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Figure 1: We conducted an in-lab study using two alternative prototypes of an interactive data visualization (two 3D globes
representing geo-referenced data on a 65" screen). Participants in the first condition (Full-Body) were able to control the data
visualization using mid-air gestures and body movements. Participants in the second condition (Gamepad) used a gamepad to
interact with the screen.

ABSTRACT
Findings from embodied cognition suggest that our whole body
(not just our eyes) plays an important role in how we make sense
of data when we interact with data visualizations. In this paper, we
present the results of a study that explores how different designs of
the "interaction" (with a data visualization) alter the way in which
people report and discuss correlation and causation in data. We
conducted a lab study with two experimental conditions: Full body
(participants interacted with a 65” display showing geo-referenced
data using gestures and body movements); and, Gamepad (people
used a joypad to control the system). Participants tended to agree
less with statements that portray correlation and causation in data
after using the Gamepad system. Additionally, discourse analysis
based on Conceptual Metaphor Theory revealed that users made
fewer remarks based on FORCE schemata in Gamepad than in
Full-Body.
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1 INTRODUCTION
In today’s world, people produce 2.5 quintillion bytes of data per
day –while searching for information on the Internet, reading news-
papers, using social media, or listening to debates [2]. Thus, data
exploration is no longer limited to the realm of research laborato-
ries, in which scientists define experimental scenarios to validate
hypotheses [44]. For example, during the 2020 pandemic, people
have spontaneously created hundreds of data visualizations about
COVID-19 and posted them on Twitter and other social media [64].
In such a context, being able to make sense of data is a particularly
crucial skill, because more and more people have relied on their
own data analyses to inform their personal and business decisions
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(for example, whether it is safe enough to go to the beach or to
reopen the dining room of their restaurant to customers [64]).

Additionally, as the gathering and visualization of large data
sets become central to people, museums have attended to ways of
presenting data to visitors ([53]) –including with large displays that
people can control with gestures and body movements [15]. De-
signing installations that facilitate data exploration is, however, still
a challenge for Human-Data Interaction [63]. Specifically, museum
visitors spend a short amount of time with interactive installations
–between 15 seconds and 2 minutes [46, 57] –so we need to identify
design strategies that quickly enable people to focus on the data
on display [63] and to discuss insights on the data [3].

Within this scenario, this paper focuses on two specific concepts:
correlation and causation, which are essential to understanding
modern science [12]. Correlation and causation can be difficult to
interpret. On the one hand, confounding correlation with causation
may lead people to assume causality when there is not. For example,
people may erroneously assume that high ice-cream sales cause
an increase in the number of deaths by drowning [47], because of
the strong correlation between these two variables. On the other
hand, the mantra that correlation does not imply causation may
conceal how correlation can be a precious hint to causation, and lead
people to question the validity of scientific findings (for example,
the association between smoking and lung cancer [18]).

Research in data visualization has tackled the problem of crafting
visual elements that illustrate causal dependencies: for example, by
using animations rather than static charts [35], specific views to
facilitate analytical reasoning [60], or side-by-side block diagrams
instead of traditional bar charts, treemaps, or mosaic plots [27].

Findings from embodied interaction [22] and embodied learn-
ing [34], however, indicate that our body (not just what we see with
our eyes) plays a significant role in the way in which we learn and
understand abstract concepts. In particular, in cognitive linguis-
tics, Lakoff’s and Johnson’s [33] Theory of Conceptual Metaphors
(CMT) posits that humans gain an understanding of the world using
a small set of basic mental patterns, "embodied schemata." These
schemata arise from our experiences using our bodies and are ac-
quired at a very young age; they create networks of brain circuits
[37] that shape and constraint our thinking and sensemaking. For
example, we acquire FORCE-based schemata like COMPULSION af-
ter experiencing "being moved by external forces, like wind, water,
..." multiple times [33], or BLOCKAGE when "we encounter obsta-
cles that block or resist our force" [33]. Interestingly, according to
Johnson, FORCE schemata always trigger a sequence of causality in
our mind (e.g., "the door closes because I, or the wind [...] acted on
it to cause it to shut" [33]. Thus, FORCE schemata might be related
with people’s ability to identify causal patterns in data.

The work that we describe in this paper is grounded on these
sociocultural theories. We explored how the users’ "interaction"
with a data visualization (on a 65" display) contributes to how
people make sense of causation and correlation across the datasets
on display. We conducted an in-lab study with 20 participants using
two different prototypes: Full-Body vs. Gamepad, see Figure 1. We
chose these two interaction approaches (based on a Kinect tracking
camera or a gamepad) because they are frequently used to control
screens in museums and public spaces [15, 50].

Our findings indicate that participants tended to agree less with
statements that portrayed correlation and causation across the data
that they explored after interacting with a gamepad. Additionally,
in the Gamepad condition, participants’ remarks about the data on
display were grounded on FORCE-based schemata four times less
frequently than in the Full-Body Condition.

2 BACKGROUND: EMBODIED COGNITION
AND CONCEPTUAL METAPHOR THEORY
(CMT)

Our work is inspired by the theory of Embodied Cognition [66].
According to embodied cognition, our body plays a fundamental
role in our cognitive processes: our discoveries happen thanks to
the interaction between our body and the surrounding environment
[59].

