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Abstract—Automatic speech recognition (ASR) has reached hu-
man performance on many clean speech corpora, but it remains
worse than human listeners in noisy environments. This paper
investigates whether this difference in performance might be due
to a difference in the time-frequency regions that each listener
utilizes in making their decisions and how these ‘“important”
regions change for ASRs using different acoustic models (AMs)
and language models (LMs). We define important regions as
time-frequency points in a spectrogram that tend to be audible
when the listener correctly recognizes that utterance in noise.
The evidence from this study indicates that a neural network
AM attends to regions that are more similar to those of humans
(capturing certain high-energy regions) than those of a traditional
Gaussian mixture model (GMM) AM. Our analysis also shows
that the neural network AM has not yet captured all the cues that
human listeners utilize, such as certain transitions between silence
and high speech energy. We also find that differences in important
time-frequency regions tend to track differences in accuracy on
specific words in a test sentence, suggesting a connection. Because
of this connection, adapting an ASR to attend to the same regions
humans use might improve its generalization in noise.

Index Terms—Noise, Speech perception, Sentence recognition,
Automatic speech recognition

I. INTRODUCTION

ORMAL-hearing human listeners are remarkably good

at understanding speech in noise, much better than ASR
systems [1]-[4], even without any grammatical or linguistic
information at all [5], [6]. The reasons for these differences,
however, are not well understood, and understanding them
would very likely directly lead to improvements in ASR
noise robustness. Thus, it is reasonable to compare human
speech recognition with automatic speech recognition (ASR) to
understand the differences between them, why these differences
exist, and how the ASR can learn from humans to improve its
performance in noise.

We have introduced a method that can reveal the strategy
that a human or machine listener uses in recognizing a
particular utterance in noise [7]-[9]. By strategy, we mean
the combination of time-frequency ‘“regions” that a listener
utilizes to recognize a particular utterance when mixed with a
particular noise instance in the context of a particular task. In
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this paper, we compare the importance maps of human listeners
to machine listeners. We identify important regions, which are
time-frequency points in a spectrogram that tend to be audible
when the listener (human or ASR) correctly recognizes an
utterance in noise.

Our first experiment (Section V-A) compares human and
machine importance maps on the small-vocabulary GRID
dataset [10]. Our second experiment (Section V-B) examines
the role of the acoustic model on the large-vocabulary AMI
dataset [11]. The current paper incorporates and builds upon
our previous work [12], which used this technique to analyze
human speech perception and a GMM-HMM ASR on the
small-vocabulary GRID dataset.

Our work is motivated by approaches from several fields.
[3] surveyed human and non-neural-network ASR on several
datasets with different vocabulary sizes and concluded that
the performance gap between humans and ASR became larger
with a harder or noisier test set. [6] focused on analyzing the
performance of ASR acoustic models, using a “null grammar’
to avoid the influence of a language model. They showed that
the WER of the ASR rises much more quickly than that of
the humans as the noise level increases.

[5] analyzed phoneme confusions between humans and ASR
and showed that a GMM-HMM ASR does not utilize voicing
information, which humans do, leading to a high error rate
in some cases, for example, recognizing “p” where the actual
character is “b”. [1] contrasted human and ASR performance
in single-channel and multi-channel speech in different noise
scenarios. They showed that in a diffuse-noise environment
with moving speakers, the ASR requires a 12dB higher signal to
noise ratio (SNR) to achieve the same accuracy (50%) as human
listeners. [13] evaluated the impact of intrinsic variations in
speech on the recognition performance of human and machine
listeners. The paper also demonstrated that the SNR needs to
be increased by 13 dB for the ASR to achieve human-level
performance in a dataset with variation in accent and dialect
(a subset of the Oldenburg Logatome dataset [14]).

Additionally, several projects have endeavored to improve
ASR noise robustness by building confidence measures of
recognition hypotheses based on understanding the errors the
recognizer makes and its state when making them [15], [16].
Others have created synthetic data according to various statis-
tical assumptions made in ASR systems [17]-[19], estimating
the proportion of errors caused by each assumption.

And others [20] have applied neurophysiological techniques
to a deep neural network acoustic model to try to understand its
similarities to human speech perception in quiet environments.
[20] showed that each neuron in a neural network acoustic
model tends to be activated by specific types of phonetic
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features, which is also the case in the human brain, where
individual auditory neurons can be selective to different
phonetic features [21]. This analysis has focused on clean
speech, however, and so does not provide much insight into
noise robustness. In addition, responses are averaged across
many instances of each phoneme, so cannot provide insight
into decisions on individual stimuli or guidance for modifying
predictions.

These works mainly focus on comparing the WER perfor-
mance of humans and ASR or the types of errors that each
makes. Our work is different in that we localize the cause of
these differences in time and frequency by finding where in the
spectrogram each listener is paying attention, and how these
important regions vary across different listeners, including
different acoustic models and language models. Although
our analysis is based on a spectrographic representation for
visualization purposes, listeners are paying attention to time-
frequency portions of the actual speech signal in their auditory
representations. By explaining the cause of this disparity, this
work could lead to a method to improve ASR performance
in noisy conditions. One possible mechanism to achieve this
is the Bubble Cooperative Network [22], in which a data
augmentation agent is trained to add noise to unimportant
regions while simultaneously training the ASR.

There have been several studies on the topic of finding the
regions of speech spectrograms that are essential to the task
of speech recognition. There is a line of literature focusing on
weighting the contribution of different frequency bands to the
recognition performance of human listeners [23]-[27].

