
Mapping Materials to Curriculum Standards for Design,
Alignment, Audit, and Search

Alec Goncharow
Computer Science, UNC Charlotte

Charlotte, North Carolina

Matthew Mcquaigue
Computer Science, UNC Charlotte

Charlotte, North Carolina

Erik Saule
Computer Science, UNC Charlotte

Charlotte, North Carolina

Kalpathi Subramanian
Computer Science, UNC Charlotte

Charlotte, North Carolina

Jamie Payton
Computer & Information Sciences,

Temple University

Philadelphia, Pennsylvania

Paula Goolkasian
Psychological Science, UNC Charlotte

Charlotte, North Carolina

ABSTRACT

Computing proficiency is an increasingly vital component of the

modern workforce, and computer science programs are faced with

the challenges of engaging and retaining students to meet the grow-

ing need in that sector. However, administrators and instructors

often find themselves either reinventing the wheel or relying too

heavily on intuition, despite the availability of national curriculum

standards. To address these issues, we present CS Materials, an

open-source resource targeted at computing educators for design-

ing and analyzing courses for coverage of recommended guidelines,

and alignment between the various components within a course,

between sections of the same course, or course sequences within a

program. The system works by facilitating mapping educational

materials to national curriculum standards.

A side effect of the system is that it centralizes the design of the

courses and the materials used therein. The curriculum guidelines

act as a lingua franca that allows examination of and comparison

between materials and courses. More relevant to instructors, the

system enables a more precise search for materials that match

particular topics and learning outcomes, and dissemination of high

quality materials and course designs.

This paper discusses the system, and analyzes the costs and ben-

efits of its features and usage. While adding courses and materials

requires some overhead, having a centralized repository of courses

and materials with a shared structure and vocabulary serves stu-

dents, instructors, and administrators, by promoting a data-driven

approach to rigor and alignment with national standards.

CCS CONCEPTS

•Human-centered computing→ Information visualization;

•Applied computing→ Education; • Social and professional

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGCSE ’21, March 13–20, 2021, Virtual Event, USA

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8062-1/21/03. . . $15.00
https://doi.org/10.1145/3408877.3432388

topics→Model curricula;Accreditation;Computer science ed-

ucation; Student assessment.

KEYWORDS

curriculum guidelines; learning materials; alignment

ACM Reference Format:

Alec Goncharow, Matthew Mcquaigue, Erik Saule, Kalpathi Subramanian,

Jamie Payton, and Paula Goolkasian. 2021. MappingMaterials to Curriculum

Standards for Design, Alignment, Audit, and Search. In Proceedings of the

52nd ACM Technical Symposium on Computer Science Education (SIGCSE ’21),

March 13–20, 2021, Virtual Event, USA. ACM, New York, NY, USA, 7 pages.

https://doi.org/10.1145/3408877.3432388

1 INTRODUCTION

Computer science skills are vital for promoting creative problem

solving [1] and fostering participation in the emerging tech-focused

global economy. In the U.S., growth in information technology and

computer science jobs is projected at 13%, about twice the rate of

all other professions [25]. In light of these needs, it is particularly

timely and important to prepare undergraduate computer science

students with high-quality learning experiences that promote re-

tention in the major. Towards that goal, instructors are called upon

to implement promising strategies in their courses, develop learn-

ing materials to increase student engagement, connect to potential

career paths, and implement inclusive pedagogical techniques.

However, it is difficult for individual instructors to meet all these

expectations. While instructors have discipline-specific expertise,

very few have formal training in pedagogy. Many are not aware of

evidence-based strategies for course design, nor do they pay suffi-

cient attention to alignment between various course components

(e.g., lectures, or assessments) within their own course, or their

course’s impact on downstream courses. High enrollment num-

bers make it harder for instructors to simultaneously pay attention

to course structure and content. Additionally, administrators are

often interested (or required) to assess their degree programs for

internal review and external accreditation. This requires instructors

to identify how their course content align with national CS and

engineering education standards, which, although beneficial, adds

another layer of complexity.

