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Directly comparing the listening strategies

of humans and machines
Viet Anh Trinh, Michael Mandel

Abstract—Automatic speech recognition (ASR) has reached hu-
man performance on many clean speech corpora, but it remains
worse than human listeners in noisy environments. This paper
investigates whether this difference in performance might be due
to a difference in the time-frequency regions that each listener
utilizes in making their decisions and how these “important”
regions change for ASRs using different acoustic models (AMs)
and language models (LMs). We define important regions as
time-frequency points in a spectrogram that tend to be audible
when the listener correctly recognizes that utterance in noise.
The evidence from this study indicates that a neural network
AM attends to regions that are more similar to those of humans
(capturing certain high-energy regions) than those of a traditional
Gaussian mixture model (GMM) AM. Our analysis also shows
that the neural network AM has not yet captured all the cues that
human listeners utilize, such as certain transitions between silence
and high speech energy. We also find that differences in important
time-frequency regions tend to track differences in accuracy on
specific words in a test sentence, suggesting a connection. Because
of this connection, adapting an ASR to attend to the same regions
humans use might improve its generalization in noise.

Index Terms—Noise, Speech perception, Sentence recognition,
Automatic speech recognition

I. INTRODUCTION

NORMAL-hearing human listeners are remarkably good

at understanding speech in noise, much better than ASR

systems [1]–[4], even without any grammatical or linguistic

information at all [5], [6]. The reasons for these differences,

however, are not well understood, and understanding them

would very likely directly lead to improvements in ASR

noise robustness. Thus, it is reasonable to compare human

speech recognition with automatic speech recognition (ASR) to

understand the differences between them, why these differences

exist, and how the ASR can learn from humans to improve its

performance in noise.

We have introduced a method that can reveal the strategy

that a human or machine listener uses in recognizing a

particular utterance in noise [7]–[9]. By strategy, we mean

the combination of time-frequency “regions” that a listener

utilizes to recognize a particular utterance when mixed with a

particular noise instance in the context of a particular task. In
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this paper, we compare the importance maps of human listeners

to machine listeners. We identify important regions, which are

time-frequency points in a spectrogram that tend to be audible

when the listener (human or ASR) correctly recognizes an

utterance in noise.

Our first experiment (Section V-A) compares human and

machine importance maps on the small-vocabulary GRID

dataset [10]. Our second experiment (Section V-B) examines

the role of the acoustic model on the large-vocabulary AMI

dataset [11]. The current paper incorporates and builds upon

our previous work [12], which used this technique to analyze

human speech perception and a GMM-HMM ASR on the

small-vocabulary GRID dataset.

Our work is motivated by approaches from several fields.

[3] surveyed human and non-neural-network ASR on several

datasets with different vocabulary sizes and concluded that

the performance gap between humans and ASR became larger

with a harder or noisier test set. [6] focused on analyzing the

performance of ASR acoustic models, using a “null grammar”

to avoid the influence of a language model. They showed that

the WER of the ASR rises much more quickly than that of

the humans as the noise level increases.

[5] analyzed phoneme confusions between humans and ASR

and showed that a GMM-HMM ASR does not utilize voicing

information, which humans do, leading to a high error rate

in some cases, for example, recognizing “p” where the actual

character is “b”. [1] contrasted human and ASR performance

in single-channel and multi-channel speech in different noise

scenarios. They showed that in a diffuse-noise environment

with moving speakers, the ASR requires a 12dB higher signal to

noise ratio (SNR) to achieve the same accuracy (50%) as human

listeners. [13] evaluated the impact of intrinsic variations in

speech on the recognition performance of human and machine

listeners. The paper also demonstrated that the SNR needs to

be increased by 13 dB for the ASR to achieve human-level

performance in a dataset with variation in accent and dialect

(a subset of the Oldenburg Logatome dataset [14]).

Additionally, several projects have endeavored to improve

ASR noise robustness by building confidence measures of

recognition hypotheses based on understanding the errors the

recognizer makes and its state when making them [15], [16].

Others have created synthetic data according to various statis-

tical assumptions made in ASR systems [17]–[19], estimating

the proportion of errors caused by each assumption.

And others [20] have applied neurophysiological techniques

to a deep neural network acoustic model to try to understand its

similarities to human speech perception in quiet environments.

[20] showed that each neuron in a neural network acoustic

model tends to be activated by specific types of phonetic
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features, which is also the case in the human brain, where

individual auditory neurons can be selective to different

phonetic features [21]. This analysis has focused on clean

speech, however, and so does not provide much insight into

noise robustness. In addition, responses are averaged across

many instances of each phoneme, so cannot provide insight

into decisions on individual stimuli or guidance for modifying

predictions.

