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A B S T R A C T   

We discuss results from a machine learned (ML) metaheuristic cuckoo search (CS) optimization technique that is 
coupled with coarse-grained molecular dynamics (CGMD) simulations to solve a materials and processing design 
problem for organic photovoltaic (OPV) devices. The method is employed to optimize the composition of donor 
and acceptor materials, and the thermal annealing temperature during the morphological evolution of a polymer 
blend active layer composed of poly-(3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester 
(PCBM), for an increased power conversion efficiency (PCE). The optimal solutions, which are in qualitative 
agreement with earlier experiments, identify correlation between the design variables that contributes to an 
enhanced material performance. The framework is extended to multi-objective design (MOCS-CGMD) to attain a 
Pareto optimality for the blend morphology, and enhance concurrently the exciton diffusion to charge transport 
probability and the ultimate tensile strength of the material. The predictions reveal that a higher annealing 
temperature enhances the exciton diffusion to charge transport probability, while a PCBM weight fraction be-
tween 0.4 and 0.6 increases the tensile strength of the underlying blend morphology.   

1. Introduction 

Polymer-based materials have been employed for organic photo-
voltaic (OPV) applications due to their low-temperature solution pro-
cessability, inherent flexibility and environ-friendly synthesis and 
electricity generation [1–3]. Organic solar cells (OSC) consisting of an 
interpenetrating mixture of electron donor and acceptor materials 
exhibit the most promising photoactive layer (a.k.a. bulk hetero-
junction) due to their notable ability to convert absorbed photon to 
charge carriers, resulting in high power conversion efficiency (PCE) [4]. 
Numerous experimental and computational investigations in the past 
decade have confirmed the correlation between PCE and the underlying 
nanomorphology by correlating the processing to structure to perfor-
mance (PSP) [5–10]. Although extensive research have raised the effi-
ciency of polymer-based OSCs to ~ 10% [11–13], recent efforts suggest 
the need for novel organic materials as well as new active layer archi-
tectures, such as tandem BHJ active layers that have exhibited exem-
plary PCE > 15% [14,15]. On the other hand, the thermomechanical 
stability of typical BHJ blends is essential because the elasto- 
morphology steers the ultra-flexible nature of these thin films 

[16–21]. Thus, a multi-objective optimization is indispensable to design 
processing-driven morphology for the targeted device performance as 
well as mechanical stability. To address this need, we present a data- 
enabled metaheuristic optimization scheme, which encapsulates 
coarse-grained molecular dynamics (CGMD) simulations, to recommend 
processing and material considerations for designer OSCs with targeted 
properties. In particular, exciton diffusion to charge transport proba-
bility and the ultimate tensile strength under an applied deformation 
strain are considered as the objective functions. Our results, as discussed 
below, demonstrate significant acceleration of materials design relative 
to contemporary methods. 

Intractable (a.k.a. black-box) objective functions are difficult to 
optimize using gradient based algorithms such as gradient descent or 
conjugate gradient [22,23]. Nature-inspired metaheuristic algorithms, 
on the other hand, are an alternative to rapidly converge the black-box 
functions to their respective global solutions [24–27]. Despite the 
extensive use of genetic algorithm (GA) [24] and particle swarm opti-
mization (PSO) [25] algorithm for applications in manufacturing, pro-
duction and design, a recently developed optimization technique called 
Cuckoo Search (CS) [26] enables an efficient and rapid convergence to 

* Corresponding author at: Packard Laboratory 561, 19 Memorial Drive West, Bethlehem, PA 18015, United States. 
E-mail address: bganesh@lehigh.edu (G. Balasubramanian).  

Contents lists available at ScienceDirect 

Computational Materials Science 

journal homepage: www.elsevier.com/locate/commatsci 

https://doi.org/10.1016/j.commatsci.2020.110119 
Received 6 August 2020; Received in revised form 29 September 2020; Accepted 11 October 2020   

mailto:bganesh@lehigh.edu
www.sciencedirect.com/science/journal/09270256
https://www.elsevier.com/locate/commatsci
https://doi.org/10.1016/j.commatsci.2020.110119
https://doi.org/10.1016/j.commatsci.2020.110119
https://doi.org/10.1016/j.commatsci.2020.110119
http://crossmark.crossref.org/dialog/?doi=10.1016/j.commatsci.2020.110119&domain=pdf


