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ABSTRACT

For g-dimensional data, penalized versions of the sample covariance matrix are important when the sample
size is small or modest relative to g. Since the negative log-likelihood under multivariate normal sampling is
convex in £~ 1, the inverse of the covariance matrix, it is common to consider additive penalties which
are also convex in ©~'. More recently, Deng and Tsui and Yu et al. have proposed penalties which are
strictly functions of the roots of ¥ and are convex in log =, but not in £~'. The resulting penalized
optimization problems, though, are neither convex in log = nor in £~. In this article, however, we show
these penalized optimization problems to be geodesically convex in X. This allows us to establish the
existence and uniqueness of the corresponding penalized covariance matrices. More generally, we show
that geodesic convexity in X is equivalent to convexity in log ¥ for penalties which are functions of the
roots of . In addition, when using such penalties, the resulting penalized optimization problem reduces
to a g-dimensional convex optimization problem on the logs of the roots of X, which can then be readily
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solved via Newton'’s algorithm. Supplementary materials for this article are available online.

1. Introduction and Motivation

For a g dimensional sample x,. .., x,, the sample covariance
matrix S, = n~! Yo (i — X)(xi — %)T is not well-conditioned
and can be highly variable when g is of the same order as n. In
such cases, one may wish to consider a penalized version of the
sample covariance matrix. Since the loss function obtained from
the negative log-likelihood under multivariate normal sampling

I(2;8,) = tr(271S,) + logdet T, (1)

is convex in 71, it is natural to consider additive penalties
which are also convex in X ~! such as the graphical lasso penalty
i {=~'};j] (Yuan and Lin 2007; Friedman, Hastie, and
Tibshirani 2008). Minimizing the penalized loss function

L(Z; S m) = I(Z;Sn) + nI1(Z), )

over the set of symmetric positive definite matrices ¥ > 0, with
[1(X) being a nonnegative penalty function and > 0 being a
tuning parameter, is then a convex optimization problem.

More recently, Deng and Tsui (2013) considered the penalty
Mr(X) = |logx ||127, where the norm refers to the Frobenius
norm. This penalty is strictly convex in log ¥ but not in £ 1.
By letting A = log X, they observe that, when using this penalty,
(2) can be expressed in terms of a penalized loss function over
the set of symmetric matrices of order g, namely

Lo(A; Sy ) = tr(e™Sy) + trA + nl|AllZ, (3)

with the penalty ||A||§ = tr(A?) being strictly convex in A. As
noted in Section 2, the function tr(e=4S,) is not in general a
convex function of A, and consequently minimizing (3) over A
does not correspond to a convex optimization problem. Hence,
there is no assurance as to the existence and uniqueness of a
minimum to (3).

One of our objectives in this article is to argue that rather than
using the concept of convexity in log ¥ in problem (3), a more
appropriate setting is based on the notion of geodesic convexity,
or g-convexity for short. The function || log X ||r has been well
studied within Riemannjan geometry and corresponds to the
Riemannian or geodesic distance between ¥ and the identity
matrix (Moakher 2005; Bhatia 2009), and is known to be strictly
g-convex in ¥, as well as in ¥ ~!. In general, unlike convexity
in ¥ or in ¥7!, g-convexity in ¥ and g-convexity in X!
are equivalent, and so the term g-convexity is used to refer to
either or both. For S,; # 0, the loss function (1) is also strictly
g-convex, and consequently the penalized loss function (2) is
strictly g-convex, when choosing [T = TIIr. Moreover, (2),
with IT = TIlg, can be shown to be g-coercive, which implies
it has a unique critical point, with this unique critical point
corresponding to its global minimum; see Lemmas 2.2 and 2.3.

The concept of g-convexity can be mathematically challeng-
ing, and in practice, it can be difficult to prove that a given
function is g-convex. A further contribution of this article is
to show that for an orthogonally invariant penalties, that is,
() = PP for any orthogonal P and hence strictly
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functions of the eigenvalues of X, (strict) g-convexity in ¥ and
(strict) convexity in log ¥ are equivalent. Furthermore, it is
shown that (strict) g-convexity for such function reduces to the
simpler task of establishing (strict) convexity when viewed as
function on the logs of the eigenvalues; see Theorem 3.1. For
example, if we express I[Ip(X) = ;1:1 ajz, where a; = log};
with Ay > --- > A; > 0 being the eigenvalues of X, then it
is strictly convex as a function of a € RY, and hence Ig(X) is
strictly convex in log ¥ and strictly g-convex in X.

Deng and Tsui (2013) also proposed an iterative quadratic
programming algorithm over the class of symmetric matrices
A of order g for finding the minimum of (3). We show in
Theorem 5.1, though, that the solution to this problem has
the same eigenvectors as S,,. This leads to a simpler algorithm
based on finding the minimum of a strictly convex univariate
function for each eigenvalue, namely g(a;d) = de™® + a +
na?, with d corresponding to an eigenvalue of S, and a being
the corresponding log eigenvalue of X. The solution to this
univariate convex optimization problem can be readily obtained
via a Newton-Raphson algorithm.

As recently noted by Yu, Wang, and Zhu (2017), the penalty
||A||[2: shrinks the sample covariance matrix toward the iden-
tity matrix. They propose using the alternative penalty ||A —
mly | %, with m being an estimate of the mean of the log of the
eigenvalues of X, that is, of m(A) = trA/q. Since m is first
determined from the data, this does not correspond to a pure
penalty function for ¥. Rather than using a preliminary estimate
of m, we propose replacing m with m(A). This approach yields
an estimate of m(A) consistent with the penalized estimate of X,
that is, m(A) = trA/ q. The resulting penalized objective func-
tion (2), when using the penalty | A—m(A)I, ||% = Z}Ll (aj —a)?
is shown, within Section 4, to also be strictly g-convex and g-
coercive. Consequently, the global minimum of (2) corresponds
to the unique critical point. The solution to this optimization
problem reduces to finding the minimum of a strictly convex
function on R4 .

Summarizing, this article is organized as follows. In Sec-
tion 2, the concept of geodesic convexity is briefly reviewed,
and results on the existence and uniqueness of penalized sam-
ple covariance matrices based on g-convex penalty functions
in general are presented. Results on the relationship between
convexity in log ¥ and g-convexity in X are given in Section 3.
In Section 4, convexity results for (2) are given when applying
the penalty to the shape matrix X /(det )/ rather than to
Y itself, with ||[A — m(A)IqH% being a special case of such a
shape penalty. Algorithms for computing the penalized sample
covariance matrices, based on orthogonally invariant g-convex
penalties are given in Section 5. We emphasize that this article
treats g-convex penalties in general, with applications to ITg
treated as a special case. The results of a simulation study dis-
cussed in Section 6, together with an example given in Section 7,
demonstrate the advantages of penalizing shape. Proofs and
some technical details are given in Appendix A.