We believe that much of these problems can be alleviated by

having courses (and materials within) explicitly mapped to national



standards such as the ACM 2013 CS curriculum guidelines [16]. We

present in this paperCSMaterials (https://cs-materials.herokuapp.

com/), an open-source resource for designing and analyzing courses

that rely on that principle. By mapping all learning materials in a

class to national curriculum standards, CS Materials enables us

to improve course design in a data-driven approach by checking

coverage of topics of the class against recommended guidelines, by

aligning different components of a course, by comparing sections

of the same course, or across courses in a program.

With many materials mapped, the system can become a pub-

lic resource of courses and materials. This will be of interest to

educational researchers in the future. More immediately, it helps

instructors publicize their well designed materials to impact the

broader community and helps other instructors adopt materials that

align well with the topics and learning outcomes of their courses.

In this paper, we are interested in studying the costs and benefits

ofmapping coursematerials against accepted curriculum guidelines,

and will consider the following research questions:

RQ1: How much effort is required for an instructor to map course

materials to a classification that embodies curriculum standards?

RQ2:Will mappingmaterials to curriculum guidelines lead to better

course designs, in terms of topic coverage and alignment between

the different elements within a course or between similar courses?

RQ3: Will searching for specific materials using classification tags

that meet specific learning objecives be more effective when learn-

ing materials are mapped to curriculum guidelines?

2 RELATED WORK

We explore two primary areas of related work: (1) efforts to connect

curriculum guidelines to learning materials and (2) repositories

that support sharing and adoption of computer science educational

materials. We summarize standards that serve as the “lingua franca”

of CS education and address the limitations of existing repositories.

2.1 Curriculum Guidelines, Standards and

Mapping Approaches

We are interested in understanding curriculum standards in com-

puting, and their relationships to course design and content. The

2013 ACM computing curriculum guidelines [16], which are the

current de facto standard for undergraduate CS degree programs,

specify a ‘redefined body of knowledge, a result of rethinking the

essentials necessary for a Computer Science curriculum.’ The guide-

lines provide exemplars of actual courses and programs that can

be adopted by CS departments. The guidelines divide the body of

knowledge into knowledge areas, with each containing a set of topics

and learning outcomes. Learning outcomes are classified at 3 levels:

familiarity, usage, and assessment. Sub-areas of computing have de-

veloped their own standards, such as parallel computing [21], cyber

security [4], data science [3] and high school CS curriculum [9, 10]

which could be used instead of or in addition to the ACM 2013

guidelines. Our system allows for incorporating multiple standards,

and in the longer-term, we would define mappings to updates of a

particular standard, to keep the content current.

In recent years, we are seeing increased offerings of online

courses and programs. Quality Matters (QM) [23] is a rigorous

standard that was developed to guide instructional design of on-

line/blended/hybrid courses in a way to promotes student engage-

ment, satisfaction, and learning outcomes. A key aspect of a QM

certified course is alignment, that span the course objectives, mate-

rials and activities, all of which are student centered. Many of these

principles form the bedrock of student motivation [18], and most

also apply to face-to-face courses.

Tungare et al. [27] created a repository of computing course

syllabi indexed by the ACMComputing Curriula 2001 [17], by using

a web crawler to collect and analyze syllabi. A similar attempt

involved analyzing learning outcomes of CS1 courses spanning

207 institutions and 30 countries [8]. Dragon and Mitchell [12]

proposed a bottom up process of building concept maps relating CS

concepts and learning resources, and extending them to program

level objectives to assess student skills; our approach also has similar

goals towards improved course design.

2.2 CS Learning Material Sources

Nifty Assignments are a set of over 120 assignments, collected since

1999 through an annual competition and presented at the ACM

SIGCSE conference [22]. The selection is based on engagement,

adoptability and scalability, and targeted at early courses (CS0,

CS1, CS2). Nifty assignments now include metadata and many

use real-world data, game interactions, and/or visualization. Many

CS sub-communities followed the approach of Nifty, for instance,

Model AI [2], Groovy Graphics [14], and Peachy Parallel [13]. En-

gageCSEdu is an NCWIT sponsored repository that provides intro-

ductory CS course materials, primarily engaging assignments tar-

geted at CS0, CS1, and CS2 [19, 20]. The assignments are categorized

by engagement practices to improve student inclusiveness, confi-

dence and to broaden participation in computing. The repository

has about 237 assignments with a competition for excellence [24],

and submitted assignments are subject to peer review.CSUnplugged

curates a set of activities that bring (without computers) a phys-

icality to teaching computer science concepts [15]. There are 22

activities involving papers, blocks, crayons, and strings targeted at

K-12 education, and publicized through science fairs and museums,

and is localized in many parts of the world [28]. The CORGIS data

repository [5, 6] is a large collection of tools, datasets and resources

that can be used by educators as part of their programming assign-

ments. The datasets range across a large number of disciplines and

have been used in introductory courses, such as Computational

Thinking by Bart et al. [7]. Using real-world datasets can be highly

engaging in introductory courses. The work by Burlinson et al.

