COMMUN. MATH. SCI. (© 2021 International Press
Vol. 19, No. 2, pp. 325-353

DEEP FICTITIOUS PLAY FOR
STOCHASTIC DIFFERENTIAL GAMES*

RUIMENG HUT

Abstract. In this paper, we apply the idea of fictitious play to design deep neural networks
(DNNs), and develop deep learning theory and algorithms for computing the Nash equilibrium of
asymmetric N-player non-zero-sum stochastic differential games, for which we refer as deep fictitious
play, a multi-stage learning process. Specifically at each stage, we propose the strategy of letting
individual player optimize her own payoff subject to the other players’ previous actions, equivalent
to solving N decoupled stochastic control optimization problems, which are approximated by DNNs.
Therefore, the fictitious play strategy leads to a structure consisting of N DNNs, which only communi-
cate at the end of each stage. The resulting deep learning algorithm based on fictitious play is scalable,
parallel and model-free, i.e., using GPU parallelization, it can be applied to any N-player stochastic
differential game with different symmetries and heterogeneities (e.g., existence of major players). We
illustrate the performance of the deep learning algorithm by comparing to the closed-form solution of
the linear quadratic game. Moreover, we prove the convergence of fictitious play under appropriate
assumptions, and verify that the convergent limit forms an open-loop Nash equilibrium. We also discuss
the extensions to other strategies designed upon fictitious play and closed-loop Nash equilibrium in the
end.
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1. Introduction

In stochastic differential games, a Nash equilibrium refers to strategies by which
no player has an incentive to deviate. Finding a Nash equilibrium is one of the core
problems in noncooperative game theory, however, due to the notorious intractability
of N-player game, the computation of the Nash equilibrium has been shown extremely
time-consuming and memory demanding, especially for large N [16]. On the other
hand, a rich literature on game theory has been developed to study consequences of
strategies on interactions between a large group of rational “agents”, e.g., system risk
caused by inter-bank borrowing and lending, price impacts imposed by agents’ optimal
liquidation, and market price from monopolistic competition. This makes it crucial
to develop efficient theory and fast algorithms for computing the Nash equilibrium of
N-player stochastic differential games.

Deep neural networks with many layers have been recently shown to do a great job
in artificial intelligence (e.g., [2,44]). The idea behind is to use compositions of sim-
ple functions to approximate complicated ones, and there are approximation theorems
showing that a wide class of functions on compact subsets can be approximated by a
single hidden layer neural network (e.g., [59]). This brings a possibility of solving a
high-dimensional system using deep neural networks, and in fact, these techniques have
been successfully applied to solve stochastic control problems [1,20,33].

In this paper, we propose to build deep neural networks by using strategies of
fictitious play, and develop parallelizable deep learning algorithms for computing the
Nash equilibrium of asymmetric N-player non-zero-sum stochastic differential games.
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We consider a stochastic differential game with N players, and each player 1€Z:=
{1,2,...,N} has a state process X; € R? and takes an action o! in the control set A CR*.
The dynamics of the controlled state process X? on [0,7] are given by

dX] =b"(t, X, 00)dt +0' (t, Xy, 00) AW] +0°(t, Xp, ) AWY,  Xi=a', i€, (1.1)

where W:=[W° W1 ... WN] are N+1 m-dimensional independent Brownian mo-
tions, (b%,0%) are deterministic functions: [0,7] x RN x AN <5 R4 x R¥*™. The N
dynamics are coupled since all private states X, =[X},...,X{"] and all the controls'
ai=[al,...,al] affect the drifts b’ and diffusions o.

Each player’s control ! lives in the space A=H?2(A) of progressively measurable
A-valued processes satisfying the integrability condition:

T
E[/ o |? di] < oo. (1.2)
0
Using the strategy € AV, the cost associated to player i is of the form:

Ji(a) =E /0 Pt Xoyan) dt 4+ g (X7) ||

where the running cost f7:[0,7] x R¥*N x AN <R and terminal cost ¢g*: R¥*N <3 R are
deterministic measurable functions.

In solving stochastic differential games, the notion of optimality of common interest
is the Nash equilibrium. A set of strategies a* = (a*,...,a™¥*) € AV is called a Nash
equilibrium if

VieZ and €A, JY(a®)<J(B,a""), (1.3)

where ac~%* represents strategies of players other than the i-th one

—1,%

a W i=[ab, T ot eV e AN

In fact, depending on the space where one searches for actions (the information structure
available to the players), the types of equilibria include open-loop (Wi 4), closed-loop
(X[0,4), and closed-loop in feedback form (X;). We start with the setup (1.3) which
corresponds to the open-loop case. Theoretically, it is more tractable, due to the indirect
nature (i.e. player ¢ will not change his strategy when player j’s strategy changes
because player i can not observe or feel the change). Practically, there are applications
falling into this framework, for instance, the prisoner’s dilemma from game theory.
This is the scenario that when two people get arrested and investigated, they are in
solitary confinements and can not communicate with each other, nor observe the other’s
choice. In this case, it is reasonable to assume that o} does not depend on the past
decisions o ) nor the players’ states X|g ) as this information is not available under
this framework. The generalization of deep learning theory for closed-loop cases will be
discussed in Section 5.4.

L Although in the literature of math finance, one usually models b’ and o to only depend on player
i’s own action, but it is common in literature of economics that player i’s private state is also influenced
by others’ actions, e.g., ai is a price set by companies and Xg is the production quantity. To be general,
we include this feature in our model, which yields (1.1).
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An alternative method of solving N-player stochastic differential games is via mean-
field games, introduced by Lasry and Lions in [41-43] and by Huang, Malhamé and
Caines in [31,32]. The idea is to approximate the Nash equilibrium by the solution of
mean field equilibrium (the formal limit of N — o0o) under mild conditions [9], which
leads to an approximation error of order N ~1/(4+4) assuming that the players are indis-
tinguishable, i.e., all coefficients (b,0%, f*, ") are free of i. We refer to the books [10,11]
and the references therein for further background on mean-field games. However, be-
yond the case of a continuum of infinitesimal agents with or without major players, the
mean-field equilibrium may not be a good approximation in general. In addition, the
mean-field game often exhibits multiple equilibria, some of which do not correspond to
the limit of N-player game as N — oo, e.g., in the optimal stopping games [55]. More-
over, when the number of players is of middle size (e.g., N ~50), the approximation
error made by the mean-field equilibrium is large while direct solvers based on forward-
backward stochastic differential equations (FBSDEs) or on partial differential equations
(PDEs) are still computationally unaffordable. Therefore, it is demanding to develop
new theory and algorithms for solving the N-player game.

The idea proposed in this paper is natural and motivated by the fictitious play, a
learning process in game theory firstly introduced by Brown in the static case [6,7] and
recently adapted to the mean field case by Cardaliaguet [5,8] and coauthors. In the
fictitious play, after some arbitrary initial moves at the first stage, the players myopically
choose their best responses against the empirical strategy distribution of others’ action
at every subsequent stage. It is hoped that such a learning process will converge and
lead to a Nash equilibrium. In fact, Robinson [62] showed this holds for zero-sum games,
and Miyazawa [49] extended it to 2 x 2 games. However, Shapley’s famous 3 x 3 counter-
example [63] indicates that this is not always true. Since then, many attempts are made
to identify classes of games where the global convergence holds [3, 14,27, 28, 48,52, 53],
and where the process breaks down [19,35,38,50], to name a few.

Based on fictitious play, we propose a deep learning theory and algorithm for com-
puting the open-loop Nash equilibria. Unlike closed-loop strategies of feedback form,
which can be reformulated as the solution to N-coupled Hamilton-Jacobi-Bellman (HIB)
equations by dynamic programming principle (DPP), open-loop strategies are usually
identified through FBSDEs. The existence of explicit solutions to both equations highly
depends on the symmetry of the problem, in particular, for most cases where explicit
solutions are available, the players are statistically identical. Therefore, an efficient and
accurate numerical scheme is crucial for solving such FBSDEs. Traditional ways run
into the technical difficulty of the curse of dimensionality, thus are not feasible when the
dimensionality goes beyond 5. Observing impressive results solved by deep learning on
various challenging problems [2,39,44], we shall use deep neural networks to overcome
the curse of dimensionality for moderately large N and asymmetric games. We first
boil down the game into N stochastic control subproblems, which are conditionally in-
dependent given past play at each stage. Since we first focus on open-loop equilbria (as
opposed to closed-loop ones) in each subproblem, the strategies are considered as gen-
eral progressively measurable processes (as opposed to functions of (¢,X;)). Therefore,
without the feedback effects, one can design a deep neural network to solve stochastic
control subproblems individually. The control at each time step is approximated by a
feed-forward subnetwork, whose inputs are initial states Xo and noises Wjg 4 in lieu of
the definition of open-loop equlibria. For player i’s control problem, X ~* is generated
using strategies from past, i.e., considered as fixed while player ¢ optimizes herself.