In particular, this work is grounded on Lakoff’s and Johnson’s
Conceptual Metaphor Theory (CMT) [33, 38, 39]. According to CMT,
we acquire basic mental patterns –called embodied schemata –at a
very early stage of our lives, through our bodily interaction with
the world [33]. For example, a baby learns the BALANCE schema
when they are able to stand in an erect position [33]. Through time,
this schema evolves metaphorically, creating complex networks
of mental connections [38] –so we can, for example, apply the
idea of BALANCE to abstract domains, such as social justice and
architecture. Embodied schemata arise from repeated bodily expe-
riences, for example experiencing an external FORCE, or seeing
or feeling physical and visual ATTRIBUTES. They materialize as a
meaningful "recurrent pattern, shape, and regularity in our daily
body experience" ( [33], p. 29). These mental patterns are integral
to our study as they operate as conceptual primitives at the core of
our sensemaking. For example, Gentner [26] reported that people
typically make sense of electricity using either a WATER-FLOW
or a MOVING CROWD model. In the first case, an electric current
is understood as water flowing through a pipe; in the latter case,
individuals’ movement through passageways and small gates. In
general, people who make sense of electricity using the WATER-
FLOWmodel perform better on battery problems, while those using
the MOVING CROWD metaphor excel on resistor problems [26].
Thus, we hypothesized that the way in which we make sense of
correlation and causation in a data visualization might depend on
the embodied schemata that we use while interacting.

3 RELATEDWORK
3.1 Human-Data Interaction (HDI)
Our work contributes to Human-Data Interaction (HDI) [14, 23].
With HDI, we refer to a research stream investigating how people
interact with large sets of data using novel interfaces [14, 23]. For
example, the study in Trajkova et al. [63] investigated how different
ways of representing the users on a large display affect people’s
engagement with a gesture-based data visualization.

We want to acknowledge that, as highlighted by Victorelli et
al. in their literature review of Human-Data Interaction [65], the
term HDI has been used to refer to a broad range of research topics
spanning from computer graphics to information science. Mortier
et al.’s [48] defined HDI as a multi-disciplinary line of research
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that investigates how people can engage with "personal" data. The
reader should notice that our work focuses on data in general, not
only on personal data. In other words, we adopted Elmqvist’s and
Cafaro’s definition of HDI, which is different from Mortier’s.

Specifically, in the work that we describe in this paper, we are
interested in the opportunities afforded by the design of the inter-
action to facilitate people’s sensemaking while they explore large
sets of data using interactive data visualizations. As observed in
[23], data analysis and visual analytic tools are typically based on
traditional windows, icons, menus, pointer (WIMP) interfaces –
and fail to capitalize on the ways in which the "interaction" itself
contributes to people’s data sensemaking.

3.2 Embodied Interaction and Embodied
Learning

Our work is on embodied interaction. The concept of embodied
interaction was established through a seminal book by Paul Dour-
ish [22]. According to Dourish, meaning during the interaction is
formed through the interplay between people’s actions and the
social and material context in which they happen. In later work,
Hornecker [29] focused on the role of the body in embodied in-
teraction, arguing, for example, that "movement and perception
are tightly coupled." In the context of museum installations and
large displays, the term full-body Interaction" has been used in a
narrower fashion to denote an "input method" that people use when
they interact with computer systems using hand gestures and body
movements ([15]).

Additionally, our work is inspired by Embodied Learning [34],
a sub-field of the learning sciences that seeks to use embodied
interaction principles to design technological interventions that fa-
cilitate learning. Notable examples include the Situated Multimedia
Arts Learning Lab (SmallLab) [11], and Lindgren et al.’s [40] work
on mixed-reality environments –which highlighted that students
understand psychics concepts better when they asked to embody a
meteor rather than play with it on a traditional desktop-based inter-
face [41]. These works, however, require either a personal identifica-
tion with a virtual object (e.g., being a meteor), culturally-acquired
“props,” or a 1:1 relationship between each concept and gesture
(e.g., making a clockwise gesture to turn a gear clockwise) [40].
Embodied learning has been particularly useful to facilitate the
learning of mathematical concepts. In a study with mathematical
experts and non-experts, Nathan et al. [49] found that both groups
of participants used gestures (and speech) while describing geomet-
ric properties –and concluded that promoting gesture production
may facilitate mathematical reasoning. DeSutter and Stieff [21] sug-
gested that embodied interaction might facilitate spatial thinking
–for example, by re-orienting a scientific visualization showing a
molecule depending on the user’s left and right movements in front
of the screen. Abrahamson and Trninic [1] described an embodied
interaction system aimed at facilitating proportional reasoning by
asking fifth-grade children to represent a ratio with their hands.

The work in this paper builds upon these findings. It compares
how two different interaction modalities (Gamepad vs. Full-Body)
affect the user’s sense-making around two specific concepts: causa-
tion and correlation.

3.3 Using Conceptual Metaphor Theory for
Designing Intuitive Embodied Interactions

In interaction design [55], Conceptual Metaphor Theory (CMT) has
been used by Antle et al. [6] to inform the design of a full-body
installation that facilitates the learning of musical concepts: input
actions (i.e., gestures and body movements) are mapped into per-
ceptual, auditory feedback. Similarly, Macaranas et al. [43] asked
participants to map the material properties of tangible objects (e.g.,
smooth/rough foam cubes) to abstract concepts (e.g., polite/un-
polite). Antle and Wise [7] presented a framework for designing
Tangible User Interfaces [32] that facilitate learning. Schuman et al.
[58] analyzed the collaborative usage patterns of a touch screen in-
terface showing a data visualization of global ocean temperatures,
and found that participants made use of conceptual metaphors
through the interaction (in particular, they used spatial words like
UP and DOWN to make sense of an increase or decrease in tem-
perature). Roberts et al. [54] described the design of a full-body
installation that museum visitors can use to explore how data from
the US Census changed over time –and discovered that instru-
menting the space with a vertical (rather than horizontal) timeline
facilitates temporal reasoning because it better aligns with how we
talk about time in English (the past is behind us, the future is in
front of us).