These works mainly focus on comparing the WER perfor-

mance of humans and ASR or the types of errors that each

makes. Our work is different in that we localize the cause of

these differences in time and frequency by finding where in the

spectrogram each listener is paying attention, and how these

important regions vary across different listeners, including

different acoustic models and language models. Although

our analysis is based on a spectrographic representation for

visualization purposes, listeners are paying attention to time-

frequency portions of the actual speech signal in their auditory

representations. By explaining the cause of this disparity, this

work could lead to a method to improve ASR performance

in noisy conditions. One possible mechanism to achieve this

is the Bubble Cooperative Network [22], in which a data

augmentation agent is trained to add noise to unimportant

regions while simultaneously training the ASR.

There have been several studies on the topic of finding the

regions of speech spectrograms that are essential to the task

of speech recognition. There is a line of literature focusing on

weighting the contribution of different frequency bands to the

recognition performance of human listeners [23]–[27].

Another line of research on humans analyzes both frequency

and time information, leading to an importance score of every

time-frequency point in the spectrogram [28]. They derive

an importance map as the weights, W , associated with the

noisy spectrogram X in the equation p(y) = f(XTW + c),
where y is a binary label based on the response of a human

subject. For example, this target label could have the value

0 or 1 depending on whether the human listener responds

that the noisy mixture contains the word “aba” or “ada.”

The generalized linear model is used to find the weights W

that best fit the data. The noisy speech is created by adding

Gaussian noise to the clean spectrogram. [28] found that the

important region for the task of distinguishing “aba” from

“ada” is the second formant transition, which agrees with

findings in theoretical phonetics. Our method is different in

that the bubble noise technique requires fewer noisy mixtures

per utterance than the additive Gaussian noise approach, as

their noise has smaller time-frequency modulation. In addition,

we compare the importance maps of humans to different

ASR systems, including both neural networks and non-neural

network systems. [29] applied the bubbles technique to the

modulation spectrum domain in audio. They find the value of

spectral and temporal modulations, that are vital to general

intelligibility in a modulation power spectrum [30] while we

focus on time-frequency regions that are important to recognize

a particular phoneme in a spectrogram.

Recently, [31] also proposed an approach to analyzing the

speech cues using a “bubble” technique. In their approach,

the area inside the Gaussian bubble has more noise than the

surrounding time-frequency points. In contrast, there is less

noise inside the bubble in our method. [32] located the speech

cues in time and frequency bands, using truncation in time and

low- and high-pass filtering in frequency. As a result of the

truncation approach, this technique can only be utilized for the

first and last phonemes of an utterance. Our method, however,

can find the speech cues of a phoneme at any position, even in

a long sentence. [33] showed that human listener recognition

error rates increase when the speech cues identified as essential

by this method are eliminated while [34] demonstrated that

consonant recognition performance is increased when these

speech cues are enhanced. Moreover, our task is closely related

to the topic of finding a saliency map in computer vision,

which aims to find the pixels in an image that are essential

for a classifier to make a particular decision [35], [35]–[40].

There are studies that focus on a specific type of classifier,

such as convolutional neural networks [35]–[37], which cannot

be directly applied to traditional HMM-GMM ASR systems or

RNN-based ASR systems. Our current method, however, can

apply to any ASR system.

II. METHODOLOGY

The core idea of our technique is to measure the intelligibility

of a single recording of an utterance mixed with many different

instances of noise varying in both time and frequency. Mixtures

in which the utterance is intelligible must have revealed a

sufficient amount of information from that utterance for the

listener to correctly distinguish it from alternatives. Mixtures

in which it is not intelligible, must not have revealed sufficient

information. Thus time-frequency regions that are frequently

audible in intelligible mixtures and inaudible in unintelligible

mixtures are likely to represent the location of important

cues that the listener is using. By measuring the correlation

between audibility of each time-frequency point with the overall

intelligibility of the utterance across mixtures, we can compute

the importance of each time-frequency point, which we call

the time-frequency importance function (TFIF). Details of the

method are given in the following sections.

Our method was inspired by the “bubbles” technique in vi-

sion [41], which introduced a technique to localize information

in pictures of faces that viewers use to classify the gender,

identity, and emotions of the face. Our method represented a

translation of this approach to the study of auditory perception.

A. Noise process

Each sentence was mixed with many instances of “bubble”

noise [7]. This noise was designed to provide glimpses of the

speech only in specific time-frequency areas, which we call

bubbles. To construct this noise, we began with speech-shaped

noise with a signal-to-noise ratio (SNR) of −24 dB, sufficient to

make the speech completely unintelligible. The noise was then

attenuated in “elliptical” bubbles (more accurately described

as jointly parabolic in time and ERB-scale frequency [42]),

providing glimpses of the speech in these regions. Within

each bubble, the noise was suppressed by up to 80 dB. The

bubbles were 350 ms wide at their widest and 7 ERB high at

their highest, the smallest values that would avoid introducing
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audible artifacts. These settings led to a half-width of 90 ms

and half-height of 1 ERB. The center points of the bubbles

were selected uniformly at random in time and in ERB-scale

frequency, except that they were excluded from a 2-ERB buffer

at the bottom and top of the frequency scale to avoid edge

effects.

