the above argument, we have Un,, = © for some ¥ and
I = (f,v). Thatis,
(fiv)=(f,0) VfeVE

and from this, we can conclude via the weak-* density of V' — V} in V* (e.g., see [8, Lemma 2.7]) that © = v. The
subsequence principle then yields the result. O

Proof of Lemma 5.9. Define T,, = (I — ®'(z,)) and T = (I — ®'(z)). Then
Tn_lqn - T_lq = (Tn_l - T_l)qn + T_I(Qn - Q)

and we get T~1(g, — q) — 0in V by continuity and linearity of 7~!. For the first term on the right-hand side above, we
use the identity 7);! — T~ = T,71(T — T,,)T ! relating the inverses of operators to see that

(T =T Nl = [T =TT an],

<O (T —T)T  gn, (by (50))
<G ||T - Tn”/;(v,v) |’T71q"||v
< Co || (20) = '(2)|l vy (because T~ and g,, are bounded)

—0

with the convergence because we assumed that ® is continuously Fréchet differentiable and hence the derivative is con-
tinuous. Therefore, T, *q, — T~ 'qin V. The strong convergence follows because if ¢, — ¢ then T~ (g, — ¢) — 0 in
V. For the final claim, we have

(AT g gn) — (AT 7Y q,q) = (AT g — T4 00), an) + (AT Y40, 40) — (AT g, q)

and the first term on the right-hand side tends to zero by the calculation above. Since by (50), AT ! is bounded and
coercive (as well as being linear), we obtain

Um inf(AT ™" g, qn) — (AT "q,q) > 0. O

n—oo

B Sketch proof of Theorem 5.16

Recall the notation av;, which stands for the directional derivative in the direction A given through Theorem 3.2.

Lemma B.1. Denote by j: H — V* the inclusion map. Then 0 € V* is a minimiser of the problem

min V*(ah,y* —ya)u +v(h,u). (75)
he€jTu, , (u*)

Proof. Choosing the direction & = 0 in the inequality of Proposition 5.2 implies 0 < (cv, y* — yq) + v(u*,0) = 0 with
the equality because aig = 0. Hence h = 0 is a minimiser of

min  (ap,y* — +v(u*, h).
heTUad(U*)( nY — Ya)u (u”, h)

As in Lemma 4.1 of [69], the feasible set can be enlarged (the continuity in V* of h — «y, assured by Proposition 3.12 is
needed here) to obtain the desired result. O

The aim now is to rewrite (75) over the space
W:={veV:v=0qe in As;(y")}.

Using the characterisation of the critical cone from [69, Lemma 3.1], we see that KY" c W. Denote byi: W — V the
inclusion map and define the closed convex set

C%,’; ={veW:v<0qe inB(y")},
which satisfies K = iC%fV*. Now, note that, using (32), (I — ®'(y*)): V — V is invertible. Define
Aw: W oW, Ay =" A - @/ (y") "k
and observe that for any d e W* the inequality

§eCY  (Awd —d, 6 —wyw-w <0 YweCl
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has a unique solution by the Lions—Stampacchia theorem since Ay is bounded and coercive due to the Lipschitz condition
(32) (see [72, Lemma 3.3]). Now suppose that for d € V*, § solves

0 ECIZ/I[; (Awd —i"d, 0 —w)w+w <0 VYw ECé’;.

Consider also
z€KY {AI- ' (y*) e —dz—v)y-y <0 YoeKY .

Then it is easy to see that that z = 4.

Lemma B.2. Define the operator 6: W — V by
0:=(1—d'(y*)) i

Then (0, 0) is a solution of

! 0 - h,u*)w+w s.t.
(5h,h§ren£xW*( (B)y* —ya)u +vi{h,u")wew s

Bn €CYy (76)
h = Aw Bn

*

S
h e i*jTUad (U*)
Proof. By defining v;, := ap, — &' (y*)(apn) = (I — ¥’ (y*))an, the QVI (27) satisfied by ay, can be written as
T €KY (AT =@ (y*)) 'yn —hyyn — ) 0 Vp e K.
Now if 3}, satisfies
Br €CYy - (AwBh —i*h, B — ) <0 VY €y,
we have (as discussed above) 7;, = i, hence
iBp=(1—2(y" )an <=  an=0(Bn)

Therefore, (75) can be restated and we get (using the continuity of ®’(y*)) that 0 is a solution of

min - OBR), ¥y — ya)u + v{h, u™)w~w s.t.
hei*jTUad(u*)

B € Cly + (AwBn — h, B — @)w=, w <0 ¥ € Cly;

this is well defined because u* € W due to (74). Hence, similarly to Proposition 3.13, (0, 0, 0) is a solution of

(,Bh,h,gh)énvclfan*xW*(a(ﬂh)’y —ya)u +v{h,u ) wew st
Bn € CY,
§&n="h—AwpBn
&€ (Cl)°
(€n, Br) =0

7‘/[/*
heijTo,, (u*) .