Hurtienne and Israel [30] described one of the first attempts
to apply CMT to the design of Tangible User Interfaces, which is
particularly relevant for the analysis that we describe in this paper.
Their noteworthy work lists a table of categories of body experi-
ences (Space, Containment, Multiplicity, Force, Attribute, Process,
Surface, and Basic) and the corresponding embodied schemata that
belong to each of those categories (e.g., up-down, container, merg-
ing, diversion, big-small, matching, substance, etc.) [30]. In later
work, Hurtienne et al. [31] described a design approach to use CMT
to redesign a touch-screen interface for a sound entertainment sys-
tem. Although Hurtienne’s work does not provide definitions for
each schema and does not focus on the design of the interaction
with data visualizations, the table in [30] provided the starting point
for the coding dictionary that we used in our analysis.

3.4 Visual Analytics
Finally, we want to highlight the connection between this work
and previous literature on visual analytics [62], a research field
that investigates how data visualizations may facilitate analytical
reasoning and that "builds on the human mind’s ability to under-
stand complex information visually" [62]. For example, the work in
[25] reviewed visual analytics tools that allow to visually interpret
protein integration and gene expression.

Interestingly for the work that we discuss in this paper, ges-
tures and body movements have been used in visual analytics. In
2007, Ball and North [8] conducted an experiment that compared a
mouse-based vs. a full-body approach to navigate a data map on
a wall-display –based on the idea that asking people to walk in
the interaction space could facilitate their use of spatial memory.
Participants expressed a general preference for the physical naviga-
tion interaction style, and were faster in accomplishing their data
analysis tasks (e.g., zooming in or aggregating data).
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Work on immersive technologies (Virtual, Mixed, andAugmented
Reality [45]) for visual analytics has also explored the use of full-
body movements to interact with data visualizations. For example,
Cordeil et al. [17] introduced ImAxes, a VR system that allows users
to control standard visualizations (e.g., histograms, scatterplots)
by walking within a room-sized interaction space while wearing
a VR headset, and described usage scenarios for this multi-variate
data visualization tool. In a pre-print, Kluge et al. [36] suggested
the use of multiple "virtual lenses" to explore 3D immersive visu-
alizations. Betella et al. [9, 10] described virtual and mixed-reality
reality systems that enable users to explore the architecture of
the human brain using "embodied navigation" and gestures –and
found that users performed tasks better when using this VR system,
rather than a more traditional desktop interface. Butscher et al.
[13] introduced ART, a Mixed-Reality data analysis tool based on
a touch-enabled tabletop, and suggested that this approach might
facilitate a sense of immersion and collaboration practices.

This line of research focuses on the technical or visual imple-
mentation of tools for visual analytics and suggests that embodied
interaction may facilitate data analysis tasks. The work that we
report in this paper builds upon those ideas, and complements them
by exploring the effect of two specific interaction styles (Full-Body
vs. Gamepad) on users’ sensemaking about correlation and cau-
sation when they freely explore a data visualization (rather than
having to accomplish a specific data analysis task). Unlike the afore-
mentioned works in immersive technologies for visual analytics,
we do not focus on immersive environments, but on a display (a
65" TV) like those that are increasingly used in museums, public
spaces, and even people’s homes. Additionally, we use the lenses of
a theory from cognitive linguistics –Conceptual Metaphor Theory
(CMT) –to explore the impact of different interaction styles on the
mental patterns that people use to make sense of the data on the
screen.

4 PROBLEM STATEMENT
The study that we report in this paper explores whether the Interac-
tion Style (Full-Body vs. Gamepad) affects the users’ sensemaking
about causation and correlation across datasets (when they explore
an interactive data visualization). Leveraging on findings from em-
bodied interaction and embodied learning, we hypothesized that
asking people to use their body to do different actions (either per-
forming mid-air gestures or body movement, or using a gamepad)
would prime them towards using different mental patterns (embod-
ied schemata [38]) and, thus, change the way in which they make
sense of correlation and causation in data. Specifically, our study
was designed to answer the following research questions:

• (R.Q.1) Howdoes the interaction style (Full-Body vs. Gamepad)
affect the users’ agreement with statements that imply either
correlation or causation across the datasets on display?
Significance.We want to explore if the interaction style af-
fects peoples’ sensemaking around two important concepts
in science: causation and correlation. If so, we can contribute
to Human-Data Interaction by providing guidelines for de-
signing interactive installations that facilitate the exploration
of correlation and causation patterns in data.

• (R.Q.2) Are any categories of schemata used more/less fre-
quently depending on the Interaction Style?
Significance. According to Conceptual Metaphor Theory, em-
bodied schemata are interconnected in complex networks
of mental circuits [37]; thus, if the interaction style primes
users towards specific types of schemata and/or away from
others, this may activate networks of mental connections
that change the way in which we make sense of data. In
other words, if the interaction style changes the mental pat-
terns that we detect in the users’ language, this can explain
differences in how they see causation and correlation in data.

5 SYSTEM DESIGN & IMPLEMENTATION
To test the two Interaction Styles (Full-Body vs. Gamepad), we im-
plemented two variations of a data visualization prototype. Figure
2 provides an overview of the system. Our installation visualizes
geo-referenced datasets on two 3D globes. Each prototype consists
of two subsystems working simultaneously in real-time: a manager
(specific for either the Full-Body or the Gamepad version of the
system), and a dataset designer (shared across the two versions of
the prototype).

(1) Full body//Gamepad Manager. The manager enables system
functionalities such as rotation, zooming, changing datasets,
or fly to a certain location. Each condition manager is dis-
cussed in detail in the following subsections.

