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Abstract

We focus on elliptic quasi-variational inequalities (QVIs) of obstacle type and prove a number of results on the

existence of solutions, directional differentiability and optimal control of such QVIs. We give three existence theorems

based on an order approach, an iteration scheme and a sequential regularisation through partial differential equations. We

show that the solution map taking the source term into the set of solutions of the QVI is directionally differentiable for

general data and locally Hadamard differentiable obstacle mappings, thereby extending in particular the results of our

previous work which provided the first differentiability result for QVIs in infinite dimensions. Optimal control problems

with QVI constraints are also considered and we derive various forms of stationarity conditions for control problems,

thus supplying among the first such results in this area.
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1 Introduction

Quasi-variational inequalities (QVIs) are generalisations of variational inequalities (VIs) where the constraint set in which

the solution is sought depends on the unknown solution itself. The very nature of the dependency of the constraint set

on the solution intrinsically leads to a complicated and challenging mathematical structure since it significantly amplifies

the nonlinear and nonsmooth nature of VIs. Another attribute that fundamentally distinguishes QVIs from VIs is the lack

of uniqueness of solutions (in general) which then necessitates the consideration of multi-valued or set-valued solution

mappings. QVIs arise in a multitude of models describing phenomena in fields such as biology, physics, economics and

social sciences amongst others. First introduced by Bensoussan and Lions [17, 48] in the study of stochastic impulse

controls, specific applications involving QVIs are thermoforming processes [4, 7], the formation and growth of lakes,

rivers and sandpiles [59, 15, 58, 56, 16], games in the context of generalised Nash equilibrium problems [34, 25, 55], and

magnetisation of superconductors [44, 14, 57, 62]. See [5, 12] for additional details and references.

In this paper, we focus on elliptic QVIs of obstacle type or compliant obstacle problems. These have the form

find y ∈ K(y) : 〈Ay − f, y − v〉 ≤ 0 ∀v ∈ K(y) where K(y) := {v ∈ V : v ≤ Φ(y)}. (1)

Here f ∈ V ∗ is data, Φ: V → V is a given obstacle map, and V is a reflexive Banach space possessing an ordering ≤
which is used in the definition of the constraint set (we shall be more precise below). Let us define Q to be the solution

map associated to the QVI in (1) so that it reads y ∈ Q(f). We develop in this paper theory addressing the matters

of existence for (1), directional differentiability of Q and stationarity conditions for optimal control problems with QVI

constraints of the form

min
u∈Uad

y∈Q(u)

1

2
‖y − yd‖2H +

ν

2
‖u‖2U . (2)

Different methodologies exist for the mathematical treatment of existence for QVIs. There is an approach based on order

that was pioneered by Tartar [67] which relies on the existence of subsolutions and supersolutions to guarantee existence

of solutions (typically, one takes 0 as a subsolution which would hold under sign conditions on the source term). In

certain cases, the QVI can be expressed as a generalized equation and it therefore belongs to a more general problem class

[40, 41, 26, 39, 27]. In problems involving constraints on derivatives (which is not the case under consideration in this

paper), special forms of regularisation of the constraint that modify the partial differential operator may be suitable, see

[62, 52, 10, 11]. For more details, we refer the reader to the survey paper [5]. We discuss in §2 appropriate conditions

on the function spaces and the obstacle map Φ for Q(f) to be non-empty. One approach relies on an iteration argument

where a contraction-type property of Φ is used. Another existence result is given for source terms bounded from below

by using the aforementioned Birkhoff–Tartar theory, and we also study a sequential regularisation approach of the QVI

by PDEs where the QVI constraint is handled by a penalty term.

Literature on the differentiability and sensitivity analysis for solution maps associated to QVIs in infinite dimensions

is almost non-existent: our contributions [4, 6] appear to be the first ones that address these issues. In [4], we give a first

directional differentiability result for the solution map taking the source term into the set of solutions for non-negative

sources and directions whilst in [6] we studied continuity properties related to minimal and maximal solution mappings

of QVIs. In §3, we derive directional differentiablity results for Q. We extend and improve here our previous work

[4] which provided differentiability results for source and direction terms that are non-negative; in this paper we shall

remove this restriction in our Theorem 3.2, which requires minimal (and locally formulated) assumptions to apply. We

give a characterisations of the QVI that is satisfied by the directional derivative of Q as a complementarity system and

in §3.3 we also prove a continuity result that shows that the derivative depends continuously on the direction under some

assumptions. This gives a comprehensive answer to the question of sensitivity analysis of QVIs under rather general

conditions.

The scarcity of work done on the optimal control of QVIs in infinite dimensions is unsurprisingly even more pro-

nounced; see [2, 6, 23, 24, 54] for some of the very few contributions. In our work [6], in addition to stability properties

we also provided results on the optimal control of minimal and maximal solutions of QVIs. While this article was under

preparation, we note that [72] has appeared wherein the author considers elliptic QVIs and their differential sensitivity

and strong stationarity conditions for the optimal control problem but for Frèchet differentiable obstacle maps Φ; we

assume only Hadamard differentiability of Φ for the differentiability result and we furthermore provide other forms of

stationarity as well as existence/approximation results. For QVIs in the finite dimensional setting, see [53] and the ref-

erences therein. In sharp contrast, control problems with VI constraints have attracted wide attention: see for example

[13, 51, 19, 18, 38, 37, 36, 65, 43, 33, 69] and the references therein. We shall consider in §4 the optimal control problem

(2) where existence of the optimal control will be shown using a standard calculus of variations argument. Then we turn

our attention to the derivation of stationarity conditions for the optimal control and state. There are a number of concepts
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of stationarity for these types of control problems, see [37] for a discussion. We first work on obtaining Bouligand sta-

tionarity in §5.1, then a form of weak C-stationarity in §5.2, moving on to E-almost C-stationarity conditions in §5.3 by

approximating the QVI control-to-state map through PDEs (as done in §2.3) and then passing to the limit. We discuss in

§5.4 how to upgrade to C-stationarity from E-almost C-stationarity and finally, in §5.5, we provide a strong stationarity

result.

1.1 Contributions of the paper

We summarise the main results of this work.

• QVI:

– Theorems 2.18 and 2.19: existence for (1) via a penalty approach,

– Theorem 3.2: directional differentiability for QVIs for locally Hadamard maps Φ under local Lipschitz con-

ditions,

– Proposition 2.1: complementarity characterisations of the QVI in (1),

– Proposition 3.12: continuity properties of the QVI satisfied by directional derivative,

– Proposition 3.13: complementarity characterisation of the QVI satisfied by the directional derivative of the

solution map.

• Optimal control:

– Theorem 4.1: existence of optimal controls for (2).

• Stationarity conditions for (2):

– Proposition 5.2: Bouligand stationarity,

– Theorem 5.5: weak C-stationarity,

– Theorem 5.11: E-almost C-stationarity,

– Proposition 5.15: C-stationarity,

– Theorem 5.16: strong stationarity.

1.2 Basic assumptions and notations

We make some standing assumptions that are necessary throughout the paper, except where mentioned otherwise.

We always work with real Banach or Hilbert spaces. Let V be a Banach space and denote the standard duality pairing

on V ∗ × V by 〈·, ·〉 = 〈·, ·〉V ∗,V . Take A : V → V ∗ to be a linear operator that satisfies the following properties for all

u, v ∈ V :

〈Au, v〉 ≤ Cb ‖u‖V ‖v‖V , (boundedness)

〈Au, u〉 ≥ Ca ‖u‖2V , (coercivity)

〈Au+, u−〉 ≤ 0, (T-monotonicity)

where Ca, Cb > 0 are constants. We will frequently suppose that the Banach space V is a vector lattice for a partial

ordering ≤. This means that for all u, v ∈ V , the following holds:

(i) u ≤ u (reflexivity),

(ii) u ≤ v and v ≤ u implies u = v (anti-symmetry),

(iii) u ≤ v and v ≤ w implies u ≤ w (transitivity),

(iv) u ≤ v implies that u+ w ≤ v + w and λu ≤ λv for λ ≥ 0,

(v) there exists a greatest lower bound inf(u, v) and a least upper bound sup(u, v) belonging to V .

See for example [3, 49] or [61, §4:5] for more details. It should be emphasised that in the context of function spaces over

a bounded Lipschitz domain Ω, with ≤ chosen as the usual a.e. ordering, (v) allows for V = Lp(Ω) and V = W 1,p(Ω)
for 1 ≤ p <∞ but not V =W 2,p(Ω) in general. We write the positive cone of V as

V+ := {v ∈ V : v ≥ 0}
(this is convex but not necessarily closed). If V is a Banach lattice, the projection onto V+ (assuming this is well defined)

of an element v ∈ V agrees with sup(0, v), but this is not necessarily the case for a general vector lattice. Note that the

dual space V ∗ inherits an ordering: we say f ≤ g in V ∗ if and only if 〈g − f, v〉 ≥ 0 for all v ∈ V+.

Regarding the obstacle map, we take Φ: V → V to be given.

The identity operator will be denoted by I. We denote continuous, dense, and compact embeddings of spaces by ↪→,
d
↪−→, and

c
↪−→ respectively. The notation BR(u) will be used to mean the closed ball in V of radius R centred at u.
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2 Existence for QVIs

We begin by discussing three existence results for the QVI in (1), reproduced here:

y ≤ Φ(y) : 〈Ay − f, y − v〉 ≤ 0 ∀v ∈ V : v ≤ Φ(y),

involving different approaches. We start by obtaining existence through iteration by solutions of VIs. Then we consider a

translation of the theory by Birkhoff–Tartar for source terms that are bounded from below and we finish by considering a

sequential regularisation approach through PDEs. These existence results entail different assumptions. The third approach

is useful for purposes of numerical realisation. The second approach requires Φ to be increasing and bounded below in a

certain sense.

Before we proceed, let us give the following characterisation involving (1).

Proposition 2.1. The QVI in (1) is equivalent to the complementarity system

ξ := f −Ay, (3a)

ξ ≥ 0, (3b)

〈ξ,Φ(y)− y〉 = 0, (3c)

0 ≤ Φ(y)− y. (3d)

Proof. The proof is standard. By definition, ξ satisfies 〈ξ, y − v〉 ≥ 0 for all feasible v. Setting v = Φ(y) and then

v = 2y−Φ(y), we obtain the orthogonality condition (3c) for ξ. Testing with v = y−ϕ for ϕ ∈ V with ϕ ≥ 0 gives the

stated non-negativity. The reverse direction follows from writing 〈Ay−f, y−v〉 = 〈Ay−f, y−Φ(y)〉+〈Ay−f,Φ(y)−v〉
(where v is a feasible test function) and using the second and third lines in the system.

2.1 Iteration scheme

We need the following assumption for this section (as an example, V = L2(Ω) or H1(Ω) on a bounded Lipschitz domain

are valid).

Assumption 2.2. Let V be a Hilbert space and a vector lattice with V+ closed and suppose that Φ: V → V is increasing.

The lattice and increasing properties are necessary to apply the comparison principle for VIs [61, §4:5]. This as-

sumption also implies the following useful property (whose proof is in Appendix A), which can be thought of as a weak

monotone convergence theorem (in fact, it suffices for V to be a reflexive Banach space rather than Hilbert for the result).

Lemma 2.3. If {vn} ⊂ V is a bounded sequence which is either increasing or decreasing (i.e., either vn ≤ vn+1 for all

n, or vn ≥ vn+1 for all n), then there exists a v ∈ V such that vn ⇀ v in V (for the full sequence).

Let S : V ∗ × V → V be the solution mapping of the VI associated to the class of QVIs under consideration, i.e.

y = S(f, ψ) solves

y ≤ Φ(ψ) : 〈Ay − f, y − v〉 ≤ 0 ∀v ∈ V : v ≤ Φ(ψ).

Take a source term f ∈ V ∗ and set

y0 := A−1f

to be the solution of the unconstrained problem. The function y1 := S(f, y0) satisfies1 y1 ≤ y0 by the comparison

principle [61, §4:5, Theorem 5.1], and defining

yn := S(f, yn−1),

we see that yn ≤ yn−1 by repeated applications of the comparison principle. Hence {yn} is monotonically decreasing

and each yn satisfies

yn ∈ V, yn ≤ Φ(yn−1) : 〈Ayn − f, yn − v〉 ≤ 0 ∀v ∈ V : v ≤ Φ(yn−1). (4)

We look for a uniform bound on {yn}. When the obstacle map is such that it always dominates some given function

v0 ∈ V , this is easy since we may test with v = v0. Otherwise, we need the following.

Lemma 2.4. If

‖Φ(v)‖V ≤ CX ‖v‖V ∀v ∈ V where CX <
Ca

Cb
, (5)

then {yn} is bounded in V .

1Heuristically, y0 is considered as a solution of the VI with source f and obstacle equal to ∞.
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Proof. Since yn ≤ yn−1 and Φ is increasing, Φ(yn) ≤ Φ(yn−1) and so Φ(yn) is a valid test function in (4) and we obtain

Ca ‖yn‖2V ≤ 〈Ayn,Φ(yn)〉+ 〈f, yn − Φ(yn)〉
≤ Cb ‖yn‖V ‖Φ(yn)‖V + ‖f‖V ∗ ‖yn − Φ(yn)‖V
≤ CbCX ‖yn‖2V + (1 + CX) ‖f‖V ∗ ‖yn‖V .

From this, we deduce that yn is bounded in V under the condition on CX in (5).

Now we pass to the limit and show that Q : V ∗
⇒ V is such that Q(f) 6= ∅ under certain circumstances.

Theorem 2.5. Let Assumption 2.2 hold and suppose that

either there exists v0 ∈ V such that v0 ≤ Φ(v) for all v ∈ V , or (5), (6)

if {vn} ⊂ V is decreasing with vn ⇀ v in V and v ≤ Φ(vn), then v ≤ Φ(v). (7)

For any f ∈ V ∗, there exists a solution y ∈ Q(f) ∩ (−∞, A−1f ] which is the weak limit of the sequence {yn} defined

above.

Proof. We obtain, thanks to monotonicity and Lemma 2.3 that yn ⇀ y in V (for the full sequence) for some y. Since

{yn} is decreasing, ym − yn ∈ V+ where n ≥ m for m fixed. As V+ is closed and convex, it is weakly sequentially

closed, giving ym ≥ y. This implies that for arbitrary v∗ ∈ V with v∗ ≤ Φ(y), we have v∗ ≤ Φ(ym). We take such a v∗

as the test function in the VI for ym and then pass to the limit to obtain that y satisfies the inequality in (1) and it remains

to be seen that y ≤ Φ(y). This follows from passing to the limit in y ≤ ym ≤ Φ(ym−1) by making use of (7).

The assumption (7) is rather weak and it is satisfied if, for example, Φ: V → V is weakly sequentially continuous.

Remark 2.6. For QVIs with more general or different types of constraints one might need to assume Mosco convergence

(see [61, §4:4]) properties of the underlying constraint sets.

Example 2.7. The prototypical example for Φ to have in mind is a map given by the inverse of a partial differential

operator such as

Φ(w) := L−1w + f0,

for example with L : V → V ∗ a second-order linear elliptic operator on a bounded Lipschitz domain Ω and f0 ∈ V . The

validity of elliptic regularity and continuous dependence estimates for L would give compactness properties for Φ (and

weak maximum principles would also yield the increasing property for Φ). See [4, §1.2] for more details on this and on

an application to fluid flow.

2.2 Birkhoff–Tartar order approach

In this section, we extend Birkhoff–Tartar-type existence results typically used for QVIs with non-negative source terms

to QVIs with source terms that are allowed to be negative. This leads to different assumptions than those made in §2.1.

The bedrock of this technique, as detailed in the introduction, is the result of Tartar [67] that gives existence of fixed points

for increasing maps that possess subsolutions and supersolutions, see also [9, Chapter 15, §15.2]. We need the following

functional setup in this section.

Assumption 2.8. Let V
d
↪−→ H be a continuous and dense embedding of Hilbert spaces and let C ⊂ H be a closed convex

cone satisfying

C = {h ∈ H : (h, g)H ≥ 0 for all g ∈ C}. (8)

This induces an ordering defined by

h1 ≤ h2 if and only if h2 − h1 ∈ H+.

Note that H+ ≡ C. We write h+ = PH+
h to denote the orthogonal projection of h ∈ H onto H+ and define h− :=

h+ − h. We assume that v ∈ V implies v+ ∈ V and that there exists a C > 0 with ‖v+‖V ≤ C‖v‖V for all v ∈ V .

Finally, suppose that

Φ: H → V is increasing.

Note that H is a vector lattice (induced by C) and that the ordering induces an ordering for V in the obvious way and

also an ordering for V ∗ as elucidated in §1.2. Also, −h− ∈ P−H+
h because C satisfies (8).

Let us recall the Birkhoff–Tartar result (see [9, §15.2, Proposition 2]) for increasing maps under the assumptions on

the function spaces in Assumption 2.8.
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Theorem 2.9 (Birkhoff–Tartar). Suppose that T : H → H is an increasing map and let h be a subsolution and h be a

supersolution of the map T , i.e.,

h ≤ T (h) and T (h) ≤ h.