as part of the BRIDGES project illustrates integrating real-world

applications and data in data structures courses [11, 26].

2.3 Takeaways

On the one hand, the community has recognized the importance of

well accepted curriculum guidelines, that designing courses is hard,

and that alignments of topics and outcomes within modules and

within a whole course leads to student satisfaction and improved

outcomes. Yet, aligning courses and following curriculum guidelines

is currently a difficult task. On the other hand, the community has

crafted a number of assignment repositories to help improve the

quality of courses; yet these repositories are hard to use because





combining topics and learning outcomes at different levels of the

classification hierarchy to find matching materials. Indeed, two

materials m1 and m2 can be represented as a vector in a space

where each dimension is an entry in the ACM/IEEE CS curricu-

lum guidelines. Multiple distance metrics can be used to measure

similarity, for instance, the classical cosine similarity is defined as:

cos(m1,m2) =
∑
i m1(i)m2(i)
| |m1 | | | |m2 | |

. This first type of search simply returns

a list of materials ordered by similarity to the query.

The second type of search the system supports addresses the

need of instructors who might want to find materials to integrate in

their already classified course. To achieve this, the system performs

a ranked search for all the tags of the class, and present a similarity

graph of materials. From the query set S1 (the existing class) and the

results set S2, we build a bipartite graphG = (V = S1∪S2, E)where

there is an edge between a materialm1 ∈ S1 and a materialm2 ∈ S2

if their similarity is high, e.g., if cos(m1,m2) ≥ T , for a threshold

T . The bipartite graph is displayed to the user to identify relevant

materials and where they could be used. (Example in Figure 5.)

3.5 Design

The CSMaterials system is built as a web service. Our current imple-

mentation uses the ACM 2013 CS Curriculum Guidelines to classify

assignments. The service is hosted on Heroku. The data is modeled

relationally and is stored in a postgreSQL database. A Django web

server provides a RESTful API to the service and serves webpages to

provide the main interaction with the service. Webpages are made

dynamic by the use of JavaScript, the system supports dynamic

queries thanks to the jQuery library that enables asynchronous

communication with the RESTful back end. Interactivity and visu-

alization is made possible thanks to the D3 JavaScript library[9].

In the database, each assignment is associated with a title, authors,

URL and description. The classifications are usually hierarchical

and therefore they are represented with a key, the key of the par-

ent, a string description, and type (separating topics and learning

outcomes). Tags, items in the classification, dataset used, and au-

thors are associated with an assignment using a many-to-many

relationship (in join tables).

4 RESULTS: USAGE EXAMPLES

The authors have classified various materials including published

nifty assignments and some of their classes. Author Subramanian

classified a Data Structures course. Author Saule classified a dif-

ferent Data Structures course. Author Payton classified Software

Development Projects, a capstone project course. External users of

the system are currently in the process of classifying some of their

courses. In total, over 300 materials have been entered. Our findings

and an evaluation of the system are based on these experiences.

4.1 RQ1: Time to Classify Materials

The ACM classification is complex and extensive. It is necessary

to go through the classification a few times to understand the dis-

tribution of topics and learning outcomes and their relevance to a

course. For instance, a typical data structures course will map to

topics from at least three Knowledge Areas. Basic data structure

concepts, such as recursion and queues, are in the Software De-

velopment Fundamentals area. Core data structures topics, such as

sorting, Big-Oh notations, and search trees, are in the Algorithms

and Complexity area. Meanwhile, abstract data structures concepts,

such as trees and graphs, are in the Discrete Structures area.

Classifying a course is a well invested day of work. The first few

materials that are mapped to the classification scheme generally

take more time as one learns about the curriculum guidelines. After

the initial learning curve, mapping the materials goes much faster.