Main contribution. The contribution of deep fictitious play is three-fold. Firstly,
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our algorithm is scalable: in each round of play, the N subproblems can be solved in
parallel, which can be accelerated by the feature of multi-GPU. Secondly, we propose a
deep neural network for solving general stochastic control problem where strategies are
general processes instead of feed-back form. In lack of DPP, algorithms from reinforce-
ment learning are no longer available. We approximate the optimal control directly in
contrast to approximating value functions [60]. Thirdly, the algorithm can be applied
to asymmetric games, as for each player, there is a corresponding neural network.

Related literature. Most literature in deep learning and reinforcement learning algo-
rithms in stochastic control problems uses DPP with which, the problem can be solved
backwardly, i.e., to find the optimal control at the terminal time, and then decide the
previous decision. Among them, let me mention the recent works [1,33], which approxi-
mate the optimal policy by neural networks in the spirit of deep reinforcement learning,
and the approximated optimal policy is obtained in a backward manner. While in our
algorithm, we stack these subnetworks together to form a deep network and train them
simultaneously. In fact, our structure is inspired by Han and E [20]. The difference is
that they feed the network with X; seeking for feedback-form controls, while we feed the
initial states X and noises Wiy 4 for each player’s network, seeking for open-loop Nash
equilibrium. In terms of using fictitious play to solve multi-agent problems, [26,40,47]
design reinforcement learning algorithms assuming the system (1.1) is unknown; while
our algorithm needs the knowledge of b, ¢, f* and ¢°.

Organization of the paper. In Section 2, we systematically introduce the deep
fictitious play theory, and implementation of deep learning algorithms using Keras with
GPU acceleration. In Section 3, we apply deep fictitious play to linear quadratic games,
and prove the convergence of fictitious play under proper assumptions on parameters,
with the limit forming an open-loop Nash equilibrium. Performance of deep learning
algorithms are presented in Section 4, where we simulate stochastic differential games
with a large number of players (e.g., N =24). We make conclusive remarks, and discuss
the extensions to other strategies of fictitious play and closed-loop cases in Section 5.

2. Deep fictitious play

In this section, we describe the theory and algorithms of deep fictitious play, which
by name, is known to build on fictitious play and deep learning. We first summarize
all the notations that shall be used as below. Given a probability space (2,.F,P), we
consider

o W=[Wo W' ... W¥], a (N+1)-vector of m-dimensional independent Brow-
nian motions;

o F={F;,0<t<T}, the augmented filtration generated by W
H2.(R9), the space of all progressively measurable R?-valued stochastic pro-
cesses a: [0,T] x Q= R? such that el :E[fOT |oz,5|2 dt] < oo.

o A=HZ(A), the space of admissible strategies, i.e., elements in A satisfy (1.2).
AV =AxAx...xA, aproduct of N copies of A;

o a=[al,a?,...,a"], a collection of all players’ strategy profiles. With a neg-
ative superscript, a™*'= [al,...,a’_l,a”‘l,...704N] means the strategy profiles
excluding player 4’s. If a non-negative superscript n appears (e.g., «™), this
N-tuple stands for the strategies from stage n. When both exist, a™"" =
[@bm . af=bn qittn N s a (N —1)-tuple representing strategies ex-
cluding player i at stage n. We use the same notations for other stochastic
processes (e.g., X 4, X");
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We assume that the players start with an initial smooth belief a® € AN. At the
beginning of stage n+1, a™ is observable by all players. Player ¢ then chooses best
response to her beliefs about opponents described by their play at the previous stage
a~ 5", Then, player i faces an optimization problem:

inf J'(Bha”), JH(Bha ") =E

r 1 ; ; .
At / FXE (Blar ™) dtrg (X)), (1)

where X =[X}* X>* ... X"?] are state processes controlled by (8%, a~"):

AX;* =0 (t, X2, (B, o ™)) dt+ ol (6, X7, (Bl 0 ™)) AW
+o0(t, X, (Bl 0y ™) AW, X5 =at,

for all £€Z. Denote by a*"*1 the minimizer in (2.1):

Q"= argmin Ji(fa "), VieZ,neN, (2:2)
Biea

i,n+1 T,n+1

we assume o exists throughout the paper. More precisely, « is the player i’s
optimal strategy at the stage n+ 1 when her opponents’ dynamics (1.1) evolve according

to o™, j#i. All players find their best responses simultaneously, which together form
a™tl,

REMARK 2.1. Note that the above learning process is slightly different than the usual
simultaneous fictitious play, where the belief is described by the time average of past
play: %Zzzla_“k. We shall discuss this with more details in Section 5.2.

As discussed in the introduction, in general one can not expect that the player’s
actions always converge. However, if the sequence {a™}2° ; ever admits a limit, denoted
by a®, we expect it to form an open-loop Nash equilibrium under mild assumptions.
Intuitively, in the limiting situation, when all other players are using strategies o>,
J # 1, by some stability argument, player i’s optimal strategy to the control problem (2.1)
should be o>, meaning that she will not deviate from o>, which makes (a;*)Y ; an
open loop equilibrium by definition. Therefore, finding an open-loop Nash equilibrium
consists of iterating this play until it converges.

We here give an argument under general problem setup using Pontryagin stochastic
maximum principle (SMP). For simplicity, we present the case of uncontrolled volatility
without common noise: o'(t,z,a)=0'(t,x), Vi€ Z, c° =0, and refer to [11, Chapter 1]
for generalization. The Hamiltonian H*"1:[0,T] x Q x RN x RN x A< R for player
1 at stage n+1 is defined by:

Hl7n+1 (t7w7w7y7a) :b(t7w7(a’a_l7n>) y+fz(t’w7(a,a_l’n)),

where the dependence on w is introduced by a=%". We assume all coefficients (b¢,0?, f?)
are continuously differentiable with respect to (z,a) € R x AN; g% is convex and con-
tinuously differentiable with respect to & € R4“V; A€R¥ is convex; the function H*"+1
is convex P-almost surely in (x,a). By the sufficient part of SMP, we look for a control
&bt € A of the form:

~t,n+1

& (t,w,x,y) €argmin H*" ! (t,w, x,y,a),

a€cA
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and solve the resulting forward-backward stochastic differential equations (FBSDEs):
X =B X (6 (XY e ) de o (6 X AW,

N
dyvtf,n+1 _ _amzHierl(t’XZhLl’Y%n%»l’ai,n+1(t’thJrl’Y’thrl))dt_i_ZZtZ,jerl thj,
j=1
Xomh =ah, vt =040 (XY, (el
(2.3)
If there exists a solution (X1 Yy "t Zntl)e H2 (RN x RNV x RIVXMN) *then an

optimal control to problem (2.1) is given by plugging the solution into the function
di,nJrl:

Qi = gintl (g xntl yny (2.4)

Now suppose (2.3) is solvable, the sequence given in (2.4) converges to a® as n — oo.
Denote by (X *°,Y >, Z>°) the solution of (2.3) with a™ being replaced by a*. If the
system possesses stability, then (XY >, Z°°) is also the limit of (X" +! Y+l Zntl)
In this case, given other players using a~%°°, the optimal control of player 7 is

A (t, X, Y, ) = lim &*"(t, X", Y;") = lim o*"=a®>,

n—oo n—oo
where we have used the stability of (2.3) and the continuous dependence of H on the
parameter ac~“" for the first identity, the solvability of (2.3) for the second identity,
and the convergence of o®™ for the last identity. Therefore, one can put appropriate
conditions on (b%,0%, f%,g") to ensure these, and we refer to [45,46,57, 58] for detailed
discussions. Remark that, all assumptions are satisfied for the case of linear-quadratic
games, and thus all the above arguments can go through. We will give more details in
Section 3.