If h ≤ h, then the set of fixed points of T in the interval [h, h] is non-empty and has a minimal and a maximal element.

With this at hand, we can study existence for (1).

Theorem 2.10. Let Assumption 2.8 hold and suppose that

there exists v0 ∈ V such that v0 ≤ Φ(v0). (9)

Given f ∈ V ∗ with Av0 ≤ f ≤ F for some F ∈ V ∗, there exist solutions y ∈ Q(f) ∩ [v0, A
−1F ]. Furthermore, there

exists a minimal and a maximal solution on this interval.

Proof. By the comparison principle, S(f, v0) ≥ S(Av0, v0) = v0, hence v0 is a subsolution for S(f, ·). Since Φ is

increasing, A−1F = S(F,Φ−1(∞))2 ≥ S(F,A−1F ) ≥ S(f,A−1F ) so that A−1F is a supersolution. We also have

v0 = S(Av0, v0) ≤ S(F, v0) ≤ S(F,Φ−1(∞)) = A−1F , i.e., the subsolution lies below the supersolution. Finally,

S(f, ·) is increasing due to Φ being increasing. The result follows from the Birkhoff–Tartar theorem.

A typical situation in examples is when Φ(0) ≥ 0 and f ∈ V ∗
+. While the assumption (9) of the existence of such a

v0 may appear to be restrictive, note that choosing v0 ≡ 0 recovers the setting of [4] which has been successfully applied

to an application in thermoforming. The next example illustrates the existence of such a function v0 to a map Φ related to

solution maps of elliptic PDEs.

Example 2.11. Let Ω ⊂ R
n be a bounded Lipschitz domain and set H := L2(Ω). Suppose (V,H, V ∗) is a Gelfand

triple3 with V a reflexive Banach space. Given a linear, bounded, coercive and T-monotone operator B : V → V ∗ and a

source term g ∈ V ∗, let Φ(u) = ϕ be defined4 as the solution of

Bϕ = g + u.

Take any v0 ∈ V . We claim that if g is such that

g ≥ Bv0 − v0,

in V ∗, then (9) is satisfied. To see this, set v := Φ(v0) so that Bv = g + v0. Adding the same term to both sides, we

obtain B(v − v0) = g + v0 −Bv0. Test this with the function (v − v0)
− to obtain

〈B(v − v0)
−, (v − v0)

−〉 ≤ −〈g + v0 −Bv0, (v − v0)
−〉 ≤ 0.

2.3 Sequential regularisation by PDEs

In this section, we obtain existence results for (1) by regularising the QVI by PDEs by a penalty approach similar to [47,

§3.5.2, p. 370]. There has been considerable effort on various aspects and methods of regularisation of VIs by PDEs;

see for example [30, §3.2] for an approach similar to what we consider here and [46] and [42, §IV] for a penalisation

involving approximations to the Heaviside graph (see also [61, §5:3] on this).

Assumption 2.12. Let V be a reflexive Banach space and a vector lattice such that V+ is closed.

Recall that an operator T : X → X∗ is hemicontinuous [63, Definition 2.3] if s 7→ 〈T (x+ sy), z〉X∗,X is continuous

for all x, y, z ∈ X . For each ρ > 0, let mρ : V → V ∗ be a hemicontinuous map such that

mρ(v) = 0 if v ≤ 0 (10)

〈mρ(u)−mρ(v), u− v〉 ≥ 0 (11)

zρ ⇀ z in V and mρ(zρ) → 0 in V ∗ (as ρ→ 0) =⇒ z ≤ 0 (12)

Remark 2.13. The last condition precludes the possibility of having ‘bad’ choices of mρ such as ρ(·)+. It is also worth

pointing out that if mρ ≡ m for some map m, then (12) implies that

m(z) = 0 =⇒ z ≤ 0,

which is the converse of (10), so (12) can be thought of a strengthening of the classical kernel or penalty condition that

one finds in penalty approaches for VIs.

2By S(F,Φ−1(∞)) we simply mean the solution of the unconstrained problem with source F . No invertibility of Φ is necessary.
3Recall that V ⊂ H ≡ H∗ ⊂ V ∗ is called a Gelfand triple if V is a reflexive Banach space continuously and densely embedded into the Hilbert

space H and H has been identified with its dual through the Riesz map.
4The interest in such obstacle mappings is not merely academic, see [4] for some applications.
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It is always possible to find such a sequence of maps {mρ}, see the next example as well as Example 2.17 for the

Gelfand triple case. For this reason, we will not usually explicitly refer to (10)–(12) in statements of theorems.

Example 2.14 (Existence of mρ). Let V and V ∗ be strictly convex5. Indeed, with J : V → V ∗ denoting the duality

mapping6 the choice

mρ(u) := J (u− PV−
(u))

furnishes such an example where PV−
: V → V− is the metric projection7 onto the set of non-positive elements V−.

Properties (10) and (11) as well as hemicontinuity follow as in [47, §3.5.2, Theorem 5.1, p. 370]. In fact, note that

mρ(u) = 0 implies that u ≤ 0 (because J is bijective and passes through the origin [73, Proposition 32.22 (a), (b)]).

For (12), denoting mρ ≡ m, by monotonicity, we have for every λ > 0 and v ∈ V that

〈m(zρ)−m(z + λv), zρ − z − λv〉 ≥ 0

whence passing to the limit ρ → 0, using m(zρ) → 0 in V ∗ (by hypothesis), 〈m(z + λv), λv〉 ≥ 0 and then dividing

through by λ and sending λ→ 0, by hemicontinuity, we obtain that m(z) = 0 in V ∗ and thus z ≤ 0.

We consider the penalisation8

Ayρ +
1

ρ
mρ(yρ − Φ(yρ)) = f (13)

of (1) and study the convergence properties of its solution as ρ → 0. First, we discuss existence. We recall that a map

T : X → X∗ is said to be radially continuous [63, Definition 2.3] if s 7→ 〈T (x + sy), y〉X∗,X is continuous for all

x, y ∈ X , and a map R : X → Y between Banach spaces is said to be completely continuous [66, §2] if xn ⇀ x in X
implies that R(xn) → R(x) in Y .

Proposition 2.15 (Existence for the penalised equation). Under Assumption 2.12, assume

there exists v0 ∈ V such that v0 ≤ Φ(v) for all v ∈ V (14)

and one of the following:

mρ(I− Φ): V → V ∗ is completely continuous, (15a)

mρ(I− Φ): V → V ∗ is monotone, radially continuous and bounded. (15b)

Given f ∈ V ∗, there exists a solution yρ ∈ V of (13). Furthermore, every solution satisfies

‖yρ‖V ≤ C (‖f‖V ∗ + ‖v0‖V ) ,

where C is independent of ρ.

Proof. We have that A+(1/ρ)mρ(I−Φ) is a bounded operator (under (15a), recall that completely continuous maps are

bounded). Let us show that it is also coercive. First, by adding and subtracting the same term, observe the formula

〈mρ(yρ − Φ(yρ)), yρ − v0〉 = 〈mρ(yρ − Φ(yρ))−mρ(v0 − Φ(yρ)), yρ − v0〉
≥ 0

(by monotonicity (11) and because mρ ≡ 0 on (−∞, 0] from (10)). Now, using this, we have

〈Ayρ, yρ − v0〉+ 〈mρ(yρ − Φ(yρ)), yρ − v0〉 ≥ Ca ‖yρ‖2V − Cb ‖yρ‖V ‖v0‖V ,

which yields coercivity of the full elliptic operator.

Suppose that (15a) is available. By [66, §2, Lemma 2.1], A is a type M operator. Since the sum of a type M operator

and a completely continuous operator is type M [66, §2, Example 2.B], we get that the full elliptic operator is of type M.

Then [66, §2, Corollary 2.2] yields existence. Under (15b), the full elliptic operator is pseudomonotone by [63, Lemma

2.9 and Lemma 2.11] giving existence via [63, Theorem 2.6].

5All Hilbert spaces (and thus their duals) are strictly convex. In fact, the strict convexity requirement in the assumption is no issue in the setting of

reflexive Banach spaces: by Asplund’s theorem (see e.g., [47, §2.2.2, Theorem 2.5]), V can be renormed via an equivalent norm making V and V ∗

strictly convex.
6The assumption of strict convexity gives appropriate properties of J (such as single-valuedness), see [47, §2.2.2, p. 174] and [73, §32.3d] for more

details.
7This is well defined since we assumed V+ (and hence V−) is closed and because V is a reflexive and strictly convex space.
8For the results of this section, it would be sufficient to simply consider the case where each mρ ≡ m, but in anticipation of the optimal control

problem that we shall later study (in particular when we derive optimality conditions), it becomes useful to consider this generality now.
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Regarding the estimate on the solution, we test the equation with yρ − v0 and use the above coercivity estimate to find

Ca ‖yρ‖2V ≤ Cb ‖yρ‖V ‖v0‖V + ‖f‖V ∗ ‖yρ‖V + ‖f‖V ∗ ‖v0‖V

≤ Ca

3
‖yρ‖2V +

3C2
b

4Ca
‖v0‖2V +

3

4Ca
‖f‖2V ∗ +

Ca

3
‖yρ‖2V +

1

2
‖f‖2V ∗ +

1

2
‖v0‖2V .

This gives the uniform bound

Ca

3
‖yρ‖2V ≤

(

3C2
b

4Ca
+

1

2

)

‖v0‖2V +

(

3

4Ca
+

1

2

)

‖f‖2V ∗ .

Remark 2.16. The assumptions of the previous lemma are by no means necessary. One could, for example, ask for

(I − Φ): V → V to be invertible and A(I − Φ)−1 : V → V ∗ to be pseudomonotone and coercive instead of (15a) or

(15b) and then apply [63, Theorem 2.6] to obtain the same result.

Let us point out a very common setting.

Example 2.17 (Gelfand triple case). Suppose that

V ⊂ H ≡ H∗ ⊂ V ∗ is a Gelfand triple with V
c
↪−→ H and H is a vector lattice defined via (8) with H+ closed, (16)

Φ: V → H is completely continuous. (17)

Set h+ = PH+
h to be the orthogonal projection in H . We assume that (·)+ : V → V .

We can take mρ : V → H∗ ≡ H defined by

mρ(v) := (v+, ·)H

and this satisfies (10), (11), (12) and (15a). Indeed, (12) follows because PH+
: H → H+ is Lipschitz continuous and the

compact embedding and complete continuity imply (15a) (using the fact that the projection operator is continuous in H).

We write the possibly multivalued solution mapping associated to the equation under study as Pρ : V
∗
⇒ V , so (13)

reads yρ ∈ Pρ(f). Now, thanks to the lemma, for every source term fρ ∈ V ∗, the following equation has a solution yρ:

Ayρ +
1

ρ
mρ(yρ − Φ(yρ)) = fρ. (18)

The next two theorems show that solutions of the regularised problem (13) converge to solutions of the QVI under varying

assumptions.

Theorem 2.18 (Existence and approximation of solutions to the QVI). Let Assumption 2.12, (14), either (15a) or (15b)

and

Φ: V → V is completely continuous (19)

hold. Take a sequence fρ → f in V ∗. Then there exists a subsequence {ρn}n and elements yρn
∈ Pρn

(fρn
) such that

yρn
→ y in V where y ∈ Q(f).

Proof. The proof is in four steps and is similar to the proof of Theorem 2.3 of [36].

1. Uniform estimates and feasibility of limit. For each ρ, let yρ be a solution of (18) (such a selection is possible due to

the axiom of choice). By Proposition 2.15, it satisfies the estimate

‖yρ‖V ≤ C
(

‖fρ‖V ∗
+ ‖v0‖V

)

,

and this is bounded, hence for a subsequence (which we do not attempt to differentiate for ease of reading), yρ ⇀ y in V
to some y. Rearranging the equality (18),

‖mρ(yρ − Φ(yρ))‖V ∗
= ρ ‖fρ −Ayρ‖V ∗

≤ Cρ

and therefore mρ(yρ − Φ(yρ)) → 0 in V ∗ as ρ→ 0. Then (12) implies that y ≤ Φ(y).

2. Monotonicity formula. For v ∈ V , we get by adding and subtracting the same term and using the monotonicity of mρ,

〈mρ(yρ − Φ(yρ)), yρ − v〉 = 〈mρ(yρ − Φ(yρ))−mρ(v − Φ(yρ)), yρ − Φ(yρ) + Φ(yρ)− v〉
+ 〈mρ(v − Φ(yρ)), yρ − v〉

≥ 〈mρ(v − Φ(yρ)), yρ − v〉. (20)
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3. Passage to the limit. Test the equation (18) with yρ − v for v ∈ V and use (20) to find

〈Ayρ, yρ〉+
1

ρ
〈mρ(v − Φ(yρ)), yρ − v〉 ≤ 〈fρ, yρ − v〉+ 〈Ayρ, v〉. (21)

Now, choose an arbitrary v∗ ∈ V with v∗ ≤ Φ(y) and select the test function to be

vρ = v∗ − Φ(y) + Φ(yρ).

With this choice, the second term on the left-hand side of the above inequality (21) is equal to zero by (10) and we find

〈Ayρ, yρ〉 ≤ 〈fρ, yρ − vρ〉+ 〈Ayρ, vρ〉.

Noting that vρ → v∗ in V (thanks to the complete continuity (19)) and vρ ≤ Φ(yρ), take the limit inferior as ρ→ 0 above

and use weak lower semicontinuity to get y ∈ Q(f).

4. Strong convergence. Define vρ := y +Φ(yρ)− Φ(y) which has the properties

vρ → y in V ,

vρ ≤ Φ(yρ),

yρ − vρ = (yρ − y) + (Φ(y)− Φ(yρ))⇀ 0 in V ,

the first holding since we already have yρ ⇀ y in V . Testing (18) appropriately, we have

〈A(yρ − vρ), yρ − vρ〉 = 〈fρ, yρ − vρ〉 −
1

ρ
〈mρ(yρ − Φ(yρ)), yρ − vρ〉 − 〈Avρ, yρ − vρ〉

and to this we apply the monotonicity formula and coercivity of A to find

Ca ‖yρ − vρ‖2V ≤ 〈fρ, yρ − vρ〉 −
1

ρ
〈mρ(vρ − Φ(yρ)), yρ − vρ〉 − 〈Avρ, yρ − vρ〉

= 〈fρ, yρ − vρ〉 − 〈Avρ, yρ − vρ〉. (since vρ ≤ Φ(yρ))

The right-hand side converges to zero, hence yρ − vρ → 0 strongly in V , implying yρ → y.

Theorem 2.18 requires the complete continuity condition (19) on Φ. Let us consider how this assumption can be

weakened or substituted.

Theorem 2.19. Assume the conditions of Theorem 2.18, except replace the assumption (19) with

〈A(·), (I− Φ)(·)〉 : V → R is weakly lower semicontinuous (22)

and assume one of the following:

Φ: V → V is weakly sequentially continuous, (23)

(16), (17) and fρ ⇀ f in H .

Then there exists a subsequence {ρn}n and elements yρn
∈ Pρn

(fρn
) such that yρn

⇀ y ∈ Q(f) in V .

Proof. We modify the third step of the proof of Theorem 2.18 (and, like before, we do not distinguish subsequences of

{ρ}). We write the final inequality of step 3 as 〈Ayρ, yρ− vρ〉 ≤ 〈fρ, yρ− vρ〉, which, recalling vρ = v∗−Φ(y)+Φ(yρ),
is

〈Ayρ, yρ − Φ(yρ)〉+ 〈Ayρ,Φ(y)− v∗〉 ≤ 〈fρ, yρ − vρ〉.
By (22), we can take the limit inferior on the left-hand side. Regarding the right-hand side, let us consider the two cases

separately.

(1) Under (23), yρ − vρ ⇀ y − v∗ in V , and since fρ → f in V ∗, we can pass to the limit on the right-hand side and we

obtain y ∈ Q(f), hence yρ ⇀ y in V .

(2) In the Gelfand triple case, we write the final term in the inequality above as the inner product (fρ, yρ − vρ)H and pass

to the limit easily.

Remark 2.20. It is not difficult to see that (22) and (23) are weaker assumptions than (19).

The theorem provides only weak convergence but strong convergence can be attained under additional assumptions as

the next remark shows.
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Remark 2.21. If, in addition to the conditions of Theorem 2.19 under the weak sequential continuity condition (23), we

also have

〈AΦ(·), (I− Φ)(·)〉 : V → R is weakly lower semicontinuous9, (24)

then yρn
− Φ(yρn

) → y − Φ(y) in V . To see this, returning to step 4 of the proof of Theorem 2.18 where we recall

vρ = y +Φ(yρ)− Φ(y), we start with the calculation

lim inf
ρ→0

〈Avρ, yρ − vρ〉

= lim inf
ρ→0

(〈A(y − Φ(y)), (I− Φ)(yρ) + Φ(y)− y〉+ 〈AΦ(yρ), (I− Φ)(yρ)〉+ 〈AΦ(yρ),Φ(y)− y〉)

≥ 〈A(y − Φ(y)), (I− Φ)(y) + Φ(y)− y〉+ 〈AΦ(y), (I− Φ)(y)〉+ 〈AΦ(y),Φ(y)− y〉
= 0,

where for the inequality we used weak continuity for the first and last terms and (24) for the middle term. Now, taking

the limit superior in the final inequality of the proof of Theorem 2.18, using the identity lim sup(an) + lim inf(bn) ≤
lim sup(an + bn) and the above calculation, we get

lim sup
ρ→0

〈fρ, yρ − vρ〉 ≥ lim sup
ρ→0

(

Ca ‖yρ − vρ‖2V + 〈Avρ, yρ − vρ〉
)

≥ lim sup
ρ→0

Ca ‖yρ − vρ‖2V .