2. Geodesic Convexity

The notion of geodesic distance between multivariate normal
distributions, or equivalently the geodesic distance between

JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS . 443

their covariance matrices, has been a topic of interest at least as
early as Skovgaard (1984). However, the realization the multi-
variate normal negative log-likelihood I(X; S,,) is g-convex, and
strictly g-convex when S, # 0, which follows as a special case
of Theorem 1 in Zhang, Wiesel, and Greco (2013), is relatively
recent.

The set of symmetric positive definite matrices of order g
can be viewed as a Riemannian manifold with the geodesic
path from ¥y > 0 to X; > 0 being given by X; =
222y P25, 2 sl for 0 < t < 1, see Bhatia (2009)
or Wiesel and Zhang (2015) for more details. An alternative
representation for this path is given by ¥; = Be!“BT, where
Yo = BBT and £, = Be”BT with A being a diagonal matrix
of order gq. A function f(X) is said to be g-convex if and only if
f(E) <A —-1f(Xo) +tf(X;) for 0 < t < 1, and it is strictly
g-convex if strict inequality holds for Xy # X;. Analogous to
convexity in log ¥, for which convexity in log ¥ holds if an only
if convexity in log ¥ ~! holds, g-convexity in ¥ holds if and only
if g-convexity in £ ! holds.

As with convexity, any local minimum of a g-convex function
is a global minimum, and when differentiable any critical point
is a global minimum, with the set of all minima being g-convex.
In addition, if a minimum exists, then the minimum is unique
when the function is strictly g-convex. Finally, the sum of two
g-convex functions is g-convex, and the sum is strictly g-convex
if either of the two g-convex summands is strictly g-convex.
Consequently, the following lemma holds.

Lemma 2.1. IfTI(X) is g-convex and S, # 0, then L(X; Sy, 1) is
strictly g-convex on ¥ > 0, and the set of all local minima A, is
either empty or contains a single element. That is, if there exists
a minimizer X, > 0to L(X; Sy, 1), then it is unique.

The existence of a minimum for a g-convex function requires
some additional conditions, with a necessary and sufficient con-
dition being that it be geodesic coercive (Diimbgen and Tyler
2016). A g-convex function F(X) is said to be g-coercive if and
only if F(¥) — oo as || logX|| — o0.For S, > 0, [(X;S,)
is g-coercive and so, since I[1(X) is bounded below, L(%;S,, 1)
is g-coercive and hence has a unique minimizer. Moreover, as
shown in Appendix A, the solution is a continuous function of
n > 0. This is summarized in the following lemma.

Lemma 2.2. Under the conditions oi Lemma2.1,if S, > 0, then
there exists a unique critical point X, > 0 to L(X; Sy, 1), with
¥, being its unique minimizer. Furthermore, %, is a continuous
function of n > 0.

For singular S,, some conditions on the penalty function
are needed since it is possible for tr(X~!S,) to be bounded
as logdet¥ — —o0, and hence I(X;S,) is not g-coercive
in this case. A sufficient condition for L(X;S,,n) to be g-
coercive when S, is singular is that IT(X) be g-coercive and
n > 0. This condition, however, is too strong, and does not
hold for the scale invariant or shape penalties discussed in
Section 4. Some weaker conditions are given in the follow-
ing lemma, with these conditions holding when IT1(X) is g-
coercive. Note that under each of the three conditions below,
[(x) —» oo.
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Lemma 2.3. Under the conditions of Lemma 2.1, if

(i) TI(X) — oo whenever |logdet X| is bounded above and
|log 2|l — oo,

(ii) (logdetX)/I1(X) — 0 whenever logdet¥ — —oo but
with A, bounded away from 0, and

(iii) {log(A1/A4)}/T1(X) is bounded above whenever A; — 0
but with A1 /44 bounded away from 1,

then the conclusions stated in Lemma 2.2 hold when S,, # 0 is
singular and 7 > 0.

3. Geodesic Convexity and Convexity in Log

In the following, we show that for orthogonally invariant func-
tions, g-convexity in X is equivalent to convexity in log X. We
say a function F on the set of symmetric positive definite matri-
ces is orthogonally invariant if and only if F(X) = F(HZHT)
for any orthogonal matrix H of order q. It is straightforward to
show that such functions can then be expressed in terms of a
symmetric function of its eigenvalues A1 > --- > hg > 0.

Lemma 3.1. The function F(X) is orthogonally invariant if
and only if for some symmetric, that is, permutation invariant,
function f : R1 — R,F(X) = f(a1,...,a,) where a; =
loghj, j=1,...,q.

Theorem 3.1. For an orthogonally invariant function F(X), the
following three conditions are equivalent:

(i) F(X) is (strictly) g-convex.

(ii) F(X) is (strictly) convex in log X.

(iii) The corresponding function f, as defined in Lemma 3.1, is
(strictly) convex.

A clarifying point regarding Theorem 3.1 may be helpful. It
should be noted, for example, that the corresponding function
on RY for the log concave function F(X) = logA, is not
fla,..., ag) = ag which is linear, hence convex, but not sym-
metric. Rather, its corresponding function is f(ai,...,aq) =
min{ay, ..., a,} which is symmetric but concave.

Outside of orthogonally invariant functions, g-convexity and
convexity in log do not necessarily coincide. For example, as pre-
viously noted, I(X; S,) is strictly g-convex, but not necessarily
convex in log. In particular, although log det ¥ = tr(A) is linear
and hence convex in A, whether or not the term tr(X~1S,) =
tr(e=4S,) is convex in A depends on the value of S,. For
example, when S, = I, the convexity of tr(e=4) follows from
Theorem 3.1 since qu=1 e~ % is convex. As far as we are aware,

general conditions on S, needed for tr(e~4S,) to be convex have
not been formally addressed in the literature. An example of S,
for which tr(e=4S,,) is not convex in A is given in Appendix A.
On the other hand, an example of a function which is convex in
log but not g-convex is also presented in Appendix A.

We now apply these results to the penalty studied by Deng
and Tsui (2013), that is, [Tr(E) = || log ||%. This penalty is
orthogonally invariant and can be expressed as Iz(X) =

]'.1: | @%, which is symmetric and strictly convex as a function
of a € R1. Hence, by Theorem 3.1, I is strictly g-convex,
and so Lemma 2.2 holds. Furthermore, Lemma 2.3 also

holds since logdetZ/l'IR():)={Z]‘.J=1 ai}/{ ]q:l aiz}—>0 as

2?21 a; — —oo.

The geodesic convexity of || logEH% has been previously
established using more involved proofs, see Bhatia (2009) for
comparison. The importance of Theorem 3.1 is that it com-
pletely characterizes g-convexity for functions which are strictly
functions of the eigenvalues of X, as well as provides a sim-
ple condition for verifying g-convexity. For example, it readily
follows that the geodesic distance between ¥ and identity, that
is, || log X||F, is g-convex. The condition number penalty A1/1,
and the penalty tr(X) + tr(z 1), among others considered by
Wiesel (2012) and Diimbgen and Tyler (2016), are also seen to
be g-convex.