In general, problem (2.2) is not analytically tractable, and one needs to solve it
numerically. Next we present a novel architecture of DNN and a deep learning algorithm
that has a parallelization feature. It starts with a brief introduction on deep learning,
followed by the detailed deep fictitious play algorithm.

2.1. Preliminaries on deep learning. Inspired by neurons in human brains,
a neural network (NN) is designed for computers to learn from observational data. It
has become an effective tool in many fields including computer vision, speech recogni-
tion, social network filtering, image analysis, etc., where results produced by NNs are
comparable or even superior to human experts. An example of NNs performing well
is image classification, where the task is to identify which of a set of categories a new
observation belongs to, on the basis of a training set of data containing observations of
known category membership. Denote by x the observations and z its category. This
problem consists of efficient and accurate learning of the mapping from observations to
categories x < z(x), which can be complicated and non-trivial. Thanks to the universal
approximation theorem and the Kolmogorov-Arnold representation theorem [15,29,37],
NNs are able to provide good approximations to non-trivial mapping.

Our goal is to use deep neural networks to solve the stochastic control problem (2.2).
NN are made by stacking layers one on top of another. Layers with different functions or
neuron structures are called differently, including fully-connected layer, constitutional
layer, pooling layer, recurrent layers, etc.. As our algorithm 1 will focus on fully-
connected layers, we here give an example of feed-forward NN using fully-connected
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layers in Figure 2.1. Nodes in the figure represent neurons and arrows represent the
information flow. As shown, information is constantly “fed forward” from one layer
to the next. The first layer (leftmost column) is called the input layer, and the last
layer (rightmost column) is called the output layer. Layers in between are called hidden
layers, as they have no connection with the external world. In this case, there is only
one hidden layer with four neurons.

output

Fic. 2.1. An illustration of a simple feedforward neural network.

We now explain how information is processed in NNs. For fully-connected layers,
every neuron consists of two kinds of parameters, the weights w and the bias b. Each
layer can choose an activation function, then an input = goes through it gives f(w-z+b).
In the above example of NN, the data & = [x1,22,23] fed to neuron y; outputs f(w; &+
b;), 7=1,...,4, which yields y = [y1,¥2,y3,y4] as the input of neuron z;. The final output
is 21 = f(w, -y +b,). In traditional classification problems, categorical information z(x)
associated to the input « is known, and the optimal weights and bias are chosen to
minimize a loss function L:

c(w,b):=L(z,z(x)), (2.5)

where z is the output of the NNs, as functions of (w,b), and z() is given from the data.
The process of finding optimal parameters is called the training of an NN.
The activation function f and loss function L are chosen at the user’s preference,

and common choices are sigmoid —, ReLU T for f, and mean squared error

1+e
S|z — z()|? or cross entropy — 3 z(z)log(z) for L in (2.5). In terms of finding the opti-
mal parameters (w,b) in (2.5), it is in general a high-dimensional optimization problem,
and usually done by various stochastic gradient descent methods (e.g. Adam [36,61],
NADAM [17]). For further discussions, we refer to [30, Section 2.1] and [33, Section
2.2].

However, solving (2.2) is not in line with the above procedure, in the sense that
there is no target category z(x) assigned to each input x, and consequently, the loss
function is not a distance measured between the network output z and z(z). We aim
at approximating the optimal strategy at each stage by feedforward NNs. What we
actually use from NN is its ability of approximating complex relations by composition
of simple functions (by stacking fully connected layers) and finding the (sub-)optimizer
with its well-developed built-in stochastic gradient descent (SGD) solvers. We shall
explain further the structures of NNs in the following section.

2.2. Deep learning algorithms. We introduce the algorithms of deep learning
based on fictitious play by describing two key parts as below.
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2.2.1. Part I: solve a stochastic control problem using DNN. We in fact
solve a time discretization version of problem (2.2). Partitioning [0,7] into Np equally-
spaced intervals, with the time step h=T/Np. Denote by F:={F;,0<k<Nrp} the
“discretized” filtration with Fj, = o{W;;,,0<j <k}. A discrete-time analogy of (2.2) is:

a" = argmin ji(ﬁ’:;d_i’”), (2.6)
{Bin€Finty

where
~ Nr—1 .
JH(Bha") =K [ Z f (kh,th,(Bih,d,;,:’”)) h+g’(XT)1 , (2.7)
k=0
and each entry X/, in Xy, follows the Euler scheme of (1.1) associated to the strategy
BYif £=1, and to &4 if £#£i:
Xlicsyn =X+ 0" kb, X, (B G, D+ 0 (e, Xions (B 6™ ) (Wi = Wikn)
+0° (kh, X, (ﬁlihvdl:iz’n))(w(ok+1)h -Wi), (€T (2.8)

Remark that the above time discretization uses Euler scheme, and thus leads to a weak
error of O(h) and a strong error of O(v/h).

In the discrete setting, 3%, € F, is interpreted as Bi = Bi, (X0, Wh,...,Wgp). Our
task is to approximate the functional dependence of the control on noises. Similar to
the strategy used in [20], we implement this by a multilayer feedforward sub-network:

Bin~ Bin(Xo,Wh, ..., Winl0}1), (2.9)

where 6%, denotes the collection of all weights and biases in the k' sub-network for
player 7. Then, at stage n—+ 1, the optimization problem for player ¢ becomes

NT—l
(B [ > £ (kb Xins (Bl 0a) 6™ ) ot o <XT>] . (210
Orn k:TO k=0

Denote by 02’;;“ the minimizer of (2.10), then the approximated optimal strategy a®"+!

is given by (2.9) evaluated at 92}7 1. Note that even though we only write explicitly
the dependence of 3%’s on ¢, it affects all X*’s through interactions (2.8). In fact,
X!, depends on {96’"“,...,92;?_"‘11),1}, for all /€Z. Therefore, finding the gradient in
minimizing (2.10) is a non-trivial task. Thanks to the key feature of NNs, computation
can be done via a forward-backward propagation algorithm derived from chain rule
composition [54].

The architecture of the NN for finding &»"*' is presented in Figure 2.2: “Input-
Layer” are inputs of this network; “Rcost” and “Tcost”, representing running and ter-
minal cost, contribute to the total cost J%; “Sequential” is a multilayer feedforward
subnetwork for control approximation at each time step; “Concatenate” is an auxiliary
layer combining some of previous layers as inputs of “Sequential”.

There are three main kinds of information flows in the network for each period
[kh,(E+1)h], k=0,...Np—1:

(1) State:=(Xo,Wh,...,Wgs) — B35, given by “Sequential” layer. It is an L-layer
feed-forward subnetwork to approximate the control of player ¢ at time kh, contain-
ing parameters 9};h to be optimized.
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dW_L: InputLayer

.

—I State_1: Concatenate

b

State_2: Concatenate

| X_0/State_0: InputLayer

/

‘ beta_0: Sequential

alpha_0: InputLayer dW_2: InputLayer

X_I: Reost alpha_1: InputLayer beta_1: Sequential

I

X_2: Reost

alpha_2: InputLayer

‘ beta_2: Sequential ’ dW_3: InputLayer

X_3: Reost

Total_Cost_Layer: Tcost

F1G. 2.2. Illustration of the network architecture for problem (2.10) with Np =T =3.

(2) (Xkn:Bip-aen™, AW s 1yn .= Wies1yn — Win) = X(k+1)n given by “Rcost” layer.
This layer possesses two functions. Firstly, it computes the running cost at time kh
using (Xxn, B4y, 05, "), where B, is produced from previous step. The cost is then
added to the final output. Secondly, it updates states value X415 via dynamics
(2.8), using Sy, for player i and using a,;,f” for player j #14 which are inputs of the
network. No parameter is minimized at this layer.

(3) (Statexn,dW (441)n) — State(,41), given by “Concatenate” layer. This layer com-
bines two previous ones together, acting as a preparation for the input of “Sequen-
tial” layer. No parameter is minimized at this layer.