Since the left-hand side is zero (by (23)), we deduce that yρ − vρ → 0 and hence yρ − Φ(yρ) → y − Φ(y) in V .

We see then that if for example

(I− Φ)−1 : V → V exists and is continuous,

we would also get the strong convergence yρ → y.

Remark 2.22. If Q(f) is a singleton, then the convergence results of the previous theorems hold for the entire sequence

and not just a subsequence because the limit y = Q(f) is unique.

3 Directional differentiability

In this section, we extend the results of our previous work [4] which dealt with directional differentiability of the source-

to-solution map Q associated to (1) for non-negative source terms and directions. Formally, the goal is to show that the

following limit exists:

lim
s→0+

Q(f + sd)−Q(f)

s
.

This is merely a formal limit since Q : V ⇒ V is set valued in general, however in case Q : V → V is single valued, it is

precise. It is important to obtain such a sensitivity result not only for applications but also for the procurement of certain

types of stationarity conditions for optimal control problems with QVI constraints, a topic that we will address in §5.

We will follow closely the approach of our earlier work [4] where we combined an iteration (by VIs) argument with

the directional differentiability result for VIs in Dirichlet space case provided by Mignot [50] but here, we make two

refinements: instead of the order approach for the iterations employed in [4], we shall use a contraction technique similar

to that in §2.1, and secondly, we shall use the VI differentiability result in [71] given under a general vector lattice setting,

which generalises the result in [50]. For this, we begin with the following assumption on the ordering.

Assumption 3.1. Let V be a reflexive Banach space which is a vector lattice induced by a closed convex coneC satisfying

C ∩ −C = {0} and suppose that vn → v in V implies sup(0, vn)⇀ sup(0, v) in V .

As before, we will identify C with V+ and note that the strong-weak convergence part of the above assumption is

satisfied if there exists a constant M > 0 such that ‖sup(0, v)‖V ≤ C ‖v‖V for all v ∈ V . To state the main result, we

need to introduce some notation. Recall from (1) the constraint set mapping K : V ⇒ V defined by

K(w) := {v ∈ V : v ≤ Φ(w)}.

This is convex and closed (since V+ is closed), and associated to this, we define the radial cone of K(w) at a point

u ∈ K(w) by

RK(w)(u) := {h ∈ V : ∃s∗ > 0 such that u+ sh ∈ K(w) ∀s ∈ [0, s∗]}
and the corresponding tangent cone TK(w)(u) := RK(w)(u). Finally, recall the notation BR(y) to stand for the closed

ball in V of radius R centred at u.

9Note that (23) and (24) imply (22). Indeed, taking the limit inferior of 〈Aun, (I−Φ)(un)〉 = 〈A(I−Φ)un, (I−Φ)un〉+〈AΦ(un), (I−Φ)(un)〉,
using superadditivity and weak sequential continuity on the first term and (24) on the second term allows us to deduce the claim.
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Theorem 3.2. Let Assumption 3.1 hold and given f ∈ V ∗ and d ∈ V ∗, take y ∈ Q(f) satisfying the local assumptions

there exists ε > 0 such that Φ: Bε(y) → V is Lipschitz with Lipschitz constant CΦ < Ca/(Ca + Cb), (25)

Φ: V → V is Hadamard directionally differentiable at y. (26)

Then, for s > 0 sufficiently small, there exists ys ∈ Q(f + sd)∩BR(y) (where 0 < R ≤ ε) and α = α(d) ∈ V such that

ys = y + sα+ o(s)

where s−1o(s) → 0 in V as s→ 0+ and α satisfies the QVI

α ∈ Ky(α) : 〈Aα− d, α− v〉 ≤ 0 ∀v ∈ Ky(α),

Ky(α) := Φ′(y)(α) + TK(y)(y) ∩ [f −Ay]⊥.
(27)

The directional derivative α = α(d) is positively homogeneous in d.

The proof of this theorem will be given in the next subsections. For now, let us make some observations.

Remark 3.3. (i) The stated assumptions do not force solutions of the QVI to be unique. We will construct examples

demonstrating this fact in §3.5.

(ii) If there exists an ε such that Φ is Hadamard differentiable on Bε(y) and

∀z ∈ Bε(y), ∀v ∈ V, ‖Φ′(z)(v)‖V ≤ CΦ ‖v‖V where CΦ < Ca/(Ca + Cb), (28)

then (25) holds. This is immediate: take u, v ∈ Bε(y) and use the mean value theorem to find

‖Φ(u)− Φ(v)‖V ≤ sup
λ∈(0,1)

‖Φ′(λu+ (1− λ)v)(u− v)‖V ≤ CΦ ‖u− v‖V ,

where we utilised the fact that λu+(1−λ)v ∈ Bε(y). It can sometimes be easier to verify (28) than (25) depending

on the problem at hand.

(iii) The derivative α is the unique solution of the QVI (27), see Proposition 3.9.

(iv) All of the required assumptions on Φ are local, i.e., they are based at or around a neighbourhood of the chosen

point y and we do not ask for them to hold globally on the whole of V . We may introduce more local assumptions

in the course of the paper and one should bear in mind that such conditions are stated in terms of a fixed element y
which, in later sections, need to be modified appropriately (for example in §5 such assumptions should be evaluated

at the function that we call y∗). This should become apparent from the context.

(v) In the theorem, the existence of a particular y ∈ Q(f) is assumed; conditions under which Q(f) is non-empty were

given in the existence results of §2.

(vi) This theorem generalises and improves the result of Theorem 1.6 in our earlier paper [4]. In particular, the case

f, d ∈ V ∗
+ corresponds to the main result of [4] (which also requires additional assumptions).

(vii) A differentiability result for QVIs also appears in [72, Theorem 5.5]. There, in particular, the author requires

Fréchet differentiability for Φ at y. In contrast, we require only Hadamard differentiability. In [72], A can be

nonlinear of Fréchet type; we have taken A to be linear in this paper for simplicity but this can be generalised: see

Remark 3.4.

Remark 3.4. We have taken A to be linear for technical simplicity but an examination of the proofs that follow show that

it would be possible for us to consider nonlinear A that are Hadamard differentiable in this section (a key point would be

to generalise [4, Proposition 1], as we shall come to see in the proceeding). For the stationarity results of section §5.2, A
would need to be continuously Fréchet differentiable. The details and the resulting changes are left to the reader.

Let us give an example of the functional setup which is typical for many applications.

Example 3.5 (The case of a Dirichlet space). Suppose that H := L2(X;µ) where X is a locally compact, separable

metric space and µ is a positive Radon measure on X with full support10, and let V ⊂ H be a dense subspace. The

ordering on these spaces is given by the usual a.e. ordering of functions.

Assume that there exists a symmetric, positive semidefinite bilinear form ξ : V × V → R such that endowing V with

(·, ·)V := (·, ·)H + ξ(·, ·)
10That is, µ is a non-negative Borel measure which is finite on compact sets and strictly positive on non-empty open sets.
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makes it a Hilbert space. Furthermore, we assume the Markov property11

if u ∈ V then û := min(u+, 1) ∈ V and ξ(û, û) ≤ ξ(u, u)

and the density

V ∩ Cc(X)
d
↪−→ Cc(X) and V ∩ Cc(X)

d
↪−→ V.

The pair (V, ξ) is known as a regular Dirichlet form and V is the so-called Dirichlet space. This framework allows us to

define the notions of capacity, quasi-continuity and related concepts, see [28, §2.1] and [32, §3] for more details.

In this setting, Mignot proved12the polyhedricity of sets of obstacle type in [50, Theorem 3.2] and the differentiability

of VI solution maps associated to such constraint sets in [50, Theorem 3.3]. We also have an explicit expression for the

critical cone appearing in (27) via [50, Lemma 3.2]:

Ky(w) := {ϕ ∈ V : ϕ ≤ Φ′(y)(w) q.e. on A(y) and 〈Ay − f, ϕ− Φ′(y)(w)〉 = 0}.

Here, ‘q.e.’ stands for quasi-everywhere and a statement holds quasi-everywhere if it holds everywhere except on a set of

capacity zero, and A(y) refers to the active or coincidence set of the solution y to the QVI related to an obstacle map Φ,

i.e.,

A(y) := {x ∈ X : y(x) = Φ(y)(x)} for y ∈ V .

We in fact take the quasi-continuous representatives of the functions appearing in the definition so that A(y) is quasi-

closed and defined up to sets of capacity zero. It is important to note that the set of points defining the active set is taken

over X; in the context of some Sobolev spaces over a domain Ω, this can sometimes be X = Ω and not merely Ω, see [4,

§1.2] for more details.

Before we proceed, let us provide some notation. Define the critical cone

Ky := TK(y)(y) ∩ [f −Ay]⊥, (29)

and observe the relation

Ky(w) = Φ′(y)(w) +Ky.

Recall that the polar cone of a set M ⊂ V is defined as

M◦ = {g ∈ V ∗ : 〈g, v〉 ≤ 0 ∀v ∈M}.

3.1 Iteration scheme and expansion formulae

To prove Theorem 3.2, we employ an iteration and passage to the limit approach like in our previous work [4]. We fix an

arbitrary f ∈ V ∗ and take an arbitrary but fixed y ∈ Q(f)13. Pick a direction d ∈ V ∗ and construct, similarly to §2.1, the

sequence

ys0 := y,

ysn := S(f + sd, ysn−1).
(30)

The idea here is to expand each ysn in terms of y, a directional derivative and a remainder term (both of these would

depend on n) and then to pass to the limit in such an expansion. The natural way to proceed would be to obtain a uniform

bound on {ysn} which would result in the existence of a weakly convergent subsequence {ysnj
}. This is not enough to

identify the limit of {ysnj
} due to the (n − 1) index in the definition of ysn, so one would need convergence of the whole

sequence which holds true when, for example, one has monotonicity. However, in contrast to the sequence considered in

§2.1, we do not obtain any monotonicity of {ysn} since we do not assume a sign on d nor do we assume monotonicity of

Φ. Therefore, for convergence of the full sequence, we instead look for a contraction of the map associated to {ysn} on

some small ball.

Lemma 3.6. Assume the Lipschitz property (25). Then for any 0 < R ≤ ε, S(f+sd, ·) : BR(y) → BR(y) is a contraction

whenever

s ≤ Ca ‖d‖−1
V ∗ R(1− (1 + CbC

−1
a )CΦ).

Proof. Let v ∈ BR(y); we want to show that S(f + sd, v) ∈ BR(y). Observe that, using y = S(f, y) and continuous

dependence (e.g. [4, Equation (21)]),

‖S(f + sd, v)− y‖V ≤ (1 + CbC
−1
a ) ‖Φ(v)− Φ(y)‖V + C−1

a s ‖d‖V ∗

≤ (1 + CbC
−1
a )CΦ ‖v − y‖V + C−1

a s ‖d‖V ∗ (since v, y ∈ BR(y) ⊂ Bε(y))

≤ (1 + CbC
−1
a )CΦR+ C−1

a s ‖d‖V ∗ ,

11This is also known as the unit contraction property.
12In fact, Mignot uses a weaker setting of positivity-preserving forms rather than the Dirichlet form setting described here with also some other weaker

conditions.
13Again, see §2 for existence of such y.
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and, using the fact that (1 +CbC
−1
a )CΦ equals a constant strictly less than 1, the right-hand side is bounded above by R.

This shows that S(f + sd, ·) maps BR(y) into itself. To see that the map is a contraction, take v, w ∈ BR(y) and observe

that

‖S(f + sd, v)− S(f + sd, w)‖V ≤ (1 + C−1
a Cb) ‖Φ(v)− Φ(w)‖V ≤ CΦ(1 + C−1

a Cb) ‖v − w‖V .

Hence, under (25), we have that each ysn ∈ BR(y). By applying the Banach fixed point theorem, we obtain the

following existence and convergence result.

Proposition 3.7. Given f, d ∈ V ∗ and y ∈ Q(f), under (25) and sufficiently small s > 0, there exists ys ∈ Q(f + sd)∩
BR(y) such that ysn → ys in V (where ysn is defined in (30)).

Since we want to study differentiability of QVIs, we need some differentiability for the constraint set mapping. We

will henceforth assume the Hadamard differentiability at y condition (26). Now, making use of [71, Theorems 4.18 and

5.2] we can expand ys1 = S(f + sd, y) as follows:

ys1 = y + sα1 + o1(s),

where s−1o1(s) → 0 as s → 0+ and α1 = ∂S(f, y)(d) is the directional derivative of S(·, y) in the direction d, and this

satisfies the VI (recall Ky from (29))

α1 ∈ Ky : 〈Aα1 − d, α1 − v〉 ≤ 0 ∀v ∈ Ky.

To acquire an expansion formula for a general ysn, define for n > 1,

αn := Φ′(y)(αn−1) + ∂S(f, y)(d−AΦ′(y)(αn−1)).

In exactly the same way as in [4, Proposition 2], we obtain the following result.

Proposition 3.8. Under (25) and (26), for n ≥ 1,

ysn = y + sαn + on(s) (31)

where s−1on(s) → 0 as s→ 0+ and αn = αn(d) is positively homogeneous in the direction d and satisfies the VI

αn ∈ Ky(αn−1) : 〈Aαn − d, αn − ϕ〉 ≤ 0 ∀ϕ ∈ Ky(αn−1),

Ky(αn−1) := Ky +Φ′(y)(αn−1).

See (35) for the precise definition of on. The proof of this proposition, which we omit here, is by induction and makes

use of the expansion formula of [4, Proposition 1], which tells us that

ysn+1 = S(f + sd, y + sαn + on(s)) = y + s(Φ′(y)(αn) + ∂S(f, y)(d−AΦ′(y)(αn))) + on+1(s).

It remains then to pass to the limit in (31) and to identify the corresponding limits.

3.2 Passage to the limit

Observe that the conditions (25) and (26) imply that

Φ′(y) : V → V is Lipschitz with Lipschitz constant CL < Ca/Cb, (32)

which is precisely what is needed for the coming intermediary results. In particular, it allows for the Banach fixed point

theorem to be amenable to show the convergence of {αn} as the next proposition demonstrates. But first, let us prove that

(32) is indeed a consequence. From the expansion formula Φ(y + sh) = Φ(y) + sΦ′(y)(h) + o(s;h) where o(·, h) is a

remainder term, we find

‖Φ′(y)(h)− Φ′(y)(d)‖V ≤ 1

s
‖Φ(y + sh)− Φ(y + sd)‖V +

1

s
‖o(s; d)− o(s;h)‖V .

Without loss of generality, we may assume that at least one of h and d is non-zero. We see that if s ≤ ε/(‖h‖V + ‖d‖V ),
we have y + sh, y + sd ∈ Bε(y) and therefore, by (25),

‖Φ′(y)(h)− Φ′(y)(d)‖V ≤ CΦ ‖h− d‖V +
1

s
‖o(s; d)− o(s;h)‖V .

Taking s→ 0+ we obtain the statement after noting that CΦ < CL.

Proposition 3.9. Under (26) and (32), αn → α in V where α is the unique solution of the QVI (27).
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Proof. Denote by T : V → V the solution map γ 7→ β of the inequality

β ∈ Ky(γ) : 〈Aβ − d, β − ϕ〉 ≤ 0 ∀ϕ ∈ Ky(γ).

This has a unique solution by the Lions–Stampacchia theorem [61, §4:3, Theorem 3.1], hence T is well defined.

Consider γ1, γ2 ∈ V with β1 := T (γ1) and β2 := T (γ2). Testing the inequality for β1 with the feasible element

β2 − Φ′(y)(γ2) + Φ′(y)(γ1) and vice versa and then combining both of the resulting inequalities, we find

〈A(β1 − β2), β1 − β2 +Φ′(y)(γ2)− Φ′(y)(γ1)〉 ≤ 0,

which implies, using (32),

‖β1 − β2‖V ≤ Cb

Ca
‖Φ′(y)(γ2)− Φ′(y)(γ1)‖V < ‖γ2 − γ1‖V .

This shows that T : V → V is a contraction. Therefore, thanks to the Banach fixed point theorem, the iterative sequence

βn := T (βn−1), β1 := α1, is such that βn ≡ αn (by uniqueness of solutions) and αn → α strongly in V where α is the

fixed point of T .