4, Penalizing the Shape Matrix

Any penalty on ¥ > 0 can also be applied to its shape matrix
V(E) = /det(X)4. Here det V(X) = 1, with the orbits
of V(X) form equivalence classes over ¥ > 0; see Paindav-
eine (2008). This then generates the new penalty [14(X) =
[T(V(X)). If the original penalty is minimized, for example, at
¥ = Iy, then the new penalty is minimized at any % oc I, that
is, when ¥ is proportional to I;. Applying the penalty studied
by Deng and Tsui (2013) to the shape matrix yields

MMe(X) =Tr{V(D)} = | IOgE
— g M{logdet S}, |12 = |A — mI, |13,

where m = q~!{logdet £} = trA/q. Since I1g; is orthogonally
invariant, with T (X) = Z;]:l(a,- — a)? being convex, it fol-
lows from Theorem 3.1 that I1g is convex in log as well as g-
convex, although the convexity is not strict in this case. Thus,
for nonsingular S,, Lemma 2.2 on existence and uniqueness
applies when using ITg; as the penalty term. Also, as shown
in Appendix A, the additional conditions given in Lemma 2.3
needed to assure existence and uniqueness when S, is singular
also hold when using this penalty.

More generally, applying any g-convex penalty or penalty
which is convex in log ¥ to the shape matrix of X, yields,
respectively, a new g-convex penalty or penalty convex in log X.
The following theorem applies to any such penalties and does
not presume I1 is orthogonally invariant.

Theorem 4.1.

(i) ITI(X) is g-convex, then I1(X) is also g-convex.
(ii) If TI(X) is convex in log ¥, then IT4(X) is also convex in
log =.

Thus, for g-convex IT(X), Lemma 2.2 on existence and
uniqueness for the case when S, is nonsingular still applies when
the penalty term IT is replaced by IT;. As another example,
if we apply the Kullback-Leibler divergence from the identity
to the shape matrix of X, one obtains the penalty [1(X) =
tr{V(2)7!} = qxg /Ap, where Xg and Ay, are, respectively, the
geometric mean and the harmonic mean of the eigenvalues of
3. This ratio represents a measure of eccentricity for X, and is
minimized at any ¥ o I,. By the previous theorem, this new
penalty is also g-convex, and hence Lemma 2.2 applies. It can be
verified that Lemma 2.3 also applies for this case.



5. Optimizing the Penalized Loss Function

As noted in the introduction, Deng and Tsui (2013) proposed
a quadratic iterative programming algorithm over A = log X.
The algorithm is derived by a repeated application of the
Volterra integral equation for e to obtain a second-order
expansion. Although they state in their introduction that some
other previously proposed “methods have retained the use of the

»

eigenvectors of S, in estlmatmg ¥ or 71 it is not clear if they
recognize that the mmlmumA to (3),and hence 2,, = eA” also
retains the same eigenvectors as S,,. As shown by the following
theorem and corollary, this is true for any orthogonally invariant
penalty.

Theorem 5.1. Suppose IT(X) is orthogonally invariant and
¥ > 0. Using the spectral value decomposition, express S, =
P,D,P! with P, being an orthogonal matrix of order g and
D, = diag{dy,...,dy}. Then

L(Z5S84,1) = L(P,APL; S, 1),

where A = diag{Aj, ... s Aq) with >
ordered eigenvalues of X.

"> Ay >0 being the

Corollary 5.1. IfTI(X) is orthogonally invariant, and there exists
a global minimum to L(X; Su, 1) over &> 0, then it has a
global minimizer of the form En =P, A PI, where A,, is a
diagonal matrix which minimizes L(P, AP S,,, n) overall A €
Dy = {diag{A1,..., A4} [ A1 = -+ > A4 > 0}. Consequently, if
L(%;84,1) hasa umque global minimizer over X > 0, then it is
given by En, as defined above, with A » being the unique global
minimizer of L(P, APn w1)over A € Dy

In the above corollary, if we express A,, = diag{ea'%l, ceos
e“ra}, then @, is the minimizer of
q
= Z(dje_“f -+ aj) + nm(ay,...
j=1

Lq(a; d; n) > aq)> (4)

over a € R1 witha; > --- > a,. Here 7 is the function on
R1 corresponding to the function IT as defined in Lemma 3.1,
andd; > - > dq are the eigenvalues of S,. The function
Lg(asd;n) is strictly convex whenever 7 (a) is convex in a €
R4, which by Theorem 3.1 holds whenever I1(X) is g-convex,
or equivalently convex in log X. Thus, for orthogonally invari-
ant g-convex penalties, rather than using a quadratic iterative
programming algorithm over the set of symmetric matrices of
order g, as proposed in Deng and Tsui (2013), or using a g-
convex optimization method over ¥ > 0, the minimization
problem (2) reduces to the simpler and numerically well studied
problem of minimizing a strictly convex function on R1. Since
the function 7 is symmetric and } 1, dje™ %0 < qu:l die™ ",
where agy > -+ > ag) are the ordered values of ay, . .., ag, it
follows that minimizing Ly(a; d; n) over a € R yields a,; >
> EM, with the inequalities being strict whenever the
corresponding inequalities d; > - -- > d; are strict.
Summarizing, for a general g-convex and orthogonally
invariant penalty IT1(X), the algorithm for computing X, that s,
the minimum of (2) over ¥ > 0, can be summarized as follows:
Step 1: Compute the spectral value decomposition of the
sample covariance matrix S, = PnDnPZ.
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Step 2: Obtain @,, € R? by minimizing the strictly convex
function L,(a; d; n), given by (4) overa €| R4,

Step 3: Flnally, compute E = P,A P , where A =
dlag{e“” Lo, e 4},
Step 2 can be done via Newton’s method or some other convex
optimization method.

5.1. Newton’s Method When using Riemannian Penalties

The penalties proposed by Deng and Tsui (2013) and Yu, Wang,
and Zhu (2017) have the form IIr(Z;¢) = ||A — ch||% with

¢ not dependent on X. Here, ngr(a;¢c) = Z]

so Ly(asdsn) = qu:l{dje_“f + aj + n(aj — ¢)?}. Minimizing
Lg(a; d; ) reduces to solving q univariate strictly convex opti-
mization problems, namely min{dje™% + a; + n(a; — c)?} for

1 (@ — ¢)? and

j=1,...,q. Newtons algorithm for this problem is given by
die”% — 2n(aj —c) — 1
J >
aj =ajk+ . 5
k41 ik dje_aj‘k g (5)
If S, has rank r < g, then for j > r one obtains the closed form
E,,,j =C— 1/)7.