Setting &5, = 0 leads to the result. O

We need to derive stationarity conditions for this problem and then transform the resulting system back to the original
spaces and operators. Let us remark that under the assumptions of the theorem, we have that 6 is linear and bounded.

Lemma B.3. Defining

D= T @), V=W xWxW,  C:={0}c%, D),

there exists (P, A, o) € Y* N C° such that

A+ 0" (G(y* —ya)) + A =0,
vu* —p+o =0,
Ne (),
o€ D°.
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Proof. In addition to the notation introduced above, let us also define the space X' := W x W*. Define the map g: X — Y
by g(B,h) := (Aw B — h, 3, h) and observe that (76) can be compactly written as

min__ (¢ Y= + vih, u W w. -
g(ﬁh,h)ec( (Bn) 9" — wa) ( YW w a7

We now proceed with checking the Zowe—Kurcyusz constraint qualification ¢’((0,0))X — R¢(g(0,0)) = Y to deduce
the existence of Lagrange multipliers. First observe that D is a convex cone which in turn implies that C'is a convex cone
and then by [20, Example 2.62], R ((0,0,0)) = C and 7¢((0,0,0))° = C°. Now, we see that g(0,0) = (0,0,0) and
Rec(g9(0,0)) = C. We also have

g'(0,0)(7,d) = (Aw~y —d,v,d)  Y(v,d) € W x W*.

Therefore, we are required to show that for every (w, we, wj) € Y, there exist (v,d, v, h) € X x C%V* x D such that

Awy — d = wi,
Y — U= ws, (78)
d—h=wj.

The first equation written in terms of v and h reads Ay v — (w} +wi — Awws) = h. In order to force solutions to belong
to the desired sets, we consider the VI

findv € C%; {Awv — (W] Fw; — Awwa), v —p) <0 Vp e C%; 79)

associated to the above PDE. As explained above, (79) has a solution and furthermore, the following complementarity
system (which can be derived by the same arguments as before) is satisfied by any solution:

v EC&;

n = (w] +wi — Awws) — Ao
ne (Cy)°

n Lo

Using this, we see that h := —n € —(C&;)O. The manipulations in the paragraph after Lemma 5.1 of [69] show that
(*jTu,.(y*))° C —C%,’; which implies that —(Ci’,’;)" C (i*jTu,,(y*))°° = D, that is, g € D. Then we simply define -y
and d by (78). Thus the constraint qualification is met for (77). ~
Writing the objective functional in (77) as J, we obtain the existence of a Lagrange multipler (p, A\,0) € Y* N C°
such that ~
J'(0,0)(2) + (g'(0,0)* (7. X, 0),2) =0 Yz € X.

With x = (v, d), we see that since 6(0) = 0, the first term above is
J'(0,0)(z) = (0" (§(y" — ya)), ww +v(d,u)ww,

where 0% : V* — W™ is the adjoint of : W — V (this exists due to the linearity assumption). We also have, by definition
of the adjoint operator,

(9/(0,0)*(p, X, 0), ) = (B X, 0), (Awy — d, . )
= (Ajyp, Vw-w + M Nwew + (0 = B d)wew-
This implies the result. O
We now transform all quantities back to the space V.

Conclusion of sketch proof of Theorem 5.16. Observe that under the assumptions, Proposition 5.2, Lemma B.3 and The-
orem 3.2 are applicable. To start with, let us define

* .~

p =1p
and
N= (L= @ (y")) T (= AP — (Y — ya)),
and for convenience, denote L := &'(y*).

* By definition of A* and p*, we get the first line in the system after etching away the inclusion map j.

* We see from the definition of A\* and elementary manipulations to relate it to Ae (Cw)° and the usage of the fact that
1Cw = KY" that \* € (ICy* )°. This implies the final condition of the system thanks to [69, Lemma 3.1].
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* Since p € W, it vanishes g.e. on the strongly active set. As p = vu* + ¢ and since o € D°, Lemma 5.1 of [69] tells us
that o > 0 q.e. on Q \ U,. Thus

olBy*) = lu.nBy) + Tl@\U)nBy*) = lu.nB) =0

with the final equality because of (72). Note also that

Uy = u'lByenu, + U B n@\by) = U BEn@wn,) = 04,

with the first inequality by (73) and the final inequality by the third sign condition on u* stated in §5.5. This implies the
stated condition on p*, which is equivalent to —p* € K¥" due to the characterisation of the critical cone in [69, Lemma
3.1].

» We obtain 0 € Ny, (u*) exactly as in the proof of Theorem 5.2 in [69]°' (where N7, denotes the normal cone to
U,q with respect to H), which is the polar cone of the tangent cone, see [20, §2.2.4]) and this is precisely the desired
inequality constraint relating the control and the adjoint. O
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