Thanks to this result, it follows that on(s) → o∗(s) in V for some o∗(s). We can send n→ ∞ in (31) to obtain

ys = y + sα+ o∗(s),

and it is left for us to show that o∗ is a remainder term. The idea in [4] was to show that the convergence s−1on(s) → 0 as

s → 0+ is uniform in n, which is sufficient to commute the limits s → 0+ and n → ∞ for s−1on(s), giving the desired

behaviour s−1o∗(s) → 0 as s → 0+. This was done in [4, Lemma 14], the proof of which we will now adapt under the

context of our current (more general) setting. For this, we need some more notation. For v ∈ V and hs ∈ V , we define

the remainder term associated to Φ

l̂(s, h, hs; v) := Φ(v + shs)− Φ(v)− sΦ′(v)(h), (33)

and since Φ is Hadamard differentiable at y, if hs → h in V as s→ 0+, then s−1 l̂(s, h, hs; y) → 0 as s→ 0+. We write

l̂(s, h, h; v) = l(s, h; v) when hs ≡ h. Now let S0 : V
∗ → V be the map f 7→ u of the following VI with zero lower

obstacle:

u ∈ V+ : 〈Au− f, u− v〉 ≤ 0 ∀v ∈ V+.

In a similar fashion to l̂, we denote the remainder term associated to the expansion formula of S0 by ô:

ô(s, h, hs; f) := S0(f + shs)− S0(f)− sS′
0(f)(h).

Proposition 3.10. Under (25) and (26), s−1o∗(s) → 0 as s→ 0+.

Proof. Since y+sαn+on(s) = ysn ∈ Bε(y) and {αn} is bounded, let us say by M , if s ≤M−1ε, then y+sαn ∈ Bε(y)
too. Hence, from (33) and the Lipschitz property (25), we have

∥

∥

∥
l̂(s, αn, αn + s−1on(s); y)

∥

∥

∥

V
≤

∥

∥

∥
l̂(s, αn, αn + s−1on(s); y)− l(s, αn; y)

∥

∥

∥

V
+ ‖l(s, αn; y)‖V

=
∥

∥Φ(y + s(αn + s−1on(s)))− Φ(y + sαn)
∥

∥

V
+ ‖l(s, αn; y)‖V

≤ CΦ ‖on(s)‖V + ‖l(s, αn; y)‖V . (34)

We see from [4, Equation (34) and Proposition 1] that on has the definition

on(s) := l̂(s, αn−1, αn−1 + s−1on−1(s); y)

− ô(s,AΦ′(y)(αn−1)− d,AΦ′(y)(αn−1)− d+As−1 l̂(s, αn−1, αn−1 + s−1on−1(s));AΦ(y)− f). (35)

For ease of reading, let us omit the base point from the expressions for l̂, l, ô and o from now on. That is, we write l̂(·, ·, ·)
instead of l̂(·, ·, ·; y) and likewise for the other terms. In the above equality, taking norms and, on the right-hand side,

using (34) on the first term and the corresponding estimate

∥

∥ô(s, h, h+ s−1hs)
∥

∥

V
≤ C−1

a ‖hs‖V ∗ + ‖o(s, h)‖V
for S0 and its remainder term (see [4, Lemma 1]) on the second term, we find

‖on(s)‖V ≤ CΦ ‖on−1(s)‖V + ‖l(s, αn−1)‖V + C−1
a Cb

∥

∥

∥
l̂(s, αn−1, αn−1 + s−1on−1(s))

∥

∥

∥

V
+ ‖o(s,AΦ′(y)(αn−1)− d)‖V

≤ CΦ(1 + C−1
a Cb) ‖on−1(s)‖V + (1 + C−1

a Cb) ‖l(s, αn−1)‖V + ‖o(s,AΦ′(y)(αn−1)− d)‖V ,
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where we again used (34) on the penultimate term in the first line to obtain the second inequality. Defining

an(s) := ‖on(s)‖V and bn(s) := (1 + C−1
a Cb) ‖l(s, αn)‖V + ‖o(s,AΦ′(y)(αn)− d)‖V ,

the above can be recast as

an(s) ≤ Can−1(s) + bn−1(s)

for some C < 1 by the assumption on CΦ in (25). Solving this recurrence inequality gives

an(s) ≤ Cn−1a1(s) + Cn−2b1(s) + Cn−3b2(s) + . . .+ Cbn−2(s) + bn−1(s). (36)

Now, consider
bn−1(s)

s
=

(1 + C−1
a Cb) ‖l(s, αn−1)‖V

s
+

‖o(s,AΦ′(y)(αn−1)− d)‖V
s

.

By Proposition 3.9, αn → α strongly in V , thus {αn−1} and {AΦ′(y)(αn−1)− d} are compact sets in V and V ∗

respectively. Since the remainder terms l and o appearing in the displayed equality above arise from the Hadamard (and

hence compact) differentiability of Φ and the solution map S0 associated to VIs, it follows that l(s, γ)/s and o(s, h)/
s both converge to zero uniformly for γ and h belonging to {αn−1} and {AΦ′(y)(αn−1)− d} respectively. Because

{αn−1} ⊂ {αn−1} and {AΦ′(y)(αn−1)− d} ⊂ {AΦ′(y)(αn−1)− d}, we have that

l(s, γ)

s
→ 0 uniformly in γ ∈ {αn−1} and

o(s, h)

s
→ 0 uniformly in h ∈ {AΦ′(y)(αn−1)− d},

which then gives
bn−1(s)

s
→ 0 uniformly in n.

This, along with (36) and the geometric series estimate Cn−2+Cn−3+ . . .+C+1 = (1−Cn−1)/(1−C) ≤ 1/(1−C)
implies that for every ε > 0, there exists an s0 independent of n such that

‖on(s)‖V
s

≤ ε when s ≤ s0

which means precisely that s−1on(s) → 0 as s→ 0+ uniformly in n. Finally, recalling that on(s) converges in V , taking

the limit as n→ ∞ in the above inequality, we deduce that s−1o∗(s) → 0 as s→ 0+.

This concludes the proof of Theorem 3.2.

Remark 3.11. It is worth noting that the complete continuity assumption (19) is not needed for the result (the strong

convergence of {ysn} assured by the application of the Banach fixed point theorem allowed us to circumvent complete

continuity). Furthermore, complete continuity of Φ′(y) is not needed for the characterisation of the directional derivative;

continuity suffices (which is guaranteed since Hadamard derivatives are continuous with respect to the direction), unlike

in §5.1 and §5.2 of [4].

3.3 Continuity properties of the directional derivative

We now study the conditions under which continuity of the map taking the direction d into the directional derivative α in

(27) is assured. We recall (27) for convenience:

α ∈ Ky(α) : 〈Aα− d, α− v〉 ≤ 0 ∀v ∈ Ky(α),

Ky(w) := Ky +Φ′(y)(w).

Proposition 3.12. Under (32), d 7→ α(d) is continuous from V ∗ to V . That is, if dj → d in V ∗, then

αj → α in V

where αj and α are the solutions of (27) with source terms dj and d respectively.

Proof. The element αj associated to dj satisfies

αj ∈ Ky(αj) : 〈Aαj − dj , αj − v〉 ≤ 0 ∀v ∈ Ky(αj).

Take j, k ∈ N and in the inequality for αj , take the test function v = αk − Φ′(y)(αk) + Φ′(y)(αj) which is clearly

feasible, whilst in the inequality for αk, set v = αj − Φ′(y)(αj) + Φ′(y)(αk) to obtain

〈Aαj − dj , αj − αk +Φ′(y)(αk)− Φ′(y)(αj)〉 ≤ 0,

〈Aαk − dk, αk − αn +Φ′(y)(αj)− Φ′(y)(αk)〉 ≤ 0.
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Adding these, we find

〈A(αj − αk)− (dj − dk), αj − αk +Φ′(y)(αk)− Φ′(y)(αn)〉 ≤ 0,

which implies, using (32),

Ca ‖αj − αk‖2V ≤ ‖dj − dk‖V ∗
‖αj − αk‖V + Cb ‖αk − αj‖V ‖Φ′(y)(αk)− Φ′(y)(αj)‖V

+ ‖dk − dj‖V ∗
‖Φ′(y)(αk)− Φ′(y)(αj)‖V

≤ ‖dj − dk‖V ∗
‖αj − αk‖V + CbCL ‖αk − αj‖2V + CL ‖dk − dj‖V ∗

‖αk − αj‖V .

Manipulating, we find that {αj} is a Cauchy sequence and thus there exists an α ∈ V with

αj → α in V .

Now, in the inequality for αj , choose the test function vj := v − Φ′(y)(α) + Φ′(y)(αj) where v is such that v ∈ Ky(α).
It follows that vj → v in V . This allows us to pass to the limit and we get

〈Aα− d, α− v〉 ≤ 0 ∀v ∈ Ky(α)

and it remains to be seen that α ∈ Ky(α), which is evident since the critical cone is closed.

3.4 Complementarity characterisation of the directional derivative

We now look for an analogue of the complementarity characterisation of Proposition 2.1 for the QVI (27) satisfied by the

directional derivative.

Proposition 3.13. The QVI (27) is equivalent to the complementarity system

α− Φ′(y)(α) ∈ Ky, (37a)

ξd = d−Aα, (37b)

ξd ∈ (Ky)◦, (37c)

〈ξd,Φ′(y)(α)− α〉 = 0. (37d)

Proof. As noted above, α− Φ′(y)(α) belongs to the set Ky. Define ξd := d−Aα which by definition satisfies

α− Φ′(y)(α) ∈ Ky : 〈ξd, α− v〉 ≥ 0 ∀v ∈ V : v − Φ′(y)(α) ∈ Ky.

Taking v = Φ′(y)(α) here and then v = 2α − Φ′(y)(α) (which is feasible since v − Φ′(y)(α) is twice a function that

belongs to Ky) shows the orthogonality condition (37d).

Let w ∈ Ky and select v = α + w (this is feasible since v − Φ′(y)(α) = α − Φ′(y)(α) + w ∈ Ky + Ky and the

tangent cone, being a convex cone, is closed under addition). With this choice, we obtain

〈ξd, w〉 ≤ 0 ∀w ∈ Ky,

meaning precisely that ξd ∈ (Ky)◦. The reverse direction holds by the same trick as in the proof of Proposition 2.1.

3.5 Examples of QVIs with multiple solutions

In this section, we construct explicit examples of QVIs with non-unique solutions such that the assumptions of Theorem

3.2 are satisfied, thus verifying that multiplicity of solutions is not lost under our assumptions.

Example 1 Let Ω ⊂ R
n be a bounded Lipschitz domain and set V := Hk(Ω) with H = L2(Ω) forming a Gelfand

triple. Below, all norms and inner products that appear are over H .

Pick δ > 0 and select a sequence {yn}Nn=1 of smooth functions satisfying ‖yn − ym‖2 > 4δ2 for each m,n ∈
{1, . . . , N} with m 6= n and N ≥ 2 fixed. Take a smooth cutoff function ν ∈ C∞(R) with 0 ≤ ν ≤ 1 and

ν(t) =

{

1 : if t ∈ (−δ2, δ2),
0 : if |t| ≥ 2δ2.

For a parameter y ∈ V , define the map Φy : V → V by

Φy(u) := ν(‖u− y‖2)y
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and set

Φ(u) :=

N
∑

n=1

Φyn
(u).

Note that Φ: V → V and Φ(yn) = yn (because Φyn
(ym) = ynδnm). Let the elliptic operator A : V → V ∗ have the

property that Ayn ∈ H for each n and define the pointwise a.e. maximum f := max(Ay1, · · · , AyN ) ∈ H . Then the

QVI

find u ≤ Φ(u) : 〈Au− f, u− v〉 ≤ 0 ∀v ∈ V : v ≤ Φ(u)

has multiple solutions and indeed each yn ∈ Q(f) is a solution. To see this, simply observe that Ayn − f ≤ 0 and

yn − v = Φ(yn)− v ≥ 0 for all v ∈ V with v ≤ Φ(yn).

It follows from the expression Φ′
y(u)(h) = 2yν′(‖u− y‖2)(h, u− y) that

Φ′(u)(h) =

N
∑

n=1

2ynν
′(‖u− yn‖2)(h, u− yn)

and hence Φ′(Bδ(yn)) ≡ 0 and thus (28) is trivially satisfied (hence also (25) and (32) by Remark 3.3 (ii) and the

digression at the start of §3.2). Hence, all the requirements of Theorem 3.2 have been met and we obtain for every d ∈ V ∗

the existence of of ysm ∈ Q(f + sd) and αm ∈ V such that

lim
s→0+

ysm − ym
s

= αm.

Let us also note that in addition, Φ′(yn) : V → V is completely continuous.

Example 2 A second example, without the need for the source term f to be defined in terms of {yn}, can be given under

the same initial setting as above. For n = 1, . . . , N , take ψn ∈ V to be given distinct obstacles such that the associated

solutions yn ∈ V of the VIs

yn ≤ ψn : 〈Ayn − f, yn − v〉 ≤ 0 ∀v ∈ V : v ≤ ψn

are distinct too. We suppose that δ is chosen such that ‖yn − ym‖2 > 4δ2, which is possible since the yn are distinct

functions. With ν as above, define now Φn : V → V by

Φn(u) := ν(‖u− yn‖2)ψn

and set

Φ(u) :=

N
∑

n=1

Φn(u).

We have Φ(yn) = ψn and each yn is again a solution of the QVI associated to Φ with source term f , i.e., yn ∈ Q(f).
Furthermore,

Φ′(u)(h) =
N
∑

n=1

2ψnν
′(‖u− yn‖2)(h, u− yn)

and we can argue as before to derive the other properties and results.

4 Existence of optimal controls

We now address the optimal control problem (2). Regarding the function space context in this section, we take

(i) V ↪→ H to be a continuous embedding of reflexive Banach spaces,

(ii) U to be a reflexive Banach space with U
c
↪−→ V ∗,

(iii) Uad ⊆ U to be a non-empty and weakly sequentially closed14 set.

Given ν > 0 and a desired state yd ∈ H , define J : H × U → R by

J(y, u) :=
1

2
‖y − yd‖2H +

ν

2
‖u‖2U ,

and consider the problem (2) which we recall here:

min
u∈Uad

y∈Q(u)

J(y, u).

14That is, if un ⇀ u in U with un ∈ Uad, then u ∈ Uad.
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Theorem 4.1. Let Assumption 2.12 hold, suppose that Q(u) is non-empty15 for every u ∈ Uad and let the feasbility

condition (6) and the complete continuity (19) hold. Then there exists an optimal control u∗ ∈ Uad and associated state

y∗ ∈ Q(u∗) to the problem (2).

Proof. Let un ∈ Uad be an infimising sequence with yn ∈ Q(un), i.e.,

J(yn, un) → inf
u∈Uad,
y∈Q(u)

J(y, u).

Then {un} and {yn} are bounded in U and V respectively (the latter arises from (6)) and therefore, there exists a subse-

quence such that

unj
⇀ u∗ in U and ynj

⇀ y∗ in V .

By assumption, u∗ also belongs to Uad. Since the yn are solutions of QVIs, we have the following estimate

∥

∥ynj
− ynk

∥

∥

V
≤ C

(∥

∥unj
− unk

∥

∥

V ∗
+
∥

∥Φ(ynj
)− Φ(ynk

)
∥

∥

V

)

.

In the limit, the first term on the right-hand side vanishes due to the compact embedding, and the second term vanishes

too because Φ is completely continuous due to (19). Thus {ynj
} is Cauchy in V and ynj

→ y∗ in V . Taking an arbitrary

v ∈ V such that v ≤ Φ(y∗), we set vnj
:= v − Φ(y∗) + Φ(ynj

) and use this as a test function in the QVI for ynj
in

which we can pass to the limit to find y∗ ∈ Q(u∗). To see that this pair is optimal, we observe that (dispensing with the

subsequence notation now), using the continuity of the embedding V ↪→ H ,

J(y∗, u∗) ≤ lim inf
n→∞

J(yn, un) ≤ lim
n→∞

J(yn, un) = min
u∈Uad

y∈Q(u)

J(y, u).

Regarding regularity of the optimal control, see Theorem 5.11. In general there is no uniqueness for the optimal

control and state regardless of whether Q is single valued or not.

4.1 The penalised optimal control problem

Let us return to the context of §2.3 and consider for each ρ > 0 the penalisation of (2):

min
u∈Uad

J(yρ, u) such that Ayρ +
1

ρ
mρ(yρ − Φ(yρ)) = u. (38)

We remind the reader that mρ is taken to satisfy (10)–(12). Recalling the map Pρ from §2.3, we can write the equation

above as yρ ∈ Pρ(u). The reason for considering this problem is because we will use this to derive stationarity conditions

in the next section but first let us check that this minimisation problem suitably approximates (2).

Proposition 4.2. Let Assumption 2.12, (14), (15a) and (19) hold and suppose that Q is single valued. Then there exist

optimal pairs (y∗ρ, u
∗
ρ) of (38) and an optimal pair (y∗, u∗) of (2) such that

(y∗ρ, u
∗
ρ) → (y∗, u∗) in V × U .