Computational Materials Science 187 (2021) 110119

2

the global solution, making it superior than GA and PSO for multimodal 
design problems such as optimizing processing-driven nanomorphology 
in a typical OSC active layer. Deb et. al. [28] extended the traditional CS 
algorithm to facilitate multi-objective optimization (MOCS). In brief, CS 
search mimics obligate brood parasitism of female cuckoo species that 
often chooses nests of a host bird which has just laid its own eggs. The 
new born cuckoo chick, once incubated, evicts the host eggs out of the 
nest to increase its food share [29]. This imitation strategy of parasitic 
cuckoo species can be implemented as an optimization strategy to 
various applications, especially for problems with the intractable 
objective functions. Additionally, the CS algorithm [26] adopts Lévy 
flights module to search the parametric landscape that efficiently jux-
taposes with the traditional Gaussian process random walks [30] for 
rapid convergence to globally optimal solutions. 

We integrate the CS scheme with classical CGMD simulations to 
optimize representative design parameters such as composition of donor 
and acceptor materials and thermal annealing temperature for targeted 
properties. The results from the CGMD simulations of a typical solvent- 
free mixture of poly-(3-hexyl-thiophene) (P3HT) and phenyl-C61-butyric 
acid methyl ester (PCBM) that compose the BHJ morphology provide 
feedback to the CS scheme iteratively to facilitate the search for the 
optimal solution. The CS-CGMD method, discussed herein, is extended 
to a bivariate and multi-objective optimization scheme (MOCS-CGMD) 
based on the CS-MD framework established in a previous effort [31]. 

2. Design methods 

2.1. Cuckoo search algorithm 

The original CS single objective optimization [26], where each egg in 
a nest is considered as a possible solution, is governed by a set of 
idealized rules:  

1. At a given time, a cuckoo lays one egg and deposits it in a random 
nest.  

2. The best nest consisting of a high-quality egg (solution) is passed on 
to the next generation.  

3. An alien egg is discovered by a host bird with probability pa ∈ [0,1]. If 
the host bird identifies an alien egg it will get rid of it by either 
abandoning the nest or evicting the egg out of the nest. The total 
number of nests in each generation remains constant. 

The MOCS with N different objectives can be achieved by adapting 
the first and third rules [28]:  

• At a given time, each cuckoo lays N eggs corresponding to N possible 
solutions and deposits them in a random nest.  

• Each nest will be discarded with probability pa ∈ [0, 1] and a new nest 
with N eggs will be generated. 

CS leverages the efficient global Lévy flight mechanism whose step 

length is determined from a Lévy distribution, L(s, λ) = λΓ(λ)sin(πλ
2 )

πs1+λ , (s≫0)
where Γ(λ) is the gamma function. Consequently, the global random 
walk is represented as xt+1

i = xt
i +αL(s, λ) where α > 0 is the step-size 

scaling factor related to the boundary of the defined design landscape 
and xt+1

i , xt
i are eggs (solutions) from the consecutive generation. On the 

other hand, the progression of nests by local random walk is represented 
as xt+1

i = xt
i + αs⊗ H(pa − ε)⊗ (xt

i − xt
k)where H(x) is a Heaviside 

function, εis a random number, xt
i , xt

k are solutions selected from random 
permutations and ⊗ represents entry wise product. We select the 
switching parameter pa = 0.2 as the convergence of the CS optimization 
has been found to be minimally dependent on the choice [31]. We 
examine two cases with n = 5 and 10, to evaluate the differences in the 
computational performance of the optimization. The CS-CGMD scheme, 
illustrated in Fig. 1, involves optimizing one or more design variables for 
the targeted property such as the exciton diffusion to charge transport 
probability of a thin film active layer morphology. During each opti-
mization generation, the CS-CGMD scheme compares different solutions 
amongst the different nests and retains a fraction of the best candidates. 
All the ill-performing solutions are replaced with newer alternatives 
from global and local explorations in the design space leveraging the 
efficient Lévy flights to eliminate the local saddle points. 

Nevertheless, predictions from a large set of computationally- 
expensive CGMD simulations remain unutilized during the 