At time T'= Np x h, the terminal cost is calculated using X7 and added to the final
output via “Tcost” layer. With these preparations, we introduce the deep fictitious play
as below.

2.2.2. Part II: find an equilibrium by fictitious play. Here we use a
flowchart to describe the algorithm of deep fictitious play (see Algorithm 1).

2.3. Implementation.

Computing environment. The Algorithm 1 described in Section 2.2.2 is implemented
in Python using the high-level neural network API Keras [13]. Numerical examples will
be presented in Section 4. All experiments are performed using Amazon EC2 services,
which provide a variety of instances for computing acceleration. All computations use
NVIDIA K80 GPUs with 12GiB of GPU memory on Deep Learning Amazon Machine
Image running on Ubuntu 16.04.

Parallelizability. As N going relatively large, to make computation manageable,
one can distribute Step 5—9 to several GPUs. That is, assigning each available GPU
the task of training a subset of neural networks, where this subset is fixed from stage
to stage. This will speed up the computation time significantly, as peer-to-peer GPU
communications are not needed in the designed algorithm.

Input, output and parameters for neural networks. Before training, we sample
W:{WghERm,iEI}g:Tl, which, together with the initial states X and initial be-
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Algorithm 1 Deep Fictitious Play for Finding Nash Equilibrium
Require: N = # of players, Ny = # of subintervals on [0,T], M = # of training paths,
M'" = # of out-of-sample paths for final evaluation, al= {a%g cACRF EI}iV:T(;l
= initial belief, Xo={x} € R? i€ T} = initial states
Create N separated deep neural networks as described in Section 2.2.1
Generate M sample paths of BM: W = {W}, €R™,i € TU{0}} 07,
n<+0
repeat
n<n+1
for i+ 1 to N do
(Continue to) Train i* NN with data {Xo,a " '={alr ' j€T\
{ihZ, W) | .
Obtain the approximated optimal strategy o™ and cost J*(a*™;a
9:  end for
10:  Collect optimal policies at stage n: a” < (al'",...,«

7i7n71) _ Ji(ai,nfl.afi,n72)| }

—i,n—l)

®

N,n)

i€T Ji(ai,n—l;a—i,n—Q)

11: Compute relative change of cost err™ ::max{ |JZ *
12: until err™ go below a threshold

13: Generate M’ out-of-sample paths of BM for final evaluation

14: n'«0

15: repeat

16: n'<n'+1

17:  Evaluate " NN with { X, a~ 5" =1 out-of-sample paths}, VieT

18:  Obtain o™ and J" := Ji(a"" ;a7 1) VieT

19: until J*" converges in n’, Vie T

20: return The optimal policy ai’”', and the final cost for each player J i

lief aoz{a € ACR* ZGI}NT ! are the inputs of NNs. Adam, a variant of SGD
that adaptlvely estimates lower-order moments, is chosen to optimize the parameters
{6,171, The hyper-parameters set for Adam solver follows the original paper [36].
Regarding the architecture of “Sequential”, it is a L-layered subnetwork. We set L =4,
with 1 input layer, 2 hidden layers, and 1 output layer containing k nodes. Rectified
linear unit is chosen for hidden layers while no activation is applied to the output layer.
We also add Batch Normalization [34] for hidden layers before activation. This method
performs the normalization for each training mini-batch to eliminate internal covariate
shift phenomenon, and thus frees us from delicate parameter initialization. It also acts
as a regularizer, in some cases eliminating the need for Dropout. Note that the choice
of L and size of {Qkh}N 71 are empirical. For testing problems that have benchmark
solutions, one can do grld—search method to select the one with the best performance in
the validation set. However, for real problems there is no universal rule for all problem
settings.

Parameters of the network are initialized at Step 1. In Step 7, training continues
from previous stage without re-initialization. This is because, although opponents’
policies change from stage to stage, they will not vary significantly and parameter
values from previous stage should be better than a random initialization. For fixed
computational budget, instead of using the stopping criteria in Step 12 one can terminate
the loop until n reaches a predetermined upper bound 7. In Step 7, the number of
epochs to train the model at every single stage does not need to be large (at the scale
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of hundreds). This is because we are not aiming at a one-time accurate approximation
of the optimal policy. Especially at the first few rounds when opponents’ policies are
far from optimal, pursuing accurate approximation is not meaningful. Instead, by using
small budget to obtain moderate accuracy at each iteration, we are able to repeat the
game for more times. In summary, for the two computational scheme: large n small
epochs, and small 7 large epochs, the former one is better.

If opponents’ policies stay the same from stage to stage, then the two schemes receive
the same accuracy. This is justified by the following argument: Suppose opponents’
policies stay the same, then player i essentially faces the same optimization problem
from stage to stage. Since we do not re-initialize network parameters in Step 7, the
difference between the two schemes is to train the same problem with small epochs and
large rounds wvs. large epochs and small rounds. This is the same in terms of SGD
training, thus should lead to the same relative error. In reality, the opponents’ policies
are updated from time to time, and the former scheme enables us to obtain player i’s
reaction with more updated belief of his opponents. Step 15-19 are not computationally
costly, and the value functions usually converge after several iterations in our numerical
study.

3. Linear-quadratic games

Although the deep fictitious theory and algorithm can be applied for any N-player
game, the proof of convergence is in general hard. Here we consider a special case of
linear-quadratic symmetric N-player games, and analyze the convergence of a” defined
in (2.2). The strategy analyzed here will provide an open-loop Nash equilibrium, as
proved at the end of the section.

We follow the linear-quadratic model proposed in [12], where players’s dynamics
interact through their empirical mean:

dX;=[a(X,— X})+al]dt+o (de£+ \/1fp2thi) c Xp=a', Xi=—> X[
1

(3.1)
Here {W/,0<i< N} are independent standard Brownian motions (BMs). Each player
i€{1,2,...,N} controls the drift by o} in order to minimize the cost functional

2] -

N
1=

T
Ji<a1,...,aN>=E{/ ff(xhaz‘)dwgi(XT)}, (3.2)
0
with the running cost defined by

N
, 1 A . 1 ,
fle.m)= g0t ~qae-a)+5@-a T=F3 e

DN

and the terminal cost function g° by

All parameters a,e,c,q are non-negative, and ¢> < ¢ is imposed so that f%(x,«) is convex
in (z,a). In [12], X} is viewed as the log-monetary reserves of bank i at time . For
further interpretation, we refer to [12].

In the spirit of fictitious play, the N-player game is recasted into N individual
optimal control problems played iteratively. The players start with a smooth belief
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of their opponents’ actions a’. At stage n+1, the players have observed the same
past controls a”™’s, and then each player optimizes her control problem individually,
assuming other players will follow their choice at state n. That is, for player i’s problem,
her dynamics are controlled through o}, while other players’ states evolve according to

the past strategies a=»":
Ax;™ N =[a(X) T - X)) +a)dt o (pdWP + /1 p2dWy), (3.3)

—~n+1

AX7" M =X =X ad M At 4o (pdWE+ /1= p2dWP), j#i. (3.4)
Player i faces an optimal control problem:

inf J5" 1 (a';a™"™), where

ateh
i+l i i 1 i\2 i (yrtl in+1ly | € ntl iyn4142
sriatianin) =B [0 (D2 —aal (T - X S OE T
0
C —n+l i,n
+5 (X7 X7 “)2}. (3.5)

The space where we search for optimal o is the space of square-integrable progressively-
measurable R-valued processes on A ::HQT (R), to be consistent with open-loop equilib-

ria. Denote by o*"*! the minimizer of this control problem at stage n+1:
"= argmin J4" M (o a7, (3.6)
alEA

In what follows, we shall show:

(a) a1 exists Vi€ Z,n €N, that is, the minimal cost in (3.5) is always attainable;
(b) the family {a™} converges;

(c) the limit of &™ forms an open-loop Nash equilibrium.