Proof. First, observe that Pρ(u) is non-empty for all u ∈ Uad by Proposition 2.15 (after possibly renorming V , see

Example 2.14). Now, let (y∗ρ, u
∗
ρ) denote an optimal pair of (38), which exists by standard arguments (like in the proof of

Theorem 4.1) making use of (15a) (to show weak continuity of the solution map). By definition,

J(y∗ρ, u
∗
ρ) ≤ J(wρ, u) ∀u ∈ Uad, ∀wρ ∈ Pρ(u). (39)

Given any ũ ∈ Uad, we pick a subsequence {ỹρn
} such that Pρn

(ũ) 3 ỹρn
→ ỹ where ỹ ∈ Q(ũ); this is possible by

Theorem 2.18. The inequality (39) implies that J(y∗ρn
, u∗ρn

) is bounded above by J(ỹρn
, ũ) which in turn is bounded

uniformly in ρn because ỹρn
is bounded in V by the estimate of Proposition 2.15:

∥

∥y∗ρn

∥

∥

V
≤ C

(

∥

∥u∗ρn

∥

∥

V ∗
+ ‖v0‖V

)

.

Hence for another subsequence (which we shall relabel)

u∗ρn
⇀ u∗ in Uad,

y∗ρn
⇀ y∗ in V ,

15See §2.
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for some (u∗, y∗) that we need to show is an optimal pair. By following steps 3 and 4 in the proof of Theorem 2.18,

y∗ρn
→ y∗ = Q(u∗) in V (since u∗ρn

→ u∗ in V ∗). Hence (y∗, u∗) is a feasible point of (2). Then observe that for (ŷ, û)
being any optimal point of (2),

J(ŷ, û) ≤ J(y∗, u∗) ≤ lim inf
n→∞

J(y∗ρn
, u∗ρn

) ≤ lim sup
n→∞

J(y∗ρn
, u∗ρn

) ≤ lim sup
n→∞

J(w∗
ρn
, û) ∀w∗

ρn
∈ Pρn

(û)

with the last inequality by (39). Now it becomes necessary for Q to be single-valued since then, ŷ = Q(û) and it must

be the case that we can select a sequence {w∗
ρn
} such that w∗

ρn
∈ Pρn

(û) and w∗
ρn

→ ŷ in V (by Theorem 2.18), and we

find

J(ŷ, û) ≤ J(y∗, u∗) ≤ lim
n→∞

J(y∗ρn
, u∗ρn

) ≤ J(ŷ, û).

Because J(ŷ, û) is the minimal value and hence is either independent of (ŷ, û) or uniquely determined by (ŷ, û), the

subsequence principle shows that J(y∗ρ, u
∗
ρ) → J(ŷ, û) (for the entire sequence). Furthermore, the above inequality

shows that (y∗, u∗) is optimal and we get u∗ρ → u∗ in H since we have weak convergence and convergence of the

norm.

Regarding the assumption in this lemma that Q is single valued, this is the case if, for example, Φ is (globally)

Lipschitz with Lipschitz constant strictly smaller than Ca/(Ca + Cb), see the discussion around [4, Equation (21)]. An

alternative condition for uniqueness for QVIs in a specific setting is given in [45].

Let us see how the results of this section change if we do not assume complete continuity of Φ: V → V .

Remark 4.3. (1) We can drop (19) from Theorem 4.1 in favour of the conditions in Theorem 2.19 as long as in the

Gelfand triple regime (16) we assume U ↪→ H . Examining the proof of Theorem 4.1, the feasibility of the limit of the

infimising sequence follows exactly as in the proof of Theorem 2.19. The Cauchy estimate is not necessary. Weak lower

semicontinuity of the norm allows us to retain the final line in the proof.

(2) If we drop (19) from Proposition 4.2 in favour of V
c
↪−→ H and the conditions in Theorem 2.19 as long as in the Gelfand

triple regime (16) we assume U ↪→ H , we would get y∗ρ ⇀ y∗ in V (i.e., a weak convergence). To see this, we simply need

to modify the proof to use Theorem 2.19 instead of Theorem 2.18. The compact embedding into H is needed to bound

from above the term lim supn→∞ J(w∗
ρn
, û) by J(ŷ, û).

5 Stationarity

In this section, we shall derive various forms of necessary conditions satisfied by optimal controls and states. Let us first

formally define some concepts of stationarity which are motivated by analogous concepts from the VI case and also by

the results that we shall obtain later.

Let (y, u) ∈ V ×H be a solution of the optimal control problem (2) where V ↪→ H with V a reflexive Banach space

and H a Hilbert space, Uad ⊂ H is non-empty and weakly sequentially closed (in the context of the previous section, we

have assumed U ≡ H).

Inspired by the results we obtain in §5.2 in a general function space setting, we say that (y, u) is a weak C-stationarity

point of (2) if there exists (p, ξ, λ) ∈ V × V ∗ × V ∗ such that

y + (I− Φ′(y))∗λ+A∗p = yd,

Ay − u+ ξ = 0,

ξ ≥ 0 in V ∗, y ≤ Φ(y), 〈ξ, y − Φ(y)〉 = 0,

u ∈ Uad : (νu− p, u− v)H ≤ 0 ∀v ∈ Uad,

〈λ, p〉 ≥ 0.

The function p is said to be the adjoint state and λ is the Lagrange multiplier associated to the adjoint state equation (the

first equation above).

Let us now restrict the discussion to whenH = L2(Ω) on a domain Ω ⊂ R
n. Certain sets associated to the lower-level

QVI problem in (2) are important in stating the following stationarity conditions. Denoting ξ := u−Ay (see Proposition

2.1), let us formally define then the following sets:

A := {y = Φ(y)} is the active (or coincidence) set,

I := {y < Φ(y)} is the inactive set,

As := {ξ > 0} is the strongly active set,

B := {y = Φ(y)} ∩ {ξ = 0} is the biactive set.

These definitions are merely heuristic due to the (in general) low regularity of ξ, see for example [69, §3 and Appendix

A] or [33] for a rigorous approach to define these objects.

19



We say that (y, u) ∈ V × H is a C-stationarity point of (2) if (y, u) is a solution of (2) and there exists (p, ξ, λ) ∈
V × V ∗ × V ∗ such that

y + (I− Φ′(y))∗λ+A∗p = yd, (40a)

Ay − u+ ξ = 0, (40b)

ξ ≥ 0 in V ∗, y ≤ Φ(y), 〈ξ, y − Φ(y)〉 = 0, (40c)

u ∈ Uad : (νu− p, u− v)H ≤ 0 ∀v ∈ Uad, (40d)

〈ξ, p+〉 = 〈ξ, p−〉 = 0 (40e)

〈λ, p〉 ≥ 0, 〈λ, y − Φ(y)〉 = 0, (40f)

〈λ, v〉 = 0 ∀v ∈ V : v = 0 a.e. on Ω \ I. (40g)

Note that we use the condition (40e) in lieu of the more commonly seen condition p = 0 a.e. in {ξ > 0} due to the low

regularity of ξ.

Remark 5.1. It is worth remarking that in certain works [65], rather than the inequality constraint in (40f), the stronger

condition

〈λ, ψp〉 ≥ 0 for all sufficiently smooth and non-negative ψ (41)

is required in order to satisfy C-stationarity; this is a direct analogy of the corresponding (element-wise) condition in the

finite dimensional setting in [64]. We will also consider the obtainment of (41) in Proposition 5.13.

The condition (40g) is in practice difficult to check due to the fact that in general, λ possesses only the low V ∗

regularity. Therefore, one looks for a weaker concept. In the first instance, for an almost C-stationarity point, (40g) is

replaced by

〈λ, v〉 = 0 ∀v ∈ V : v = 0 a.e. on Ω \ I, v|I ∈ H1
0 (I).

More generally, an E-almost C-stationarity point, the concept of which was introduced by Hintermüller and Kopacka in

[36, 35], satisfies (40a)–(40f) but now (40g) is replaced with

∀τ > 0, ∃Eτ ⊂ I with |I \ Eτ | ≤ τ : 〈λ, v〉 = 0 ∀v ∈ V : v = 0 a.e. on Ω \ Eτ .

This is a condition that arises from an application of Egorov’s theorem as we shall see later.

Now, in the other direction, a point which satisfies (40a)–(40c) and additionally

p ≥ 0 q.e. on B and p = 0 q.e. on As,

〈λ, v〉 ≥ 0 ∀v ∈ V : v ≥ 0 q.e. on B and v = 0 q.e. on As,

is called a strong stationarity point, which is typically the most stringent notion of stationarity possible and requires

differentiability of the control-to-state map to be obtainable.

In the proceeding sections, we will show that there exist weak C-stationarity, (E-almost) C-stationarity and strong sta-

tionarity points under various assumptions. We will, however, first start in §5.1 with the so-called Bouligand stationarity

which is a primal condition and is defined below. It also requires differentiability of Q.

5.1 Bouligand stationarity

In the case where Q is directionally differentiable from the results of §3, we have the following Bouligand stationarity (or

B-stationarity) characterisation of the optimal control, see [50, §5] and [51, Lemma 3.1] for the VI case. To start, define

the radial cone of Uad at u∗ and the tangent cone respectively by

RUad
(u∗) = {h ∈ H : ∃s∗ > 0 such that u∗ + sh ∈ Uad ∀s ∈ [0, s∗]} and TUad

(u∗) := RUad
(u∗).

Proposition 5.2 (Bouligand stationarity). Let Uad be non-empty and (y∗, u∗) be a local minimiser of (2) and let the

assumptions16 of Theorem 3.2 hold. Then

(αh, y
∗ − yd)H + ν(u∗, h)H ≥ 0 ∀h ∈ TUad

(u∗), (42)

where αh is the directional derivative given uniquely through Theorem 3.2 as the solution of (27) with source h.

Proof. Take h in the radial cone of Uad at u∗ so that it is an admissible direction. Using this direction term, we define

ys as given by Theorem 3.2 after having initially selected y∗ ∈ Q(u∗). This satisfies ys = y∗ + sαh + o(s) where αh

is the directional derivative (uniquely determined thanks to Proposition 3.9) and o is a remainder term. It follows that

(u∗ + sh, ys) can be made arbitrarily close to (u∗, y∗) if s is sufficiently small (since ys − y∗ = sαh + o(s) and the

16These assumptions should be evaluated locally at y∗, of course.
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right-hand side tends to zero in V ). Hence, by definition of local minimiser, we have J(ys, u
∗ + sh) ≥ J(y∗, u∗) for s

sufficiently small. Writing this inequality out, we get

0 ≤ ‖ys − yd‖2H + ν ‖u∗ + sh‖2H − ‖y∗ − yd‖2H − ν ‖u∗‖2H
= ‖ys‖2H − ‖y∗‖2H + 2(y∗ − ys, yd)H + νs2 ‖h‖2H + 2νs(u∗, h)H .

This leads to

0 ≤ ‖y∗ + sαh + o(s)‖2H − ‖y∗‖2H − 2(sαh + o(s), yd)H + νs2 ‖h‖2H + 2νs(u∗, h)H

= ‖sαh + o(s)‖2H + 2(sαh + o(s), y∗ − yd)H + νs2 ‖h‖2H + 2νs(u∗, h)H

= s2
∥

∥αh + s−1o(s)
∥

∥

2

H
+ 2(sαh + o(s), y∗ − yd)H + νs2 ‖h‖2H + 2νs(u∗, h)H .

Dividing by s and sending to zero, the above yields

0 ≤ 2(αh, y
∗ − yd)H + 2ν(u∗, h)H ∀h ∈ RUad

(u∗),

and by density and the continuity result of Proposition 3.12, also for h ∈ TUad
(u∗).

5.2 Weak C-stationarity

In this section we will show a type of weak C-stationarity for the optimal pair by passing to the limit in the stationarity

system satisfied by the optimal pair of the PDE regularisation of the QVI. Recall the notations and framework of §2.3 and

§4.1 where we studied the convergence of solutions of certain PDEs to a solution of the associated QVI and the associated

optimal control problems. In this section, we again take

(y∗, u∗) to be an arbitrary local minimiser of (2).

In addition to the basic setup of Assumption 2.12, we need the following fundamental conditions related to Φ, in which

we also recall two assumptions that were stated earlier for the convenience of the reader.

Assumption 5.3. Assume that

there exists v0 ∈ V such that v0 ≤ Φ(v) for all v ∈ V , (14)

Φ: V → V is completely continuous, (19)

there exists ε > 0 such that Φ: V → V is continuously Fréchet differentiable on Bε(y
∗), (43)

Q is single valued.

We also introduce the following invertibility assumptions; these are stated separately from above since they will come

in use later in another section. Note that these types of conditions are also needed in [72].

Assumption 5.4. Assume that

(I− Φ′(z)) : V → V is invertible for z ∈ Bε(y
∗), (44)

A(I− Φ′(z))−1 : V → V ∗ is uniformly bounded and uniformly coercive in z ∈ Bε(y
∗). (45)

The main result of this section is the following theorem which shows that local minimisers are weak C-stationarity

points.

Theorem 5.5 (Weak C-stationarity). Suppose that

Uad is non-empty, closed and convex and V
c
↪−→ H ↪→ V ∗ is a Gelfand triple. (46)

In addition to Assumptions 2.12, 5.3 and 5.4, suppose that mρ satisfies along with (10)–(12) the conditions

mρ : H → V ∗ is continuous (47)

mρ : V → V ∗ is continuously Fréchet differentiable. (48)

Then there exist multipliers (p∗, ξ∗, λ∗) ∈ V × V ∗ × V ∗ satisfying the weak C-stationarity system

y∗ + (I− Φ′(y∗))∗λ∗ +A∗p∗ = yd, (49a)

Ay∗ − u∗ + ξ∗ = 0, (49b)

ξ∗ ≥ 0 in V ∗, y∗ ≤ Φ(y∗), 〈ξ∗, y∗ − Φ(y∗)〉 = 0, (49c)

u∗ ∈ Uad : (νu∗ − p∗, u∗ − v)H ≤ 0 ∀v ∈ Uad, (49d)

〈λ∗, p∗〉 ≥ 0. (49e)
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Here, we have assumed the existence of C1 maps mρ — this will have to be verified on a case-by-case basis (we leave

the possibility of being able to define such maps satisfying the conditions (10)–(12) and (47)–(48) in the general setting

to the interested reader, who may find [31] useful for this purpose). However, let us note that in the most common case of

interest where the function spaces involve functions over domains in R
n with the usual ordering, it is usually possible to

construct sufficiently smooth mρ, see for example §5.3.

Remark 5.6. (i) We assumed the complete continuity (19) to utilise the strong convergence result of Theorem 2.18. It

would be interesting to see how the calculations below can be adapted in the case where (we do not have complete

continuity and) we only have weak convergence from Theorem 2.19.

(ii) Due to the Gelfand triple setup and complete continuity of Φ here, we find from (47) that the complete continuity of

mρ condition (15a) is satisfied.

(iii) The meaning of (45) is that for all z ∈ Bε(y
∗), the operator A(I−Φ′(z))−1 has a boundedness constant C ′

b and a

coercivity constant C ′
a both of which are independent of z. A consequence is that

(I− Φ′(z))−1 : V → V is bounded uniformly for all z ∈ Bε(y
∗). (50)

Since Φ is C1, we automatically have that (I− Φ′(z))−1 is bounded; (50) clarifies that the bound is uniform.

Let us proceed with proving this result.

5.2.1 Stationarity for the penalised optimal control problem

Recall the penalised problem (38) that approximates (2):

min
u∈Uad

J(yρ, u) such that Ayρ +
1

ρ
mρ(yρ − Φ(yρ)) = u. (38)

Under Assumption 5.3 and (15a), Proposition 4.2 is applicable. For the moment and for purposes of a simpler exposition,

let us assume that

(y∗, u∗) is the optimal point of (2) given in Proposition 4.2 (51)

(we will discard this later on). Via the proposition, we obtain the existence of minimisers (y∗ρ, u
∗
ρ) of (38) such that

(y∗ρ, u
∗
ρ) → (y∗, u∗) in V ×H .

Thus, for any ε > 0, we can find a ρ0 such that ρ ≤ ρ0 implies

y∗ρ ∈ Bε(y
∗)

(this is why it has been possible to formulate most assumptions on Φ only locally). To derive stationarity conditions for

the penalised problem (38), we check the Zowe–Kurcyusz constraint qualification [74] (see also the Robinson condition

[60]). To do so, we make the necessary surjectivity assumption (52) below regarding existence for the linearised equation

— we discuss instances where it holds in Remark 5.8.

Lemma 5.7. Assume (43), (48), (46) and suppose that

∀ρ ≤ ρ0, ∀f ∈ V ∗, ∃z ∈ V : Az +
1

ρ
m′

ρ(y
∗
ρ − Φ(y∗ρ))(I − Φ′(y∗ρ))(z) = f. (52)

Then, for such ρ and any optimal point (y∗ρ, u
∗
ρ) of (38), there exists p∗ρ ∈ V such that

A∗p∗ρ +
1

ρ
(I− Φ′(y∗ρ))

∗m′
ρ(y

∗
ρ − Φ(y∗ρ))

∗p∗ρ = yd − y∗ρ,

(νu∗ρ − p∗ρ, u
∗
ρ − v)H ≤ 0 ∀v ∈ Uad.