B. General task for listeners

In the human listening test, one sentence was selected at

random, mixed with bubble noise, and presented to the listener,

who then chose a sentence from a list of all of the sentences.

Sentence presentation was blocked, so that every block of

mixtures used each of the sentences once in a random order.

The number of bubbles per sentence controlled the difficulty

of the task, and was adapted using the weighted up-down

procedure [43] separately for each sentence. When a sentence

was correctly identified, the number of bubbles used in its

next presentation was reduced, increasing the difficulty of the

task, and when it was incorrectly identified, the number of

bubbles used in its next presentation was increased, decreasing

the difficulty of the task.

In the machine experiment, we trained the ASR according

to the standard “recipe” for each dataset. The ASR was then

evaluated on test utterances mixed with instances of bubble

noise. Instead of using an adaptive scheme as the human

listening test, the ASR’s noisy test set was created with a fixed

number of bubbles per second such that the accuracy of the

ASR was approximately 50% on as many words as possible.

The ASR task was to output the text given the noisy speech

and its accuracy was scored separately for each word in the

sentence.

C. Analysis technique

In order to analyze the results, we computed the point-biserial

correlation between the dichotomous variable yij , whether or

not the listener correctly identified the jth mixture of the ith

utterance, and the continuous variable Aij(f, t), the audibility

of time-frequency point (f, t) in the jth mixture of the ith

utterance. The intelligibility yij had value zero if the listener

recognized the speech incorrectly and one otherwise. Audibility

here is defined as the proportion of attenuation (in dB) applied

to the noise at that point, i.e., the depth of the bubble, ranging

between 0 for no attenuation (pure noise) and 1 for total

attenuation (no noise). This correlation was performed across

mixtures, but separately for each time-frequency point for

each utterance, leading to a “massively univariate” correlation,

denoted ci(f, t).

ci(f, t) =
mi1 −mi0

sin

√

ni0ni1

(ni0 + ni1)2
(1)

where ni0 and ni1 are the number of incorrectly and correctly

identified mixtures (yij = 0, 1) of the ith sentence, respectively,

mi0 and mi1 are the mean audibility in the group of incorrectly

and correctly identified noisy mixtures of the ith sentence,

respectively, and sin is the standard deviation of all the mixtures

(ni0 + ni1) of the ith utterance. The significance of this

correlation was assessed using a two-sided t-test with a test

statistic si(f, t)

si(f, t) = ci(f, t)

√

ni0 + ni1 − 2

1− ci(f, t)2
(2)

From the test statistic si(f, t), we derived the value of the

Student’s t cumulative distribution function FX(si(f, t)) =
P (X ≤ si(f, t)), where X is a random variable following

Student’s t-distribution. The two-sided p-value of pi(f, t) is

derived from FX(si(f, t)) via

pi(f, t) =

{

FX(si(f, t)) if FX(si(f, t)) ≤ 0.5

1− FX(si(f, t)) if FX(si(f, t)) > 0.5
(3)

The resulting p-value for each point and utterance, pi(f, t),
was compared to the significance level of 0.01 to determine if

the point-biserial correlation was significantly different from

zero.

While the task itself was a choice between sentences, these

choices could also be analyzed at the word level. Thus the same

responses to the same stimuli could be interpreted as having

several different meanings for the purposes of our analyses,

similarly to the information transmission analysis of [44].

D. Visualization

We also demonstrated various steps leading to our importance

map visualization in Figure 1. First, the spectrogram of the

clean speech, which is the background of the importance

map is shown in Figure 1(a). Note that both rows used the

same stimulus, the GRID sentence “Bin red in E two again,”

(see Section III for details) so show the same spectrogram.

Next, in Figure 1(b), we visualize the correlation between

the intelligibility of the noisy mixtures and audibility at each

time-frequency point with red showing positive correlations

and blue showing negative. For this single sentence, we scored

the intelligibility of two different words, “red,” shown in the

top row, and “two,” shown in the bottom row. In Figure 1(c),

we visualize the value

qi(f, t) = sign(ci(f, t)) exp

(

−pi(f, t)

0.01

)