Fig. 1. Flowchart describing steps in a typical coupled Cuckoo Search-CGMD (CS-CGMD) algorithm. The dashed box represents the augmented machine learned 
exploration of the regions of interest (ROIs) to supplement ill-performed nests with newer alternatives during each CS optimization generation. 
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metaheuristic search. Inspired by the promise of machine learning (ML) 
in the device optimization [32] for the OPV applications, we data-enable 
the CS-CGMD scheme to predict the global solution leveraging 
morphological predictions from the gamut of the CGMD calculations. 
We augment the CS-CGMD with a ML-guided regression approach to 
streamline the choice of eggs during each optimization generation. A 
support vector machine (SVM), a.k.a. support vector regressor (SVR), 
with the radial basis function (RBF) fitting is applied to the results from 
CGMD simulations during each generation of the CS optimization. The 
response surface prediction from the SVM model during each training 
cycle is used to locate the region of interest (ROI). Next, the best pre-
diction from the respective generations based on the SVM assisted su-
pervised training is used to replace one of the worst performing nests 
from the preceding generation. Subsequently, following each generation 
of optimization, the training dataset is augmented with new CGMD 
predictions improving the overall analytic efficiency of the supervised 
learning. We designate that the SVM model has assisted a CS optimi-
zation run, if the SVM assisted egg results in superior properties for the 
material. In this SVM enabled CS-CGMD, as illustrated in Fig. 1, super-
vised learning is employed using SVR libraries implemented in Scikit- 
learn [33] composed with the Python language. 

3. CGMD simulations 

The Martini forcefield [5,34], extended to polymers, fullerene and 
benzene rings [35–37], are employed to model intermolecular in-
teractions in the CGMD simulations of BHJ blend morphology consisting 
of P3HT, PCBM and Chlorobenzene (CB) molecules. While the CG model 
resolution can affect the calculated elastic properties and density, the 
solution processed BHJ layer from the three-site model [7] are found to 
concur with experiments [21]. The computational procedure adopted to 
mimic a typical spin-coating process to prepare P3HT: PCBM BHJ 
structure is described in detailed in our earlier reports [9,10,38] and 
provided as supplementary information. Nonequilibrium simulations 
are employed to model the mechanical deformation of thermally 
annealed BHJ blend under a constant velocity of deformation boundary 
condition along the longitudinal (x-) direction , following the recently 
developed protocol in our earlier effort [20]. GROMACS 2019.4 [39] is 
used for all the CGMD simulations and VMD 1.8.2 (Visual Molecular 
Dynamics) [40] for visualization of the molecular structures. 

The objective functions in our CS-CGMD optimization algorithm is 
implemented from the evaluation of exciton diffusion to charge trans-
port probability (P) and ultimate tensile strength (UTS). The molecular 
trajectories from the CGMD simulations are utilized to analyse the 
exciton diffusion to charge transport probability (P) and the UTS of the 
BHJ morphology under constant deformations. Exciton diffusion, charge 
dissociation and charge transport in BHJ layers depend on three key 
morphological features, viz., average domain size, interfacial area and 
percolation ratio. Despite the low photon absorption in fullerene-based 
acceptors relative to the donor P3HT phase, we assume all of the solar 
energy absorbed by both donor and acceptor phases can generate exci-
tons. The exciton diffusion to charge transport probability can be 
defined as, 

P = Pdiff *Pdiss*Pperc, where the probability of exciton diffusion Pdiff =

1
Nbox

∑
ve

(− d
εexciton

), probability of charge dissociation Pdiss = Aint
Vbox

*tint, 
probability of charge transport 

Pperc = PP3HT*PPCBM*
1

Nbox

∑

v
e

(

−
SA
εh

)

*e

(

−
SC
εe

)

PP3HT and PPCBM are the corresponding percolation ratios of P3HT and 
PCBM phases, while d, SA and SCare respectively the shortest distances 
that an exciton needs to travel until it reaches an interface, a hole needs 
to travel to reach the anode, and that an electron needs to travel to reach 
the cathode. εexciton, εh and εe are diffusion lengths of exciton, holes and 

electrons, respectively; Aint and tint are interfacial area and interface 
thickness; Vbox is volume of the simulation box and Nbox is the number of 
voxels after discretizing the simulation box by finite element scheme 
[8,38]. The stress–strain distribution is derived from the moving average 
calculations (sampled every 20 ps) of the pxx component of the pressure 
tensor. UTS is calculated from the maximum engineering stress that can 
be obtained from the corresponding stress–strain distribution. A detailed 
discussion on the methods used to evaluate the objective functions are 
provided as supplementary information. 