For the shape version of this penalty, that is, for [Tg ;, we have
rs(a) = Z?:l(“j_a)z and hence Ly(a; d; ) = Z;Ll{dje_“i—i—
aj+n(a; —a)?}. Forrank(S,) = r, Newton’s algorithm is given by

q
Gjk+1 = djk + Sk 8k + Bk Sk Z Sik &k (6)

where gjx = dje” ¥ — 1 —2n(ajx —ax), 8;x = 1/(die” %k +2n),
B = 2n/{r — 20 Y b and @ = Y1 app. If r < g,
then @, 41 = --- = @,4 and (6) can be implemented as an
r 4+ 1 dimensional, rather than a g dimensional, algorithm after
replacing Y"1 | 8; gik with >0 8ik ik + (@ — DSrt1k Grt1k-
Here, ax = (3.1 aik + (@ — Nary10)/q and 8,41k gr16 =
—{C2n) 7 + (@rp1k — @)}

The derivations of (5) and (6) are given in Appendix A. Also,
as shown in Appendix A, the gradient of L (a; d; n) is concave in
these cases. This last property allows us to prove the following
convergence result.

Theorem 5.2. Given any initial value (ay,...,a40), the algo-
rithms (5) and (6) are decreasing. That is, for j = 1,...,q,
Ajk = Ajk+1 = djy fork > 1, where (@y,, . ..,a,,) denotes the
unique global minimizer of (4) when using g (g; ¢) and g 5(a),
respectively. Furthermore, a;x — @;, quadratically as k — oo.

6. Simulation Study

In this section, we conduct a simulation study to compare the
performance of the following five covariance estimators:

S: the sample covariance matrix,
LogF: the penalized covariance matrix proposed by Deng and
Tsui (2013) with penalty ||A||12E, where A = log X,

sLogF: our proposed shape penalized covariance matrix based
on|A— {tr(A)/q}Iq||%,
mLogF: the adjusted penalized covariance matrix proposed by

Yu, Wang, and Zhu (2017) based on [|A — ml,||%, with
m being an estimate of m(A) = tr(A)/q, and
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Table 1. For g = 100, simulation results for the performance of the covariance estimators under Models 1 and 2 using four different measures.

Model 1 Model 2
Method Fnorm Lq op-norm Aq n Fnorm Lq op-norm Aq n

n =50 sLogF 1.51 0.51x% 0.33 0.25 5.80 2.99 1.00x 0.71 0.59 9.89
(0.02) (0.03) (0.00) (0.01) (1.22) (0.03) (0.07) (0.01) (0.03) (3.08)

dLogF 1.37x% 0.86 0.32x 0.06: 144 2.82x 1.59 0.67x 0.29:x 2.53
(0.01) (0.06) (0.01) (0.03) (0.17) (0.02) (0.13) (0.02) (0.06) (0.39)

mLogF 2.09 0.68 0.45 0.35 2.69 4.83 1.53 1.04 0.84 3.29
(0.02) 0.01) 0.00 (0.01) 0.12) (0.03) (0.02) (0.01) (0.02) (0.14)

LogF 291 2.60 0.88 0.76 0.30 4.27 3.90 1.14 0.74 0.59
(0.05) (0.14) (0.05) (0.05) (0.00) (0.07) (0.19) (0.06) (0.08) (0.03)

S 2.86 3.18 1.05 0.94 NA 7.13 7.86 2.52 2.19 NA

(0.08) (0.25) (0.09) (0.10) NA (0.18) (0.54) (0.20) 0.21) NA

n =100 sLogF 1.41 0.64 0.33 0.20 1.81 2.85 1.22x 0.71 0.51 3.15
(0.02) (0.02) (0.01) (0.01) (0.15) (0.03) (0.05) (0.01) (0.02) (0.35)

dLogF 1.23x% 0.88 0.30x% 0.03x% 0.77 2.63x% 1.65 0.65x% 0.24x% 137
(0.01) (0.04) (0.01) (0.02) (0.05) (0.02) (0.07) (0.02) (0.04) 0.11)

mLogF 2.07 0.72 0.44 0.33 0.76 4.75 1.69 1.02 0.76 0.81
(0.02) (0.02) (0.00) (0.01) (0.05) (0.04) (0.03) (0.01) (0.02) (0.04)

LogF 2.21 2.04 0.66 0.55 0.20 3.64 3.30 0.92 0.55 0.42
(0.04) (0.10) (0.04) (0.04) (0.00) (0.05) (0.14) (0.04) (0.06) (0.04)

S 2.02 215 0.68 0.58 NA 5.04 5.31 1.61 132 NA

(0.05) (0.13) (0.05) (0.06) NA (0.11) (0.31) (0.12) (0.14) NA

n =150 sLogF 1.30 0.69% 0.32 0.16 1.01 271 1.35% 0.69 0.45 1.77
(0.02) (0.02) (0.01) (0.01) (0.06) (0.03) (0.05) (0.01) (0.02) (0.14)

dLogF 1.13% 0.85 0.29x% 0.02x 0.54 2.47% 1.66 0.62x% 0.21x% 0.97
(0.01) (0.04) (0.01) (0.02) (0.05) (0.03) (0.06) (0.02) (0.03) (0.06)

mLogF 1.23 0.77 0.32 0.11 0.73 2.59 1.54 0.68 0.34 1.20
(0.02) (0.03) 0.01) 0.01) (0.04) (0.03) (0.05) 0.01) (0.03) (0.08)

LogF 1.96 1.68 0.55 0.45 0.20 3.24 2.82 0.77 0.42 0.39
(0.03) (0.07) (0.02) (0.03) 0.00 (0.04) (0.12) (0.03) (0.05) (0.03)

S 1.65 1.72 0.53 0.43 NA 4.11 4.24 1.25 0.98 NA

(0.04) (0.10) (0.04) (0.04) NA (0.08) (0.22) (0.08) (0.09) NA

NOTE: Means and standard deviations (in parentheses) are based on 100 runs.

dLogF: anadjusted penalized covariance matrix based on [|A—
log(d)Iqlli, where d = tr(S,,) /g, that is, the average of
the sample eigenvalues.

Comparisons of LogF and mLogF to other penalized covariance
estimators are given in Deng and Tsui (2013) and Yu, Wang, and
Zhu (2017).

As the tuning constant 7 — o0, the estimator LogF goes to
the identity matrix and so one would anticipate its performance
would be poor whenever A = trX/q is far from one. This would
be particularly problematic when heavy tuning is desirable, as
would be the case whenever the roots of X are not well separated
or in general when S,, is singular. As noted by Yu, Wang, and Zhu
(2017), this weakness can be alleviated by using the estimator
mLogF. Alternatively, the estimators sLogF or dLogF can be
considered. As shown in Appendix A, the estimator sLogF goes
to dl; as n — o00. On the other hand, an adjusted estimator,
that is, one using a penalty of the form [|A — ¢, ||12:, goes to eI,
as n — o00. Consequently, the estimators mLogF and dLogF go
to ealq and an, respectively, as n — oo.

