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Abstract. For a class of quasi-variational inequalities (QVIs) of obstacle-type the stability of its
solution set and associated optimal control problems are considered. These optimal control problems
are non-standard in the sense that they involve an objective with set-valued arguments. The approach
to study the solution stability is based on perturbations of minimal and maximal elements of the
solution set of the QVI with respect to monotone perturbations of the forcing term. It is shown that
different assumptions are required for studying decreasing and increasing perturbations and that the
optimization problem of interest is well-posed.
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1. Introduction. Quasi-variational inequalities (QVIs) are powerful mathemat-
ical models for the description of complex physical phenomena. Such models arise in
many scientific areas including superconductivity ([40} 50, 511, 10} [13] [46], [32] B11, B30]),
continuum mechanics ([22]), impulse control problems ([I5], 6] 4] 07]), growth of
sandpiles ([IT}, 12} I3} [44] [45] [47, [48]), and the formation of networks of lakes and
rivers ([12, [45] [47]), among others.

In general, QVIs are nonlinear, nonconvex, and nonsmooth problems with non-
unique (i.e., set-valued) solutions. In physical models like the growth of sandpiles or
the determination of the magnetic field in superconductors, each of these solutions
fulfills physical laws confirming that they are not artifacts of the mathematical for-
mulation (compare the results in [10] 11 [12], 13| [44], 5]). In some cases, like the QVI
arising in impulse control problems, extremals of the solution set can be determined,
in the sense that there exist minimal and maximal elements of the solution set which
are related to the value functional [I5].

The mathematical treatment of QVIs entails several possible directions. In ad-
dition to the “order” approach followed in this paper, at least two more are worth
mentioning. In some cases, the QVI can be expressed as a generalized equation, and
hence a particular instance of a more general problem class; see, e.g., [35, 37] and
also [23] 34 24]. In problems involving constraints on derivatives, special forms of
constraint regularization that modify the original partial differential operator may be
suitable, see [50, 4T [7, 8]. For details on these and further approaches, we refer the
reader to [4].
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Given the complexity of QVIs, their optimal control represents a task which is yet
even more complex than the study of the QVI itself. Without any structural proper-
ties of the solution set, the treatment of the control problem appears very hard, if not
impossible. However, properties such as the availability of extremal elements provide
useful starting points for the successful analysis of the control problem and charac-
terizations of its solutions. For this purpose, the study of the stability of minimal
and maximal elements of the solution set with respect to perturbations of the forcing
term represents a fundamental analytical step for the subsequent study of the control
problem. Concerning the latter considered in infinite dimensions, we note that the
literature is rather scarce; we refer to [2, 21 20, 43] for some of the very few contribu-
tions. Finite dimensional cases have been studied in [42] and the references therein.
On the other hand, the study of optimal control problems for variational inequalities
(VIs) has been the subject of a number of recent studies; see, e.g., [28 29, 54] and
the references therein. We note here that—to the best of our knowledge—the study
of the stability of minimal and maximal solutions of QVIs and the optimal control
thereof, with both being focus topics of this work, have not yet been treated in the
literature. We further note that the stability of the solution set is also of relevance in
identification problems involving QVIs; see [27].

The paper is organized as follows. In section [2| we introduce the optimal control
problem associated to the QVI of interest, and we provide the mathematical foun-
dation of the structure of spaces under consideration and their associated ordering.
Additionally, in section [3] we study two classes of applications associated to impulse
control problems and to QVIs arising as the coupling of VIs and nonlinear partial
differential equations (PDEs), respectively. In section 4} we discuss the fundamental
results due to Tartar that determine the existence of minimal and maximal solutions
of the QVIs of interest. Abstract stability results from the operator theoretic point
of view are the subject of section [5] along with an example exploring limitations. In
section [6 we study minimal and maximal solutions under perturbations of the forc-
ing term from below and from above. The paper ends in section [7| which studies the
well-posedness of the control problem for the QVI.

Notation. Throughout the paper we assume that € is an open subset of RV,
and LP(Q) for 1 < p < oo denotes the usual Lebesgue space. For v > 0, we define

LX(Q) :={z€ L>®(Q): z(zx) > v for almost all (fa.a.) x € Q}.

Additionally, H} () and H*(£2) denote the usual Sobolev spaces; see [I].

For a Banach space X we write || - || x for a norm on X and X’ for the topological
dual of X with (-,-)xs x the associated duality pairing, respectively. For a sequence
{Zn}nen In X we denote its strong convergence to z € X by “z, — 27 and weak
convergence by “z, — 2”. Further, for two Banach spaces X; and X5, we write
Z (X1, X3) for the space of bounded linear operators from X; to Xo.

2. A class of optimization problems with QVI constraints.

2.1. Preliminaries. Let (V,H,V’) be a Gelfand triple of Hilbert spaces, i.e.,
V — H < V', where the embedding V < H is dense and continuous, H is identified
with H', and the embedding H — V' is dense and continuous as well (see [25] and
also, e.g., [I9]). Also, from now on we use (-,-) := (-,-)y+y and (-,-) for the inner
product in H.

Let further HT C H be a closed convex cone satisfying HT = {v € H : (v,y) >
0 for all y € H*}. Note that HT defines the cone of non-negative elements inducing
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the vector ordering: # < yif and only if y —x € HT. Given x € H, let 2™ denote
the orthogonal projection of z onto HY, and define z— := z+ — x. Clearly, one
has the decomposition z = 2+ — 2~ € HT — HT for every x € H, and (z7,27) =
0. Further, the infimum and supremum of two elements z,y € H are defined as
sup(z,y) :=z + (y — x)" and inf(z,y) := x — (x — y) T, respectively. The supremum
of an arbitrary completely ordered subset R of H that is bounded (in the order)
above is also properly defined: R can be written as {x;};cs, where J is completely
ordered, and it follows that {x;};cs is a generalized Cauchy sequence in H (see [6]
Chapter 15, §15.2, Proposition 1]); its limit is the upper bound of the original set.
Additionally, we have that that norm convergence preserves order, i.e., if z, — z and
Yn — y in H, then z, <y, (yn — 2, € HT) implies z < y, since HT is closed. Also,
we write 2, | 2z in H if z,, > 2,41 for all n € N and z,, — z in H, and analogously we
consider z, 1 z. Further, we have that if the sequence {z,} is non-increasing (non-
decreasing) and bounded from below (above) in the sense of the order, then there
exists z € H for which z, | z (2, T 2z) in H. Now, concerning V we assume that
y € V implies y* € V, and that (-)* : V — V is a bounded operator, i.e., we have
M > 0 with |lyT ||y < M||y||v for all y € V. Note that this allows for V = H*(£2) but
not V = H?(Q); see [38, Theorem A.1, Chapter II, Appendix A]

Given x,y € H such that < y, we define the closed “interval” with x and y as its
respective endpoints by [z,y] := {2 € H : # < z and z < y}. Furthermore, we write
[y, +00) and (—oo,y] instead of {z € H : z > y} and {z € H : z < y}, respectively.

Next we get more specific with respect to V and H. In fact, both are assumed
to be spaces of maps h : 2 — R over some open set  C R with the following dense
and continuous embedding: L>°(Q2) < H. Note that this implies that L>(Q2) — V|
as well, and L*°(Q) inherits the induced order on H. Our prototypical example for
this setting is V := H}(Q) and H := L?(Q) with H := L2 (), the closed convex
cone of non-negative maps in L?(Q) with “v < w” for v,w € H iff v(z) < w(z) almost
everywhere (a.e.) on Q. Here, we have v™(z) := max{v(z), 0} for x € Q.

Let A:V — V' be an operator (possibly nonlinear) that is

(-) homogenous of order one, i.e., A(tu) =tA(u) for allu € V, ¢t > 0;

(-) Lipschitz continuous, i.e., there exists C' > 0 such that

|A(u) — A(v)|lv: < Cllu—v||v, for all u,v e V;
(-) strongly monotone, i.e., there exists ¢ > 0 such that
(A(u) — A(v),u —v) > c|ju —v||%, for all u,v € V;
(-) T-monotone, i.e.,
(A(w) — A(v), (u—v)T) >0, for all u,v eV,
where equality holds if and only if (u —v)™ = 0.