3.1. The probabilistic approach.  Observing that the cost functional J*"*!
in (3.5) solely depends on the process X% +! =X""" _ X+ and the control o', we

make the following simplification. Notice that (3.3) and (3.4) imply

[Zj¢iai7n _ N-1

vi,n+1l _
axim =

N
) ~. 1 ) )
i ~ ol —aX]"H dt—l—a\/l—pQ(NE AW —dw)).  (3.7)
j=1

Then, player i’s problem is equivalent to:
: 1 i\2 i yimtl | €/ Find1y2 €/ Fin+1\2
(;inEfAIE{/O ()" —qap Xy + o (XT) e+ S (XT) }
it

In what follows, we show the existence of unique minimizer, denoted by «
using SMP. The Hamiltonian for player i at stage n+1 reads as
2

ol N—1 1
ZHX[ L N a—ax)y+§a2—qax+%a:.

For a given admissible control af € A, the adjoint processes (Y;"" 'z 0 < j < N)
satisfy the backward stochastic differential equation (BSDE):

Hi7n+1(taw7'r7y’a) :(

N
de’n—H _ _[_ayj,n-ﬁ-l . qai _’_E)sz’;n-i-l] dt+ZZZ,j7n+l thJ7 (38)

Jj=0
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with the terminal condition ;2" =¢X2" !, Standard results on BSDE [56], together

with the estimates on the controlled state )Z'Z mtl guarantee the existence and unique-
ness of adjoint processes. Pontryagin SMP suggests the form of optimizer:

N-1
Do H"" M =0+ a= qx—i—Ty (3.9

Plugging this candidate into the system (3.7)-(3.8) produces a system of affine FBSDEs:

~. . .aj’n 1 ~. 1 .
dx; = LHXT ¢ —(a—l—(l—N)q)XZ’"H—(l—N)QYf’"H dt
1 N . )
+0\/1—p2(NZthJ—de),
=1 (3.10)
N
AP = [ (a+ (1= )Y o (e= ) Xy Aty 2 awy
j=0
)Z'é’”“ =T —mé, YTi’”Jrl = c)?%"“.

The sufficient condition of SMP suggests that if we solve (3.10), we actually have ob-

tained the optimal control by plugging its solution into Equation (3.9). In fact, the

coefficients satisfy the G-monotone property in [58], thus the system is uniquely solved

in H2(RxRxRN*1) and the resulting optimal control is indeed admissible. This

answers question (a). For the other two questions, we need to further analyze (3.10).
Note that the system can be decoupled using;:

Y;i,nJrl _ Kt)’zti,n+1 _,ll)z',n+1’ (311)
where K satisfies the Riccati equation:

Nl)

~ K2 —(e—¢%), Kr=c, (3.12)

=2t (1= )i+

and the decoupled processes (X" pim Tl ghdintl o< i< N) satisfy:

Y .
dXz,n—i—l _ Ve . Xz,n-l—l 1 — i,n+1 dt
t N Yty +( N)
1Y A ,
+J\/1—p2(NZthJ —daw;),
= (3.13)
. .aj’n N . .
L —Z”j; e+ oy AWy,
3=0
Rimtl oz b, it =o,
where ~; is a deterministic function on [0,7:
1
%—aJr(l**)qu(l**) K, (3.14)

N
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and the optimal strategy is expressed as

)

n TR0 1 RO
ay’ +1:(‘1+( VK1) Xy +1_(1_* ¢ i (3.15)

1
1— —

N N )
Again, since a” € HZ(RY), existence and uniqueness of (ypi"+l ¢tintl 0<j<N)e
H?(R x RV*1) is guaranteed Vi € Z, n €N, and the forward equation possesses a unique
strong solution. Then the triple (Xi’”+17Yij"+1,Zi’j’"+1) solves the original FBSDEs
(3.10) with Y;""" defined by (3.11) and Z*"! by

0+l _ i0mtl pigmtl _ ignetl Vs Th:
Zt __¢t ) Zt __¢t +Kt0' 1_p2(7

N_6i7j)7 JEI

To answer questions (b) and (c), we state the main theorem in this section, with
the proofs presented in the next subsections.

THEOREM 3.1. For linear-quadratic games, the family {a"}nen defined in (3.5)-(3.6)
converges if

1— 72T1
: c<1. (3.16)

It forms an open-loop Nash equilibrium of the original problem (3.1)-(3.2). Moreover,
the limit, denoted by o™, is independent from the choice of initial belief o®. Here
lza—l—(l—%)q—i—(l—%)Qﬁ, K and K are the mazimum and minimum values of K
on [0,T], and the constant C' is

1 J R 1oy (1—e?2 14—

C=(1-%) ((1— N)QKz—i—(q—l—(l— ) (87(1—N)4K2+2)> . (3.17)
REMARK 3.1.  The condition (3.16) is sufficient but not necessary. The numerical
performance of the proposed algorithm can do better. In Section 4, the parameters are
chosen so that the condition is violated, but the algorithm still converges fast, in order
to illustrate the sufficiency. By observing the form of C' and ~, we remark that the
convergence rate decreases in the number of players N. B

PROPOSITION 3.1.  The following three classes of parameters satisfy condition (3.16):
(i) Small time duration, that is, T is small.
(i) Strong mean-reversion rate, i.e., a is large.

(i4i) Small terminal cost and small intensive to borrowing or landing, that is, ¢ and q

are small. Also the “remaining” running cost of the state process® is small, i.e.,

e—q? is small.

Proof.  We first notice that the solution to (3.12) is smooth and monotone on
[0,T], by computing its derivative:

KtNf(efq2)+c2(1—%)2+2c(a+(17 %)q).

2The running cost f*(x,a) can be rewritten as fi(m,a):%(a—q(i—wi))Q—I—%(e—qQ)(:i—zi)z,
therefore, can be interpreted as penalizing the control from deviating q(a’cfxi), borrowing or lend-

ing proportionally to the difference from average with a rate g, as well as penalizing the distance from

average with weight e —g2.
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So K =max{c,Ky} and K =min{c,Ky}. Also, when K;>0, K is bounded below by
%; otherwise when K, is decreasing, Ky is bounded above by %,

N
where

F=—(a+(1- D) =VE, R=(a+(1- )0 +(1- ) (e~ )

Then case (i) follows by the fact that C' has an upper bound that is free of 7.
For a sufficiently large, K; is increasing and K =c. Then C has a upper bound
1—e?T2 _ 1

(uniformly in a), and case (ii) follows “=—= < 2. Under case (iii), K is sufficiently

small, thus C' is small and the factor is less than 1
3.2. Proof of convergence. This section proves Theorem 3.1. Define A(ti’" =

il _¢h™ the difference from stage n to n+1 for the " player, with ¢ =a,1,¢, X

respectively. Using Equation (3.13), the increment in v satisfies:

dAYp" = —[—p A" —fZA 1dt+ZA¢>ﬂ"dW5, APy =0,
e j=0

whose solution is:
i,n r Ks i 1 [t~ d
Ay, " =E / _WE Aol el gl 7,
t ..
J#i

By Jensen’s inequality, one deduces:

im||2 ’ TK? jmn—1 2 [Ty, du
1A HQS/O B[ 5 | et | eienas)
i

?2 T /T '
Sﬁ/ / E ZAag’"_l e2(t=9)7qsdt
0o Jt

J#i
2
K 1— —2sy
ZAON" ! gids
J#i it
F 1— 672T1 T _—
1_6—2T’y i
g

where y=a+(1—+)g+ (1— +)2K. Since the RHS of the above inequality is indepen-
dent of 7, taking maximum over Z yields

6_2T

max | Ay || < " (1— 2R max||Aat | (3.18)
2- N i€z 2" '

i€l 27y

Similarly, the dynamics of AX™ can be derived from (3.13):

vi,n 1 j,n— vi,n vi,n
AAX]" =[5> Al -y AKX + <1—f) Ayt AXG"=0,
JF#i
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which admits the solution:

A)Z'f’”:/ ZAaJ" 14 ) Agpim e~ Jirudugg,
0
J?fz

We next give an upper bound of increment of the forward process AXD™

2
Fin|? T 1 jn—1 Lion in =2 [ty du
HAX’ < El =3 Aaim 4 (1— )2 Agin | e limdn g
2" Jo Jo N#i N
T pt 1 '
<2 /0 /0 ZAaw P+ (1= ) Bl | e dsdt
J#l
T —2(T—s)y
1 , 1 ; l1—e X
<9 E[— A j,n—112 1_74EA i,mn12 B |
J#i -
1_6_2T1 1 2 n—1 in
<2 (0 P Aat - a2,
Again by taking maximum over Z on both sides, one has:
vi,n 2 17672T1 1 2 i,n—1 1 in
e I ((1N> ma [ 802 4 (1 ) ma] | Aw | )

(3.19)
Recall from (3.15) that the increment in the strategy can be decomposed as

i,m i, 1 i,m
A" = (g +(1- ) KIATE" — (1= D)Av",
together with estimates (3.18) and (3.19), we obtain:

201 )P max| Ay}

maXHAaZ"H <2 q—i—(l—%)? maXHAX”L N

i€l el

—2T
<17 Cmax|Aain 1|2,
y i€l

where C' is a constant given in (3.17). Under condition (3.16), the mapping Aa™ ! —
Aa™ is a contraction. Therefore, this proposed learning process converges in the linear-
quadratic games.