The performance of the estimator mLogF depends on the
definition of m. Yu, Wang, and Zhu (2017) observed that the
simple choice my = m(logS,) = tr(logS,)/q is known
to underestimate m(A). They proposed using a bias corrected
estimator of the form m; = m(log$,) + byg when g < n,
and a Bayesian estimator for 73 when g > n; see Yu, Wang,
and Zhu (2017) for details. We use their proposed choices of m
in our simulation study. When using 7, the estimator mLogF
shrinks the eigenvalues of S, toward M o (detS,)V/1 = c_ig, the

geometric mean of the eigenvalues of S,,. We surmise it would
be better to shrink them toward the arithmetic mean since d is
the minimum variance unbiased estimator of A when random
sampling from a spherical multivariate normal distribution with
¥ = Aly. In particular, we anticipate our proposed estimators
sLogF and dLogF, which both shrink the eigenvalues of S,
toward d, will have a better performance in settings where it
is desirable for the tuning parameter to be large. The results of
our simulation study, reported in Tables 1 and 2, support this
heuristic argument.

For the simulations, we consider ¢ = 100 dimensional
data arising as a random sample from a multivariate normal
distribution with mean 1 = 0 and covariance matrix ¥ = {oj;}.
The four different covariance models used in the simulations are
listed below. For each of these covariance models, the arithmetic
mean A and the geometric mean A, of their eigenvalues are
reported. Note that the ratio y = A/ )_»g > 1 represents a
measure of the eccentricity of ¥, that is, a measure of how much
¥ deviates from proportionality to I;, with y = 1 if and only if
% o I;. The models are listed in decreasing order of y.

Model 1: An MA(2) model for which o; = 0.20,0;;—1 =
oi—1,; = 0.10,0;;—» = 0j_2; = 0.05, and oij =0
otherwise. Here, A = 0.200 and A, = 0.145.

Model 2: An AR(1) model for which oj; = 0.5p/" 7 and p =
0.4. Here, & = 0.500 and A, = 0.421.

Model 3: 7! = {07} where 0 = 1 and 0¥ = 0.6 for i # j.
Here, A = 2.475 and Ag = 2.378.

Model 4: ¥ =5 I;. Here, A = &g = 5.0.
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Table 2. For g = 100, simulation results for the performance of the covariance estimators under Models 3 and 4 using four different measures.

Model 3 Model 4
Method Fnorm Lq op-norm Aq n Fnorm Lq op-norm Aq n
n=>50 sLogF 2.53% 2.50 241 0.06x 135.96 0.98 0.52x% 0.15x% 0.11x% 141.54
(0.08) (0.03) (0.05) (0.05) (75.34) 0.61) (0.45) 0.11) (0.12) (72.26)
dLogF 2.53x 2.49% 243 0.10 118.81 0.97x% 0.62 0.20 0.18 137.10
(0.09) (0.04) (0.05) (0.11) (81.39) (0.68) (0.61) (0.18) (0.19) (78.25)
mLogF 20.70 5.03 2.25 1.39 4.16 42.64 8.70 4.59 2.95 4.18
(0.07) (0.07) (0.00) (0.04) (0.15) (0.12) (0.20) (0.01) (0.07) 0.14)
LogF 14.29 4.20 1.57% 0.81 6.85 37.54 8.67 4.10 2.27 4.58
(0.04) (0.09) (0.01) (0.05) (0.54) (0.09) (0.26) (0.00) (0.09) 0.22)
S 35.17 37.82 11.26 11.26 NA 71.09 76.42 22.73 22.73 NA
(0.71) (2.05) (0.60) (0.60) NA (1.43) (4.36) (1.25) (1.25) NA
n =100 sLogF 2.49x% 2.48x% 241 0.04x 115.62 0.70x 0.37x% 0.11x% 0.08x 140.36
(0.04) (0.02) (0.04) (0.04) (78.64) (0.39) (0.30) (0.07) (0.08) (73.24)
dLogF 2.50 247 242 0.08 78.61 0.73 0.44 0.13 0.12 130.94
(0.04) (0.02) (0.04) (0.07) (74.42) (0.43) (0.41) (0.10) (0.11) (76.93)
mLogF 19.77 6.29 245 0.85 0.84 39.89 11.87 4.89 1.77 0.89
(0.19) (0.19) (0.00) (0.08) (0.05) (0.36) (0.37) (0.00) (0.16) (0.05)
LogF 13.53 47 1.66% 0.54 2.85 34.26 1.1 4.27 1.28 157
(0.05) (0.13) (0.01) (0.05) (0.16) (0.15) (0.31) (0.01) (0.10) (0.06)
S 24.81 25.66 7.01 7.01 NA 50.13 51.77 14.12 14.12 NA
(0.39) (1.21) (0.33) (0.33) NA (0.80) (2.39) (0.68) (0.68) NA
n =150 sLogF 2.48x% 2.47 241 0.04x 88.05 0.56% 0.31x 0.09x% 0.07x 136.97
(0.02) (0.02) (0.03) (0.04) (74.94) (0.31) (0.26) (0.06) (0.07) (74.63)
dLogF 2.48x 2.45% 241 0.08 61.03 0.57 0.32 0.10 0.09 133.76
(0.02) (0.02) (0.04) (0.06) (65.00) (0.33) (0.27) (0.07) (0.08) (74.68)
mLogF 2.63 2.53 233 0.06 59.34 0.72 0.35 0.12 0.11 131.43
0.11) (0.04) (0.04) (0.04) (62.31) (0.43) (0.28) (0.08) (0.09) (75.22)
LogF 12.69 5.30 1.75x% 0.24 1.54 29.36 15.35 4.45 0.61 0.53
(0.07) (0.15) (0.01) (0.05) (0.07) (0.36) (0.68) (0.02) (0.26) (0.05)
S 20.29 20.66 5.40 5.40 NA 40.99 41.73 10.88 10.88 NA
(0.28) (0.93) (0.24) (0.24) NA (0.58) (1.86) (0.49) (0.49) NA

NOTE: Means and standard deviations (in parentheses) are based on 100 runs.

To evaluate the performance of the different estimators
under the various models, we use the same four measures of the
discrepancy between the estimated and true covariance matrix
as in Yu, Wang, and Zhu (2017).

Fnorm: || — X||f = /ZiJ(’a]j — 0y)%.

Ll: ||E—E||1:manZi|aj—O'ij|.

op-norm: [|X — X||sp = max; |gj|, where ojs are the singular
valuesof ¥ — X.

|/):1 — A1, the aksolute difference between the largest
eigenvalues of ¥ and %,

Alt

Since all five estimators of the covariance matrix are orthogo-
nally equivariant, the results of the simulations for the Fnorm,
op-norm, and A; would be the same if the model ¥ were
replaced by PXPT for any orthogonal P. These results depend
only on the eigenvalue of X. The results under L;, though, would
differ since, unlike the other measures, it is not orthogonally
invariant. Also, since all the estimators except LogF are scale
equivariate, if the model ¥ were multiplied by a positive con-
stant ¢, then the simulation result for these estimators would
simply be multiplied by c. Hence, the relative comparisons
across these estimators would be the same. The relative perfor-
mance of LogF, though, would depend on the value of c.