A well-known example for A in the case V = H(Q) (or V = HY(Q)) and H = L*(Q)
is given by the elliptic linear partial differential operator

ov Ow ov
(o) =3 [ a5 w3 [ a@ g+ [a@onds, @)

under suitable assumptions on a;;,a; and ag such as, e.g., a;j,a0 € L=(R), a; = 0,
Saij ()€€ > cl€)? for all € = {¢&;} € RY, and ag(x) > € > 0 f.a.a. x € Q. Further,
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note that v — Au 4+ max(u,0) is an example of a nonlinear operator satisfying the
above assumptions in this setting.

For the definition of the constraint set of the QVI we need a map ® with the
following properties: ® : Ht — HT and @ is increasing in [0, +00), that is if v,w €
[0,400) and v < w then ®(v) < ®(w). The domain of ® can then be extended to all
H by x — ®(27) when needed. Further properties of ® will be specified below.

Next, we define the set-valued map K : Ht — 2V as

K@) ={veV: vy} (2.2)

Note that, for ¢ € HT, K(¢)) C V is non-empty ( 0 € K(%)), closed and convex. We
also set K(400) :=V.

2.2. Problem formulations. The QVI problem of interest is the following one.

Problem (Pqyi) : Let f € V' be given.

Find y € K(®(y)) : (A(y) — fiv—y) 20, Vv e K(2(y)). (Pqvr)

This problem admits (in general) multiple solutions due to the non-convexity resulting
from y — K(®(y)). Let Q(f) denote the associated solution set.

In applications, one is typically interested in confining the solution set Q(f) to a
certain interval [y, 7] for some given y,7 € H. By considering f a control force, the
following optimal control problem arises in this setting:

Problem (P) :

minimize J(O, f) := Ji (Toup(O), Tint (0)) + Ja(f) over (O, f) € 27 x U,
subject to f € Ua,q, (P)
O = {z € V: z solves [Pqvil}.

Here U,q C U C V' is the set of admissible controls. Moreover, J, : H x H — R and
J2 1 Uag — R, and for y,y € H we define the map

Toup(0) := { “P=€0Nw T = ONfyy#0,
o . Y otherwise,

and analogously

Ts(0) = { Mzeonm 2 ONly.3l#0,
it Y, otherwise.

Problems of type have not yet been considered in the literature and pose several
formidable challenges. For instance, the proof of existence of a solution is highly
delicate due to the dependence y — K(®(y)) and the fact that y = y(f). As a
consequence, the direct method of the calculus of variations is only applicable if
certain convergence properties of that constraint set can be guaranteed. Another
delicacy is related to the potential set-valuedness of the solution of the QVI in the
constraint system of . This fact requires to identify a suitable selection mechanism
such as the one identifying the maximal or minimal solution, respectively, if available
at all. We note, however, that in the special case where Tins(Q(f)) and Tsup(Q(f))
also belong to Q(f), they are the minimal and maximal solution, respectively, to
in VN y,g] . Then the proof of existence of solutions to reduces to a
stability result for this minimal and maximal solution to the QVI of interest.



3. Examples of applications. Our work here is motivated by the following
two application classes. The first one is associated to QVIs that result from cou-
pling a variational inequality (VI) to a nonlinear partial differential equation (PDE).
Such models have recently been studied in connection with thermoforming; see [3].
The other problem class is given by QVIs arising in impulse control as pioneered by
Bensoussan and Lions. We briefly describe both problem types in the sequel.

3.1. QVIs arising from coupling VIs and nonlinear PDEs. Consider the
following class of compliant obstacle problems where the obstacle is given implicitly
by solving a PDE, thus coupling a VI and a PDE. It consists in finding (y, ®,2) €
V x H x W such that

y<®, (Aly) — f,y—v) <0, YVoeV:iv<d, (3.1)
(Bz+G(®,y) —g,w) =0 Yw € W, (3.2)
b =1Lz, in H. (3.3)

Here, V.~ W —« H —« W' < V' f,g€ H", G : Hx H — H is continuous
and bounded, i.e., for some Mg > 0, |G(®,9)|lz < Ma(|®|z + ||ylla), for all
(®,y) € H x H. Further, L: W — H is an increasing affine linear continuous map
with L(0) > v > 0. Additionally, B € Z(W,W’) is strongly monotone and satisfies
(Bz=,zt)=0forall z€ W (i.e., Bis T-monotone), and A satisfies the assumptions
of section .11

Under mild conditions, the above problem can be cast into the form of as
follows. Let v € H, and consider the problem of finding z € W such that

(Bz + G(¢,v) — Yw e W, (3.4)

)=0
¢ = Lz, in H. (3.5)

Assuming that for each v € H, z — G(Lz,v) is monotone, one can show the existence
of a unique solution z(v) € W of (3.4 . . Now set ®( ) = ¢. Suppose additionally
that (G(Lz,y),27) < 0 for all 2 € W and y € HT. Thus, 2(v) > 0 and ®(v) =
Lz(v) > v for all v € H. In addition, if v; < ve implies

(G(Lv,v1) — G(Lw, vy), (v —w)*)>0,

for all w, v, then z(v1) < z(vy) and ®(v1) < P(vz), as L is increasing. This finally

shows that (3.1))—(3.3]) has the form (Pqyi|) with ® as an increasing operator.
In view of controlling the outcome of a stationary industrial process one is clearly

interested in forcing the solution set Q(f) to be a singleton which is close to a pre-
specified desired state y4. This can be modelled as follows.

minimize 5 [ [Tupl(@() = Tur( QUDE + 5 [ 1na = Tus(@UNF + 51115

subject to0 < v < f<F, feU,

(3.6)

for given \,v, F' > 0. Here, U denotes the underlying control space. Note that the
first term in the objective aims at minimizing the distance between the maximal and
minimal solution targeting single-valued Q(f), the second term aims at tracking yq,
whereas the last term associates an (U-) average cost of A to the control action. Notice



that the smaller the A, the cheaper the cost of the control gets and the smaller one
expects the first two terms in the objective. Clearly, fits the form of .

EXAMPLE 3.1. A possible setting for this problem class satisfying all assumptions
invoked so far is given by V = H}(Q), H = L*(Q), W = HY(Q), with

Oy 0z
Ay, z) = /ai-x— dx—i—/a z)yz dz, Yy,z €V,
< > % 9 J( )8x]axz 0 0()

v Ow
Bv,w) = /bi-:zz — der/b z)vw dx, Yo,w e W,
(Bocwh =3 [ (o) g dat [ o

aijybij, a0, by € L¥(Q), Y aij ()& > ¢l and Y bij(x)€;6 > cléf? for all & =
{&} € RY and some ¢ > 0 and ag(z) > 0 and bo(x) > € > 0 fa.a. = € Q.
Additionally, fory >0

G@,y) = (@ -y and (L2)(x) = k(@)=(2)+v

with k € L>=(Q)T and v > 0. Further, U = RM™ for some M € N, where f =

Zf\n/le fmXa,.; fm € R and Q,, C Q for each m, and ||f|lv := |{fm}H|ry- In this
setting, ® : {y € H: 0 <y} — H' is non-decreasing, and defined as ®(z) = Lz.

3.1.1. Thermoforming. Thermoforming is a manufacturing process involving
the heating of a membrane or plastic sheet to its pliable temperature and then forcing
it (by means of positive or negative gas pressure) onto a mold of some metallic alloy.
Subsequently, the membrane deforms and takes on the shape of the mold. The process
is used for large structures in the car industry but also to create microfluidic structures
(e.g. channels on the range of micrometers). The amount of applications and the
necessity of precision in a variety of settings has generated the need of research into
its modelling and accurate numerical simulation; see [33], [55], [36].