4. Results and discussion 

A feature importance analysis based on results from our earlier ef-
forts [9,10,20,38], as illustrated in Fig. 2A, reveals relative impact of the 
different design parameters on the exciton diffusion to charge transport 
probability. The results suggest that PCBM weight fraction is perceived 
as the most influential quantity affecting the morphology with ~ 60% 
overall contribution followed by the annealing temperature (~30%). 
Hence, optimizing the PCBM weight fraction and annealing temperature 
to establish the processing to performance relationship through the CS- 
CGMD framework is the key design problem. Here, the coupled CS- 
CGMD scheme is evaluated for three different optimization problems 
in accord with the parameters listed in Table 1. First, we implement the 
univariate CS-CGMD method where the PCBM weight fraction is opti-
mized for enhanced exciton diffusion to charge transport probability. 
The results presented in Fig. 2B show an increase in exciton diffusion to 
charge transport probability over the several optimization generations. 
The globally optimal solution for PCBM weight fraction ~ 0.45 is ob-
tained after 7 CS generations. Each objective function evaluation in-
volves a complete CGMD simulation, where for a given PCBM weight 
fraction, a BHJ morphology is evolved from a ternary mixture following 
solvent evaporation and thermal annealing procedures. For the one- 
dimensional univariate problem, ~ 40 objective function evaluations 
are performed before the global optimum is attained. Likewise, 
annealing temperature also has a pronounced effect on the morphology 
due to molecular rearrangements of the donor polymers upon annealing 
[9,10]. Thus, it is desirable to implement a multivariable optimization 
strategy to investigate the correlation between a relatively higher 
dimensional parametric landscape and the blend morphology. 

Fig. 2C-D present results from a bivariate (2-dimensional design 
space) optimization problem where PCBM weight fraction and thermal 
annealing temperature are concurrently optimized for the targeted 
exciton diffusion to charge transport probability (in principle when the 
probability approaches ~ 1.0, the PCE approaches ~ 100%). We 
compare the effect of the number of nests (n) on the overall performance 
of the CS optimization, by executing simulations with n = 5 and 10. 
While the ensuing effect on the efficiency of the traditional CS-CGMD 
method is inconclusive, the convergence of the ML-guided CS-CGMD 
scheme to the global optimum is accelerated with n = 10. The data- 
enabled global convergence is attained within 35 objective function 
evaluations, outperforming the traditional CS-CGMD scheme. For the 
bivariate optimization problem, the ML-guided CS-CGMD predicts an 
optimum PCBM weight fraction (~0.48) and thermal annealing tem-
perature (~450 K) that effectively enhances the performance by ~ 10% 
from the optimum solution obtained from univariate analyses. Although 
the correlation between the design space and the underlying 
morphology is complex, we note that the global optimum determined 
from the ML-guided CS-CGMD concurs with earlier experimental reports 
[32,41]. 

Subsequently, we extend our data analytics model to a multi- 
objective optimization problem enabled by the MOCS algorithm (i.e., 
MOCS-CGMD) [28]. The PCBM weight fraction and annealing temper-
ature are considered to be the most influential design variables, while 
the objective is to concurrently examine the trends that could result in 
improved exciton diffusion to charge transport probability (f1) as well as 
an increased ultimate tensile strength (f2). Fig. 3 portrays the 
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Fig. 2. A. Feature importance analysis to determine the influence of solution processing conditions on the morphology evolution. PCBM weight fraction and 
annealing temperature are the most influential design variables with ~ 90% contribution towards the desired performance optimization. B. Optimization of PCBM 
weight fraction as a design variable with an objective to improve exciton diffusion to charge transport probability. C. Bivariate optimization of PCBM weight fraction 
and annealing temperature for enhanced transport probability with number of nests = 5. D. Bivariate optimization of PCBM weight fraction and annealing tem-
perature for enhanced transport probability with number of nests = 10. SVM assisted CS-CGMD outperforms the traditional CS-CGMD irrespective of the number 
of nests. 

Table 1 
Design variables and bounds for the CS-CGMD optimization framework. Upper and lower bounds for the different design variables are adopted from previous 
experimental and computational efforts [10,20,32,41–43].  

Problem Classification Design variable Upper bound Lower bound Switching parameter No. of nests No. of generations 

Univariate PCBM 0.15 0.85 0.2 5 10 
Bivariate PCBM 0.15 0.85 0.2 5, 10 10 

Annealing temperature 323 K 473 K 
Bivariate multi-objective PCBM 0.15 0.85 0.2 10 10 

Annealing temperature 323 K 473 K  
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progression of two objective functions during the MOCS-CGMD opti-
mization generations. 