We follow the simulation protocol used by both Deng and
Tsui (2013) and Yu, Wang, and Zhu (2017). For each covariance
model, 2n data points are generated, with the first n observations
serving as a training set and last n observations serving as a
validation set. The tuning parameter for any particular method

is then selected via the holdout method of cross-validation. That
is, we select the value of n which minimizes the non-penalized
loss l(fn,o;Sn,l) defined by (1), where fn,o is the penalized
covariance estimate based on the training set, and S, ; is the
sample covariance matrix of the validation set. Since the true
mean u = 0 and interest lies in the performance of the estima-
tors of X, the non-centered sample covariance matrices S, =
n~1 3" xix] are used in the simulations. We consider three
values for the sample size n =50, 100, 150, with the dimension
being g =100 in each case. The simulations are repeated 100
times and the means and standard deviations (in parenthesis)
over the 100 trials for each of the discrepancy measures are
reported in Tables 1 and 2. The means and standard deviations
over the 100 trials of the value of the selected tuning parameter
n are also reported.

In Tables 1 and 2, the estimator which performed the best for a
given sample size and given discrepancy measure is noted with an
asterisk (*). For all four models, with one exception, either sLogF
or dLogF is the best performing estimator, depending on the
particular discrepancy measure used. The notable exception is
under model 3, for which LogF performs best under the operator
norm. Overall, the performance of our two proposed estimators
sLogF and dLogF are comparable, with sLogF being slightly
better when the model is close to proportionality to the identity
and dLogF performing better otherwise. The performance of
mLogF is also similar to these two estimators when n =150,
but performs considerably worse when # =100 or n=>50. The
sample covariance matrix performs uniformly worst. Further
simulations are given in a supplement to this article.
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Figure 1. Boxplot of misclassification errors over 100 runs.

Table 3. Means and standard deviations of the misclassification error over 100 runs.

sLogF dLogF mLogF LogF S
Mean 0.239 0.247 0.259 0.253 0.349
SD 0.048 0.051 0.062 0.049 0.071

7. An Example: Sonar Data

Datasets for which the sample size is modest relative to the
dimension typically arise, for example, in functional data, image
data, financial data, and signal processing. As an example, we
consider the sonar dataset obtained from University of Cali-
fornia Irvine Machine Learning Repository, which was devel-
oped and first analyzed by Gorman and Sejnowski (1988). This
dataset consists of 208 multivariate observations of dimension
q = 60. For each observation, the 60 variables correspond to
the average energy over a particular frequency band obtained by
bouncing sonar signals off of an object under various conditions,
with 111 observations labeled M (metal cylinder) and the other
97 observations labeled R (rock).

Our goal here is to study the relative performance of covari-
ance estimators when used within linear discriminant analysis
(LDA) to classify an observation as either M or R. The dataset is
randomly partitioned into a training set of size 78 for estimating
the covariance matrix, a validation set of size 78 for selecting the
tuning parameter and a test set of size 52 for computing the mis-
classification error. The covariance estimators being compared
are those considered in the simulation study in Section 6. The
role of the sample covariance matrix used in defining all of the
estimators is replaced with the pooled sample covariance matrix
of the two groups M and R.

The above procedure is independently repeated for 100
times. A boxplot of the misclassification errors over these
100 trials are displayed in Figure 1, and the mean and stan-
dard deviation of the misclassification errors are showed in
Table 3. Finally, Table 4 displays the frequency over the 100
trials that a given estimator (row) has a lower classification
rate than another estimator (column). For example, sLogF
has less misclassification errors than mLogF in 46 of the 100
runs, and more misclassification errors in 22 of the runs,
with the two estimators having the same misclassification rate
in the other 32 runs. Among the estimators of the covari-
ance matrix considered here, our proposed sLogF estimator
performs best.

Table 4. Out of 100 runs, the number of times the estimator indicated in the row
has a lower misclassification rate than the estimator indicated in the column.

sLogF dLogF mLogF LogF S

sLogF 0 38 46 59 89
dLogF 28 0 31 59 93
mLogF 22 18 0 47 84
LogF 38 33 49 0 90

S 5 6 12 8 0

8. Some Final Remarks

The focus of this article is on the uniqueness and computation
for g-convex penalized sample covariance matrices. As is the
case with the papers by Deng and Tsui (2013) and Yu, Wang, and
Zhu (2017), the current article does not address the statistical
properties of the penalized covariance estimators outside of the
simulations. For a fixed tuning constant 7, fixed dimension
q and smooth penalty I, though, it readily follows from the
theory of M-estimation that under suitable regularity conditions
the estimator X, is consistent for its functional version X, that
is, for the unique minimizer of £L(Z; Xo,7) = tr(Z71%,) +
logdet ¥ + nIl(X) over ¥ > 0, where X, denotes the true
population covariance matrix. In addition, \/ﬁ(f,7 — X,) con-
verges in distribution to a multivariate normal distribution. The
consistency and asymptotic normality of X, for X, itself holds
if n = o(1/4/n). When the value of 5 is chosen via a data
driven method, consistency and asymptotic normality still hold
provided the estimated tuning parameter 77 = 0,(1/+/n).

Penalization methods are of primary importance when the
sample size n is small relative to the dimension q. In such cases,
fixed g asymptotics may not provide reasonable approximations
for a given n and q. Consequently, there is a growing interest in
understanding the asymptotic behavior of a covariance estima-
tor, say 3, asboth nand q increase. In particular, for regularized
covariance estimators, rates of convergence for the error term
¥ — %], in terms of # and ¢, have been studied by Bickel and
Levina (2008), Lam and Fan (2009), and Cai, Zhang, and Zhou
(2010), among others. A study of the rates of convergence for g-
convex penalized sample covariance estimators is a worthwhile
topic which we hope to address, or that others may wish to
address, in future research. Rates of convergence have primarily
been studied when the norm for the error term is taken to
be either the Frobenius norm or the operator norm. We are
unaware of any results for when the norm is taken to be the
Riemannian norm, which would be a natural choice for the g-
convex penalized covariance estimators. Finally, we note that in
a follow-up paper (Tyler and Yi 2020) the asymptotic behavior
of the eigenvalues of /E\,, asq — ooand g/n — ¢ € (0,1) have
been studied for a special class of g-convex penalty terms.

Appendix A: Proofs and Some Technical Details

A.1. Counterexamples to the Equivalency of g-Convexity
and Convexity in Log

Lemma 1.14 in Wiesel and Zhang (2015) states that xT &~ Lx is a strictly
g-convex function of ¥, which implies that tr(S1S,) is g-convex for
Sn # 0. It is difficult to show analytically whether or not tr( =-1s,)
is convex in log X for a given S, and almost all randomly generated



examples tend to suggest that it is true. After extensive trials, though,
the following counterexample was found which shows that {Z “hyiis
not a convex function of log ¥, and consequently tr(£ 1S, cannot be
convex in log ¥ in general. For g = 2, let A = log ¥ and choose

0 -1 0 001
AO_[—l 300] and Al_‘[o.m 0.01]'

This gives {e~(0-34110-542)}), — 1,001690296 > 1.001688939 =
0.5{67A0}11 + O.S{efAl}H, and so {efA}H = {271}11 is not convex
in A.