We follow closely [3] and consider the following modeling assumptions: i) The
temperature for the membrane is always a constant value ii) The mold grows in an
affine way with respect to changes in its temperature iii) The temperature of the
mold is subject to diffusion, convection and boundary conditions arising from the
insulated boundary and it depends on the vertical distance between the mold and the
membrane.

The above means that the problem can be formulated as - where y
denotes the position of the membrane, z the temperature, and ® the mold. Specifi-
cally, V.= H}(Q),W = HY(Q), and H = L?(2), meaning that we assume that the
membrane is clamped on the boundary, and we assume thermal insulation there as
well. The operators A and B are second order elliptic related to the elastic deforma-
tion of the membrane, and the diffusion of the temperature, respectively. Further,
G(®,y) = g(® —y) where g(x) = —1if 2 <0, g(x) =2z—-1if0<z <1and g(x) =0
if 1 <z, (Lz)(x) = l(z)z(x) + Po(x) for some non-negative I, and where @, the shape
of the mold at the baseline temperature.

3.2. Impulse control. We consider impulse control problems (see [16]) for the
following stochastic differential equation

du = b(u)dt + o(u)dw(t), uw(0) =z € RV,

where b, o : RN — R¥ are Lipschitz functions whose regularity will be specified later.
Let Qi 1= O’Z‘O']T/Q.
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The control is carried on instances 0 < 6; < 6 < - and the system is forced
from y(6,,) to y(60,,) + &, on the instance 6,,. The energy associated to the process is
given by the expected value

E {/ ' f(u(t))e” Jo aoCu()ds qp 4 Z(k +co(€n))e” o “0(“(5))dsx9n<m} = H(f,w,x),
0 n

where w = {(0,,6,) 5%, and with 7, := inf{t : u(t™) ¢ Q or wu(t) ¢ Q}, for some
open Q C RY. In this setting, f uniquely determines the value function

min H(f,w,x),
which represents the cost of the optimal control associated to the initial condition
x and the cost function f. Here, W is the set of all possible instances and jumps
{(0n,&n)}52 ;. The optimization of the above quantity via choosing f turns out to be
of interest. Indeed, in specific applications f determines the value of a certain stock
or energy type per unit of time. The goal is then to solve

2
A
minimize / (s — min H(f7w,ac)> dx + §\f|2U subject to f € Uaq, (3.7)
Q

weW

where U,q C U is the set of admissible functions f, | f|? represents cost of the choice
of f, A > 0 is a weight, and s > 0 is a desired average cost that could be zero.

3.2.1. Bounded case. We consider () bounded with a sufficiently smooth bound-
ary, with V = H'(Q), H = L*(Q), and H" = L%(12), where A is of the type (2.1]
with

aij =a; € WHORN), 1<i,j<N, Y ai;&& > olgf’, a>0,VeRY,
ai,a0 € L°(RY), by =—a; + Y % € Whee(RM),

ap(x) >r >0, faa xze€Q.

Further suppose that the coefficients are such that the induced A is strongly monotone.
Note that order one homogeneity, Lipschitz continuity, and T-monotonicity already
hold; the latter follows immediately as (Az~,2%) = 0 for all z. Consider

(Py)(z) ==k + essinf, . 5(co(§) +y(z +£)),

where ¢y € C(RY,R) is such that ¢g(0) = 0 is sub-linear and non-decreasing, with
f e LP(Q) withp >N and f > 0.

In this setting one can show that the solution set Q(f) of is a singleton,
Q(f) = {y*}, and y* determines the value function of the impulse control problem of
interest (see [16]), i.e.,

y*(x) = Urjglgv?'-l(f,w,x),

a.e. for x € . Hence, problem (3.7) amounts to controlling the solution to the
quasi-variational inequality and is, thus, of the form @



3.2.2. Unbounded case. Let w(x) = exp(—puy/1+ |z[?) for z € RY, and
consider the weighted spaces V = H'(RM w), and H = L?*(RY,w) with H+ =
L% (RN, w) the usual cone of non-negative maps. In particular, L?(R",w) is the space
of (equivalence classes of) measurable functions h : RY — R for which |h|2, (RN ) =
Jan [B(z)Pw(z)?dz < +oo, and H'(RY,w) is the space of (equivalence classes of) of
functions g : RN — R for which g and its weak gradient Vg belong to L?(R",w) and
L?(RY, w)N | respectively.

The operator A :V — V' is given by

W2 2
(Av,y) Z/ &cj &EZ dx +Z/ a%yw dx—l—ao/RN vyw~ dx,

with a;j,a;,b; as in Section but with ag(z) = r for all z and a real r > 0.
Define

U:={f:RY - R: fis measurable and 0 < f(z) < C(1+ |z|*), Vz € RV},
where the bound above holds for some C' > 0 and some s > 0, and the map ® by

(Py)(2) := k + essinfe>o(co(§) + y(z +€)),

where k& > 0, and ¢y € C’(Rﬁ,R), with ¢p(0) = 0, is sub-linear, non-decreasing with
lim|¢| o c0(§) = +00 and for which co(§) < alé|? for some a,vy > 0.

In this scenario, the set of solutions Q(f) of is not necessarily a singleton,
and both Ti,¢(Q(f)) and Ts,p(Q(f)) have probabilistic interpretations associated to
the value function in impulse control. In particular,

Tint(Q(f))(x) = min H(f, w,z),

wew

ie., Tine(Q(f)) is the value function associated with the initial impulse control prob-
lem. Then (3.7)) has the form of @ for appropriate choices of J; and Js.

4. Increasing maps and QVI solutions. This section is strongly related to
a result due to Tartar [52]; see also [6] Chapter 15]. Upon converting (Pqyr) into
a fixed-point equation, the corresponding approach yields the existence of a solution
for an increasing fixed-point map under very mild assumptions. We note that the
technique is analogous to the one by Kolodner and Birkhoff; see [39] [@] [I8].

We start by recalling Tartar’s result (compare [6, Chapter 15, §15.2]) which rests
on increasing maps. In this vein, we call T : H — H increasing iff v < w implies
T(v) < T(w).

THEOREM 1 (BIRKHOFF-TARTAR). Suppose T : H — H is an increasing map
and let y be a sub-solution and j be a super-solution of the map T, that is:

y<T(y) and T(y) <y

If y <7, then the set of fized points of the map T in the interval [y, 7] is non-empty
and has a smallest and a largest element.
We apply the above result to (Pqyr) and first need to introduce the following VI.

Problem (Pvyq): Let v» € HT, f € V' be given.

Find y € K1) : (A(y) — foo—9) 20, Vo€ K(1). (Pvi)
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The solution to can be proven to be unique by standard methods. For
(f,%) € (V', H'), we denote the unique solution to as S(f,1). Before we can
make use of Theorem [1| we state the following property of the map (f,¢) — S(f,v)
that relies on the fact that A is T-monotone. Its proof can be found in [49, Section
4:5, Theorem 5.1].

PROPOSITION 1. Let f1, fo € V' and 1,2 € HT be such that f1 < fo in V' and
’lbl S ’lﬂg. Then it holds that S(fl, lﬂl) S S(fg,’(/)g).

We note that in the above result f; < fo in V' is well-defined, since V'’ inherits
the order in H, so that f1 < fo iff (fo — f1,v) > 0 for all v € V such that v > 0.
Further observe that the case ¥ = 400 is also allowed, where S(f,+00) denotes the
solution of the unconstrained problem

Find y € Vsuch that (A(y),v) = (f,v), forallve V.
This implies that
S(f, ) < S(f,+00), VfeV' yeHT.

In order to apply the Birkhoff-Tartar Theorem to the QVI problem of interest, we
need to identify a proper interval [y, 7], with y a sub-solution and 7 a super-solution of
the map y — S(f, ®(y)). In our case, we choose y = 0, since we infer from Proposition
[@ that a

0= 5(0,®(0)) < S(f, 2(0)), (4.1)

for any f > 0 in V'. On the other hand, we assume that f € Uyq C V' is bounded
from above (in the V’-order) by some F. Then let § = S(F, +00), for which

S(f,®(@)) < S(F,+00) =7, (4.2)

This leads to the following result.