(2) Datasets Designer. Two datasets are visualized on two interac-
tive 3D globe maps that have realistic earth and atmosphere
settings. Each country is represented with different colors
mapped on the data values.

5.1 Full Body Manager
We used a Microsoft Kinect v.2 camera to implement the Full-Body
version of the prototype. Raw video feeds streaming from the depth
and color camera sensors are themotion inputs of our system. Image
skeletal tracking -which detects one to six players moving within
the field of view of the camera -is used in the gesture manager
as described below. The 3D positions (x ,y, z) of user’s joints are
identified through Unity packages and custom-made scripts that
support the specific functionality of our global system. A user’s
joints can be tracked over time to detect specific movements, which
are then recorded and utilized as a significant gesture to control
the data visualization.

We developed multiple gestures to navigate and control the 3D
globes, based on the HDI tasks and functionalities list recommended
in Trajkova et al. [63]. In the spine movement the globe object
is used to overlay the tracked spine mid joint in order to trans-
form and rotate the angle based on the user spine location. The
purpose of this functionality is to allow people to explore data at
different locations, and to see the data from different perspectives
on the globe (to build on spatial reasoning, as done in embodied
visual analytic systems, e.g. [8]). Zoom in/out allows users to get
a closer look at the data presented on the globe; in particular, we
developed a hand movement to get to each country on the globe.
This gesture provides a comparing mechanism between two data
sets. Jump and Swipe are implemented using a time window to
record a certain joint movement (legs for jump, hands for swipe)
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Figure 2: Overview of the systemwhich supports two experimental conditions (A) Full Body(RGB-D Sensors) and (B) Gamepad.
The prototype is implemented in a modular way, and consist of (1) Full Body/Gamepad Manger, and (2) Datasets Designer.

for a period of time while a condition is valid. Both gestures al-
low people to change the data sets presented on both globes. For
instance, one of the data sets asks "Does Fertilizer Consumption
Influence Number of Threatened Fish Species?" where global data
about Fertilizer Consumption is represented on the first globe while
the Number of Threatened Fish Species is displayed on the other.
On jump/swipe, a different question and data sets are represented,
such as "Does Firearm Ownership Influence Number of Murders?".
Hand Hold/Grab control the cursor and its functionalities: the
user can hand grab, release, and (push)click objects on the screen.
This functionality allows to browse menu elements on the screen
and provides the ability to explore each data set presented on the
globe more in-depth, based on each country or point on the globe.

5.2 Gamepad Manger
In the prototype that we implemented to support the Gamepad
Interaction Style, the input system does not rely on human gestures,
but depends on the input from a gamepad. The idea behind using
this gadget instead of a mouse, for instance, was to insert the sense
of playing a game and having fun while exploring data instead of
being in an office on a regular business day. Therefore, the globe
maps are rotated using the joysticks on the gamepad to explore
the data from several directions and in different countries. For a
closer look at the data value of a specific country or region, the (A),
(B) buttons are used for growing and shrinking the globe maps.

D-Pad is used to change the dataset and explore different values
on both globes. Finally, the right stick is used for browsing the
menus or element on the scene, then use (X) button to select the
desired option- see Figure 2.

5.3 Datasets Designer
Two 3D globe maps are used to represent the global data of each
country in the world. The color of the country’s surface represents
the data value. The system renders two different datasets that are
shown side by side on each globe. The data are uploaded from
resource files. The color gradients are based on a value that has
been normalized among all datasets to reflect a common color
range. There could be up to 20 datasets depicted on the globe maps,
together with some thought-provoking, scaffolding questions [28]
represented on the top portion of the screen. For our lab-study, we
only used 8 of these datasets (4 pairs), along with four questions:
(1) "Does firearm ownership influence number of murders?" and (2)
"Does refugee number influence unemployment rate?", (3) "Does
fertilizer consumption influence number of threatened fish species?",
and (4) "Does access to freshwater influence mortality rate?".

5.4 Hardware and Software Description
Hardware. The system runs on an Intel® CoreTM i7-4710HQ CPU
@ 2.50GHz 2501 MHz, 4 core(s), 8 logical processor(s) 16.0 GB RAM,
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and NVIDIA GeForce GTX 970 GPU. For the RGB-D sensor (Full-
Body condition), we used a Microsoft Kinect V2 camera. For the
Gamepad condition, we used a Gaming Controller Gamepad Joy-
stick for PC (Windows XP/7/8/10), Steam, Android, and PS3.
Software. Unity3D engine was used as the main platform for the
entire system and the collective of tools and packages are installed
based on the requirement of each task. For body tracking and ges-
ture support, we used the Kinect for Windows Software Develop-
ment Kit (SDK) v. 2.0 to develop the systemwith gestural interaction
in C#, C++, and Java. Also, a world map bundle was utilized in our
system after modification.

6 METHODOLOGY
To assess the impact of the Interaction Style (Full-Body vs. Gamepad)
on how participants make sense of Correlation and Causation in
data, we conducted a mixed-method in-lab experimental study. We
adopted a between-study design: participants interacted either with
the Full-Body or the Gamepad prototype –we did not expose them
to both versions of the system, because we wanted to isolate the
effect of each Interaction Style. Participants interacted with the
system one at a time. We randomized the order of the experimental
conditions; this resulted in 20 study sessions, 11 for the Full-Body
condition, and 9 for the Gamepad condition. All study sessions were
video recorded and transcribed.