(4)

which was derived from the significance pi(f, t) of every time

frequency point. In our previous publications, we used the

visualization style shown in Figure 1(d), where a false color

spectrogram has its lightness (in the HSV color space) set to

0.5+0.5 exp
(

−pi(f,t)
0.01

)

for positive pi(f, t), so that significant

correlations were shown at full lightness and insignificant

correlations were shown at half lightness. This only permitted

the visualization of a single response per spectrogram. In

order to visualize multiple responses per spectrogram, here we

introduce the visualization shown in Figure 1(e) of a greyscale

spectrogram with a solid color overlaid on it for all points

where qi(f, t) ≥ 0.3679 which corresponds to a p-value smaller

than two-sided significance level 0.01.
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B. AMI

The AMI dataset is a collection of meeting recordings with

100 hours of speech in English, although the speakers are

mainly non-native. The audio is recorded in three different

rooms with dissimilar acoustic characteristics. There are several

microphone settings such as Individual Headset Microphones

(IHM), Single Distant Microphone (SDM), and Multiple Distant

Microphones (MDM), and we use the IHM setting for our

experiments. The training set is the standard training set of

the AMI IHM recipe in Kaldi [45]. There are two AMI test

sets: the first one is the standard AMI test set and the second

one, the bubble test set, comprises 1000 bubble noise mixtures

at -10 dB and 80 bubbles per second created with the single

sentence IB4010 H00 FIE038 0022314 0022648, “And you

pick up on things that you didn’t really notice the first time

around.”. The SNR and number of bubbles per second are

tuned so that the WER is approximately 50% for as many

words as possible. The above sentence is chosen because the

ASR achieves 100% accuracy on recognizing the words when

given the original clean audio.

IV. ASR SYSTEMS

ASR is a very large field and we only review here the very

basics necessary to understand our subsequent experiments. The

interested reader is directed to various books on the topic [46]–

[48]. The ASR task is to convert speech to text. It is made

up of several sub-systems that operate in relative isolation

from one another. In addition, there is currently an emerging

class of end-to-end ASR where the entire system is trained

together and these boundaries become less clear. The feature

extractor converts the raw audio signal into an intermediate

representation of acoustic features. The acoustic model (AM)

evaluates the probability of a given phoneme for a given

acoustic feature vector. The pronunciation model maps words

to sequences of phonemes. Finally, the language model (LM)

assigns probabilities to word sequences. By combining these

models with an efficient search procedure, the sequence of

words with the highest probability given an acoustic utterance

can be found. Our experiments evaluate different choices of

models for AM and LM, so we discuss them here along with

related techniques.

A. GMM acoustic model

For many years, ASR systems used Gaussian mixture model

(GMM) acoustic models. The AM can produce probabilities

for monophones or triphones, in which case each phoneme

is modeled in the context of the phonemes (or phoneme

types) before and after it. Expectation maximization is used

to find the maximum likelihood parameters for the GMM.

Some additional techniques are employed to facilitate modeling

of the features with GMMs. Linear Discriminant Analysis

(LDA) is used to reduce the dimensionality of the features

in accordance with their utility in discriminating phonemes.

LDA not only finds the axes that maximize the variance of the

data projection on them (similar to PCA), but also maximize

the separation among different classes. Maximum Likelihood

Linear Transform (MLLT) is used to reduce the variation

between the speech of different speakers. It allows the ASR

system to better generalize to unseen speakers.

The GMM AM system used on CHiME-2 was based on

the Kaldi baseline for the first CHiME challenge [49] which

was also the baseline for the second CHiME challenge, track

1 [50]. There are 2 GMM AM systems used on AMI: the first

is a GMM-HMM triphone system using MFCCs together with

Linear Discriminant Analysis and Maximum Likelihood Linear

Transformation (LDA-MLLT), denoted “tri2b.” The second

adds Speaker Adaptive Training (SAT) [51] and is denoted

“tri3.”. Both are default systems from Kaldi.

B. Neural network acoustic model

Recent state of the art results have used acoustic models

based on time-delay neural networks (TDNN) or a combination

of time-delay neural networks and long short-term memory

networks (TDNN-LSTM). A TDNN is feed-forward, but

utilizes a sort of dilated convolution to provide an increased

temporal context to higher layers of the model. TDNNs not only

capture long term dependencies like recurrent neural networks,

but also have small training times on par with simple feed-

forward networks.