Overall, mapping an entire class (say 10 slide decks, 6 assessments)

takes on the order of 8 hours of work. We expect that the lessons

learned from initial classification efforts will eventually result in a

friendlier interface that will help reduce the time it takes to map a

course to the curriculum guidelines; as the system gets populated

with sufficient data, we will look into more automated techniques

to further reduce the required effort. While it is not a small amount

of work, building the mappings enables the other tasks that we

describe in this paper, and should be considered as part of the course

design/preparation process, that can lead to long-term benefits.

4.2 RQ2: Mapping Courses for Better Design

4.2.1 Topic Coverage.

A class may be covering many topics and still have room for more.

The ACM curriculum guidelines are detailed and specific. As such, a

typical course can cover many of the topics in the guidelines. For in-

stance Author Payton’s software development projects (Figure 2(c))

course covers most of the topics in the Software Engineering Knowl-

edge Area, but also covers a fair number of entries from Human

Computer Interaction and Social Issue and Professional Practice. Top-

ics relating to secure software engineering could be covered in that

class but probably would be difficult to integrate. Meanwhile, top-

ics relating to ethics and professional practice could be integrated

without much additional effort or class time. In this case, using the

CS Materials system helped to highlight where ethics content could

be woven into this course. Using this kind of information across

courses, a curriculum committee may decide, for example, that a

separate ethics class is not necessary and where ethics content can

be integrated into other courses.

Classifyingmaterialsmakes you think about design choices. While

classifying, instructors notice topics and learning outcomes that

the material or the class are not covering. The hit tree presented

in Section 3.2 can also help the user to investigate the coverage of

a particular course. This can lead to reflection on coverage gaps.

For instance, classifying his data structure course made Author

Subramanian (Figure 2(a)) realize that the outcomes Choose the ap-

propriate data structure for modeling a given problem and Compare

alternative implementations of data structures with respect to perfor-

mance should have been central objectives and were not sufficiently

emphasized.

4.2.2 Alignment Within and Between Courses. Figure 3(a) presents

the alignment of the mappings of a data structures course between

Author Saule and Author Subramanian’s sections on a orange-

white-purple diverging scale. Most of the heavy nodes are on core

data structure topics (complexity, Big-Oh analysis, trees, graphs,

abstract data types) and are light purple or light orange showing







ACKNOWLEDGMENTS

This work was supported by grants from the National Science Foun-

dation, Award Nos. OAC-1924057, CCF-1652442, DUE-1726809.

REFERENCES
[1] 2011. Successful K-12 STEM education: Identifying effective approaches in science,

technology, engineering, and mathematics. National Research Council and others.
[2] AAAI. 2018. Model AI Assignments. http://modelai.gettysburg.edu/
[3] ACM Data Science Task Force. 2019. Computing Competencies for Undergraduate

Data Science Curricula (Draft). Technical Report. ACM. available at http:
//www.cs.williams.edu/~andrea/DSTF/index.html.

[4] National Security Agency. 2018. Centers of Academic Excellence in Cyber Defense
(CAE-CD) – 2019 Knowledge Units. Technical Report. NSA.

[5] A.C. Bart, E. Tilevich, S. Hall, T. Allevato, and C.A. Shaffer. 2014. Transforming
Introductory Computer Science Projects via Real-time Web Data. In Proc. of ACM
SIGCSE. 289–294.

[6] Austin Cory Bart. 2016. CORGIS Datasets Project: The Collection of Really Great,
Interesting, Situated Datasets. https://think.cs.vt.edu/corgis/.

[7] Austin Cory Bart, Ryan Whitcomb, Dennis Kafura, Clifford A. Shaffer, and Eli
Tilevich. 2017. Computing with CORGIS: Diverse, Real-world Datasets for Intro-
ductory C omputing. ACM Inroads 8, 2 (March 2017), 66–72.

[8] Brett A. Becker and Thomas Fitzpatrick. 2019. What Do CS1 Syllabi Reveal
About Our Expectations of Introductory Programming Students?. In Proceedings
of the 50th ACM Technical Symposium on Computer Science Education (SIGCSE ’19).
ACM, New York, NY, USA, 1011–1017. https://doi.org/10.1145/3287324.3287485
http://doi.acm.org/10.1145/3287324.3287485.