6.1 Participants
Twenty people (11 identified themselves as males and 9 as females)
participated in this experiment. We recruited them using emails
and mailing lists at a large university campus. They belonged to
a wide range of age groups, from 21 to 49 years old, with most of
them (N = 13) in the 21-29 age range. They had different levels of
education, including High school degrees (N = 1), Associate (N = 1),
Bachelor (N = 7), Master (N = 6), Professional (N = 1), and Doctorate
degrees (N = 1). Participants belonged to a range of races, including
Asian (N = 12), white (N = 6), Native Hawaiian or Pacific Islander
(N = 1), and Other (N =1).

6.2 Experimental Procedure
Each participant was greeted by a moderator and invited to review
and sign a consent document. The experimental sessions followed
a testing protocol script and consisted of the following three steps:
a pre-test questionnaire, the interaction with the prototype, and a
post-test questionnaire.

Pre-Test. Participants were asked to fill out a Qualtrics survey
on an iPad that asked how much they agreed with two statements
related to correlation and causation. Such two statements were
repeated for all four pairs of datasets that people were then going
to see on the screen during the interaction phase: (1) Fertilizer
Consumption and Number of Threatened Fish Species; (2) Firearm
Ownership and the Number of Murders; (3) Number of Refugees
and the Unemployment Rate; (4) Access to Freshwater andMortality
Rate. Specifically, participants were asked:

"On a scale from 1 (strongly disagree) to 5 (strongly agree), how
much do you agree with each of the following statements?

(1) Fertilizer consumption is correlated with the number of threat-
ened fish species;

(2) Increased fertilizer consumption causes an increase in the
number of threatened fish species.

The order in which the pairs of datasets were presented in the
survey was randomized to eliminate question order bias (e.g., one
participant saw the statements about Fertilizer Consumption and
Number of Threatened Fish Species first, another started with Gun
Ownership and Number of Murders, and so on). The pre-test survey
was followed by four demographic questions concerning partici-
pants’ age, race, gender, and educational level.

Interaction. Following the pre-test, the users were asked to
freely use the interactive installation and were given simple instruc-
tions that described how to interact. Participants were given one to
two minutes to get acquainted with the interactive screen, and then
asked to think aloud and answer the following two questions: 1)
Can you tell me what you see on the screen?; 2) Can you describe
the data on the screen? Participants in the Full-Body condition in-
teracted using mid-air gestures and body movements; participants
in the Gamepad condition used the gamepad to navigate the data
visualization.

Post-Test. After interacting with the system, users were given
a post-test questionnaire that asked them to rate the same ques-
tions as in the pre-test. The order in which such statements were
presented was the same order in which each participant had seen
them in the pre-test.

6.3 Embodied Schemata Code Analysis
In preparation for the analysis, five researchers collaboratively
looked at the transcripts of the think-aloud remarks that partic-
ipants made while interacting with the installation, in order to
identify the idea units [4] (i.e., we were not coding for key words,
but looking for full sentences that explained the same concepts)
pertinent to the data on display. We want to highlight that, be-
cause our analysis focuses on data sensemaking, we conducted
this analysis only on the idea units in which participants made
remarks about the data on display, and excluded remarks related
to the system’s usability. We then used the catalog of Embodied
Schemata provided by Hurtienne et al. [30] as the initial dictionary
for coding those idea units. We performed this type of linguistics
analysis because previous work in embodied interaction has shown
that people make remarks based on embodied schemata and cog-
nitive metaphors when they explore interactive data visualization
(e.g., [54, 58]). Due to a lack of definitions and keywords describing
each schema, however, we took an inductive approach to better
understand how to categorize and group our data. The following
sections describe the rounds of coding and data analysis.

Initial Round. Five researchers individually looked at the list of
idea units that we identified as pertinent to the data on display
from participants’ interviews, and coded them (when they deemed
appropriate) using the catalog of Embodied Schemata reported by
Hurtienne et al. [30]. Each researcher initially coded 1/5 of the list.
While doing that, the researchers highlighted the most significant
keywords (in each idea unit) that suggested them to apply a specific
embodied schema.
The reader should notice that coding for embodied schemata means
that the researchers used linguistic analysis to look into partic-
ipant’s mind, i.e. to interpret which mental patterns (embodied

569



Show Me How You Interact, I Will Tell You What You Think DIS ’21, June 28-July 2, 2021, Virtual Event, USA

schemata) participants used to ground their sensemaking while
making remarks about the data on display. Because embodied
schemata are polysemic [33], the same idea unit can be grounded
on multiple (not only one) embodied schemata.

Second Round. In order to cross-validate the coding, each re-
searcher individually looked at the portion of the list that they
did not directly code (4/5 of the list) in round one, and indicated
whether they agreed or not on the code(s) applied to each quote. In
case of disagreement, they listed the code they would have used,
and/or the alternative keywords they would have used to identify
such codes.

Final Round. The researchers worked synchronously (in virtual
Zoom meetings, because the analysis was conducted during the
COVID-19 pandemic) to discuss each idea unit. The goal was to
resolve disagreement and both embodied schemata and keywords.
At the end of this process, the team of researchers agreed on 98% of
the overall coding for the idea units (there was a disagreement on 3
of the 144 idea units, which were then excluded from the statistical
analysis).

6.4 Data Preparation for Statistical Analysis
To prepare the data for statistical analysis on the impact of the
Interaction Style on the agreement score that participants assigned
to correlation and causation statements (R.Q.1), we cleaned the
data and removed one instance of response bias, i.e. one partici-
pant in the Full-Body Interaction style put the same Likert scale
response for every question in the pre and post tests. The final
number of participants came down from 20 to 19 participants. We
then computed the average agreement score in each of the pre-test
and post-test scores. With average agreement score we mean that,
in each test (pre and post tests), we considered the average of the
four scores that participants assigned to each of the four corre-
lation statements, and the average of the four scores assigned to
the causation statements. We used the average because we were
interested in the overall effect of Interaction Style on participants’
sensemaking on causation and correlation, not to assess individual
differences across the datasets on display.