THEOREM 2 (TARTAR). Let Uyq C{f € V' :0< f < F} for some 0 < F € V.
Then, there are y,y such that for each f € U,q, the set of fived points of the map
y — S(f, ®(y)) in the interval [y, 7] is non-empty and contains a smallest and a largest
element, i.e., there are fized points Yoin and yh .. iV such that

Q) Ny, 7l = Q) N [Ymins Ymax] 7 0

In light of Theorems [I] and [2 there exist operators m and M, which map an
increasing map on the interval [y, 7] to its minimal and maximal fixed points, respec-
tively; insofar that sub- and super-solutions y and 7 exist.

We fix some notation now. In the case of a general increasing map T, with
sub- and super-solutions y and g, respectively, we denote by m(7") and M(T) its
minimal and maximal fixed points in some interval [y, 7). When the map T is given

by y — S(f, ®(y)) for some f, we write m(f) and M(f). In particular, it follows that
if Q(f) is the set of solutions of (Pqvif), then

Tap(Q(f)) =M(f),  and  Tine(Q(f)) = m(),

where Tyyp, Ting are given in @
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For an operator T as in Theorem (1} the fixed points m(7T") and M(T') are deter-
mined (see [6, Proposition 2, Ch. 15, §15.2] for a proof) by the maximal and minimal
elements of the sets Z(T') and Z(T'), respectively, where

Z(T)={ze X(T):z<yforalyeY(T)}
Z(T)={yeY(T):x<yforal ze X(T)},

and

X(T)={xe€H:zely,

Y(T)={zxcH:zcly,

] and z < T'(x)},
] and z > T'(z)}.

<l <@

In the following section, we use this setting for m(7") and M(T) to establish stability
results. We also provide an equivalent definition that is exploited subsequently.

5. Stability results. For the existence of optimal controls for our problem of
interest, we need to study the stability of the maps f — m(f) and f — M(f).
In the general case of an increasing map T, we now prove that m(7T") and M(T) are
stable from below and above, respectively, provided T has certain complete continuity
properties.

THEOREM 3. Let T,R,,U, : H =V C H be increasing mappings with n € N.
Assume further:

(i) T : V. = V is completely continuous with respect to monotone sequences,

e, if v, = v inV and v, < vpq1 (07 Uy > Upg1) for all n € N, then
T(vy) = T) in V.
(ii) Sets of fized points of T, Ry, U, (assuming they exist) are uniformly bounded
in V' with respect to n € N, and that
Y Rp(v) < Rps1(v) ST (v) S Uppa(v) Up(v) €7, Ywe[y,glineN,

for some y andy in V such thaty <7 .
(i) If {vn} and {w,} are bounded sequences in 'V such that v, < vpy1 <7 and
W, > Wn+1 > y7 then

li_>m |1Rn(vs) — T(vp)|lv =0 and li_)m Uy (wy) — T(wy)||v = 0.

Let m and M be the operators that take an increasing map with sub- and supersolutions
[y, 7] into the minimal and maximal solutions of Theorem respectively. Then
m(R,) > m(T) inV, and M(U,) —» M(T) inV,
and
m(R,) tm(T) in H, and M(U,) | M(T) in H,

as n — 0o, respectively.

Proof. First note that since y < R,(v) < T(v) < U,(v) < 7, the operators m
and M are well defined on T, R,, and U, for each n € N since each of these maps is
increasing with the same sub- and supersolutions. Consider the sets

X(T)={rcH:zeclyy]and z <T(x)},
Y(T)={x€ H:z€lyy and z > T(z)},

ZMM)={zeXT):z<yforallyeY(T)};
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and similarly for each R, and U,, n € N.
Since R, (v) < Ryy1(v) < T(v) for all v € [y, 7] it follows that

X(R,) C X(T) and Y(T) C Y(R,,), and hence Z(R,) C Z(T), (5.1)
and also
X(R,) C X(Rp41) and Y(Ry4+1) C Y(R,), and hence Z(R,) C Z(Ry41).  (5.2)

Clearly Z(R,) and Z(T) are not empty, since y belongs to both of them. Following
the proof of Tartar’s Theorem (compare [6, Proposition 2, Ch. 15, §15.2]) we observe
that m(R,) and m(7T) correspond to the maximal elements of Z(R,) and Z(T),
respectively. Consequently, it follows from and that

m(R,) <m(R,+1) <m(T), VneNlN. (5.3)

Hence, {m(R,,)} is a monotonically increasing sequence which is bounded from above
(for the ordering “<”), which implies that m(R,,) — ¢ in H, for some § € H. We
also know that the sets of fixed points of the maps are uniformly bounded in V.
Therefore, we infer m(R,,) — ¢ in V, that the sequence is non-decreasing, and hence
T(m(R,)) = T(y) in V. Since m(R,,) = R,(m(R,)) and

liny || R, (m(R,) = T(m(R,) v =0,

we have R,(m(R,)) — T(§). Therefore, m(R,) — T(), but since m(R,) — ¢ it
follows that m(R,) — ¢ in V, where § is a fixed point of T

Since m(R,,) < m(T) for all n, we have § < m(7T'). However, m(T) is the minimal
fixed point of T, and therefore § = m(T"). Summarizing we have

m(R,) >m(T)inV and m(R,) Tm(T) in H.
Now we consider the upper bound. We define
Z(T) :={y e Y(T):z <yforall z € X(T)},

and analogously for U,, n € N. Since T'(v) < Uy,y1(v) < Uy(v) for all v € [y,7] and
n € N it follows that

X(T) ¢ X(Uy) and Y (U,) C Y(T), and hence Z(U,) c Z(T), (5.4)
and also
X(Upy1) € X(Uy) and Y (U,) C Y (Upy1) hence Z(U,) C Z(Upy1). (5.5)

Clearly, 7 € Z(T), Z(U,) and then, as before, we apply Zorn’s Lemma (with the
reverse order) to find minimal elements M(T) and M(U,,), such that

M(T) < M(Up41) < M(U,) < 7.

Then, {—M(U,,)} is a monotonically increasing sequence which is bounded above for
the ordering “<”. This implies that M(R,,) — ¢ in H for some ¢ € H. Since {M(U,)}
is also uniformly bounded in V', we have M(U,,) — # and this latter sequence is also
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non-increasing. Therefore, we infer T(M(U,,)) — T(g). Since M(U,,) = U,(M(U,,))
and

Tim ([0, (M(U) ~ TM(U)lv =0,

we get U, (M(U,)) — T(y) and M(U,,) — ¢, both in V', where § = T(9).
As in the previous case, since M(T") < M(U,,), we have that M(T") < 3. However,
M(T) is the maximal fixed point to T', and therefore § = M(T"). Hence, we have

M(U,) = M(T)in V. and M(U,) | M(T) in H,

which ends the proof. O

This result is sharp regarding lower and upper approximations, as it is generally
not possible to obtain M(R,,) — M(T') and m(U,,) — m(7T). We illustrate this fact
by means of the following one dimensional example.

EXAMPLE 5.1. Let T : [0,1] — [0, 1] be defined as

a, 0<v<a;
v, a<v<b;
b, b<v<l1.

T(v) =

with 0 < a < b <1 and where m(T) = a and M(T) = b and

a, 0<w
Rn(“):{ T(U—l) 1<y

n

1
717 Un(U) = { b’ n

IA A

Suppose that n > N such that % <aandb<1-— % Then, all the assumptions of
the previous theorem hold, but m(R,) = M(R,) = a and m(U,) = M(U,) = b and
hence a = M(R,,) = M(T) =b and b = m(U,) — m(T) = a only hold fora =1, a
contradiction.