The neural network acoustic model used for CHiME-2 is a

time delay neural network (TDNN) [52] following the CHiME-

5 baseline recipe in Kaldi ported to the CHiME-2 track 1

recipe. The input to the TDNN is a 140-dimensional (140-D)

vector, which is the concatenation of a 40-D “high-resolution”

MFCC feature (calculated from a 40-D mel filterbank) and a

100-D iVector [52]. The neural network-based acoustic model

for AMI is the default hybrid TDNN-HMM chain structure in

the 5b Kaldi recipe and uses the same features. In addition, we

also analyzed TDNN-LSTM acoustic models with and without

dropout [53]. In the default configuration, some layers are

projected LSTMs [54], specifically layers 4, 7, and 10, while

other layers are TDNNs. Dropout is applied to the i, f , and

o gates of the LSTMs. To the best of our knowledge, our

Kaldi system for AMI is representative of the state of the

art (SOTA). It achieves a WER of 19.3 on the test set. For

example, a recent paper [55], achieves a WER of 22.02. The

current SOTA on CHIME-2 track 1 is [56], where a speech

enhancement system is used on the input to the ASR. We chose

not to include speech enhancement at the moment to evaluate

the importance maps of the ASR itself. Analyzing a combined

speech enhancement ASR system is left for future work. As

such, our systems for CHIME-2 track 1 are the best systems

provided with Kaldi, which tries to be close to SOTA while

striving to maintain generality.

C. n-gram language models

The standard n-gram language model makes a Markov

assumption that the probability of a word only depends on

the previous n − 1 words. This probability is derived using

maximum likelihood estimation as:

p(wi|w1, . . . , wi−1) ≈ p(wi|wi−n+1, . . . , wi−1) (5)

=
C(wi−n+1, . . . , wi)

C(wi−n+1, . . . , wi−1)
(6)
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where C(·) is the count of how many times a word sequence

appears in the training corpus. We use the SRI Language

Modeling Toolkit (SRILM) [57] as the n-gram language

modeling tool with Kaldi. SRILM supports different kinds

of smoothing algorithms such as Kneser-Ney [58] and Jelinek-

Mercer [59] to deal with the problem of test n-grams unseen

in the training corpus. The SRILM perplexity on the AMI test

set is 79.7.

D. RNN language models

The n-gram technique is simple, but since the size of the

model grows exponentially with n, it can not capture long-term

dependencies, and the count tensor is sparse. Another way to

build a language model is to use a neural network to estimate

the probability of a word given its previous context. A model

that is suitable for this task is the recurrent neural network,

which has the ability to capture long-range dependencies

better than the n-gram technique. In this paper, we use the

RNN language model (RNNLM) from Kaldi [60]. The Kaldi

RNNLM is optimized by applying importance sampling-based

methods and utilizing unnormalized probabilities during train-

ing [60]. In addition, it uses subword information to improve

the word-embedding representation for out-of-vocabulary and

rare words. The RNNLM is trained on the Fisher and AMI

corpora following the Kaldi AMI recipe “s5b”. The RNNLM

perplexity on the AMI test set is 54.2.

V. EXPERIMENTS

A. Experiment 1: Importance maps on the GRID dataset

Our first experiment compares the importance maps of human

listeners with machine listeners on recognizing the eight GRID

sentences listed in Table I. The machine listeners include a

GMM acoustic model and a TDNN acoustic model using either

an eight-sentence language model or the full 64,000-sentence

GRID language model.

1) Human importance maps: In the human listening test,

one sentence was selected at random, mixed with bubble noise,

and presented to the listener, who then selected one of the eight

possibilities. As mentioned in Section II-B, the difficulty was

adjusted online using the weighted up-down procedure [43]. It

was applied separately for each sentence starting at 30 bubbles

per sentence. When a sentence was correctly identified, the

number of bubbles used in its next presentation was reduced

by 2% and when it was incorrectly identified, the number of

bubbles used in its next presentation was increased by 2.3%.

This asymmetry leads the procedure to converge to the number

of bubbles per sentence that allows the listener to correctly

identify 56.3% of the mixtures, half way between chance and

perfect performance. This procedure resulted in a final bubble

rate of 18–24 bubbles per sentence, varying by listener and

utterance.

The human listening test was performed over headphones via

a MATLAB interface. Subjects consisted of one expert listener,

who labeled 1600 mixtures and was familiar with bubble noise,

and three naı̈ve listeners, who together labeled another 1600

mixtures (401, 562, and 639 mixtures each) and had never heard

bubble noise before. All were native speakers of American

English. Subjects were allowed to familiarize themselves with

the clean utterances and the task for 5 minutes before noise

was added. They were allowed to adjust presentation volume

to a comfortable level, listen to each mixture as many times as

they wanted, take breaks regularly, and end their participation

whenever they wanted. Feedback was provided only at the end

of the training period and no feedback was provided during the

experiment itself. The listeners each spent approximately the

same amount of time on the test, the expert being the fastest.

Because the bubble method can analyze importance at the

word-level, in case the ASR does not recognize all the words

in a specific sentence, we can still use the correctly identified

words for analysis. Thus, we visualize the importance map

using both the sentence-level and the word-level “correctness”

when we analyze the human listening test.