Results from Fig. 3A illustrate the convergence of ultimate tensile 
strength to attain the global solution while the charge transport proba-
bility is compromised. On the other hand, in Fig. 3E the trend in the 

progression is completely reversed due to the trade-off between the two 
objective functions. The approximated Pareto front generated by 5 
subservient solutions after 10 generations of optimization run, leading 
to ~ 500 objective function evaluations, is shown in Fig. 4A. Predictions 
from the SVM assisted model over 10 generations of MOCS runs reveal 

Fig. 3. A-E. Bivariate optimization of PCBM 
weight fraction and annealing temperature 
with multiple objective functions such as the 
exciton diffusion to charge transport proba-
bility (f1) and ultimate tensile strength (f2) 
during the SVM assisted CS-CGMD genera-
tions. Five optimization scenarios are 
selected separately with different prefer-
ences (weights) set for two objective func-
tions to generate the Pareto front: A. 10% 
exciton diffusion to charge transport proba-
bility (f1) and 90% tensile strength (f2); B. 
30% f1 and 70% f2; C. 50% f1 and f2; D. 
70% f1 and 30% f2; E. 90% f1 and 10% f2.   

Fig. 4. A. Generated Pareto optimal solutions from SVM assisted CS-CGMD scheme and fitted Pareto front as a function of the two objective functions. B-F. Support 
vector regression (SVR) with radial basis function (RBF) satisfies the objective function trained on the 500 CGMD simulations generated after 10 generations of SVM 
assisted CS-CGMD optimization: B. 10% exciton diffusion to charge transport probability (f1) and 90% tensile strength (f2); C. 30% f1 and 70% f2; D. 50% f1 and f2; 
E. 70% f1 and 30% f2; F. 90% f1 and 10% f2. 
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the Pareto optimality situation. We find that no individual solutions 
from the Pareto front can be considered as the global optimum for one of 
the targeted properties without compromising the other. Fig. 4B-F 
illustrate the converged ROIs on the 2-dimensional design landscape for 
different combinations of the targeted objective as a function of PCBM 
weight fraction and annealing temperature. When mechanical strength 
is prioritized, in lieu of the exciton diffusion to charge transport prob-
ability, as the desired objective function (Fig. 4B), the global optimum is 
identified around PCBM weight fraction between 0.4 and 0.6 and 
annealing temperature ~ 340 K. In contrast, when the exciton diffusion 
to charge transport probability is considered as the preferred objective 
function (Fig. 4F) suppressing the need for an enhanced tensile strength, 
the global optimum migrates around new ROI (PCBM weight fraction <
0.5 and annealing temperature ~ 420 K). 

The predicted trends intuitively correlate to the molecular arrange-
ments of the annealed polymers. With an increase in annealing tem-
perature, the polymers tend to align themselves with each other 
enhancing the crystallinity and hence the overall charge transport 
through the blend. Although the crystalline domains inside a pure P3HT 
phase tend to increase the ultimate tensile strength, P3HT:PCBM blend 
exhibits increased strength until the PCBM weight fraction approaches a 
threshold ~ 0.6 [20]. Thus, it is evident that the choice of the preferred 
objective function drives the converged ROIs across the vast design 
landscape. Fig. 4C-E reveal the migration of the ROIs and the global 
optimum when the objective functions are prioritized according to their 
corresponding weights. Based on these results, it is evident that an ideal 
OPV BHJ layer comprises of a trade-off between the performance and 
mechanical strength, which necessitates a robust predictive modeling to 
establish PSP relationship across the vast landscape of design 
parameters. 

5. Conclusion 

In summary, we employ CGMD simulations coupled with the meta-
heuristic Cuckoo Search optimization (CS-CGMD) to correlate solution 
processing parameters with the morphological evolution consisting of 
electron-donor P3HT and electron-acceptor PCBM molecules. A ML- 
guided approach to augment the traditional CS-CGMD is observed to 
significantly enhance the convergence of the 2-dimensional design space 
to attain the global optimum solutions. Based on the success of the ML- 
guided approach in contrast to the traditional optimization scheme, we 
extend the machine learned metaheuristic search algorithm to define a 
multi-objective optimization framework leveraging CGMD simulations 
(MOCS-CGMD) on the fly, to attain faster convergence to the global 
solution. Results from the optimization run based on ~ 500 objective 
function evaluations reveal a Pareto optimality situation consisting of 
subordinate solutions. While an increase in annealing temperature is 
observed to enhance the exciton diffusion to charge transport proba-
bility, a PCBM weight fraction between 0.4 and 0.6 is recommended for 
increased tensile strength of the underlying blend morphology. Thus, 
the SVM assisted MOCS-CGMD optimization framework, implemented 
in this investigation, demonstrates remarkable capability to identify 
complex correlations of the vast design landscape with the targeted 
properties and can be integrated with high-throughput framework for 
novel materials discovery to accelerate the design of efficient organic 
solar cells and quasirandom nanostructured materials. 
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