Although, as observed in the previous example, a general approximation theorem
(under the hypotheses of Theorem [3) for minimal and maximal fixed points seems
elusive, we establish such a result for the specific case of the QVIs of interest. In
order to achieve this, we first determine an equivalent definition of m and M but
from slightly different means as in the Birkhoff-Tartar Theorem (see [6, Proposition
2, Ch. 15, §15.2]).

LEMMA 1. Let T : H — H be an increasing map with sub-solution y and super-
solution T such that y < 7. Then m(T), the mazimal element of Z(T), can also be
defined as the mazimal element of the set Z*(T), which is defined as follows

X(T)={rcH:zecly7] and x <T(x)},
Y*(T)={x € H:xz €[y, +oo) and v > T(x)},
Z*(T)y={xe X(T): 2 <y forally e Y*(T)}.

Similarly, M(T), the minimal element of Z(T), can also be defined as the minimal
element of the set Z.(T), defined as

X*'(T)={z€H:ze€(—00,7] andz <T(x)},
Y(T)={x€H:z¢€lyy] and z > T(z)},

Z'(T)={yeY(T):z <y forall z € X*(T)}.
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Proof. We begin by noting that m(7') is the maximal element of Z(T"), and M(T')
is the minimal element of Z(T'), as shown in the proof of the Birkhoff-Tartar Theorem
(see [6, Proposition 2, Ch. 15, §15.2]).

Since y € Z*(T) and Z*(T) C ly,y], Z*(T) is nonempty and bounded in H, we
may apply Zorn’s Lemma (see [0, Proposition 1, Ch. 15, §15.2]). Let 2* € Z*(T)
be a maximal element of Z*(T'). It follows from Y (T') C Y*(T) that Z*(T) C Z(T).
Therefore

o* < m(T),

where m(7T) is the maximal element of Z(7T') and the minimum fixed point of T in
[y, 7).

~ Since * € Z*(T), it follows by definition that z* € X(T). Hence, we have
y < z* <7y and z* < T(z*). Also, since T is an increasing map, it holds that y <
T(y) < T(z*) < T(y) <7 and T(z*) < T(T(2*)), i.e., T(x*) € X(T). Furthermore,
if y € Y*(T), then z* < y. Hence, T(z*) < T(y) <y, i.e., T(z*) € Z*(T). However,
x* € Z*(T) is maximal, i.e., T(z*) < z*. Consequently, z* = T'(z*) and z* € [y,7].
Finally, m(7") is the minimal fixed point of T in [y, 7] so that a

m(7T) < z*.

Hence from the above m(T') = z*. Noting that Z" (T') C [y, 7] and j € Z°(T), we
can once again apply Zorn’s Lemma (with the reversed order). Let z* be a minimal
element of Z.(T). We have that X(T') ¢ X*(T) which implies Z.(T) c Z(T).
Therefore, it holds that

M(T) < a7,

where M(T') is the minimum element of Z(7T') and the maximum fixed point of 7" in
[y,

Since z* € Z.(T), we have by definition that z* € Y(T), ie., y < 2* < 7 an
T(x*) < x*. Furthermore, the map 7 is increasing and therefore y < T'(y) < T(x*) <
T(y) <yand T(T(z*)) < T(z*), ie., T(z*) € Y(T). - -

For an arbitrary x € X*(T), we have z < z* and =z < T(z) < T(z*), ie.,
T(x*) € Z°(T). As z* was the minimal element of Z" (T, it follows that z* < T(z*),
yielding T'(x*) = «*. However, M(T) is the maximal fixed point of T on [y, 7], so that

<
I
o

o < M(T),

thus, M(T') = «*, which completes the proof. O

6. Monotone perturbations. We now prove a series of lemmas that are in-
strumental in establishing Theorem []in the subsequent section. The latter is a form
of stability result for perturbations of the operators m and M. More specifically, it
turns out that the minimal and maximal solutions of the map y — S(f, ®(y)) are
stable in the norm of H with respect to perturbations in L () < V’ of the forcing
term (under certain assumptions on @), i.e., if {f,} is in L?(Q) and f, — f* in
L>(Q), then

m(f,) = m(f") and  M(fn) - M(f") in H.



14

The strategy of the proof consists in considering the cases of increasing and decreasing
sequences of {f,} separately and then combining both cases to obtain the final result.
This approach is due to the different nature of these cases as indicated in Theorem
and Example It can also be corroborated by the different structural hypothe-
ses of Lemma M and [} As expected, stability results associated to one-sided
perturbations are more amenable than general ones.

In this section, all sequences of forcing terms {f,} are assumed to satisfy 0 <
fn < F for all n € N and some F' € V' such F' > 0. Further, we consider the interval
[y, 7], with y =0, and § € V such that

(A@),v) = (F.v), YweV (6.1)
For any f with 0 < f < F, we observe by and that
0<S(f,2(0)) and  S(f,2(y)) < S(F,+00) =7.

Hence, we denote by m(f) and M(f) the minimal and maximal fixed points of the
map y — S(f, ®(y)) = S(f,y), respectively, on the interval [y, 7] = [0, A=1(F)]. Note
that m(f) and M(f) are well defined according to Theorem [2]

In the following lemma, we start by considering the behavior of {m(f,)} for
non-increasing sequences { f,, }.

LEMMA 2 (NON-INCREASING SEQUENCES OF m). Suppose that the following
hold true:

(i) The sequence {fn} in LS°(Q) is non-increasing and lim, , fn = f* in

L>(Q) for some f* € LX(Q).
(i) The upper bound mapping ® satisfies

A®(y) > ®(\y), forall A>1,yc HT,

and if {vn} is bounded in V and v, L v in H, then ®(v,) — ®(v) in H.
Then, it follows that

m(f,) dm(f*) in H, and m(f,) —m(f*) in V. (6.2)

Proof. The proof is split into several steps for the sake of clarity.

Step 1: We start by showing: If a sequence {z,} satisfies z, — z* in V', for some
z*, and is non-increasing and non-negative: z, > zZp+1 > 0 for all n € IN, then it
holds that S(fn, ®(2z)) — S(f*, ®(z*)) in V. We follow closely the ideas in [53] and
include the proof here for the sake of completeness. Note first that the non-increasing
nature of the sequence implies also that z, | z* in H.

By our hypothesis on ®, we have that ®(z,,) — ®(z*) in H and ®(z,) > ®(2p41),
which implies that K(®(z,)) D K(®(zn+1)) and K(®(z,)) D K(®(z*)).

Since K(®(z*)) is non-empty (note that z* > 0 and ®(z*) > 0), we have 0 €
K(®(2*)) and 0 € K(®(z,)) for all n € IN. Let w,, := S(fn, P(2,)) and note that by
Proposition [1| the associated sequence is decreasing and bounded from below (in the
ordering), so that w, | w* in H for some w* € H.

By definition (A(wy,) — fn,v —wy,) > 0 for all v € K(P(z,)), and then, using the
uniform monotonicity of A, we have

*

cllwall < (Alwn),wn) < (fr,wn). (6.3)
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Also, (fn,wn) < (Ifnllv)llwnllv and || fullv: < C||fn||L°°(Q) < oo. Therefore, {w,}
is bounded in V', and hence for some subsequence w,, — w* in V (for the same w*
as before). But since w,, | w* in H, we get w,, = w* in V.

Since ®(z,) — ®(z*) in H and w,, < ®(z,), we conclude

w < B(2),  ie, w* e K(®(z")).