(53)

Proof. We introduce the following notation:

X := V ×H, g(x) = g(y, u) := Ay +
1

ρ
mρ(y − Φ(y))− u,

xρ = (y∗ρ, u
∗
ρ), C(xρ) := {k(v − y∗ρ, h− u∗ρ) : v ∈ V, h ∈ Uad, k ≥ 0}.

The map g : X → V ∗, being a composition of C1 maps, is continuously Fréchet differentiable at xρ and we must check

that g′(xρ)C(xρ) = V ∗, but since C̃ := V × {0} ⊂ C(xρ), it suffices to verify g′(xρ)C̃ = V ∗. Observing that

g′(xρ)(y, 0) = Ay +
1

ρ
m′

ρ(y
∗
ρ − Φ(y∗ρ))(y − Φ′(y∗ρ)(y)),
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it follows that we need existence for the PDE in (52) and this is guaranteed by assumption for ρ sufficiently small.

Calculating the adjoint g′(xρ)
∗ : V → X∗ of g′ via

〈g′(xρ)(y, u), v〉 = 〈Ay, v〉+ 1

ρ
〈m′

ρ(y
∗
ρ − Φ(y∗ρ))(y − Φ′(y∗ρ)(y)), v〉 − (u, v)

= 〈y,A∗v〉+ 1

ρ
〈y, (I− Φ′(y∗ρ))

∗m′
ρ(y

∗
ρ − Φ(y∗ρ))

∗v〉 − (v, u),

we find

g′(xρ)
∗(v) =

(

A∗v +
1

ρ
(I− Φ′(y∗ρ))

∗m′
ρ(y

∗
ρ − Φ(y∗ρ))

∗v,−v
)

.

Applying, for example, [68, Theorem 6.3], we get the existence of p∗ρ ∈ V such that J ′(xρ)− g′(xρ)
∗p∗ρ ∈ C(xρ)

◦, i.e.,

for all k ≥ 0,

〈y∗ρ − yd +
1

ρ
(I − Φ′(y∗ρ))

∗m′
ρ(y

∗
ρ − Φ(y∗ρ))

∗p∗ρ +A∗p∗ρ, k(c1 − y∗ρ)〉 ≥ 0 ∀c1 ∈ V,

(νu∗ρ − p∗ρ, k(c2 − u∗ρ))H ≥ 0 ∀c2 ∈ Uad.

As c1 ∈ V can be chosen arbitrarily, we find the stated result.

Remark 5.8. The conditions of Assumption 5.4 are clearly sufficient to guarantee the surjectivity condition (52); and

in fact (45) can be replaced with asking for A(I − Φ′(z))−1 : V → V ∗ to be coercive for all z ∈ Bε(y
∗). Indeed, first

observe that the bounded inverse theorem guarantees that A(I − Φ′(z))−1 : V → V ∗ is bounded for z ∈ Bε(y
∗). Now,

the equation

A(I − Φ′(y∗ρ))
−1w +

1

ρ
m′

ρ(y
∗
ρ − Φ(y∗ρ))w = f

has a unique solution w ∈ V by the Lax–Milgram theorem, leading to existence of z := (I −Φ′(y∗ρ))
−1w ∈ V satisfying

the equation in (52).

5.2.2 Passage to the limit ρ→ 0

Now the objective is to pass to the limit in (53) as ρ→ 0 for which we shall need some technical results.

Lemma 5.9. Under Assumption 5.4, if zn → z and qn ⇀ q in V with zn, z ∈ Bε(y
∗), then

(I− Φ′(zn))
−1qn ⇀ (I− Φ′(z))−1q in V , (54)

〈A(I− Φ′(z))−1q, q〉 ≤ lim inf
n→∞

〈A(I− Φ′(zn))
−1qn, qn〉. (55)

The convergence in (54) is strong if qn → q in V .

In order to not disturb the flow of the paper, the proof of this lemma has been placed in Appendix A. As an immediate

corollary to Lemma 5.9, for sequences wρ → w and qρ ⇀ q in V , we have

lim
n→∞

(I− Φ′(y∗ρ))
−1wρ = (I− Φ′(y∗))−1w in V , (56)

(y∗, (I− Φ′(y∗))−1q)H ≤ lim inf
n→∞

(y∗ρ, (I− Φ′(y∗ρ))
−1qρ)H , (57)

(yd, (I− Φ′(y∗))−1q)H ≥ lim sup
n→∞

(yd, (I− Φ′(y∗ρ))
−1qρ)H . (58)

We are now ready to conclude.

Proof of Theorem 5.5. First, note that Proposition 2.1 directly gives (49c). Assumption 5.4 implies the surjectivity condi-

tion (52) (see Remark 5.8), therefore the stationarity conditions in (53) for the penalised problem are available.

Now, the weak form of the equation for p∗ρ is

〈A∗p∗ρ, ϕ〉+
1

ρ
〈m′

ρ(y
∗
ρ − Φ(y∗ρ))

∗p∗ρ, (I− Φ′(y∗ρ))ϕ〉 = (yd − y∗ρ, ϕ)H ∀ϕ ∈ V.

By defining v := (I− Φ′(y∗ρ))ϕ, thanks to the invertibility assumption (44), this can be transformed to

〈A(I− Φ′(y∗ρ))
−1v, p∗ρ〉+

1

ρ
〈m′

ρ(y
∗
ρ − Φ(y∗ρ))

∗p∗ρ, v〉 = (yd − y∗ρ, (I− Φ′(y∗ρ))
−1v)H ∀v ∈ V.
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Selecting v = p∗ρ, using the coercivity (45), the monotonicity of mρ (which implies that 〈m′
ρ(v)(h), h〉 ≥ 0 for all

v, h ∈ V ), Young’s inequality with γ > 0 and the uniform boundedness of (I− Φ′(y∗ρ))
−1 assured by (50), we obtain

C ′
a

∥

∥p∗ρ
∥

∥

2

V
≤ Cγ

∥

∥yd − y∗ρ
∥

∥

2

H
+ γ

∥

∥p∗ρ
∥

∥

2

V
.

Selecting γ sufficiently small so that the right-most term is absorbed onto the left, we obtain a bound on {p∗ρ} independent

of ρ. This gives rise to the convergence (for a subsequence that has been relabelled)

p∗ρ ⇀ p∗ in V .

Define

λ∗ρ :=
1

ρ
m′

ρ(y
∗
ρ − Φ(y∗ρ))

∗p∗ρ,

µ∗
ρ :=

1

ρ
(I− Φ′(y∗ρ))

∗m′
ρ(y

∗
ρ − Φ(y∗ρ))

∗p∗ρ = yd − y∗ρ −A∗p∗ρ,

ξ∗ρ :=
1

ρ
mρ(y

∗
ρ − Φ(y∗ρ)) = u∗ρ −Ay∗ρ,

the latter two of which, since their right-hand sides converge, satisfy the following convergences both in V ∗:

µ∗
ρ ⇀ µ∗ := yd − y∗ −A∗p∗ and ξ∗ρ → ξ∗ := u∗ −Ay∗. (59)

Again using monotonicity of mρ,

〈µ∗
ρ, (I− Φ′(y∗ρ))

−1p∗ρ〉 =
1

ρ
〈m′

ρ(y
∗
ρ − Φ(y∗ρ))

∗p∗ρ, p
∗
ρ〉 ≥ 0,

and taking the limit superior of this, recalling the definition of µ∗, we obtain

0 = lim sup
ρ→0

〈yd, (I− Φ′(y∗ρ))
−1p∗ρ〉 − lim inf

ρ→0
〈y∗ρ, (I− Φ′(y∗ρ))

−1p∗ρ〉 − lim inf
ρ→0

〈A(I− Φ′(y∗ρ))
−1p∗ρ, p

∗
ρ〉

≤ 〈yd − y∗, (I− Φ′(y∗))−1p∗〉 − 〈A(I− Φ′(y∗))−1p∗, p∗〉
(using the weak semicontinuity results (55), (57) and (58))

= 〈µ∗, (I− Φ′(y∗))−1p∗〉.

Finally, writing the VI relating u∗ρ and p∗ρ in (53) as

(νu∗ρ, u
∗
ρ − v)H − 〈u∗ρ − v, p∗ρ〉 ≤ 0 ∀v ∈ Uad,

using the strong convergence of u∗ρ in H (and hence also in V ∗) and the weak convergence of p∗ρ in V , we can pass to the

limit.

Collecting the results (and recalling that the inverses and adjoints of bounded linear operators commute), we have

shown the satisfaction of (49b)–(49d) and

y∗ + µ∗ +A∗p∗ = yd,

〈(I− Φ′(y∗)∗)−1µ∗, p∗〉 ≥ 0,

Setting λ∗ := (I− Φ′(y∗)∗)−1µ∗ we get the system (49).

Thus far, we have only shown the existence of a stationarity point and not that every local minimiser is such a point

since we assumed (51). Suppose now that (y∗, u∗) is an arbitrary local minimiser (instead of (51)) as claimed in the

statement of the theorem. Denote by γ the radius such that u∗ is the minimiser on Uad ∩ BH
γ (u∗) (the latter object is the

closed ball in H of radius γ with centre u∗). Consider for J̄(yρ, u) := J(yρ, u) + ‖u− u∗‖2H the problem

min
u∈Uad∩BH

γ (u∗)
J̄(yρ, u) such that Ayρ +

1

ρ
mρ(yρ − Φ(yρ)) = u. (60)

Denote by (ȳρ, ūρ) a minimiser of this problem. It follows from J̄(ȳρ, ūρ) ≤ J̄(yρ(u
∗), u∗) and Pρ(u

∗) 3 yρ(u
∗) → y∗

that

lim sup
ρ→0

J̄(ȳρ, ūρ) ≤ J(y∗, u∗).

On the other hand, from uniform bounds, we obtain the existence of û such that ūρ ⇀ û in H and ȳρ → Q(û) =: ŷ in V ,

giving (by the identity lim sup(an) + lim inf(bn) ≤ lim sup(an + bn) and using weak lower semicontinuity)

lim sup
ρ→0

J̄(ȳρ, ūρ) ≥ J(ŷ, û) + lim sup
ρ→0

‖ūρ − u∗‖2H ≥ J(y∗, u∗) + lim sup
ρ→0

‖ūρ − u∗‖2H ,

24



with the last inequality because (y∗, u∗) is a local minimiser and û ∈ BH
γ (u∗). Combining these two inequalities shows

that û = u∗ and ūρ → u∗ in H . The latter fact implies that for ρ sufficiently small, ūρ ∈ BH
γ (u∗) automatically and

hence the feasible set in (60) can be taken to be just Uad. For such ρ (assuming of course that the local conditions in

Assumptions 5.3 and 5.4 hold around y∗), the same arguments as above can be used to derive stationarity conditions for

(60) and in passing to the limit in those conditions, we will find that (y∗, u∗) satisfies the same conditions as above.

The proof reveals that the stationarity point satisfying (51) can be characterised as a limit of the following subse-

quences (which we have relabelled):

y∗ρ → y∗ in V,

u∗ρ → u∗ in H,

p∗ρ ⇀ p∗ in V,

ρ−1mρ(y
∗
ρ − Φ(y∗ρ)) → ξ∗ in V ∗,

ρ−1m′
ρ(y

∗
ρ − Φ(y∗ρ))p

∗
ρ ⇀ λ∗ in V ∗,

where (y∗ρ, u
∗
ρ, p

∗
ρ) are as in Lemma 5.7.

5.3 E-almost C-stationarity

We specialise to the case where H is an L2 space on a bounded domain with box constraints, which allows us to improve

the weak C-stationarity system.

Assumption 5.10. Let Ω ⊂ R
n be a bounded Lipschitz domain, set H := L2(Ω) and take V ∈ {H1(Ω), H1

0 (Ω)} and

assume the Gelfand triple (V,H, V ∗) structure. Finally, we take Uad to be of the box constraint type

Uad = {u ∈ H : ua ≤ u ≤ ub a.e. in Ω} (61)

for given functions ua, ub ∈ H .

The assumption can be generalised, see Remark 5.12.

As before, we denote by

(y∗, u∗) an arbitrary local minimiser of (2).

Theorem 5.11 (E-almost C-stationarity). Let Assumptions 5.3, 5.4 and 5.10 hold. Then there exist multipliers (p∗, ξ∗, λ∗) ∈
V × V ∗ × V ∗ satisfying the E-almost C-stationarity system

y∗ + (I− Φ′(y∗))∗λ∗ +A∗p∗ = yd, (62a)

Ay∗ − u∗ + ξ = 0, (62b)

ξ∗ ≥ 0 in V ∗, y∗ ≤ Φ(y∗), 〈ξ∗, y∗ − Φ(y∗)〉 = 0, (62c)

u∗ ∈ Uad : (νu∗ − p∗, u∗ − v) ≤ 0 ∀v ∈ Uad, (62d)

〈ξ∗, (p∗)+〉 = 〈ξ∗, (p∗)−〉 = 0 (62e)

〈λ∗, p∗〉 ≥ 0, 〈λ∗, y∗ − Φ(y∗)〉 = 0, (62f)

∀τ > 0, ∃Eτ ⊂ I with |I \ Eτ | ≤ τ : 〈λ∗, v〉 = 0 ∀v ∈ V : v = 0 a.e. on Ω \ Eτ . (62g)

In addition, if ua, ub ∈ V then the optimal control has the regularity u∗ ∈ V .

To prove the theorem, we choose a particular mρ (that appeared in the work of Hintermüller and Kopacka [36] for

VIs), namely the superposition operator defined through the real-valued function

mρ(r) ≡ max
ε(ρ)

(0, ·) :=











0 : r ≤ 0
r2

2ε : 0 < r < ε

r − ε
2 : r ≥ ε;

(63)

here, ε = ε(ρ) > 0 is chosen such that {ε(ρ)} is bounded. The parameter ε is a smoothing parameter utilised for ensuring

differentiability at 0. By [22, Lemmas 2.83, 2.87, 2.88, 2.90] and the fact that mρ ∈ C1(R) with m′
ρ ∈ [0, 1], we obtain

relevant lattice properties for the spaces involved and differentiability properties for mρ. That mρ satisfies (10), (11)

and (47) is clear. Let us check condition (12). Since {ε(ρ)} is bounded, we have (for a subsequence that we relabelled)

ε(ρ) → ε̄ for some ε̄ ≥ 0 and we get
∥

∥

∥

∥

max
ε̄

(0, z)−max
ε(ρ)

(0, zρ)

∥

∥

∥

∥

V ∗

≤ C

(

∥

∥

∥
max

ε̄
(0, z)−max

ε̄
(0, zρ)

∥

∥

∥

H
+

∥

∥

∥

∥

max
ε̄

(0, zρ)−max
ε(ρ)

(0, zρ)

∥

∥

∥

∥

H

)

≤ C

(

‖z − zρ‖H +
3

2
|ε̄− ε(ρ)|

)

→ 0
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with the final inequality due to Lipschitz properties given in [36, Lemma 2.1 (v), (vi)] and the convergence due to the

compact embedding V
c
↪−→ H . Hence we find z ≤ 0. Finally, by the regularity of mρ (which has a bounded derivative)

we have that mρ : H
1(Ω) → H is C1 (see, e.g. [21, Proposition 4]), thus we have (48). This shows that mρ is a valid

choice.

Remark 5.12. Assumption 5.10 can be generalised as follows. Let Ω ⊂ R
n be a bounded Lipschitz domain, set H :=

L2(Ω) and take V to be a separable Hilbert space with V
c
↪−→ H and (V,H, V ∗) a Gelfand triple. We assume that V is

such that (·)+ : V → V is continuous and that the superposition operator mρ takes V into H with mρ : V → H being

C1.

The requirement for the Nemytskii operator to be Fréchet differentiable is in general a delicate issue.

Proof of Theorem 5.11. Elements of the proof are similar to that of [36, Theorem 3.4] but the more complicated problem

structure in this paper requires additional work.

1. Weak C-stationarity. Observing that Assumption 5.10 implies (46), (47) and (48) (as discussed above), we have the

weak C-stationarity result of Theorem 5.5 immediately at hand.

2. Regularity of optimal control. Owing to the characterisation of the VI relating u∗ρ and p∗ρ given in [42, §II.3], thanks to

the strong convergence in H of p∗ρ and continuity of (·)+ : H → H , we find that

u∗ρ =
1

ν
p∗ρ +

(

ua −
p∗ρ
ν

)+

−
(

p∗ρ
ν

− ub

)+

→ 1

ν
p∗ +

(

ua −
p∗

ν

)+

−
(

p∗

ν
− ub

)+

= u∗.

It follows that u∗ ∈ V if ua and ub belong to V .

3. Orthogonality condition. For the condition on y∗ − Φ(y∗) in (62f), observe that since m′
ρ vanishes on (−∞, 0],

〈µ∗
ρ, (I − Φ′(y∗ρ))

−1(y∗ρ − Φ(y∗ρ))
−〉 = 1

ρ

∫

Ω

m′
ρ(y

∗
ρ − Φ(y∗ρ))

∗p∗ρ(y
∗
ρ − Φ(y∗ρ))

− = 0,

which, due to the continuity of (·)− : V → V and the joint sequential continuity result of (56) implies that

〈µ∗, (I− Φ′(y∗))−1(y∗ − Φ(y∗))−〉 = 0,

and since y∗ ≤ Φ(y∗), the negative part above can be dropped.