[9] College Board. Fall 2014. Computer Science A: Course Description. College Board
AP. https://apcentral.collegeboard.org/pdf/ap-computer-science-a-course-
description.pdf

[10] College Board. Fall 2017. AP Computer Science Principles, Including the Curriculum
Framework. College Board.

[11] David Burlinson, Mihai Mehedint, Chris Grafer, Kalpathi Subramanian, Jamie Pay-
ton, Paula Goolkasian, Michael Youngblood, and Robert Kosara. 2016. BRIDGES:
A System to Enable Creation of Engaging Data Structures Assignments with
Real-World Data and Visualizations. In Proceedings of ACM SIGCSE 2016. 18–23.

[12] Toby Dragon and Elisabeth Kimmich Mitchell. 2019. TECMap: Technology-
Enhanced Concept Mapping for CurriculumOrganization and Intelligent Support.

In Computer Supported Education, Bruce M. McLaren, Rob Reilly, Susan Zvacek,
and James Uhomoibhi (Eds.). Springer International Publishing, Cham, 191–213.

[13] EduHPC. 2018. Peachy Parallel Assignments. http://tcpp.cs.gsu.edu/curriculum/
?q=peachy

[14] Groovy Graphics Assignments. Accessed July 2019. https://blog.siggraph.org/
tag/groovy-graphics-assignments/.

[15] Computer Science Education Research Group. [n.d.].
https://csunplugged.org/en/.

[16] Joint Taskforce on ACM Curricula. 2013. Computer Science Curricula 2013:
Curriculum Guidelines for Undergraduate Degree Programs in Computer Science.
ACM/IEEE Computer Society. https://www.acm.org/binaries/content/assets/
education/cs2013_web_final.pdf

[17] Joint Taskforce on Computing Curricula. 2001. Computing Curricula 2001 Com-
puter Science. ACM/IEEE Computer Society. http://www.acm.org/binaries/
content/assets/education/curricula-recommendations/cc2001.pdf

[18] B.D. Jones. 2009. Motivating Students to Engage in Learning: The MUSIC Model
of Academic Motivation. International Journal of Teaching and Learning in Higher
Education 21, 2 (2009), 272–285.

[19] Alvaro Monge, Beth A. Quinn, and Cameron L. Fadjo. 2015. EngageCSEdu: CS1
and CS2 Materials for Engaging and Retaining Undergraduate CS Students. In
Proc. of ACM SIGCSE (SIGCSE ’15). 271–271. https://www.engage-csedu.org/

[20] NCWIT. 2018. https://www.engage-csedu.org/
[21] NSF/IEEE-TCPP Curriculum Working Group. 2012. NSF/IEEE-TCPP Curriculum

Initiative on Parallel and Distributed Computing : Core Topics for Undergraduates.
Technical Report. CDER. available at http://www.cs.gsu.edu/~tcpp/curriculum/
sites/default/files/NSF-TCPP-curriculum-version1.pdf.

[22] Nick Parlante. 2018. Nifty Assignments. http://nifty.stanford.edu/
[23] QM. 2018. Quality Matters. https://www.qualitymatters.org/
[24] Gina Sprint and Andy O’Fallon. 2018. Engaging Programming Assignments

to Recruit and Retain CS0 Students: (Abstract Only). In Proc. of ACM SIGCSE
(SIGCSE ’18). 1093–1093.

[25] Alan Lacey Stella Fayer and Audrey Watson. 2017. U.S. Bureau of Labor Statistics
Report on STEMOccupations: Past, Present, and Future. https://bit.ly/2mRxGQU.

[26] Kalpathi Subramanian. 2018. BRIDGES (Bridging Real-world Infrastructure
Designed to Goal-align, Engage, and Stimulate),. http://bridgesuncc.github.io/

[27] Manas Tungare, Xiaoyan Yu, William Cameron, GuoFang Teng, Manuel A. Pérez-
Quiñones, Lillian Cassel, Weiguo Fan, and Edward A. Fox. 2007. Towards a
Syllabus Repository for Computer Science Courses. In Proc. of ACM SIGCSE
(SIGCSE ’07). 55–59.

[28] Jean-Marc Vincent (Ed.). 2017. L’informatique débranchée. Edutions Pole.