By Minty’s Lemma (see [49, Lemma 4.2, Section 4:4]) applied to the VI arising
from w,, = S(f,, ®(2y)), we obtain

<A(U) - fn»'U - wn> >0, Yo € K(@(Zn))v

and in particular for all v € K(®(2*)) C K(®(z,)). As f, — f* in L>=°(Q) (and hence
in V), (v—wy) = (v—w*)in V and (v —w,) = (v —w*) in H, we have

lim (A(v) = fn,v —wp) = (A(v) — ffo—w*) >0, VveK(D(z")).

k—o0
Additionally, since w* € K(®(z*)), Minty’s Lemma implies
(A(w™) — ffo—w*) >0, VveK(®(z")),

ie, w* = S(f* ®(z%)).
Given that w, — w* in V, w, — w* in H and || ful|lz < C|| ful =) < o, by

cllwn —w* [} < (A(wn) = A(w*), wy — w*) < (= fn + A(w*), w" —wy),
we have w,, — w* in V. That is,
S(frn, ®(2n)) = S(f*, (%)) in V. (6.4)

Before we continue with the next step of the proof, we define for f € V' the
set-valued mappings
X(f)={rcH:y<z<yandz <S(f,&(x))},
Yo(f)={z € H:y<wand x> S(f,&))},
Z°(f)={ze X(f):x<yforally e Y*(f)}.
Step 2: Let {z,} be the sequence of Step 1, i.e., z, — z* in V that is also non-
increasing in the sense z, > zp11 > 0 for all n. If z, € Z*(fy), then z* € Z*(f*).
Since f,, € L°(Q) with f,, > fu41 for all n € N and lim,, oo frn = f* > v >01in

L>(Q), we have that f* < f,, for all n € N. Hence, S(f*, ®(x)) < S(fn, P(x)) for all
n € N and we obtain the inequalities

X(f") Cc X(fn) and Y*(fn) CY*(f*), and hence Z°*(f*) C Z°(fn)- (6.5)

Let z, € Z*(fyn), then z, € X(fn), ie, y < 2z, <7 and 2z, < S(fn, P(20)).
Therefore, we have by Step 1

y<z" <7y and 2" < S(f*, ®(z")), and hence 2" € X(f*). (6.6)

Let y € Y*(f*) be arbitrary and consider y, := Ay, with A, := || fn/f|lL>(0)-
Since A, | 1 (recall f,, — f in L*°(Q) and f,, f € L2(R) for all n € N), we infer



<Ay < Ay = Yn. Also, A f > fn and by the structural assumption over ®, we
) > ®(\,y). Furthermore, we obtain the following chain of inequalities

Any 2 AnS(f, (1Y) = SAnf An®(y)) = S(fn, 2(Any)),

where we have used that A is homogenous of order one. Thus, y, € Y*(f,) and
Yn — y in L=°(Q).

Now, we have that z, € Z*°(f,) and 2z, — z* in H and z* € X(f*), and for each
n € N we have z, < § for all § € Y*(f,). Choosing § = A,y as in the previous
paragraph with y € Y*(f*) arbitrary, we have that z,, < A, y. Henceforth, z* < y for
ally e Y*(f*), ie., 2* € Z*°(f*).

Step 3. The minimal solutions m(f,,) and m(f*) are well defined as the maximal
elements of Z*(f,) and Z*(f*), respectively. It follows immediately from that
m(f*) < m(f,), and by the same argument used to derive , we have that 0 <
m(fp+1) < m(f,). Denote z, = m(f,), since z, = S(fn, ®P(2,)) and 0 € K(®(z,)),
a standard monotonicity argument gives ||z,||lv < M < co. Hence z, is bounded
in V, non-increasing and bounded below in order, and z, € Z*(f,). The monotone
behaviour in addition to the boundedness implies that z, — z* in V, by Step 2 we
have that z* € Z*(f*). Since z, = S(fn, ®(2,)), by Step 1, we have that z, — z* in
V, z* = 8(f*, ®(z*)), i.e., z* is a fixed point of the map z — S(f*, ®(z)) and hence
m(f*) < z*. From the definition of Z*(f*) we infer that z* < y for all y € Y'*(f*),
and we readily observe m(f*) € Y*(f*), so that z* < m(f*), i.e., m(f*) =z2*. 0

A fundamental step in the previous lemma utilizes that

S(fn, @(20)) = S(f7, @(27)), In V

when f, — f* in V’/. A sufficient condition for this to hold true is related to the
Mosco convergence (see [49]) of {K(®(z,))} towards K(®(z*)):

DEFINITION 6.1 (MOSCO CONVERGENCE). Let K and K,,, for each n € N,
be non-empty, closed and conver subsets of V. Then the sequence {K,} is said to

converge to K in the sense of Mosco as n — oo, denoted by K,, M, K, if the following
two conditions are fulfilled:
(i) For each w € K, there exists {wy,:} such that w, € K, forn’ € N C N and
Wy — w in V.

(ii) If w, € K, and w, = w in V along a subsequence, then w € K.

Mosco convergence of unilaterally constrained sets is equivalent (in the case when
the obstacles are quasi-continuous and V a certain Sobolev space) to convergence
of the obstacles in the sense of the capacity (which might be cumbersome to prove
beyond rather simple examples). It is also well-known that the convergence of the
obstacles in the sense of L*°(2) is a sufficient condition for Mosco convergence (in
most applications), although this might be rather a strong assumption in some cases.
In the previous case, we are able to avoid that strong assumption rather elegantly by
assuming only the H convergence of the obstacles. In the next case, for non-increasing
sequences, the L>(€)) or V' convergence can be avoided by using a correction of an
argument of Toyoizumi (see [53]) by using geometrical considerations of the obstacles.
For this matter, we consider the following assumption.

ASSUMPTION 1. Ifv, —= v in V, then ® satisfies one of the following:

(a) ®(v,) = ®(v) in LP(Q), or ®(v,) — P(v) in V.

(b) ®(vy,) — ®(v) in H and ifv e VNHT, then ®(v) € V and QP(v) >0 inV,

for some strongly monotone Q@ € £ (V,V'), such that (Qu~,v*) <0 for all
veV.
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With the above definition in mind we are now in the position to provide the
stability result for minimal solutions and for non-decreasing sequences of forcing terms.
LEMMA 3 (NON-DECREASING SEQUENCES FOR m). Suppose the following:
(i) The sequence {fn} in H™ is non-decreasing and lim, o fn = f* in H for
some f* € H.
(i) The upper bound mapping ® satisfies Assumption .
Then, the following hold true:

m(fn) T m(f*) in H, and m(f,) = m(f*) V.

Proof. We use the result of Theorem |3| with R, (v) := S(fn, ®(v)) and S(v) :=
S(f*, ®(v)). The classical continuity result for f — S(f, ®(y)) (see [38]) states:

1S(f7, @(y)) = S(fn, 2W))llv < %Hf* = fallv. (6.7)

Since f, — f*in V' as n — oo, we have S(f,, ®(y)) — S(f*, ®(y)) in V, uniformly
on bounded sets for y. Additionally, by the usual monotonicity argument and using
v =0 as a test function, we obtain that ||S(f,®(y))|lv < 1| f|lv+ which implies that
the set of fixed points of the maps y — S(fn, ®(y)), for n € N, and y — S(f*, ®(y))
is uniformly bounded. Since S(fn, ®(y)) < S(fnt+1,P(y)) < S(f*, ®(y)) we are only
left to prove that

lim S(fn, ®(vn)) = S(f* (v)) in V, (6.8)

n— oo

for any sequence {v,} in V satisfying v, < v,41 for all n, and v, — v in V. This
will be achieved by proving Mosco convergence of the associated constraints. Now we
consider the two possible cases for ® based on Assumption
(a) Since {v,} in V satisfies v, = v in V and ®(v,,) — ®(v) in LX(Q), it follows
that K(®(v,)) = K(®(v)) in the sense of Mosco by a direct scaling argument
(see for example [49, Proposition 6.6, Section 4:7] for a further general result).
Suppose that ®(v,) — ®(v) in V. Let w < ®(v), and consider w, = w —
®(v) 4+ P(vy,). Then, w, < ®(v,) and also w, — w in V, i.e., (i) in Definition
holds. Furthermore, if y, < ®(v,) and y, — y in V, then by Mazur’s
lemma it follows that y < ®(v) which proves (i) in Definition
(b) Recall {v,} in V satisfies v, < v,y for all n, and v, = v in V. Then, we
observe ®(v,,) < ®(vp41), given that ® is increasing, and ®(v,) — P(v) in
H by initial assumption. Hence, if y, < ®(v,) and y, — y in V, then by
Mazur’s lemma it follows that y < ®(v), which proves (i) in Definition
In order to prove (i) in Definition we now follow a modification of the
argument in [53]. Let w € V such that w < ®(v) and w,, be defined by