4. E-almost statement. Since y∗ρ → y∗ in V , y∗ρ −Φ(y∗ρ) → y∗ −Φ(y∗) pointwise a.e. in Ω for a subsequence that we do

not relabel. Take x ∈ Ω such that y∗(x)− Φ(y∗)(x) < 0, then there exists a ρ̂ = ρ̂(x) such that if ρ ≤ ρ̂, then

yρ(x)− Φ(yρ)(x) ≤
1

2
(y∗(x)− Φ(y∗)(x)) < 0

and hence ρ−1m′
ρ(yρ(x) − Φ(yρ)(x)) = 0 for ρ ≤ ρ̂. That is, ρ−1m′

ρ(yρ(x) − Φ(yρ)(x)) → 0 pointwise a.e. on

{y∗ < Φ(y∗)} and by Egorov’s theorem, for every τ > 0, there exists Bτ ⊂ {y∗ < Φ(y∗)} with |Bτ | < τ such that this

convergence also holds uniformly on {y∗ < Φ(y∗)} \Bτ .

Take v ∈ V with v = 0 a.e. on {y∗ = Φ(y∗)} ∪ Bτ . By the uniform convergence, for any γ > 0, there exists ρ̄ such

that if ρ ≤ ρ̄,

∣

∣〈µ∗
ρ, (I− Φ′(y∗ρ))

−1v〉
∣

∣ =

∣

∣

∣

∣

∣

∫

{y∗<Φ(y∗)}∩(Bτ )c

1

ρ
m′

ρ(yρ − Φ(yρ))p
∗
ρv

∣

∣

∣

∣

∣

≤ γ
∥

∥p∗ρv
∥

∥

L1(Ω)
.

The norm on the right-hand side is bounded uniformly and the left-hand side converges to |〈µ∗, (I−Φ′(y∗))−1v〉| (thanks

to µ∗
ρ ⇀ µ∗ in V ∗ from (59) and the strong convergence of (I− Φ′(y∗ρ))

−1v in V given by (56)), thus giving

∣

∣〈µ∗, (I− Φ′(y∗))−1v〉
∣

∣ ≤ Cγ

for a constant C > 0. Since this holds for every γ, we obtain (62g) (simply set Eτ := I \Bτ ).

5. Relation between ξ∗ and p∗. In order to show the remaining statement (62e), let us introduce the sets

M1(ρ) := {0 ≤ y∗ρ − Φ(y∗ρ) < ε} and M2(ρ) := {y∗ρ − Φ(y∗ρ) ≥ ε}.
Since 〈ξ∗ρ , y∗ρ − Φ(y∗ρ)〉 → 〈ξ∗, y − Φ(y)〉 = 0, we find

(ξ∗ρ , y
∗
ρ − Φ(y∗ρ)) =

1

ρ

∫

Ω

mρ(y
∗
ρ − Φ(y∗ρ))(y

∗
ρ − Φ(y∗ρ))

=
1

ρ

∫

M1(ρ)

(y∗ρ − Φ(y∗ρ))
3

2ε
+

1

ρ

∫

M2(ρ)

(

y∗ρ − Φ(y∗ρ)−
ε

2

)

(y∗ρ − Φ(y∗ρ)) (64)

→ 0,
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and as both integrands in (64) are non-negative, each integral must individually converge to zero too. Hence

∥

∥

∥

∥

∥

χM1(ρ)(y
∗
ρ − Φ(y∗ρ))

3
2

√
ρε

∥

∥

∥

∥

∥

→ 0 and

∥

∥

∥

∥

χM2(ρ)(y
∗
ρ − Φ(y∗ρ)− ε

2 )√
ρ

∥

∥

∥

∥

→ 0, (65)

where for the second convergence we used the fact that y∗ρ − Φ(y∗ρ) ≥ y∗ρ − Φ(y∗ρ)− ε/2 ≥ 0. We calculate

〈ξ∗ρ , p∗ρ〉 =
1

ρ

∫

M1(ρ)

(y∗ρ − Φ(y∗ρ))
2

2ε
p∗ρ +

1

ρ

∫

M2(ρ)

(

y∗ρ − Φ(y∗ρ)−
ε

2

)

p∗ρ

=
1

2

∫

Ω

χM1(ρ)

(y∗ρ − Φ(y∗ρ))
3/2

√
ρε

(y∗ρ − Φ(y∗ρ))
1/2

√
ρε

χM1(ρ)p
∗
ρ +

∫

Ω

χM2(ρ)

(

y∗ρ − Φ(y∗ρ)− ε
2

)

√
ρ

χM2(ρ)p
∗
ρ√

ρ

≤ 1

2

∥

∥

∥

∥

∥

χM1(ρ)

(y∗ρ − Φ(y∗ρ))
3/2

√
ρε

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

(y∗ρ − Φ(y∗ρ))
1/2

√
ρε

χM1(ρ)p
∗
ρ

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

χM2(ρ)

(

y∗ρ − Φ(y∗ρ)− ε
2

)

√
ρ

∥

∥

∥

∥

∥

∥

∥

∥

∥

χM2(ρ)p
∗
ρ√

ρ

∥

∥

∥

∥

.

(66)

Now, using (65), the first factor in each term above converges to zero and hence the above right-hand side will converge

to zero if we are able to show that the second factor in each term remains bounded. Since µ∗
ρ and (I − Φ′(y∗ρ))

−1p∗ρ are

bounded (the latter due to (50)), so is their duality product, and therefore

C ≥ |〈µ∗
ρ, (I− Φ′(y∗ρ))

−1p∗ρ〉|

=
1

ρ

∣

∣

∣

∣

∫

Ω

m′
ρ(y

∗
ρ − Φ(y∗ρ))(p

∗
ρ)

2

∣

∣

∣

∣

=
1

ρ

∣

∣

∣

∣

∣

∫

M1(ρ)

y∗ρ − Φ(y∗ρ)

ε
(p∗ρ)

2 +

∫

M2(ρ)

(p∗ρ)
2

∣

∣

∣

∣

∣

=
1

ρ

∫

Ω

χM1(ρ)

y∗ρ − Φ(y∗ρ)

ε
(p∗ρ)

2 +
1

ρ

∫

Ω

χM2(ρ)(p
∗
ρ)

2.

Both of the terms on the right-hand side are individually bounded uniformly in ρ as the integrands are non-negative. This

fact then implies from (66) that

〈ξ∗, p∗〉 = 0.

Replacing p∗ρ by (p∗ρ)
+ in (66) and in the above calculation, we also obtain in the same way (utilising the fact that vn ⇀ v

in V implies that v+n ⇀ v+ in V )

〈ξ∗, (p∗)+〉 = 0.

Conclusion. Finally, setting λ∗ := (I− Φ′(y∗)∗)−1µ∗, we have shown the desired system (62).

We conclude this section by showing that the alternative (stronger) condition (41) occasionally used in literature for

defining a C-stationarity point can be achieved under additional assumptions.

Proposition 5.13 (Satisfaction of alternative criterion in C-stationarity). For qρ ⇀ q in V , under the conditions of

Theorem 5.11 and

lim inf
n→∞

〈A∗qρ, (I− Φ′(y∗ρ))
−1(ψqρ)〉 ≥ 〈A∗q, (I− Φ′(y∗))−1(ψq)〉 ∀ψ ∈W 1,∞(Ω) with ψ ≥ 0, (67)

the inequality condition in (62f) can be strengthened to

〈λ∗, ψp∗〉 ≥ 0 ∀ψ ∈W 1,∞(Ω) with ψ ≥ 0.

Proof. Testing the equation for p∗ρ with (I − Φ′(y∗ρ))
−1(ψp∗ρ), noticing that ψp∗ρ ⇀ ψp∗ in V and making use again of

(57) and (58) in a similar way to the proof of Theorem 5.5,

lim sup
ρ→0

〈µ∗
ρ, (I− Φ′(y∗ρ))

−1(ψp∗ρ)〉 = lim sup
ρ→0

〈yd, (I− Φ′(y∗ρ))
−1(ψp∗ρ)〉 − lim inf

ρ→0
〈y∗ρ, (I− Φ′(y∗ρ))

−1(ψp∗ρ)〉

− lim inf
ρ→0

〈A∗p∗ρ, (I− Φ′(y∗ρ))
−1(ψp∗ρ)〉

≤ 〈yd − y∗, (I− Φ′(y∗))−1(ψp∗)〉 − 〈A∗p, (I− Φ′(y∗))−1(ψp∗)〉
(using (67) for the last term)

= 〈µ∗, (I− Φ′(y∗))−1(ψp∗)〉
= 〈λ∗, ψp∗〉.
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On the other hand, we have

lim sup
ρ→0

〈µ∗
ρ, (I− Φ′(y∗ρ))

−1(ψp∗ρ)〉 = lim sup
ρ→0

〈λ∗ρ, ψp∗ρ〉 = lim sup
ρ→0

∫

Ω

m′
ρ(y

∗
ρ − Φ(y∗ρ))(p

∗
ρ)

2ψ ≥ 0

which implies the result.

Remark 5.14. Let us consider when assumption (67) of the previous proposition holds. Suppose that A is of the form

〈Au, v〉 =
n
∑

i,j=1

∫

Ω

aij
∂u

∂xi

∂v

∂xj
+

n
∑

i=1

∫

Ω

bi
∂u

∂xi
v +

∫

Ω

c0uv ∀u, v ∈ V, (68)

with aij = aji ∈ C0,1(Ω̄), bi ∈W 1,∞(Ω), c0 ∈ L∞(Ω) and

n
∑

i,j=1

aijξiξj ≥ C|ξ|2 a.e. (69)

for some C > 0 and c0 ≥ λ > 0 a.e. with λ a constant such that A is coercive.

Taking ψ as in the above proposition, let zρ = (I− Φ′(y∗ρ))
−1(ψqρ). By (54), zρ ⇀ z := (I− Φ′(y∗))−1(ψq∗) in V .

We have, as done in [65, Lemma 3.6] and [70, Lemma 4.5],

〈A∗qρ, (I− Φ′(y∗ρ))
−1(ψqρ)〉 = 〈A∗qρ, zρ〉

= 〈qρ, Azρ〉

=

n
∑

i,j=1

∫

Ω

aij
∂zρ
∂xi

∂qρ
∂xj

+

n
∑

i=1

∫

Ω

bi
∂zρ
∂xi

qρ +

∫

Ω

c0zρqρ.

Using the convergences qρ ⇀ q and zρ ⇀ z in V , the compactness of V
c
↪−→ H and the regularity of ψ, it is easy to pass

to the limit in all but the first term. For that term, we need a weak lower semicontinuity of the form

lim inf
ρ→0

n
∑

i,j=1

∫

Ω

aij
∂((I− Φ′(y∗ρ))

−1(ψqρ))

∂xi

∂qρ
∂xj

≥
n
∑

i,j=1

∫

Ω

aij
∂((I− Φ′(y))−1(ψq))

∂xi

∂q

∂xj
.

A condition ensuring this is the complete continuity of I − Φ′(y) : V → V (examining the proof of Lemma 5.9 shows

that this condition would turn the convergence in (54) into a strong convergence so that zρ → z in V and hence we can

directly pass to the limit in that term).

5.4 From E-almost to C-stationarity

In order to upgrade to C-stationarity, we need an additional condition given in the next proposition. The assumption

preserves generality but is strong, however, we will explore an example below of a reasonable situation where it holds.

Proposition 5.15 (C-stationarity). Let the assumptions of Theorem 5.11 hold and assume that

y∗ρ − Φ(y∗ρ) → y∗ − Φ(y∗) in L∞(Ω).

Then (62g) can be strengthened to

〈λ∗, v〉 = 0 ∀v ∈ V : v = 0 a.e. on {y∗ = Φ(y∗)}.

Proof. By assumption, the convergence of y∗ρ−Φ(y∗ρ) to y∗−Φ(y∗) is uniform and hence ρ−1m′
ρ(yρ(x)−Φ(yρ)(x)) → 0

uniformly a.e. globally on {y∗ < Φ(y∗)}. This means that the argument in the proof of Theorem 5.11 can be repeated

without recourse to Egorov’s theorem.

Sobolev embeddings are the most obvious paths to achieve the assumption of the above proposition. We demonstrate

this now with an example. Take the dimension n ≤ 4 and suppose that the (bounded Lipschitz) domain Ω and operator A
are such that

y ∈ H1
0 (Ω) ∩H2(Ω) =⇒ Ay ∈ L2(Ω)

and17

y ∈ H1
0 (Ω), Ay ∈ L2(Ω) =⇒

{

y ∈ H2(Ω),

‖y‖H2(Ω) ≤ C(‖y‖L2(Ω) + ‖Ay‖L2(Ω)).

17These are elliptic regularity conditions. When Ω is a C1,1 domain and A is of the form (68) with aij ∈ C0(Ω̄) ∩W 1,∞(Ω), bi, c0 ∈ L∞(Ω),
c0 ≥ 0 with the strict ellipticity (69), Theorem 9.15 of [29] can be applied and it implies the first condition. The second follows from [29, Lemma 9.17].
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We take V = H1
0 (Ω) and use the fact that mρ : V → V (recall that mρ has been chosen in (63); see [22, §2.2.3] for when

this type of property could hold for other maps). Suppose that Φ: V ∗ → V is given by the solution mapping of an elliptic

equation, i.e., Φ(y) is defined as the solution φ of

B(φ) = y

where B is a second-order elliptic operator with sufficient properties guaranteeing well posedness in H1
0 (Ω) (with a

continuous dependence estimate), and when y ∈ L2(Ω), in the space H2(Ω) ∩H1
0 (Ω) including a regularity estimate of

the form

‖φ‖H2(Ω) ≤ C ‖y‖L2(Ω) .

Due to this, we immediately have that Φ(y∗ρ) ∈ H2(Ω) with a uniform bound:

∥

∥Φ(y∗ρ)
∥

∥

H2(Ω)
≤ C1

∥

∥y∗ρ
∥

∥

L2(Ω)
≤ C2. (70)

Defining z = y∗ρ − Φ(y∗ρ) ∈ H1
0 (Ω), we write the equation for y∗ρ as

Az +
1

ρ
mρ(z) = u∗ρ −AΦ(y∗ρ).

It follows from rearranging this equation that Az ∈ H , thus z ∈ H2(Ω) and the equation holds in a pointwise a.e. sense.

Suppose for simplicity that A = −∆ is the Dirichlet Laplacian. Test with −∆z and use

∫

Ω

mρ(z)(−∆z) =

∫

Ω

m′
ρ(z)|∇z|2 ≥ 0

to obtain

‖−∆z‖2H ≤
∥

∥u∗ρ −AΦ(y∗ρ)
∥

∥

H
‖−∆z‖H .

Dividing through by ‖−∆z‖H , the resulting right-hand side is bounded due to (70), and using the regularity condition

above, we obtain uniform boundedness in H2(Ω) of z = y∗ρ − Φ(y∗ρ). By the Sobolev embedding [1, Theorem 6.3]

H2(Ω)
c
↪−→ C0,α(Ω̄) for some α ∈ (0, 1), we get y∗ρ − Φ(y∗ρ) → y∗ − Φ(y∗) in that Hölder space (and thus in L∞(Ω)).

5.5 Strong stationarity

We now give strong stationarity conditions for (2) in the setting of V = H1
0 (Ω),H = L2(Ω) and Uad of the box constraint

form (61).

Let us first of all provide some background and context. Strong stationarity for the VI obstacle problem in the absence

of constraints on the control was the focus of the classical works by Mignot [50, Theorem 5.2] and Mignot and Puel [51].

The approach in the latter work is as follows. By using the results on the differentiability of the solution map associated

to VIs of Mignot [50], the Bouligand stationarity condition (for example, see Proposition 5.2) reads

(αh, y
∗ − yd)H + ν(u∗, h)H ≥ 0 ∀h ∈ H

where αh denotes the directional derivative of the solution map with respect to the direction h. The key idea of Mignot

and Puel in [51] is to use the fact that the optimal control u∗ in fact belongs to V (in the unconstrained case, this follows

from B-stationarity; otherwise this is a regularity result in certain situations or one may need to simply assume this) and

to extend, by continuity, the above inequality to

(αh, y
∗ − yd)H + ν〈u∗, h〉 ≥ 0 ∀h ∈ V ∗ (71)

so that the set of feasible directions has been enlarged to V ∗. Then, by writing the duality product in (71) as 〈AA−1h, νu∗〉
and using properties of the projection operator with respect to the bilinear form generated by A onto the critical cone, it

is shown [51, Theorem 3.3] that this inequality is equivalent to a strong stationarity system.