On the other hand, a function may be convex in log ¥ but not g-
convex in X. For example, the matrix L1 norm on the elements of log %,
that is, H(X) = maxj<x<g4 2;1:1 [{log Z}jxl, is convex in log X. The
following counter-example, though, shows that it is not g-convex. For
q = 3, choose

1.00 0.30 0.09 1.00 0.90 0.81
Yo =030 1.00 0.30 and X; =090 1.00 0.90
0.09 0.30 1.00 0.81 0.90 1.00

This gives H(X0,5) = 2.289438 > 2.284073 = 0.5 H(X0)+0.5 H(X1),
and so H(X) is not g-convex.

A.2. Proof of Lemma 2.2

As already noted, the first part of the lemma follows from Lemma 2.1
and the g-coercivity of L(X; Sy, n). To prove continuity, we first state
the following general lemma.

Lemma A.1. Let D be a closed subset of RP. Suppose the real-valued
functions f(x) and g(x) are continuous on D, with g(x) > 0. Fur-
thermore, suppose h(x;n) = f(x) + ng(x) has a unique minimum
inDforany0 < no < n < n1.Ilftheset {x € D | h(x;n0) < c}
is compact for any ¢ > inf{h(x;7,) | x € D}, then the function
x(n) = arginf{h(x; ) | x € D} is continuous for no < n < ny.

To prove this lemma, first note that h(x; n) is increasing in 7, and
so the set {x(n) | no < n < n1} is contained in the compact set
{x | h(x;m0) < h(x(n1);n1)}. So, if n — 1, then x(ny) has a con-
vergent subsequence, say x(n) — X. By definition, h(x(ng); ng) <
h(x(n); ng). By continuity, the left-hand side converges to h(X; 1) and
the right-hand side converges to h(x(n); 7). By uniqueness, this implies
X = x(n). Hence, x(nx) — x(n), which establishes Lemma A.1.

This lemma then applies to h(X;n) = L(X;Su,n), for which
f(2) = I(X;Sy) and g(X) = TI(X). By g-convexity, both f and g
are continuous. Also, the level sets of h(X; 1) are compact since by g-
coercivity h(X;n) — oo as || log X||[p — oo. Hence, in is continuous
for n > 0.

A.3. Proof of Lemma 2.3

The lemma follows if L(X; Sy, 1) is g-coercive. Consider any sequence
in ¥ such that || log X ||[r — oo. Divide the proof into the following
three cases: a) logdetY — 00, b) |logdet X| is bounded above,
and c¢) logdetX — —oo0. For case (a), the result holds since both
tr(Z~LS,) > 0and I1(X) > 0. For case (b), the result follows from
condition (i) since tr(£~1S,,) > 0 and [1(T) — oo.

When case (c) holds, consider the two sub-cases: (c1) A1 is bounded
away from zero, and (c2) A1 — 0. If (c1) holds, condition (ii) implies
(logdet X)/IT(X) — 0 and so IT(X) — oo. Hence, for n > 0,

L(Z;Spn) = tr(E718,) + T(T){(log det £)/TI(S) + n} — oo.
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If (c2) holds, since tr(E—ISn) > tr(Sy)/A1 and logdet & > logA; —
(g — 1) log A4, it follows that

L(Z;8n,m) = tr(Sn) /A1 + qlog A1 + (g — 1) log(Aq/A1) + nI(Z),
with tr(Sy) /A1 +qlog A1 — 00.S0,if A1 /Ag — 1, then L(X; Sy, 1) —
0o. Whereas, if A1/A4 is bounded away from one, then by condition

(i), (g— 1) log(Ag/A1) +0I1(Z) = [I(X){(q—1) log(hg/21)/TI(X) +
n} is bounded below and so L(Z; Sy, n) — o0.

A.4. Proof of Theorem 3.1

First, we show (i)=(iii). Suppose that F(X) is (strictly) g-convex, then
by Lemma 3.6 of Diimbgen and Tyler (2016), F (BD(e*)BT) is (strictly)
convex in x € RT\{0} for any nonsingular B of order g. Here, for
y € R4, D(y) represents the diagonal matrix with the elements of y
corresponding to its diagonal elements. Thus, by Lemma 3.1, f(x) =

F(D(e")) is (strictly) convex.
Next, we show (iii)=-(i). Here, the concept of majorization plays an
important role. For a vector v € RY, denote its ordered values by v(1) >
© > v(q)- A vector y € RY is then said to majorize a vector x € RY,

denoted x < yifand only if Z]]-;l xGj) < Z]]-;l ¥(j)» with equality when
k = g. As stated in Theorem 1.3 of Ando (1957), x < y if an only if x is
a convex combination of coordinate permutations of y, that is,

1
X<y x= Z w;Pjy, (A1)
j=1
where, forj = 1,..
orthogonal,and w; > 0 with quzl wj = 1. Asaside note, the Birkhoff-

von Neumann theorem notes that Q is a doubly stochastic matrix of

>4 Pj is a permutation matrix of order g, hence

order q if and only if it has the representation Q = quzl w;jP;. For & >
0, let A(2) = (A1(2),...,2q(¥)) denote the vector of the ordered
eigenvalues of X. An important result given by Lemma 2.17 in Sra and
Hosseini (2015) states

log(A(21)) < (1 — 1) log(A(Z0)) + tlog(A(X1)), (A2)

where X; is the geodesic curve from Xy and Xj. So, by (A.1), we can
express

log AM(Z¢) = Q{(1 — t) logA(Z) + tlogA(Z1)},
with Q = Z}i=1 wjP; being defined as in (A.1). Thus,
F(Z) = f(log () = f (QL(L — 1) log A(Zg) + tlog A(1)])
< (1 = 1)f(QlogA(Zp)) + # (QlogA(X1))

(A.3)

q q
< (=0 wif(Plogh(Z0)) +t Y wif (Plogi(31))

j=1 j=1

q q
= (1= 1) wif(logi(o) +1 ) wif (log A(E1))

j=1 j=1
= (1 — HE(Xg) + tF(Z1).

The two inequalities above follow from condition (iii), that is, f is
convex. Suppose now that f is strictly convex, then the first inequality is
strict unless A(Xg) = A(X1), and the second inequality is strict unless
Q = I4. Thus, both equality holds if and only if A(X;) = A(Zo) for
0 < t < 1. However, since tr(X) is strictly g-convex (see, e.g., Wiesel
and Zhang 2015, Lemma 1.15), it follows that tr(X¢) < (1 —Htr(Zo) +
ttr(X)) = tr(Xg) for 0 < t < 1, unless g = Xj. Thus, F(X) is
strictly g-convex.