Denote the limit of {a"} by a® =[a}*>,...,a™'*°] where the learning process starts
with an initial belief a. Let (X"* 1, ¢7®) be the solution to the decoupled system
(3.13) with {a?" je€T\{i}} replaced by {a?>°,j€Z\{i}}. On one hand, this corre-
sponds to the problem of identifying player i’s best strategy, while others using o=,
and her best choice is

1 ~ 1.,
(g+ (1= ) K) X = (1= )i

On the other hand, by stability theorems (e.g. [64, Theorem 3.4.2, Theorem 4.4.3]), this
triple (X2, ¢P®) is also the L2 limit of (X" 1"™ ¢-™). Therefore, letting n— oo
in Equat1on (3.15) gives

1 W 1 i,
= (g (- ) K)RE (1 i, (320)
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Therefore, the best response for player i is o>, given others play aa=»>, indicating
that the limit a® forms an open-loop Nash equilibrium.

It remains to prove that the limit is independent from the initial belief. Suppose
that there exist two limits a® and 3> arisen from two distinguished initial beliefs a°
and B9, and let ()N(ti’ﬁ, Z’ﬂ, :B) be the solution to (3.13) associated with 3°°. Following
similar derivations in the proof of convergence gives:

; a2 1—e 2Ty 1 =2 . . 9
£ e O U
maXH)}i,ai)}w‘r
€T 2

1—e 2Ty 1 . e . N .
ST ((1_N)211I16azx||a’ -6 H2+(1_N)4Izneazx||w7 _1/,;5’”2).

Combining the above equations together, and using (3.20) for both o> and £“>°, we
deduce:

1— 672T’y

max > — 3|, < ~Cma > — 5| .

i€l

Under the same condition (3.16), a® =3 in the L? sense. Therefore, we have shown
that, independent of initial belief, the fictitious play will converge and the limit is unique.

3.3. Identifying the limit. As proved in Theorem 3.1, the limiting strategy
a® forms an open-loop Nash equilibrium, and in this section, we verify it coincides
with the equilibrium provided in [12] by direct calculations.

Recall from [12], the open-loop Nash equilibrium to the original N-player problem
(3.1)—(3.2) is:

0i = [+ (1~ 3 )mI(X; ~ Xi), (321)

where X} is the solution to (3.1) associated with o*, X is the average of X|™*, and
71; solves a Riccati equation:

n=2(a+(1— L)q)ﬁzt-f—(

1 2 2
—(e— =c. .22
5N n; —(e—q°), nr=c (3.22)

1——

)
Note that, the expression (3.21) means the open-loop equilibrium happens to be ex-
pressed as a function of the states in the equilibrium, but not a closed-loop feedback
equilibrium. To be more precise, plugging (3.21) into (3.1) yields

N
d(Xt_X{ ):—[a—Fq—f—(l—N)’l’]t](Xt—Xt’ )dt+0'\/1—p2 (N E th—th>
=1

Thus, ai’* is indeed Fi-measurable. To avoid further confusion in the sequel, we denote
by Z; the solution to the above SDE, then

Lx
o =

lg+(1— %)m]Ei, (3.23)
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and =! is the unique strong solution to the SDE:

N
. ] 1 . . . .
dEi:—mtEidt+am<N§ de—de), 2 =10 — o, (3.24)

i=1

with

ntza—i—q—l—(l—i)nt. (3.25)
N

Two properties regarding Z¢ will be used in sequel: firstly, Ziv 1Zi=0, Vt€[0,T).
This is straightforward by deriving the SDE for Z¢ via summing (3.24) over 1 €Z, and
using =p=0. Consequently, we also have Zz Loy =0, Vt€[0,T)]. Secondly, one has
that eJo " duzi js a martingale, follows by the SDE (3.24) and the boundedness of 7,
on [0,7].

We next verify that the limit o®° coincides with (3.23) by showing the optimal
control to the problem (3.5) is a®* where other players’ are following a¥*, j 44, and by
the uniqueness of limit under condition (3.16). Denote by (X!**,4""*,¢-*) the solution
to the FBSDEs (3.13) with o™ replaced by o/*, j€ T\ {i}. Essentlally, the problem
is to show the player i’s optimal response, represented by the solution of FBSDESs,
(g+(1—%)K)X; ™ — (1— )¢y matches her Nash strategy a’*. Note that this is not
a fixed-point argument as usually seen in mean-field games, since only a™"* is needed
to solve (X" vy, op™).

We first solve 1%* from the backward process in (3.13). The BSDE is of affine form,
and thus possesses a unique solution:

ft]

T i
. t
) S qb*el udu g
\/t 1 as ¢ 3

4

K 1 ) .
/ q_|_ N)Us]Eiefft '{7L+Vudud8

Y =E / S aprel ety F

J#i

1

=E
N

The function F'(t) satisfies

B(1) = () (ke +0) — <+ (1 m). - F(T)=0, (3.26)
where v and k; are given by (3.14) and (3.25) respectively, and 7; solves (3.22). Note
that (3.26) is a first order linear ordinary differential equation (ODE) with smooth co-
efficients, whose solution in uniqueness is ensured by standard ODE theory. A straight-
forward calculation shows K; —m; solves (3. 26) thus ¢y = (K —n,) =t

Now to solve the forward equation for X , we first calculate

Z. iajv* 1 . ai,* 1 _
%+(1fﬁ)2wt7 :*TJF(l*N)Z(Kt* ne)Ei

= (L (- K- (- )



RUIMENG HU 343

therefore
AR =+ (1= Ko — (L= ) = X
t N N N t t
1L .
+ov/1—p? (N;thz - dWZ) .

Comparing it to (3.24), one deduces )?Z* =Z=!. Therefore, player i’s optimal response
to her opponents’ strategy a™** is

1
N

1

Wit =(g+(1— %)Kt)zg — (1= =)(K —m)Z;

)Kt)f(?* —( N

1
1— 1——
(g+( I

1o i in
=(a+ =)= =y,

which implies the limit of fictitious play gives an open-loop Nash equilibrium in the

linear quadratic case.

4. Numerical experiments

In this section, we present the proof of methodology for deep fictitious play by ap-
plying our algorithm to the linear-quadratic game (3.1)-(3.2), which was first introduced
in [12] to study the systemic risk. We choose this model as our study for two reasons:
firstly, convergence of fictitious play under this setting has been proved in Section 3
under model assumptions. Secondly, closed-form solution exists for this model, which
enables us to benchmark the performance of our proposed scheme. Numerical results
are shown in three examples of V=25,10,24 players.

The Euler scheme (with time step h=T/Nr) of the dynamics (3.3)-(3.4) follows
from (2.8) with:

Vit x,a)=a(®—2°)+af, of(t,z,a)=c(t,z,a)=0, (€T.

The model parameters chosen by numerical experiments are
T=1, o=1, a=1, ¢g=0, p=0, e=1, c=1.

Remark that in the above choice, if one computes the factor in (3.16), which gives
L—e "2 ' 0.9568,1.5420, 1.9995 for N =5,10,24 respectively, then all the three cases

v

in Proposition 3.1 failed. However, we can still obtain convergent numerical results,
which shows the robustness of the proposed algorithms and potential improvement of our
theoretical analysis. We choose M = 216 samples for training of the DNNs, and M’ =10°
out-of-samples for final evaluation. A validation split ratio of 25% and callbacks are
set to avoid over-fitting. The subnetwork for policy approximation at each time step
contains 2 hidden layers and 8+ 8 neurons. During each stage, each network is trained
for 200 epochs with a mini-batch of size 1024 . A total of 10 stages are played. The
true (benchmark) optimal control is computed according (3.21)-(3.22), with 7, given in
the closed form.