2) Machine importance maps: When measuring importance

maps for ASR systems on the GRID dataset, we examine

the role of the acoustic model and language model. First,

we compare two different acoustic models on this task, one

based on a neural network AM and one on a non-neural

network AM. The non-neural network ASR system used in

these experiments was based on the Kaldi baseline for the

first CHiME challenge [49] which was also the baseline for

the second CHiME challenge, track 1 [50]. The training data

consisted of speech from the GRID corpus mixed with various

noises recorded in a household environment. The recognizer

used a Gaussian mixture model (GMM) front end operating

on mel-frequency cepstral coefficients (MFCCs) predicting

clustered triphone states. The MFCCs were transformed using

linear discriminant analysis of nine consecutive frames followed

by a global maximum likelihood linear transformation [61].

These GMMs were trained on the training data from the

second CHiME challenge, track 1, which consists of 17,000

noisy utterances, 500 from each talker. Our training excluded

utterances from talker 16, the one used in the listening test.

Several modifications to the decoding parameters of the

GMM AM were necessary to perform the same listening task as

the human listeners. First, we modified the grammar to consist

of only the eight test sentences as eight parallel paths from the

start state to the end state. After doing so, we needed to modify

the weights on each of the sentence paths in the grammar to

achieve approximate parity in the frequency with which each

sentence was selected. This required placing a large penalty (52

nats, where a nat is a unit of information like a bit, but using the

natural logarithm) on selecting BWIE8A, moderate penalties

(46, 43, 39, and 36 nats) on selecting BGIL8A, BRIE2A,

BRIRZA, and BWIL2A, respectively, and low penalties (25,

16 and 0 nats) on selecting BBIKZA, BWIR6A and BRIK6A.

Apparently in bubble noise the recognizer was particularly

unlikely to select the utterances containing the word “Six.”

We also found that with the default settings, many sentences’

transcripts ended before the final state due to beam search

starvation. Because this is a small-vocabulary task, we were

able to increase the width of the beam to 200 nats to eliminate

this issue, presumably by exhaustively exploring all paths.

As expected, in order to correctly identify 50% of the

sentences, the ASR could only tolerate much milder bubble

noise than the human listeners. We performed several searches
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across the number of bubbles per sentence and SNR to identify

a good operating point. One advantage of the machine listener

over the human listeners is that it can listen faster than real

time and has an unlimited attention span. We thus utilized 400

mixtures per utterance with it.

The neural network acoustic model uses a time delay neural

network (TDNN) [52] following the CHiME-5 baseline recipe

in Kaldi ported to the CHiME-2 track 1 recipe. The input of the

TDNN is a 140-dimensional vector, which is the concatenation

of a 40-dimensional traditional MFCC-based feature and a

100-demensional iVector [52] We use penalties of 22, 25, 13,

0, 39, 24, 18 and 33 nats for BBIKZA, BGIL8A, BRIE2A,

BRIK6A, BRIRZA, BWIE8A, BWIL2A, BWIR6A.

Second, we examine the role of the language model on

the importance map. We compare two language models: the

first contains only the 8 sentences listed in Table III (TDNN-

8LM) and the second is the full GRID language model

(TDNN-64kLM) containing 64,000 sentences. The TDNN-8LM

perplexity is 2.1 while the TDNN-64kLM perplexity is 6.3.

Since the words are not entirely independent, the 8-sentence

language model could take advantage of this while the 64k

LM could not. The acoustic model is fixed to be the TDNN

for both language models. The TDNN-8LM ASR system is

analyzed using bubble noise with a baseline SNR of −9 dB

while the TDNN-64kLM ASR uses 0 dB so that each achieves

an accuracy around 50%.

B. Experiment 2: Importance maps on the AMI dataset

In the second experiment, we examine how different acoustic

models and language models change ASR importance maps

on the AMI dataset.

First, we compare several acoustic models on the AMI IHM

dataset: a conventional Gaussian mixture model (GMM), a

time delay neural network (TDNN), a combination of time

delay neural network and long short-term memory network

(TDNN-LSTM), and a TDNN-LSTM with dropout (LSTMd).

These systems are trained on the standard AMI IHM dataset

and tested on the two AMI test sets described in Section III.

The non-neural network setting is a GMM-HMM baseline

in the Kaldi AMI recipe. We follow the Kaldi script to train

a sequence of systems, in which alignments from one system

are used to train the next system.

Two non-neural network systems are evaluated: the first is

a GMM-HMM triphone system using MFCCs together with

Linear Discriminant Analysis and Maximum Likelihood Linear

Transformation (LDA-MLLT), denoted “tri2b.” The second

adds Speaker Adaptive Training (SAT) [51] and is denoted

“tri3.”

The neural network-based acoustic model is the default

hybrid TDNN-HMM chain structure in Kaldi AMI recipe 5b.

In addition, we also analyzed TDNN-LSTM acoustic models

with and without dropout [53]. In the default configuration,

some layers are projected LSTMs [54], specifically layers 4,

7, and 10, while other layers are TDNNs. Dropout is applied

to the i, f , and o gates of the LSTMs.