To analyze if the different Interaction Type (Full-Body vs. Gamepad)
resulted in people’s using different combinations of categories of
embodied schemata (R.Q.2), we computed the frequencies of each
of the categories of schemata (e.g., SPACE, CONTAINMENT, MUL-
TIPLICITY, etc. –see Table 1) in each Interaction Type. We based
our analysis on the category of schemata (rather than on individ-
ual embodied schemata) to provide more generalizable results (the
specific embodied schemata that people use may be dependent on
our application scenario or data visualization).

7 RESULTS
7.1 R.Q.1: Impact of the Interaction Style on

Correlation and Causation
The study design included three variables: two within-subject fac-
tors, (1) the Test Time (pre-test vs. post-test), because each partic-
ipant had to fill out a survey at different times (before and after
the interaction), (2) the Question Type (correlation vs. causation),
as each participant had to rate statements about both causation

and and correlation; and one between-subject factor, (3) The In-
teraction Style (Full-Body vs. Gamepad) because each participant
interacted with the data visualization using either gestures and
body movements, or a gamepad. We wanted to analyze the inter-
action of these three independent variables on the participant’s
average agreement score (the dependent variable) with causation
and correlation statements in the pre- and post-tests.

In order to do that, we conducted a three-way mixed ANOVA,
with the test time (pre-test vs. post-test) and the question type (cor-
relation vs. causation) as within-subjects factors, and the interaction
style (Full-Body vs. Gamepad) as a between-subjects factor. The
scores were normally distributed, as assessed by Shapiro-Wilk’s test
(p > .05). There was homogeneity of variances, as assessed by Lev-
ene’s test for equality of variances (p > .05). There was not a statis-
tically significant three-way interaction between test time, question
type, and interaction style, F (1, 16) = 0.268,p = 0.612. We contin-
ued the analysis because there was a statistically significant two-
way interaction between Interaction Style (Full-Body vs. Gamepad)
and Test Time (pre-test vs. post-test), F (1, 16) = 7.743,p = 0.013. In
other words, asking participants to interact using either full-body
gestures or a gamepad altered the difference in the average agree-
ment scores that users assigned during pre vs. post-tests to state-
ments that portray correlation and causation in the data that they
explored. The reader should notice that, at this point in the analysis,
for each interaction style, the score is the average of those on cau-
sation and correlation statements, and the same results could be ob-
tained using a two-way mixed ANOVA that ignores Question Type.
Contrary to our original expectation, there was no statistically sig-
nificant simple main effect of Test Time (pre-test vs. post-test) in the
Full-Body interaction style, as detected by one-way repeated mea-
sure ANOVA, F (1, 18) = 0.396,p = 0.537. There was, instead, a sta-
tistically significant simple main effect of Test Time in the Gamepad
interaction style, F (1, 19) = 21.274,p < 0.0001. Specifically, the av-
erage score decreased from the pre-test (X = 3.275, SD = 0.466) to
the post-test (X = 2.6123, SD = 0.716) -see Figure 3.

7.2 R.Q.2: Impact of the Interaction Style on
Categories of Schemata

After detecting that the Interaction Style affected the post-test
scores, we wanted to dig more into the users’ mental patterns to
explore what could explain this difference. As we described in the
methodology section, this portion of the analysis was structured in
two parts: (1) coding participants’ remarks during the interaction;
and, (2) statistical analysis to identify differences across Interaction
Types.

7.2.1 Coding. Among all participants’ remarks during the inter-
action, we identified 144 idea units in which users described the
data on display. Table 1 lists the embodied schemata (among those
listed by Hurtienne [30]) that we used to code those idea units, the
Categories of Body Experience [33] that we used to group them, and
the keywords that we inductively identified from the transcripts as
indicative of each schema. We want to highlight a lack of previous
work on how to detect embodied schemata in the remarks that
people make when they interact with a data visualization. Thus,
keywords and examples in
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Figure 3: A plot of the estimated marginal means for the average agreement scores that participants assigned during pre-test
vs. post-test in the two Interaction Styles (Full-Body vs. Gamepad)

7.2.2 Statistical Analysis. At this point, we had enough data to
assess if there was an interaction between the Interaction Type and
the Categories of Embodied Schemata that we coded (see Table 1),
i.e. if the frequency of the categories of schemata on which people
grounded their remarks about the data on display changed when
using different Interaction Styles. As before, the variable Interaction
Style has two groups (Full-Body vs. Tangible), while the Category
of Schemata variable has six groups (SPACE, CONTAINMENT,
MULTIPLICITY, FORCE, ATTRIBUTE, SURFACE -see Table 1). We
did not use a (simpler) chi-square test because the number of groups
would have required many z-test comparisons during the posthoc
analysis, and becausemany idea units were codedwithmultiple (not
only one) schemata (chi-squares are not good for multiple-choice
problems). Rather, we performed a two-way log-linear analysis.

The likelihood ratio for the association between Interaction Type
and Categories of Embodied Schemata was statistically significant,
χ2(5) = 15.639,p = 0.008. In other words, interacting using a
gamepad vs. with gestures and body movements affects the cate-
gories of embodied schemata that participants use in their remarks.

Regarding the specific categories of schemata, the log-linear
model detected a statistically significant difference in the use of
FORCE schemata between the two Interaction Styles. Specifically,
the odds ratio of participants reasoning using FORCE schemata
when they interacted using the Gamepad was 20% of the odds of
participants using FORCE schemata when they interacted using
their Full-Body –see Table 2.