Example 1 (N =5). We set the initial states of the five players as o= (1,5,7,3,8)T
and discretize the time interval [0,1] into Ny =50 steps. In Figure 4.1, we compare the
cost functions computed by deep fictitious play to the closed-form solution. One can
see that, the relative errors of cost function for all players drop quickly under 5% after
a few iterations, and then steadily under 2% after only ten iterations. In Figure 4.2,
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Fia. 4.1. Comparisons of cost functions for N =5 players in the linear quadratic game. The
dotted dash lines are the analytical cost functions given by the closed-form solution for each individual
player. The solid lines are the cost functions given by deep fictitious play for each player at the first
10 iterations. The bottom-right panel shows the relative errors of cost function for the five players,
which are pretty small at the 10" iteration.
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Fic. 4.2. Comparisons of optimal trajectories for N =5 players in the linear quadratic game.
Top-left panel: a single sample path of the true optimal trajectories X; (solid lines) vs. the ones
computed by deep fictitious play X¢ (star lines). The other panels show the mean (blue triangles)
and standard deviation (red bars, plotted every other time step) of optimal trajectories errors for five
players using a total sample of 10% paths. Owerall, they show a good approzimation of deep fictitious
play to the linear quadratic game by N =5 players.

we show in the top-left panel optimal trajectories from total five players computed by
deep fictitious play (black star lines) wvs. by closed-form formulae (colored solid lines)
at one representative realization. One can observe that players, although start away
from each other, become closer as time evolves. This is consistent with the mechanism
of costs functions, as they are in favor of being together. To quantitatively measure
the performance of our algorithm, we show the mean and standard deviation of the
difference between NN predictions and the true solutions in the remaining panels based
on a total of 10% sample paths. The means are almost zero, with slightly convex or
concave curves depending on player’s relative ranking initially. Players starting below
average tend to have convex feature.
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Fic. 4.3. Comparisons of optimal controls for N =5 players in the linear quadratic game. For
a sake of clarity, we only show two sample paths of optimal controls for each player. The solid lines
are optimal controls given by the closed-form solution, and the dotted dash lines are computed by deep
fictitious play.
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Fic. 4.4. Comparisons of cost functions and optimal trajectories for N =10 players in the linear
quadratic game. Left: the mazimum relative errors of the cost functions for ten players; Right: for
a sake of clarity, we only present the comparison of optimal trajectories for the 15t 4th 7th gnd 10th
players, where the solid lines are given by the closed-form solution and the stars are computed by deep
fictitious play.

Standard numerical schemes can do well to approximate cost functions, but not on
the derivatives, which are related to the controls, while our deep learning algorithm
computes directly the control, which shows a good approximation. Figure 4.3 plots two
visualized paths of controls for an illustration purpose.

Example 2 (N =10). The initial state for i** player is x{=0.5+0.05(i —1). We
use Ny =20 time steps for the discretization of the time interval [0,1]. Such choices
enable us to investigate the sensitivity of deep learning algorithm on initial positions
and time step. In Figure 4.4, we compare the cost functions computed by deep fictitious
play to the closed-form solution, where, after only ten iterations, the maximum relative
error of cost function for all players have been reduced to less than 3%, and the computed
optimal trajectories (one visualized sample path) of selected four players by fictitious
play coincide with those of the closed-form solution. The standard deviation of difference
between approximated and true optimal trajectories is less than 2% for ¢ € [0,1] for all
players, and we present a selection of six in Figure 4.5.
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Fic. 4.5. Comparisons of optimal trajectories for N =10 players in the linear quadratic game.
For a sake of clarity, we only show the mean (blue triangles) and standard deviation (red bars) of
optimal trajectories errors for the 15t, 2nd 4th 7th gth gnq 10t player, respectively. The results are
based on a total sample of 65536 paths, and show that deep fictitious play provides a uniformly good
accuracy of optimal trajectories.
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Fic. 4.6. Comparisons of optimal controls for N =10 players in the linear quadratic game. For
a sake of clarity, we only show two sample paths of optimal controls for the 15, 274 4gth 7th gth gpd
10" player, respectively. The solid lines are optimal controls given by the closed-form solution, and
the dotted dash lines are computed by deep fictitious play.

Note that, although the time step h is twice larger than N =5, the relative error does
not increase significantly. However, we do not observe that the trajectories are getting
closer and closer as in the case of N =25, since they already start in the neighborhood
of each other. We do not observe the curve either, which justifies our assertion that
the curvature depends on Zo — zj). We also show two visualized sample paths of optimal
control in Figure 4.6, which presents a good approximation of the policy.

Example 3 (N =24). The initial positions for the i'" player is x} = 0.5i. We set the
time steps Np =20, after observing the relative errors did not increase too much from
N7 =50 to Ny =20. The problem by nature is high-dimensional: the k" “Sequential”
subnetwork maps RN* to R. To accelerate the computation, we distribute the training
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Fic. 4.7. Comparisons of cost functions and optimal trajectories for N =24 players in the linear
quadratic game. Left: the mazimum relative errors of the cost functions for ten players; Right: for a
sake of clarity, we only present the comparison of optimal trajectories for the 15t, 4th 7th 10th 13th
16", 19%" and 22" players, where the solid lines are given by the closed-form solution and the stars
are computed by deep fictitious play.
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F1c. 4.8. Comparisons of optimal trajectories for N =24 players in the linear quadratic game. For
a sake of clarity, we only show the mean (blue triangles) and standard deviation (red bars) of optimal
trajectories errors for the 15, 4th 7th 10th 11th 13th 16th 19t and 22t player, respectively. The
results are based on a total sample of 65536 paths, show that deep fictitious play provides a uniformly
good accuracy of optimal trajectories.

to 8 GPUs. Similar studies to the N =10 case are presented in Figures 4.7-4.9. Some key
features that have been observed from previous numerical experiments: the maximum
of relative error drops below 3% after ten iterations; the average error of estimated
trajectories are convex/concave functions of time ¢; the standard deviation of estimated
error aggregates step by step. In fact, the convexity/concavity with respect to time ¢ is
caused by two factors: the propagation of errors, which produces a magnitude increase
in error mean; and the existence of terminal cost, which puts more weights on X7 than
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Fic. 4.9. Comparisons of optimal controls for N =24 players in the linear quadratic game. For a
sake of clarity, we only show two sample paths of optimal controls for the 15, 4t%h 7th 10th 11th 13th,

16, 19t and 22" player, respectively. The solid lines are optimal controls given by the closed-form
solution, and the dotted dash lines are computed by deep fictitious play.

TABLE 4.1. Hyperparameters and runtime for the numerical examples presented in Section 4.

Problem | N=5 N=10 N=24
Nt 50 20 20

Max Relative Err | 1.15%  2.45%  2.95%
# of GPUs used 1 1 8

runtime (hours) T | 2.15 14.03 12.10
L' error of X 1.09e-2  1.49e-2  2.08e-2

' The numerical experiments were conducted using Amazon EC2 services with P2 instances.

We remark that the runtime is subject to further reduction with a multi-GPU system or more
efficient GPUs.