Second, the effect of the language model on the importance

map is investigated. We compare the standard n-gram-based

SRILM [57] language model with two RNN language models.

Both use the same TDNN acoustic model. The RNN language

model is better at capturing long term dependencies, but has a

longer training time than an n-gram model. We use the Kaldi

RNNLM in two distinct ways: for rescoring lattices using a

4-gram approximation to the history [60] and to rescore the

top 50 transcripts. Rather than using only the RNN language

model, it is combined with SRILM predictions with each given

equal weight (0.5). We ported part of this RNNLM from the

Switchboard recipe to the AMI recipe.

In general, we observe that GMM acoustic models tend to

focus on areas of the spectrogram that contain little speech

energy in a wide range of frequency bins while the neural

network AMs pay attention to the high-energy, low-frequency

regions. We also examine the role of the language model (LM)

and show that the importance map of an ASR with a neural

LM does not differ much from those of traditional n-gram

backoff LMs on the particular sentences studied here.

VI. RESULTS AND DISCUSSION

A. Experiment 1: Importance map on the GRID dataset

1) Human results and discussion: Time-frequency impor-

tance functions derived from the human responses are shown in

the top row of Figure 2. It can be seen that the human listeners

are attending to time-frequency locations in the spectrogram

corresponding to various speech cues. These cues include the

initial glides of “white” and “red”, the initial stop burst of “two”,

and the initial sibilance of “six”. These results are consistent

across different productions of the same word. They also follow

the well-established cues of speech production for these words

[62] and agree with other analyses of cues for speech perception

of individual tokens [32]. The identified regions, however,

only include a subset of the distinctive features that might be

expected. For example, the final sibilance in “six” does not

appear to be utilized consistently, even though it is nearly as

energetic as the initial sibilance in BWIR6A. Nor is the initial

sibilance in “zero” utilized, although low frequency information

in the /z/ does appear to be utilized.

Another interesting feature of these results is that different

“correctness” signals (different colors in Figure 2) show corre-

lations with different time-frequency regions of the utterances.

This analysis is possible because of the use of sentence stimuli,

in contrast to previous auditory bubbles experiments, which

employed isolated words [7]–[9]. For word-level correctness,

these correlations generally appear in the spectro-temporal

regions of the word in question, an effect that is very noticeable

in all of the “red” and “white” sentences, but especially for the

sentences BRIE2A, BRIRZA, and BWIL2A. For example, in

BRIRZA, when the correctness of identifying the color word

“red” is considered, the importance is high in the region of the

second formant transition of the /r/ in “red”. When correctness

for the letter word “R” is considered instead, the importance

shifts to the second formant transition into and during that

word. And when correctness for the number word “Zero” is

considered, the importance shifts to the first formant of the

initial /z/.

Frequently, however, the importance for one word includes

regions of other words. These importance overlaps could be a
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TABLE II
CONFUSION MATRICES FOR HUMAN AND ASR WITH TDNN ACOUSTIC MODEL IN EXPERIMENT 1. NOTE THAT THEY ARE RESPONDING TO DIFFERENT

TOKENS, WITH SIGNIFICANTLY MORE NOISE IN THE MIXTURES PRESENTED TO THE HUMANS. SENTENCES ARE ABBREVIATED HERE TO THREE

CHARACTERS: COLOR, LETTER, NUMBER.

Human response ASR response

True ID BKZ GL8 RE2 RK6 RRZ WE8 WL2 WR6 Sum BKZ GL8 RE2 RK6 RRZ WE8 WL2 WR6 Sum

BKZ 256 30 18 26 43 12 6 9 400 245 42 15 10 28 23 13 24 400

GL8 23 273 16 12 6 39 23 8 400 32 255 7 19 17 23 23 24 400

RE2 4 6 229 41 52 19 42 7 400 12 19 204 67 19 30 26 23 400

RK6 6 6 28 269 21 27 10 33 400 15 11 114 189 13 14 34 10 400

RRZ 10 8 33 20 272 13 22 22 400 26 8 69 62 176 8 18 33 400

WE8 4 15 24 12 15 242 39 50 401 20 35 21 9 12 200 45 58 400

WL2 7 7 38 12 20 27 253 35 399 11 21 26 16 12 63 179 72 400

WR6 5 8 7 54 10 23 42 250 399 17 18 12 64 31 61 94 103 400

Sum 315 353 393 446 439 402 437 414 3199 378 409 468 436 308 422 432 347 3200

result of contextual effects, if pronouncing one word affects

the pronunciation of another, or of the task itself, in which

recognizing one word can aid in recognizing other words in the

sentence. While these two effects are difficult to distinguish,

it appears than many of these overlaps could be explained

by the construction of the task. For example, in BWIR6A,

the importance regions for correctly recognizing the word “R”