The reader should notice that 20% comes from e−1.609. In other
words, participants made remarks based on FORCE schemata four
times more frequently while interacting with gestures and body
movements than when they used a Gamepad.

There were other statistically significant differences within Inter-
action Styles (for example, consistently with literature on embodied

interaction [6], SPACE schemata were overall the most frequently
used mental patterns across the two experimental conditions), but
these go beyond the scope of our research question.

8 DISCUSSION
8.1 Interaction Design and Data Sesemaking:

Impact of the Interaction on Users’
Sensemaking about Data

Our results indicate that the Interaction Style (Gamepad vs. Full-
Body) influences how users make sense of correlation and causation:
the difference in people’s agreement with statements that portray
correlation or causation between pre and post tests (Test Time)
depended on the Interaction Style. Thus, different interaction styles
do not only provide an engaging way to interact with large displays
[46]; rather, they alter the way in which we make sense of data
when we explore data visualizations. This complements findings
that embodied interaction approaches may facilitate tasks in visual
analytics (e.g., the "embodied navigation" in [8]).

We want to acknowledge that this paper does not intend to
provide a definitive answer on which interaction style is "better"
to support "reasoning" about or "learning" of correlation or cau-
sation: the focus is on sensemaking in general, while the evalu-
ation of reasoning and learning should be investigated in future
work. This could be a particularly fruitful line of research, because
an increasing body of research demonstrates that hand gestures
play an important role in scientific reasoning in classrooms. For
example, multiple studies report that students and teachers use
gestures when talking about science in formal learning settings
(e.g., [19, 20, 51, 56]). Singer, Radinsky, and Goldman [61] found
that the use of gestures in a 6th grade science class demonstrated
advancement in the group’s understanding of plate tectonics. Chen
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Table 1: Catalog of some Embodied Schemata [30] including the dictionary keywords extracted from the idea units from the
participants’ remarks during our experiment.

Category Embodied Dictionary - Keyword Quote Example
of Schemata Schemata

SPACE
UP-DOWN Greater, higher, high, low, bottom, top,

lower, highest, little
“I get that is because of the consumption of fertilizers
higher in China..."

SCALE Number, rate, bad, worse, better, cleaner,
lot, more, weighted scale, amount,
many, large, percentage

“But the mortality rate of course is worse in poor coun-
tries..."

LOCATION Globe, places, side, particular, parts,
world, space, over there, At the coun-
try, particular continent, Africa, Aus-
tralia, Europe, America, Brazil, Mex-
ico, Italy, Turkey, Finland, China, In-
dia, Nigeria, Argentina, United States,
Venezuela, Croatia, Bolivia, Columbia,
France, Spain, Algeria, Syria, Iran

“it looks like access to water is pretty consistent across
the globe..."

CONTAINMENT
CONTAINER lake, countries, in, in the country, on

the screen, mark on the
“They probably have lot of Lake fishes because the ac-
cess to water is not done much."

IN-OUT In “They have all locked right in from Turkey and yeah,
Finland as well."

FULL-EMPTY Not noticed “So I did not noticed it."

MULTIPLICITY COUNT-MASS Counted “The refugees are obviously unauthorized at [a] particu-
lar continent and they are being still counted"

LINKAGE Engaging, connected “It is entirely getting connectedwith each other. Right,"

FORCE DIVERSION Doubt, overlooked, misleading “There is no water around the area, there [are] no work-
ers [that] still live [there]. It is like making a mark on
the map. It looks misleading to me because I cannot
make sense out of where in India."

BLOCKAGE Cannot make sense, struggling, not be
able to understand, not exactly sure,
more clear, be able to

“Like for example, Brazil has very little firearm posses-
sion, but it looks like the highest firearm on the side
rates. But yeah, Brazil, Venezuela and Mexico all stand
out pretty clearly there. I’m not exactly sure what the
significance of Bolivia and Columbia data is like."

ATTRIBUTE DARK-
BRIGHT

Color, white (black) “All these data identified as zero in orange color"

BIG-SMALL Large “Syria has a large number of refugees but doesn’t have
any information on employment."

SURFACE MATCHING Seems, indicate, identified, mapping,
correlated, same, correlation, related,
opposite, like, both, compared, compare,
equal, differences, assumed, thought, ap-
pear, As a, influence, both maps, con-
sistent, looks like, different, relative to,
relationship

“I can see there is no correlation between access to
water and mortality rate..."

Table 2: We detected a statistically significant difference in
participants’ use of FORCE based schemata between the two
experimental conditions (Gamepad and Full-Body).

Int. Style Category (λ) Z p % of baseline
Full-Body FORCE 2.303 7.281 (baseline)
Gamepad FORCE -1.609 -2.078 0.038 20%

and Herbst [16] report that, when limited information is given,
students compensated those limitations by engaging with gestural
expressions. Thus, we believe that specific gestures may play a

particularly important role in building reasoning about data –even
beyond formal learning settings.

8.2 Embodied Schemata and Data Sensemaking:
Activating Networks of Mental Circuits to
Facilitate Data Sensemaking

Because of its grounding on sociocultural theories of cognition, the
study in this paper provides insights into why different interaction
styles alter sensemaking. In particular, we want to stress that we
did not include generic remarks on the usability of the system (e.g.,
users’ comments on the gamepad, or on the accuracy of the gestures
and bodymovements recognition) in our analysis for R.Q.2.We took
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this approach because one could expect from previous literature on
embodied interaction that users will comment on the exertion (or
fatigue) required to perform gestures and body movements (e.g.,
[42]), or on characteristics of the movement itself (e.g., having to
BALANCE ourselves [5] after jumping). An example of the quotes
that we did not include in the analysis is: (P15) So I can rotate it
when I do that. [...] That’s kinda cool.