The presence of control constraints complicates the derivation of strong stationarity conditions. In the VI setting,

by using the above-mentioned technique of Mignot and Puel of enlarging the set of feasible directions onto the dual

space in combination with a fine analysis of the various resulting objects and sets, strong stationarity conditions for VI

optimal control problems subject to box constraints were obtained by Wachsmuth in [69]. The author also showed that

certain restrictions are required on the control bounds in order to obtain a positive answer for strong stationarity, and

counterexamples were given showing that violating those conditions can lead to a lack of strong stationarity. These

necessary conditions (which are stated in (72)–(74) below) in the context of admissible sets as in (61) are implied [69,

Lemma 5.3] by the condition

ua, ub ∈ H1(Ω) with ua < 0 ≤ ub q.e. on Ω,
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(recall Example 3.5 for the meaning of q.e.) which in turn implies that the control space must allow for negative functions,

meaning that one ultimately needs existence and directional differentiability results for QVIs with source terms and

directions that may be strictly negative18.

Let (y∗, u∗) be a local optimal pair of (2). As in [51], we make the fundamental assumption that u∗ ∈ V and we

refer to Theorem 5.11 from the previous section for the satisfaction of this assumption. Let us take Uad as stated in (61)

where we include the possibility of taking ua = −∞ and ub = ∞, in which case the problem becomes one with no

constraints and we can argue as in [51]. Outside of this case, we proceed as in [69]. Let the assumptions of Theorem 3.2

hold and denote by j : H → V ∗ the inclusion map through the Riesz isomorphism. Then, as done in [69], the Bouligand

stationarity condition (42) can be extended to

(αh, y
∗ − yd) + ν〈h, u∗〉 ≥ 0 ∀h ∈ jTUad

(u∗)
V ∗

.

This is starting point of the steps leading to the strong stationarity conditions in [69] for the VI case.

Defining the (quasi-closed) coincidence sets

Ua := {x ∈ Ω : u∗(x) = ua(x)} and Ub := {x ∈ Ω : u∗(x) = ub(x)}

and arguing identically to the proof of [69, Lemma 4.3], we obtain the following sign conditions on u∗:

u∗ = 0 q.e. on As(y
∗) ∩ (Ω \ (Ua ∪ Ub)),

u∗ ≤ 0 q.e. on As(y
∗) ∩ Ub,

u∗ ≥ 0 q.e. on (As(y
∗) ∩ Ua) ∪ (B(y∗) ∩ (Ω \ Ub))

where B(y∗) = A(y∗) \ As(y
∗) is the biactive set.

Let cap(A) denote the capacity of a Borel subset A of Ω with respect to H1
0 (Ω) (see [20, Definition 6.47]). We have

the following strong stationarity characterisation, the proof of which involves modifications of [69] and is sketched in

Appendix B.

Theorem 5.16 (Strong stationarity). Let (y∗, u∗) be a local minimiser of (2) with u∗ ∈ V .

Assume Assumption 3.1, (19), the local assumptions19 (25), (32) and suppose that

Φ: V → V is Frèchet differentiable at y∗,

cap(Ua ∩ B(y∗)) = 0, (72)

ub ≥ 0 q.e. on B(y∗), (73)

u∗ = 0 q.e. on As(y
∗). (74)

Then (y∗, u∗) is a strong stationarity point, i.e., there exist multipliers (p∗, ξ∗, λ∗) ∈ V × V ∗ × V ∗ such that

y∗ + (I− Φ′(y∗)∗)λ∗ +A∗p∗ = yd,

Ay∗ − u∗ + ξ∗ = 0,

ξ∗ ≥ 0 in V ∗, y∗ ≤ Φ(y∗), 〈ξ∗, y∗ − Φ(y∗)〉 = 0,

u∗ ∈ Uad : (νu∗ − p∗, u∗ − v) ≤ 0 ∀v ∈ Uad,

p∗ ≥ 0 q.e. on B(y∗) and p∗ = 0 q.e. on As(y
∗),

〈λ∗, v〉 ≥ 0 ∀v ∈ V : v ≥ 0 q.e. on B(y∗) and v = 0 q.e. on As(y
∗).

Note also that, whilst this work was under preparation, a related result has recently been obtained in [72] however

only in the absence of control constraints (i.e., Uad is taken to be the whole space).

A Technical proofs

Proof20of Lemma 2.3. Take an arbitrary subsequence {vnj
}; this remains uniformly bounded hence we can extract a

weakly convergent subsequence such that vnjk
⇀ v in V to some v.

Select an arbitrary f ∈ V ∗
+ and set ln := 〈f, vn〉 which is a monotonic sequence (since f is non-negative) and also

bounded. Hence the monotone convergence theorem applies and we obtain the existence of l such that ln → l. Since also

lnjk
→ l, we conclude that l = 〈f, v〉.

18Our theory of differentiability for QVIs in the earlier paper [4] (which was for non-negative sources and directions) could not be immediately used

to obtain strong stationarity by arguing in this fashion since the setting of [4] would have forced Uad to be selected such that Uad ⊂ H+. This is why

the development of the results of §2 and §3 are crucial.
19These, of course, should be evaluated at y∗.
20We thank Jochen Glück for the idea of the proof.
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Take another subsequence of {vn}, say {vnm
}, then by the above argument, we have vnmj

⇀ v̂ for some v̂ and

l = 〈f, v̂〉. That is,

〈f, v〉 = 〈f, v̂〉 ∀f ∈ V ∗
+,

and from this, we can conclude via the weak-* density of V ∗
+ − V ∗

+ in V ∗ (e.g., see [8, Lemma 2.7]) that v̂ = v. The

subsequence principle then yields the result.

Proof of Lemma 5.9. Define Tn = (I− Φ′(zn)) and T = (I− Φ′(z)). Then

T−1
n qn − T−1q = (T−1

n − T−1)qn + T−1(qn − q)

and we get T−1(qn − q)⇀ 0 in V by continuity and linearity of T−1. For the first term on the right-hand side above, we

use the identity T−1
n − T−1 = T−1

n (T − Tn)T
−1 relating the inverses of operators to see that

∥

∥(T−1
n − T−1)qn

∥

∥

V
=

∥

∥T−1
n (T − Tn)T

−1qn
∥

∥

V

≤ C1

∥

∥(T − Tn)T
−1qn

∥

∥

V
(by (50))

≤ C1 ‖T − Tn‖L(V,V )

∥

∥T−1qn
∥

∥

V

≤ C2 ‖Φ′(zn)− Φ′(z)‖L(V,V ) (because T−1 and qn are bounded)

→ 0

with the convergence because we assumed that Φ is continuously Fréchet differentiable and hence the derivative is con-

tinuous. Therefore, T−1
n qn ⇀ T−1q in V . The strong convergence follows because if qn → q then T−1(qn − q) → 0 in

V . For the final claim, we have

〈AT−1
n qn, qn〉 − 〈AT−1q, q〉 = 〈A(T−1

n qn − T−1qn), qn〉+ 〈AT−1qn, qn〉 − 〈AT−1q, q〉

and the first term on the right-hand side tends to zero by the calculation above. Since by (50), AT−1 is bounded and

coercive (as well as being linear), we obtain

lim inf
n→∞

〈AT−1qn, qn〉 − 〈AT−1q, q〉 ≥ 0.

B Sketch proof of Theorem 5.16

Recall the notation αh which stands for the directional derivative in the direction h given through Theorem 3.2.

Lemma B.1. Denote by j : H → V ∗ the inclusion map. Then 0 ∈ V ∗ is a minimiser of the problem

min
h∈jTUad

(u∗)
V ∗

(αh, y
∗ − yd)H + ν〈h, u∗〉. (75)

Proof. Choosing the direction h = 0 in the inequality of Proposition 5.2 implies 0 ≤ (α0, y
∗ − yd) + ν(u∗, 0) = 0 with

the equality because α0 = 0. Hence h = 0 is a minimiser of

min
h∈TUad

(u∗)
(αh, y

∗ − yd)H + ν(u∗, h).

As in Lemma 4.1 of [69], the feasible set can be enlarged (the continuity in V ∗ of h 7→ αh assured by Proposition 3.12 is

needed here) to obtain the desired result.

The aim now is to rewrite (75) over the space

W := {v ∈ V : v = 0 q.e. in As(y
∗)}.

Using the characterisation of the critical cone from [69, Lemma 3.1], we see that Ky∗ ⊂ W . Denote by i : W → V the

inclusion map and define the closed convex set

Cy∗

W := {v ∈W : v ≤ 0 q.e. in B(y∗)},

which satisfies Ky∗

= iCy∗

W . Now, note that, using (32), (I− Φ′(y∗)) : V → V is invertible. Define

AW : W →W ∗, AW := i∗A(I− Φ′(y∗))−1i

and observe that for any d̃ ∈W ∗ the inequality

δ ∈ Cy∗

W : 〈AW δ − d̃, δ − w〉W∗,W ≤ 0 ∀w ∈ Cy∗

W
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has a unique solution by the Lions–Stampacchia theorem sinceAW is bounded and coercive due to the Lipschitz condition

(32) (see [72, Lemma 3.3]). Now suppose that for d ∈ V ∗, δ solves

δ ∈ Cy∗

W : 〈AW δ − i∗d, δ − w〉W∗,W ≤ 0 ∀w ∈ Cy∗

W .

Consider also

z ∈ Ky∗

: 〈A(I− Φ′(y∗))−1z − d, z − v〉V ∗,V ≤ 0 ∀v ∈ Ky∗

.

Then it is easy to see that that z = iδ.

Lemma B.2. Define the operator θ : W → V by

θ := (I− Φ′(y∗))−1i.

Then (0, 0) is a solution of

min
(βh,h)∈W×W∗

(θ(βh), y
∗ − yd)H + ν〈h, u∗〉W∗,W s.t.











βh ∈ Cy∗

W

h = AWβh

h ∈ i∗jTUad
(u∗)

W∗

.

(76)

Proof. By defining γh := αh − Φ′(y∗)(αh) = (I− Φ′(y∗))αh, the QVI (27) satisfied by αh can be written as

γh ∈ Ky∗

: 〈A(I− Φ′(y∗))−1γh − h, γh − ϕ〉 ≤ 0 ∀ϕ ∈ Ky∗

.

Now if βh satisfies

βh ∈ Cy∗

W : 〈AWβh − i∗h, βh − ϕ〉 ≤ 0 ∀ϕ ∈ Cy∗

W ,

we have (as discussed above) γh = iβh, hence

iβh = (I− Φ′(y∗))αh ⇐⇒ αh = θ(βh)

Therefore, (75) can be restated and we get (using the continuity of Φ′(y∗)) that 0 is a solution of

min
h∈i∗jTUad

(u∗)
W∗

(θ(βh), y
∗ − yd)H + ν〈h, u∗〉W∗,W s.t.

βh ∈ Cy∗

W : 〈AWβh − h, βh − ϕ〉W∗

y∗
,W ≤ 0 ∀ϕ ∈ Cy∗

W ;

this is well defined because u∗ ∈W due to (74). Hence, similarly to Proposition 3.13, (0, 0, 0) is a solution of

min
(βh,h,ξh)∈W×W∗×W∗

(θ(βh), y
∗ − yd)H + ν〈h, u∗〉W∗,W s.t.































βh ∈ Cy∗

W

ξh = h−AWβh

ξh ∈ (Cy∗

W )◦

〈ξh, βh〉 = 0

h ∈ i∗jTUad
(u∗)

W∗

.

Setting ξh = 0 leads to the result.

We need to derive stationarity conditions for this problem and then transform the resulting system back to the original

spaces and operators. Let us remark that under the assumptions of the theorem, we have that θ is linear and bounded.

Lemma B.3. Defining

D := i∗jTUad
(u∗)

W∗

, Y :=W ∗ ×W ×W ∗, C := ({0}, Cy∗

W , D),

there exists (p̃, λ̃, σ) ∈ Y∗ ∩ C◦ such that

A∗
W p̃+ θ∗(j(y∗ − yd)) + λ̃ = 0,

νu∗ − p̃+ σ = 0,

λ̃ ∈ (Cy∗

W )◦,

σ ∈ D◦.
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Proof. In addition to the notation introduced above, let us also define the space X :=W×W ∗. Define the map g : X → Y
by g(β, h) := (AWβ − h, β, h) and observe that (76) can be compactly written as

min
g(βh,h)∈C

(θ(βh), y
∗ − yd) + ν〈h, u∗〉W∗,W . (77)

We now proceed with checking the Zowe–Kurcyusz constraint qualification g′((0, 0))X − RC(g(0, 0)) = Y to deduce

the existence of Lagrange multipliers. First observe that D is a convex cone which in turn implies that C is a convex cone

and then by [20, Example 2.62], RC((0, 0, 0)) = C and TC((0, 0, 0))◦ = C◦. Now, we see that g(0, 0) = (0, 0, 0) and

RC(g(0, 0)) = C. We also have

g′(0, 0)(γ, d) = (AW γ − d, γ, d) ∀(γ, d) ∈W ×W ∗.

Therefore, we are required to show that for every (w∗
1 , w2, w

∗
3) ∈ Y , there exist (γ, d, v, h) ∈ X × Cy∗

W ×D such that

AW γ − d = w∗
1 ,

γ − v = w2,

d− h = w∗
3 .

(78)

The first equation written in terms of v and h reads AW v− (w∗
1 +w

∗
3 −AWw2) = h. In order to force solutions to belong

to the desired sets, we consider the VI

find v ∈ Cy∗

W : 〈AW v − (w∗
1 + w∗

3 −AWw2), v − ϕ〉 ≤ 0 ∀ϕ ∈ Cy∗

W (79)

associated to the above PDE. As explained above, (79) has a solution and furthermore, the following complementarity

system (which can be derived by the same arguments as before) is satisfied by any solution:



















v ∈ Cy∗

W

η := (w∗
1 + w∗

3 −AWw2)−AW v

η ∈ (Cy∗

W )◦

η ⊥ v.

Using this, we see that h := −η ∈ −(Cy∗

W )◦. The manipulations in the paragraph after Lemma 5.1 of [69] show that

(i∗jTUad
(y∗))◦ ⊂ −Cy∗

W which implies that −(Cy∗

W )◦ ⊂ (i∗jTUad
(y∗))◦◦ = D, that is, g ∈ D. Then we simply define γ

and d by (78). Thus the constraint qualification is met for (77).

Writing the objective functional in (77) as Ĵ , we obtain the existence of a Lagrange multipler (p̃, λ̃, σ) ∈ Y∗ ∩ C◦

such that

Ĵ ′(0, 0)(x) + 〈g′(0, 0)∗(p̃, λ̃, σ), x〉 = 0 ∀x ∈ X .
With x = (γ, d), we see that since θ(0) = 0, the first term above is

Ĵ ′(0, 0)(x) = 〈θ∗(j(y∗ − yd)), γ〉W∗,W + ν〈d, u∗〉W∗,W ,

where θ∗ : V ∗ →W ∗ is the adjoint of θ : W → V (this exists due to the linearity assumption). We also have, by definition

of the adjoint operator,

〈g′(0, 0)∗(p̃, λ̃, σ), x〉 = 〈(p̃, λ̃, σ), (AW γ − d, γ, d)〉
= 〈A∗

W p̃, γ〉W∗,W + 〈λ̃, γ〉W∗,W + 〈σ − p̃, d〉W∗,W .

This implies the result.

We now transform all quantities back to the space V .

Conclusion of sketch proof of Theorem 5.16. Observe that under the assumptions, Proposition 5.2, Lemma B.3 and The-

orem 3.2 are applicable. To start with, let us define

p∗ := ip̃

and

λ∗ := (I− Φ′(y∗)∗)−1(−A∗ip̃− j(y − yd)),

and for convenience, denote L := Φ′(y∗).

• By definition of λ∗ and p∗, we get the first line in the system after etching away the inclusion map j.

• We see from the definition of λ∗ and elementary manipulations to relate it to λ̃ ∈ (CW )◦ and the usage of the fact that

iCW = Ky∗

that λ∗ ∈ (Ky∗

)◦. This implies the final condition of the system thanks to [69, Lemma 3.1].
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• Since p̃ ∈W , it vanishes q.e. on the strongly active set. As p̃ = νu∗ + σ and since σ ∈ D◦, Lemma 5.1 of [69] tells us

that σ ≥ 0 q.e. on Ω \ Ua. Thus

σ|B(y∗) = σ|Ua∩B(y∗) + σ|(Ω\Ua)∩B(y∗) ≥ σ|Ua∩B(y∗) = 0

with the final equality because of (72). Note also that

u∗|B(y∗) = u∗|B(y∗)∩Ub
+ u∗|B(y∗)∩(Ω\Ub) ≥ u∗|B(y∗)∩(Ω\Ub) ≥ 0 q.e.,

with the first inequality by (73) and the final inequality by the third sign condition on u∗ stated in §5.5. This implies the

stated condition on p∗, which is equivalent to −p∗ ∈ Ky∗

due to the characterisation of the critical cone in [69, Lemma

3.1].

• We obtain σ ∈ NUad
(u∗) exactly as in the proof of Theorem 5.2 in [69]21 (where NUad

denotes the normal cone to

Uad with respect to H), which is the polar cone of the tangent cone, see [20, §2.2.4]) and this is precisely the desired

inequality constraint relating the control and the adjoint.
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