X;,t€(0,T), resulting in a better estimate of X7 and a decreasing effect.
To better illustrate that our algorithm can overcome the curse of dimensionality,
we compare the performance across different V. Particularly, we compute

max max
i€T k<N

4 Vi
th _th’

where X denotes the state process following the open-loop Nash equilibrium, while X is
the deep fictitious play counterpart. The L' error is 1.09 x 1072 for N =5, 1.49 x 10~2
for N=10 and 2.08 x1072 for N=24. Table 4.1 gives the running time and other
hyper-parameters used in the numerical examples.
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5. Conclusion, discussion and extension

In this paper, the deep fictitious play theory is proposed to compute the Nash
equilibrium of asymmetric N-player non-zero-sum stochastic differential games. We
apply the strategy of fictitious play by letting individual player optimize her own payoff
while fixing the control of the other players at each stage, and then repeat the game
until their responses do not change too much from stage to stage. Finding the best
response for each player at each stage is a stochastic optimal control problem, which we
approximate by deep neural networks (DNNs). By the nature of open-loop strategies,
the problem is recasted into repeated training of N decoupled neural networks (NNs),
where inputs of each NN depend on the other NNs’ outputs from previous training.
Using Keras and parallel GPU simulation, the deep learning algorithm can be applied to
any N-player stochastic differential game with different symmetries and heterogeneities.
The numerical accuracy and efficiency is illustrated by comparing to the closed-form
solution of the linear quadratic case. We also prove the convergence of fictitious play
under appropriate assumptions, and show that the convergent limit forms an open-loop
Nash equilibrium. We remark that the implementation of this algorithm causes no extra
difficulties beyond the linear-quadratic game, but the verification of convergence to the
true equilibrium is in general hard due to the lack of benchmark solution. Although one
may observe the convergence of the proposed algorithm by tracking the relative change
of cost (cf. Step 11 in Algorithm 1), it may actually be trapped in a local (but not true)
equilibrium.

In the following, we shall discuss the extensions to other neural network architec-
tures, other strategies of fictitious play and closed-loop Nash equilibrium.

5.1. Other neural network architectures. In the open-loop framework, the
searching space for optimal policies contains all F;-progressively measurable processes,
which possesses a path-dependent feature. When using a feedforward architecture, in
order to better capture this feature, one needs to partition [0,77] into a sufficiently large
number of Ny intervals. Then, a sub-network is used to approximate the optimal policy
at each time point (2.9), whose size becomes larger as the time approaches the terminal
time 7T since more history needs to be fed as input. Therefore, the training time increases
significantly when one uses large Np. To improve the performance, architectures based
on recurrent neural networks can be considered in solving the stochastic control problem
(2.6)—(2.7), for example, using long short-term memory (LSTM), gated recurrent units
(GRUs), etc. This will be part of our future work [21].

5.2. Belief based on time average of past play. In the formulation (2.2),
players’ belief is based on their actions during last round, i.e. at stage n+ 1, players my-
opically respond to their opponents’ policies at stage n without considering all decisions
before n. This is in fact a bit discrepant from Brown’s definition [6,7], where players
responses take into account all past policies. Denote by %" the weighted average of

past play,
a = lioﬂ?’“ (5.1)
[t ’ .

then Brown’s original idea corresponds to the control problem:

ot = argminJi(ﬁaal_i’n)v VieZ,neN.
BieA

where J' is defined as in (2.1).
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In general, convergence in the strategy o™ implies convergence in the average of past
play a™, but not vice versa. Therefore, convergence in a™ does not necessarily lead to
a Nash equilibrium. Our numerical tests show that, if the algorithm converges in o™,
then using a™ tends to give a better rate for linear quadratic cases. In practice, within
the framework of deep fictitious play, one can generalize (5.1) to any weighted average
of past policies: > ,_,cra™"*, where (c;)}_, is a n-simplex with ¢, >0. We plan to
further investigate the comparison between different beliefs for practical problems in
future.

5.3. Belief updated alternatively. We shall also mention that, there are
actually two versions of fictitious play, the alternating fictitious play (AFP), originally
invented in [6], and the simultaneous fictitious play (SFP) mentioned as a minor vari-
ant of AFP in [6]. In contrast to (2.2), the players under AFP update their beliefs
alternatively. For example, in the case N =2, the learning process is:

ab = argminJ' (80?7, o ::argminJQ(BQ;al’"), n>1,
BreA B2eA
and the computation follows o (initial belief) —a®! —a®! —al?2 —a*2—.... The

dependence of a®™ on o™ makes one unable to update them simultaneously, which is

the main difference from SFP.

Indeed, SFP can be considered as a simpler learning process than AFP, as players are
treated symmetrically in time. This usually enhances analytical convenience as well as
numerical efficiency (with possible parallel implementation in Step 5-9 of Algorithm 1).
Gradually, the original AFP seems to disappear from the literature, and people focus
on SFP, even though SFP may generate subtle problems which do not arise under AFP.
For a comparison study, we refer to [4], where they also related this subtly to Monderer
and Sela’s Improvement Principle [51]. We focused on SFP in this paper, where the
beliefs can be updated in parallel, and leave the AFP learning process for future studies.

5.4. The algorithm for closed-loop Nash equilibrium. Depending on the
space we search for 8% in (2.2), the algorithm can lead to a Nash equilibrium in differ-
ent setting. Indeed, if we consider [0,7] x (RY)N 3 (t,2) — 8° € ACRF as a function of
current states, then the limit yields a feedback strategy for Nash equilibrium. Mathe-
matically,

i,n

)i (X X)), (5.2)

Q" (¢, @) = argmin JH(BH (X0 X"
Bi(ta)eA

where X, haotn represents players j #1i state processes following policies a=%™.

This setup can be analyzed by the the partial differential equation (PDE) approach.
Assuming enough regularity, the minimal cost can be reformulated as the classical so-
lution to HJB equation where others’ strategies are given by deterministic functions
obtained from previous round. Consequently, at each stage, the task is to solve N in-
dependent HJB equations, which can still be implemented in parallel. Moreover, if the
players are statistically identical, one actually only needs to solve one PDE. Denote by
Vintl(t x) the value function of problem (5.2) at time ¢ with initial states X; ==, by
dynamic programming, it satisfies

Vintlel(t,a, B)o (¢, $75)q

xt,x?

o, vintt —&—i%f {bl(t,a:,ﬁ)axiV””Jrl + f'(t,x,B) + §Tr 2
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N N
+ ZTT [8@@,- yimntl g (t,w,ﬁ)zi,jgj (t,(l:,aj’")T] } + ij (t,w,aj’")@xj yintl
— -
i# i
1 N
+ By Z Tr [8%)95]6 yimtlgi (t,w,aj’")z%’“gk (t7$,ak’n)q —0,
Jk=1
J#i
ki
ot =o' (tx) =argmin {b' (t,x,8)0,: V" + fi(t,x,8)}, DFdt:= d<Wj7Wk>t.

BEA

Then, numerically, one can design traditional finite difference/element methods, or use
deep learning which has shown excellent performance in overcoming the curse of dimen-
sionality in high-dimensional PDEs [18,24]. After all, the optimal response function
a®"t1 s given in terms of 0, Vi’"ﬂ,@ii’wj Vintl  However, a common drawback of
working on the value function J? is that numerical schemes usually well approximate
the solution but not the derivative of the solution, which is more sensitive.

An alternative way is to work directly on the control. By a stochastic maximum
principle argument, the optimal control is linked to the solution (not the derivative)
of FBSDEs, see, e.g., [10, Section 2.2]. Then it is promising to apply the recent deep
learning algorithm for the coupled FBSDEs [25]. In this case, at each stage, the task is
to solve NV independent FBSDEs and parallel implementation is still possible.

Both approaches rely on the property of the reformulated problem: the solution’s
regularity in the PDE approach and the Hamiltonian’s convexity in the FBSDEs ap-
proach. A third possibility is to work with the optimization (5.2) directly as we do in
the open-loop case. That is, using the deep NN to approximate the control and find
the optimal parameters that minimize (5.2). However, due to the feedback reaction,
the Algorithm 1 and architectures proposed in Section 2.2 are no longer suitable. It is
this “indirect” reaction nature of the open-loop strategy that enables us to design IV
separate NNs and a scalable algorithm. While working with feedback controls, the real-
ized opponents’ strategies o~ " (¢, X;) depend on ‘. Further explained by Figure 2.2,
this means that, afi, previously considered as intermediate outputs from NNs of other
players at previous training, now depend on 3§ through X?. Consequently, to take into
account the direct reaction of her opponents, one needs to feed 3§ to player j** NN,
j #i for intermediate output o *. This makes the N-neural networks coupled with each
other, and hard to implement in parallel.

Apparently, using deep fictitious play for Markovian Nash equilibrium is not a
simple modification of Algorithm 1, and two of the three aforementioned approaches
(PDE and direct) are studied in the follow-up works [22,23].

Acknowledgment. I am grateful to Professor Marcel Nutz for the stimulating and
fruitful discussions on fictitious play and convergence of linear quadratic case.
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