(rn, Qup, + Wy, v) = (Pp,v), forallv eV, (6.9)

where r,, := ||¢, — w||g and ¢, := min(w, ®(v,)), and note that ¢, — w in
H and w € V. Then, we can prove that w, — w in V. Since Q is linear,
bounded, and (Qu,v) > c||v||? for all v € V, from the definition of w,, we
have

<A{(rn,Q+ I)(w, —w),w, —w)
< A{pn — w, Wy, — w) — 1 (Qu, wy, —w) (6.10)
<1 (Cyp + [[Qullvr)||[wn — wllv,

Tncl|wy, — w”%/ + [Jwn, — w”%i
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where C), is the constant for the embedding V' < H, and recall that r, =
||, — w||gr. This implies that, {w,} is bounded in V, so that w, — w*
(along a subsequence) for some w* € V. By taking the limit in , it is
shown that w* = w and that w, — w* in V not only along a subsequence.
It further follows that w, — w in H, and since from we observe

rucllwn = wlly + lwn = wlf < ra(llwe —wllg +(Qu,w —wy)),  (6.11)

we have that w,, — w in V.
Now we prove that w, < ®(v,). Consider v = (w, — ®(v,))" and subtract
(rnQ®(v,) 4+ ®(vy,),v) from both sides of (6.9). Then, we get

T (Qwn — B(vn)), (wy — P(vn)) ™) + [|(wn — @(va)) * |17 =
=7 (QP(vy), (wy, — (v,)) ") + (min(w, ®(vy)) — (), (wn — B(vi)) ).

Note that min(w, ®(v,)) —®(vy,) < 0 and by assumption Q®(v,,) > 0. There-
fore the right hand side is less or equal to zero. Additionally, since Q is linear,
(Qu~,vT) <0, and (Qu,v) > c||v||} for all v € V, we observe that

ot < (Qut,vt) < (Qut,vT) — (Qv™,vt) = (Qu,vT).
Thus

racl|(wn — ®(0n)) I3 + | (wn — @(va)) I3 <
Tn <Q(wn - (I)(Un)>+a (wn - (I)(Un))+> + ”(wn - (I)(”n))JrH%I <0.

This yields w,, < ®(v,), i.e., (i) in Definition [6.1] holds
|
Lemma [2] and [3] are associated to non-increasing and non-decreasing sequences of
minimal solutions. In the following we establish Lemma [4] and [p] that deal with the
analogous results but for maximal solutions.
LEMMA 4 (NON-INCREASING SEQUENCES FOR M). Suppose the following:
(i) The sequence {fn} in H is non-increasing and lim, o f, = f* in H for
some f* € H.
(i) The upper bound mapping ® satisfies that if {v,} is bounded in V, v, | v in
H, then ®(v,) — ®(v) in H.
Then, we have

M(fn) L M(f*) in H, and  M(fy) = M(f*) in V. (6.12)

Proof. As obtained in the proof of Lemma [3] we have that S(f,,®(y)) —
S(f*,®(y)) in V and that the set of fixed points of the maps y — S(fn, ®(y)), for
n €N, and y — S(f*, ®(y)) are uniformly bounded in V.

Let {v,} be such that v,, — v in V and v,, > v,41 > 0 for all n, then v, — v in
H, ®(v,) > ®(vp41) > 0 and ®(v,) — ®(v) in H. Note that f, — f* in H is enough
for step 1 of the proof of Lemma [2] to hold, i.e.,

Therefore applying Theorem [3| to T, (v) := S(f,, ®(v)) and S(v) := S(f*, ®(v)),
we obtain that holds true. O

LEMMA 5 (NON-DECREASING SEQUENCES FOR M). Suppose the following:
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(i) The sequence {fn} in L3°() is non-decreasing and lim, ., f, = f* in
L>(Q) for some f*.
(i) The upper bound mapping ® satisfies

A®(y) < ®(\y), forall 0<A<1l,yeHT,

and Assumption[1]
Then, we have

M(fn) T M(f*) in H, and M(fn) = M(f") in V. (6.13)

Proof. For f define the set-valued mappings

X*(f)={reH:z<gand z < S(f,®(x))},
Y(f)={rcH:y<z<yand x> S(f,&(x))},
Z'(f)={yeY(f):z<yforallz e X*(f)}.

If {z,} satisfies z,, = z* in V for some z* € V and is non-decreasing, i.e., z, < 2,41
for all n € IN, then

S(fn, ®(2,)) = S(f*, ®(2*), inV, (6.14)

as proven in Lemma We now show that if z, € Z.(fn), for all n € N, then
e Z°(f).

Since f,, < fni1, for all n € N, and lim, 00 fr, = f* in L°°()), we have that
fo < f*and S(fy, ®(x)) < S(f*, ®(x)), for all n € N. Therefore,

X*(f) C X*(f*) and Y (f*) C Y(f,), and hence Z" (f*) C Z" (f.). (6.15)

Also, z, € Z.(fn) and hence z, € Y(fy), ie, y < z, <7y and 2z, > S(fn, ®(2n)).
Therefore, by (6.14) and since z, — z* in H (note that z, < z,411 < 7) we observe
that

y<z"<7y and z" > S(f*, (")), and hence z* € Y(f*). (6.16)

Let € X*(f*) be arbitrary and consider x,, := Az, with A\, := essinf |f,/f*|
which yields A, 1 1. Indeed, since f,, < fn+1, we have |f./f*| < |fn+1/f*| <1 and

fu
f*
where we have used that f* € L°(Q2), and the result follows from the assumed
convergence f, — f* in L°(Q).

Therefore, x, = Apz < Ay < 7, A\ f* < fn, and by the structural assumption
on ®, we have A\, ®(y) < ®(\,y). Furthermore, we obtain the following chain of
inequalities:

< W= fulleee

‘1 — ess inf

fZH :esssup‘l—
f

14

where we have used that A is homogenous of order one. Therefore, x,, € X*(f,,) and
T, — ¢ in H.
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Since, by hypothesis, z, € Z.( fn), we have x,, < z, given the fact that x, €
X*(fn). Additionally, along a subsequence we have that z,, — = and z, — z* in H so
that < z*. However, z € X°*(f*) was arbitrary and hence, by , z* e Z.(f*).

Since M(f,,) and M(f*) are well-defined as the minimal elements of Z .( fn) and
Z.( f*), respectively, it follows immediately from that M(f,) < M(f*), and
furthermore, we have that M(f,) < M(f,+1). Denoting z, = M(f,), we have
zn = S(fn, ®(2y)), and since 0 € K(®(z,)), a strong monotonicity argument gives
lznllv < Ll fullv: < L[|F|lys < oo. Hence, z, is bounded in V, non-decreasing in
order and z, € Z.( fn). Therefore, by the above paragraphs, we have that z, =
M(f,) — 2* in V and z* € Z (f*) and additionally, since z, = S(fn, ®(z,)), by
(6.14), we have that z, — 2* in V, 2* = S(f*,®(z*)), i.e., z* is a fixed point of
the map z — S(f*, ®(z)) and hence z* < M(f*). By definition of Z"(f*), we have
that < z* for all x € X*(f*) and we readily observe M(f*) € X*(f*), so that
M(f*) < z* ie, M(f*)=2*.0

REMARK 1. Note that condition

AD(y) > ®(\y), forall A>1,yeHT,
in Lemmal[3, and condition
AP(y) < ®(A\y), forall 0<A<1l,yeHT,

mn Lemma@ are equivalent: Consider the change of variables y = %@ withy € HT.