Rather, the idea units that we considered were deemed related
to the data on display by a team of five researchers who coded
the transcripts. For example, in Table 1, the quote on DIVERSION
suggests that the user is reasoning about properties of the data
representation (something we did not see happening in the Joystick
condition), while the remark coded as BLOCKAGE indicates that the
user is trying to relate the data on display with her prior knowledge
on the topic –a type of personal insights similar to those observed
by Roberts et al. [52] and that Trajkova et al. see as particularly
relevant for designing Human-Data Interaction [63].

This trend suggests that the schemata that are triggered while
performing gestures and body movements may propagate in the
user’s mind in a way that activates similar, related mental patterns
(i.e., FORCE schemata activated by movements can, in turn, ac-
tivate other FORCE schemata that facilitate making sense of the
data visualization). This is consistent with Lakoff’s theory that
embodied schemata form an actual network of mental circuits [37].
These results also resonate with work in embodied interaction that
has found –through language analysis –that people use embodied
schemata and cognitive metaphors when they describe the data
on display (e.g., [54, 58]). We believe this trend indicates the need
for future, fundamental research investigating which embodied
schemata aid data sensemaking, reasoning, and learning. We also
need to identify the most suitable interaction modalities to activate
those schemata.

8.3 Implications for Human-Data Interaction
For example, our results show that interacting with a gamepad
(rather than with hand gestures and body movements) reduces the
users’ agreement with statements that portray correlation and cau-
sation across the dataset on display. This finding has implications
for designing interactive displays that allow people to compare and
analyze large sets of data (Human-Data Interaction [14, 23]). In par-
ticular, it suggests that Gamepad may be a suitable interaction style
when we want to prevent people from mistakenly seeing causation
across the datasets on display.

8.4 Relationship between FORCE Schemata
and Causality

Our results indicate that interacting using a Gamepad resulted in
fewer remarks based on FORCE mental patterns (when participants
described the data on display during their interaction with the
visualization) compared to the remarks that people made while
interacting with hand gestures and body movements.

We already mentioned how the FORCE schemata activated dur-
ing the interaction might, in turn, activate other FORCE schemata
on which people ground their conversation (and sensemaking)
about the data on display. Additionally, as we mentioned in the
Introduction, CMT suggests a deeper interplay between FORCE

schemata and causal reasoning. Specifically, FORCE schemata al-
ways involve a "sequence of causality" [24]. For example, Johnson
observes that "the door closes because I, or the wind, or a spring
mechanism, acted on it to cause it to shut" [33] (p. 44). The networks
of mental connections [38] between FORCE schemata and causality
are activated pre-conceptually in our brain, without even noticing.

Our findings suggest that the "sequence of causality" intrinsic in
FORCE schemata may prime people towards seeing causality (and
correlation) across the dataset on display. This could explain why, in
the Gamepad Interaction Style, people used fewer FORCE schemata,
made fewer remarks grounded on FORCE schemata when they
described the data on display and, in turn, agreed less with causation
and correlation statements after interacting with the system. Future
work should further investigate this phenomenon by comparing
additional interaction styles (e.g., a more office-based scenario with
keyboard and mouse; systems that respond to static/iconic gestures
vs. more dynamic full body movements; etc.), data visualizations
(different from the globe-based interface that we used), display sizes
(e.g., wall displays, mobile phones, etc.), and data sets.

8.5 Application Scenarios
We decided to conduct this study in-lab because we needed to
isolate asmuch as possible the variable that wemanipulated (i.e., the
Interaction Style) from other environmental factors. The lab setting
allowed to expose all participants to the same data visualization,
and to make them interact in the same space (in front of a 65"
display) and with the same number of people in the room (two
moderators). Future studies should bring these prototypes in situ
(e.g., at museums, galleries, or other public spaces), to investigate
the impact of the social space on our findings.

9 LIMITATIONS
In the study that we presented in this paper, we used two gaming
devices: a gamepad, and a Microsoft Kinect. We want to acknowl-
edge that people may not be confident in using the gamepad if
they do not regularly play games; likewise, they may not be famil-
iar with mid-air gestures and body movements if they never play
games using Kinect. Although we believe that we mitigated this
problem by randomizing the assignment of participants to experi-
mental conditions, this factor might have influenced the usability
of the prototypes (and this work did not investigate the relationship
between usability and data sensemaking).

A second limitation that we want to acknowledge is that we did
not assess if participants had a correct understanding of causation
and correlation before interacting with our prototypes. In this case,
we believe that we may have mitigated this problem by random-
izing participants, because participants with clearer (or less clear)
understanding of causation and correlation were randomly split be-
tween the two experimental conditions. This means, however, that
this work could not directly assess the impact of prior knowledge
on data sensemaking, nor the learning that might have occurred
thanks to the interaction with our prototypes.

10 CONCLUSION
In this paper, we presented an in-lab study that investigated the
role of two Interaction Styles (Gamepad vs. Full-Body) on the way
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in which users make sense of causation and correlation in data.
Our results indicate that these two interaction styles affected how
people make sense of causation and correlation in different ways:
participants in the Full-Body conditions made more remarks based
on FORCE schemata while they explored the data visualization;
participants in the Gamepad condition used FORCE schemata sig-
nificantly less, and tended to agree less with statements that portray
causation and correlation across datasets on display after they in-
teracted with the system.

Future work should investigate if different interaction styles can
prime people towards using specific schemata, and the role of the
social space (e.g., what happens in public spaces like museums).
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