include both the formant transition of the /w/ in “White” and

the sibilance of the /s/ in “Six”. This could be explained by

the fact that correctly identifying the words “White” and “Six”

uniquely identifies this sentence, regardless of whether “R” was

audible. Similarly, for the two sentences with unique colors

(BBIKZA and BGIL8A), the importance tends to focus on just

the color words, even for correct identification of other word

positions. This effect can be explained by the fact that the

word “Green” only appears in the sentence BGIL8A. Thus, if

a human listener can identify the word “Green,” then they can

predict the other words in the sentence without even hearing

them. That is why the importance maps of other words contain

the importance map of word “Green.”.

2) Machine results and discussion: Figure 2 shows the

importance maps for several recognition systems on multiple

words in multiple GRID sentences. The systems are the

human listeners, the GMM triphone acoustic model, the TDNN

acoustic model with the eight-sentence language model, and

the TDNN acoustic model with the full GRID language model.

The TDNN has importance maps that are much more similar

to the human ones than the GMM system’s maps, however, it

does not capture all the cues that the human listeners utilize.

The GMM generally attends to regions where there is little

speech energy. For example, the GMM’s importance map for

“zero” in the sentence BRIRZA spans the low energy regions

from 4 to 8 kHz, however, the human importance for this

word is at a high-energy region under 1 kHz. Similarly, there

is importance in the low-energy regions at 6-8 kHz for “E”

in BWIE8A. Interestingly, there is also importance between

the first two formants in “E” in BRIE2A, a low-frequency

region of low energy. The GMM TFIFs appear much less

sensitive to the type of correctness under consideration, i.e.,

the importance maps are similar across different word targets.

The GMM importance does include some formant transitions,

although it seems to be focusing more on the lack of energy

adjacent to the formants as opposed to the high energy of the

formants themselves. For example, there are large importance

regions before the rising second formant of “White” in all

of the sentences that include it. Overall these results suggest

that the GMM can correctly identify a word or sentence when

the noise that is added to it has a similar spectral profile to

the speech itself. The GMM thus appears to be using gaps in

the noise very differently from the human listeners. While the

humans use gaps to identify speech that is revealed, the GMM

uses the general spectral shape of the mixture to identify the

speech. This is very likely a result of the GMM using MFCC

features, which characterize the gross spectral shapes of the

entire mixture, and cannot separate the speech from the noise.

The importance maps of the neural network AM with the 8

sentence language model (third row) are more similar to the

humans’, in particular sharing some cues in high-energy regions.

For example, in BRIK6A of Figure 2, the region below 1 kHz

of “six” is important for both the human and the neural network

AM, but not for the GMM. Moreover, the region around 2

kHz of “R” in BRIRZA is not important for the GMM, but is

important for the other listeners. The neural network AM has

not, however, captured all the cues that human listeners utilize,

such as some specific transitions from silence to high-energy.

For example, human listeners are attentive to such a transition

above 3 kHz for “two” in BRIE2A and BWIL2A; for “six” in

BWIR6A; and to a transition from high energy to low for “six”

in BRIK6A. The neural network AM does not pay attention

to these specific cues.

The TDNN-64kLM importance maps (the last row) include

many low-energy high-frequency regions such as at 4-8 kHz

on the right of “again” in BRIE2A. In addition, the importance

map of “six” in BRIK6A is located to the left of “bin” at

5-8 kHz, which is unreasonable. Despite these mistakes, the

TDNN-64kLM still shares some similar areas with the human

maps, such as the region under 1 kHz in “two” in BRIE2A,

under 1 kHz for “six” in both BRIK6A and BWIR6A, and the

region at 1-2 kHz in “white” in BWIL2A.

Additionally, we quantified the similarity of machine and

human listeners importance maps using the Jaccard index,

calculated as

S =
1

|N ||P |

∑

n∈N

∑

p∈P

Hnp ∩Mnp

Hnp ∪Mnp

(7)

where S denotes the similarity score, N the set of sentences,

P the set of positions, || cardinality of a set, and Hnp (Mnp)
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neural network AMs attend to certain high-energy regions

similar to those of humans, but do not use all the cues

that human listeners make use of, such as certain transitions

between silence and high speech energy. While we show

large differences in importance and accuracy between different

acoustic models on this task, using an RNN language model

does not change either one much. These results suggest that the

performance of ASR in noisy conditions might be improved

by adapting it to pay better attention to the cues used by

human listeners, e.g., by using [22]. The paper has also shown

that the auditory bubbles technique [7]–[9] can operate just as

well on running sentences as isolated words and on machine

listeners just as well as human listeners. In the future, it would

be interesting to apply the same analysis to end-to-end ASR

systems.
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