7. Non-monotone perturbations and problem . We are now in the
position to establish our fundamental result concerning the behavior of the maps
f = m(f) and f — M(f). Although the hypotheses of lemmas and 5| seem
to be quite diverse, when considering the intersection in the following theorem, the
assumptions are simplified. As in the previous section we assume that 0 < f, < F
for any sequence {f,} and that [y,7] = [0, A" F].

THEOREM 4. Let {f,} in L(Q) be such that lim f,, = f* in L>=(Q) for some f*,
suppose that the upper bound mapping ® : HY — H™T satisfies Assumption and
that A\®(y) > ®(\y) for any A > 1 and any y € H . Then the following hold true:

(i) The sequence of minimal solutions satisfy

m(fn) > m(f*) in H,  and  m(fp) = m(f") inV. (7.1)
(i) The sequence of maximal solutions satisfy

M(fn) — M(f*) in H, and  M(f,) = M(f*) in V. (7.2)

Proof. Define fn = inf,,,>p, frm and fn i= SUDP,, >y, fm, 50 that 0 < v < j”n <
Fosr <SF, F>f,>fo. >v>0foralln € N, and also limy, o0 f,, = limy o0 fr, =
f*in L*°(). Since 0 < }n < fu < f,, < F and the map HT 3 y — S(f, ®(y)) is

increasing for any f € V', we have that m(f,), m(f,), m(f,) and m(f*) as well
as M(f,),M(f,), M(f,) and M(f*) are well defined (note that 0 < f* < F),
respectively. Moreover, we have that

0<S(f0 @) < S(fn @) < S(f. @) <T  Vye[0,7,neN.
Hence from the inclusions (5.1)) and (5.2)), we obtain from (5.3) that
0<m(f,) <m(f,) <m(f,) <y, VneNl, (7.3)
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and from the inclusions (5.4) and (5.5 that

0<M(J,) <M(f) SM(J,) <7, Vnel. (7.4)

Then, by lemmas and |5| we have that m(f,) — m(f*), m(f,) — m(f*),
M(f,,) = M(f*) and M(f,) — M(f*), all in V and H. Hence, we find

m(f,) > m(f)in H and  M(f,) - M(f*) in H

by and (7.4). Since {m(f,)} and {M(f,)} are bounded in V, they are also
weakly convergent (along a subsequence) to m(f*) and M(f*), respectively. However,
since the entire sequences {m(f,)} and {M(f,)} strongly converge in H, it further
follows that they converge weakly (not only along a subsequence) in V. Hence
and hold true. O

With the aid of the previous theorem we can now formulate the result that proves
the well-posedness of . We assume that

Usd C{feLX): f<F}, (7.5)

for some F' € V. As in previous sections y = 0 and j = A™'F, so that m(f) and
M(f) are defined as the minimal and maximal solutions, respectively, of the QVI in

(Pqvi). Hence, the reduced version of (P) is given by

minimize Jy (m(f), M(f)) + J2(f), (]fp)
subject to f € Uyg.

The well posedness of @ (and hence of () is now shown in the following result.

THEOREM 5. Suppose that

(i) J1:V xV =R is weakly lower semicontinuous,
(ii) Jo: L>®(Q2) — R is continuous,  or
(i) Jo : U = R is coercive and weakly lower semicontinuos where U is a reflexive
Banach space.

and both Jy and Js are bounded from below. In addition suppose that U,q satisfies
(75), is closed in L>() (if (ii) holds) or is weakly closed in U (if (ii’) holds).
Further, for each o > 0 let the set

{f €UVaa: J2(f) <a}

be sequentially compact in L (). Additionally, assume that @ satisfies Assumption
and that \®(y) > ®(\y) for any X > 1 and any y € HT. Then, problem , and
hence problem @, admits a solution.

Proof. Given Theorem [4 the proof is just an application of the direct method of
the calculus of variations. O

7.1. Applications. We finally return to the applications considered earlier in
the paper.

7.1.1. QVIs arising by coupling VIs and PDEs. We consider the problem
class as described in section and study conditions on G, B, and L to establish
stability of minimum and maximum solutions to the QVI of interest. Recall that &
in this setting is defined as ®(y) = Lz(y) where z(y) solves

(Bz+ G(Lz,y) — g, w) =0 Yw € W,
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fory e H.
ProrosiTiON 7.1. Under the assumptions of section suppose either that (a)
IfX>1 andv e HT, then for all 21,20 € V, it holds true that

(AG(Lzo,v) — G(Lz1, \v), (21 — Az2) 1) <0,
or (b) If \ € (0,1) and v € HT, then for all z1,2z5 € V, it holds true that
(G(Lzg, ) — AG(Lz1,v), (Az1 — 22)1) < 0.

Then, we have A®(v) > ®(Av) for all X >1 andv € HT.
Proof. Let w = z(Av) — Az(v) for A > 1 and v € HT. Since B is coercive and
(Bw~,w*) <0 we observe that

c\wﬂ%v < {(Bw,w") = (AG(Lz(v),v) — G(Lz(\v), \v),w") <0,

ie., z(Av) — Az(v) <0, so that Lz(Av) — L(Az(v)) < 0 given that L preserves order.
Hence, it follows that A®(v) > ®(\v).
Similarly, consider w = Az(v) — z(Av) for 0 < A < 1 and v € HT. Then,

c\wﬂ%v < {(Bw,w") = (G(Lz(Av) — AG(Lz(v),v), \v),w") <0,

ie., Az(v) —z(Av) <0, so that ALz(v) — Lz(Av) < 0 and hence A®(v) < ®&(Av). Thus,
the result follows by the equivalence shown in Remark [1} O

Note that the problem given in Example [3.1]satisfies the assumptions of the above
proposition. Additionally, if the solution to By = h satisfies |y|g2q) < M|h|z2(q)
with M independent of h, and L € Z(H?(2)) then for dimensions N = 1,2,3 it is
direct to infer that ® : L% () — L°(9) is completely continuous via Sobolev compact
embeddings since ®(u) € H?(2); see [I, Rellich-Kondrachov Theorem, section 6.3].
Note that the H? estimate does not necessarily require a smooth boundary: In fact,
for a second order elliptic operator, a convex domain € is enough; see [26, Theorem
3.2.1.2]. Hence, all hypotheses of Theorem are met, and the minimum and maximum
solutions are stable for perturbations of f in L*°(2). Finally, if

{feU:0<v< f<Fand|fllv <a}l,

is sequentially compact in L*>(Q2) for each a > 0, we have that Problem has a
solution. Further note that this last compactness assumption is satisfied for Example

BT

7.1.2. The impulse control problems. The previous can be directly applied
to the impulse control problem in the bounded case. Let 2 = (0,1). Then, we have
that V = H'(2) compactly embeds into C(Q), and hence it follows that for

(@y)(z) = k + essinf | 5(co(§) +y(z +€)),

with & > 0 and ¢y continuous, we have that if v,, — v in V, then ®(v,) — ®(v)
in C(Q) c L*(Q). Hence, ® satisfies Assumption |1} Furthermore, it follows that
A®(y) > ®(\y) for any A > 1 and any y € H™.

Consider U = H*(Q) and Upq :={f € U : 0 < v < f < F} for some F € H'(Q)*,
Ji(a,b) = Ji(a) = [(s — a(z))*dz for some s > 0, and Jo(f) := 3[f|}. It follows
that {f € Uaa : J2(f) < a} is sequentially compact in L>°() for each o > 0 and
that problem (which is the reduced version of problem ) has a solution by
Theorem [bl The application of 3.2.2 can be treated mutatis mutandis.
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8. Conclusion. We have developed a theoretical framework for the study of

optimal control problems with QVI constraints. Specifically, the reduced optimization
problem of interest involves minimal and maximal points of the solution set to the
QVI. The existence question reduces to the stability of two operators m and M, that
relate the solution set of the QVI to its minimal and maximal elements, respectively.
Stability of such maps was developed for monotonic and non-monotonic perturbations,
and we have applied such results to applications involving QVIs arising from impulse
control problems and problems involving VIs coupled with nonlinear PDEs.
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