Finally, we note the statement (ii)<>(iii) follows from the main
theorem in Davis (1957), at least in the convex case. The strictly convex
case can be shown to hold by applying arguments analogous to those
used in the ()< (iii) case.
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A.5. Proof That Ilg s Satisfies the Conditions of Lemma 2.3
Again let a; = logAj,and soa = ¢ ~llogdet =, Zq_
and Q(a) = ZJ 1(aj — 2’ = IR s(X). Condition (i) states that if |q]
is bounded above and Zq 1 a2 — 00, then Q(a) — oo, which holds

= Z?:l ajz — qa . Condition (ii) states that if a — —o0

—||1OgE||F

since Q(a) =
and aj is bounded below, then a/Q(a) — 0. To show this, express
a/Q(a) = {@ Q(b)}~!, where bj = aj/a. Since a; is bounded below,
by — Oand qu:l
zero, which implies a/Q(a) — 0. Condition (iii) states that if a; —
—ooand a; — ag > € > 0, then (a1 — a4)/Q(a) is bounded above.
This follows since Q(a) > (a; — aq)2 and so (a1 — ag)/Q(a) < 1/
(a1 —aq) < 1/e.

bj — g. Hence, Q(b) must be bounded away from

A.6. Proof of Theorem 4.1

~1/2¢ 5=1/2
0

(i) Let To# 31 = Tp/%(%, 22l t e 10,1, and so
Yy = Xo#r 21 (Sra and Hosseini 2015). It readily follows that V(%) =
V(Z0)#:V(Z1), and so

[5(2y) = I{V(Zp)} = TH{V(Zo)# V(Z1)}

< (1 =) M{V(Z)} + ¢t TI{V(Z1)}

= (1—1) Is(Zp) + ¢ s(X1).
(i) Let A = log ¥, and define G(A) = T1(e4) and Gs(A) = T (ed).
The goal is to show that if G(A) is convex in A, then G5 (A) is also convex
in A. Since Gs(A) = G(A), where A = A — (tr(4)/q) * Iy, and so

Gs((1 — A + tA1) = G((1 — HAg + tA})
< (1 —HG(Ag) + tG(A1) = (1 — HGs(Ag) + tGs(A1).

A.7. Proof of Theorem 5.1

The proof relies on the following property of eigenvalues of symmetric
matrices. Let B be a symmetric matrix of order ¢, and let C =
[c1---cm]be of order g x m, m < g, with orthonormal columns. Then
tr{CTBC J =20 cTBc] isbounded above and below by the sum of the
largest m and the sum of the smallest m eigenvalues of B, respectively.
Expressing ¥ = PAPT in terms of its spectral value decomposition,
let H = [hy---hq] = PZP, which is itself an orthogonal matrix. Define
k1 =1/A1andkj = 1/A;j—1/Aj_q forj # 1. Inverting this relationship

gives A j_l = ZJk:l Kk Since kj > 0, the above noted property of
eigenvalues of a symmetric matrix implies

q
NI
= >3 ' Dk

j=1

tr{=~!S,} = tr{A"'H' D, H}

1 q
= ZKk Zh}Dnhj
= j=k
q q
> K dk = dj/3j=t(A7'Dy),
=1 ks j=1

with equality when H = I, that is, when P = Pj. This gives the
inequality in the theorem since det ¥ = det A and IT(X) = TT1(A).

A.8. Proof of Corollary 5.1

Suppose L(il; Sn>m) < L(Z580, 1) forall X >0, with the eigenvalues
of ¥y being A1y > -+ > Agy > 0. Let 3y be defined as in the

corollary. Theorem 5.1 then implies L(in,Sn,n) < L(in,Sn, n) <
L(%;Sy,1n) for all ¥ > 0, and so ) Xy must also be a minimizer of
L(Z; Sy, n) over ¥ > 0. Further, Aj must be a global minimizer of
L(P, APn, Sn>1n) over A€ D4, otherwise we have the contradiction
L(PnAPn, Sun) < L(En,Sn, n) for some A € D4 IfL(E Sn-n) hasa
unique global minimizer over ¥ > 0, then 2,7 =P,A Pn is uniquely
determined.

A.9. Proof of Theorem 5.2 and Derivation of the Algorithms
(5) and (6)

Algorithm (5) finds the unique minimum of the univariate function
f@) =de 4+ a+na— ¢)2. Newton’s method is given by apy =
a; — f'(a)/f" (a). Here, we have f'(a) = —de™? + 1 + 25(a — ¢) and
f"(a) = de™® + 2n > 0. Algorithm (5) then follows. Furthermore,
(@) = —de® < 0, which implies that F(a) = —f'(a) is a
convex function. The convergence results for algorithm (5) then follow
from the monotone Newton theorem and the global Newton theorem
as stated by Theorems 13.3.4 and 13.3.7, respectively, in Ortega and
Rheinboldt (2000).

Algorithm (6) finds the unique minimum of f (a) = quzl {die™% +
a; + n(aj — @)%} over a € R9. Newton’s method is given by ay; =
ay — {sz(ak)}_IVf(ak), where Vf(a) and sz(a) are the gradient
and Hessian of f (a), respectively. The gradient is given by df (a)/0a; =
—d;je”% + 1+ 2n(a; — a). For the hessian, we have E)Zf(a)/{aa,-}2 =
die”% +2n(1 — 1/g) and Bzf(a)/{aaiBaj} = —2n/q for i # j, which
gives sz(a) = diag{d;e” %} + 2n(Iq — qfl 1q1£]) > 0. Algorithm (6)
follows after noting {sz(a)}_1 = {my}, with m;; = &; + ,851.2 and
mij = Pd;d; for i # j, where §; = 1/(dje”% +2n) and B = 2n/(q —
2n Z?:l 8;). For the third partial derivatives, we have 83f(a)/{8ai}3 =
—d;je~% < 0, with all other third partial derivatives being zero. This is
sufficient to establish that F(a) = —Vf(a) is a convex function from
R9 — R1 as defined by Definition 13.3.1 in Ortega and Rheinboldt
(2000). The convergence results for algorithm (6) again follow from the
monotone and global Newton theorems.

A.10. Limiting Behavior of the sLogF Estimator as ) — oo

As n — 00, the penalty term IT R,s(in) must go to 0, which implies
%y is proportional to I in the limit. The eigenvalues of ¥y correspond
to the unique critical point of qu=1 {dje_“f +aj + n(a; — 7)2}, where
again a; = log A, which in turn corresponds to the unique solution to
the set of equations djefaf =1+2n(aj—a) forj=1,..
4 _— v
1 fje S =2
Hence, since the eigenvalues of X;) approach each other as n — o0, it
follows that/):j — dor i,] — qu.

.»q. By taking

the sum, we obtain g = Z]qz dj/Aj for any n > 0.

Supplementary Materials

The supplementary materials include the following: a supplementary
manuscript reporting further simulation results, an R-package logconvx
for computing the proposed penalized covariance matrices, an Rdata
workspace Sim.Rdata for reproducing the simulations reported in the
manuscript, and an RData workspace Sonar.Rdata for reproducing the
results for the example given in section 7.
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