Another line of research on humans analyzes both frequency
and time information, leading to an importance score of every
time-frequency point in the spectrogram [28]. They derive
an importance map as the weights, W, associated with the
noisy spectrogram X in the equation p(y) = f(XTW + ¢),
where y is a binary label based on the response of a human
subject. For example, this target label could have the value
0 or 1 depending on whether the human listener responds
that the noisy mixture contains the word “aba” or “ada.”
The generalized linear model is used to find the weights W
that best fit the data. The noisy speech is created by adding
Gaussian noise to the clean spectrogram. [28] found that the
important region for the task of distinguishing “aba” from
“ada” is the second formant transition, which agrees with
findings in theoretical phonetics. Our method is different in
that the bubble noise technique requires fewer noisy mixtures
per utterance than the additive Gaussian noise approach, as
their noise has smaller time-frequency modulation. In addition,
we compare the importance maps of humans to different
ASR systems, including both neural networks and non-neural
network systems. [29] applied the bubbles technique to the
modulation spectrum domain in audio. They find the value of
spectral and temporal modulations, that are vital to general
intelligibility in a modulation power spectrum [30] while we
focus on time-frequency regions that are important to recognize
a particular phoneme in a spectrogram.

Recently, [31] also proposed an approach to analyzing the
speech cues using a “bubble” technique. In their approach,
the area inside the Gaussian bubble has more noise than the

surrounding time-frequency points. In contrast, there is less
noise inside the bubble in our method. [32] located the speech
cues in time and frequency bands, using truncation in time and
low- and high-pass filtering in frequency. As a result of the
truncation approach, this technique can only be utilized for the
first and last phonemes of an utterance. Our method, however,
can find the speech cues of a phoneme at any position, even in
a long sentence. [33] showed that human listener recognition
error rates increase when the speech cues identified as essential
by this method are eliminated while [34] demonstrated that
consonant recognition performance is increased when these
speech cues are enhanced. Moreover, our task is closely related
to the topic of finding a saliency map in computer vision,
which aims to find the pixels in an image that are essential
for a classifier to make a particular decision [35], [35]-[40].
There are studies that focus on a specific type of classifier,
such as convolutional neural networks [35]-[37], which cannot
be directly applied to traditional HMM-GMM ASR systems or
RNN-based ASR systems. Our current method, however, can
apply to any ASR system.

II. METHODOLOGY

The core idea of our technique is to measure the intelligibility
of a single recording of an utterance mixed with many different
instances of noise varying in both time and frequency. Mixtures
in which the utterance is intelligible must have revealed a
sufficient amount of information from that utterance for the
listener to correctly distinguish it from alternatives. Mixtures
in which it is not intelligible, must not have revealed sufficient
information. Thus time-frequency regions that are frequently
audible in intelligible mixtures and inaudible in unintelligible
mixtures are likely to represent the location of important
cues that the listener is using. By measuring the correlation
between audibility of each time-frequency point with the overall
intelligibility of the utterance across mixtures, we can compute
the importance of each time-frequency point, which we call
the time-frequency importance function (TFIF). Details of the
method are given in the following sections.

Our method was inspired by the “bubbles” technique in vi-
sion [41], which introduced a technique to localize information
in pictures of faces that viewers use to classify the gender,
identity, and emotions of the face. Our method represented a
translation of this approach to the study of auditory perception.

A. Noise process

Each sentence was mixed with many instances of “bubble”
noise [7]. This noise was designed to provide glimpses of the
speech only in specific time-frequency areas, which we call
bubbles. To construct this noise, we began with speech-shaped
noise with a signal-to-noise ratio (SNR) of —24 dB, sufficient to
make the speech completely unintelligible. The noise was then
attenuated in “elliptical” bubbles (more accurately described
as jointly parabolic in time and ERB-scale frequency [42]),
providing glimpses of the speech in these regions. Within
each bubble, the noise was suppressed by up to 80dB. The
bubbles were 350 ms wide at their widest and 7 ERB high at
their highest, the smallest values that would avoid introducing



audible artifacts. These settings led to a half-width of 90 ms
and half-height of 1 ERB. The center points of the bubbles
were selected uniformly at random in time and in ERB-scale
frequency, except that they were excluded from a 2-ERB buffer
at the bottom and top of the frequency scale to avoid edge
effects.

B. General task for listeners

In the human listening test, one sentence was selected at
random, mixed with bubble noise, and presented to the listener,
who then chose a sentence from a list of all of the sentences.
Sentence presentation was blocked, so that every block of
mixtures used each of the sentences once in a random order.
The number of bubbles per sentence controlled the difficulty
of the task, and was adapted using the weighted up-down
procedure [43] separately for each sentence. When a sentence
was correctly identified, the number of bubbles used in its
next presentation was reduced, increasing the difficulty of the
task, and when it was incorrectly identified, the number of
bubbles used in its next presentation was increased, decreasing
the difficulty of the task.

In the machine experiment, we trained the ASR according
to the standard “recipe” for each dataset. The ASR was then
evaluated on test utterances mixed with instances of bubble
noise. Instead of using an adaptive scheme as the human
listening test, the ASR’s noisy test set was created with a fixed
number of bubbles per second such that the accuracy of the
ASR was approximately 50% on as many words as possible.
The ASR task was to output the text given the noisy speech
and its accuracy was scored separately for each word in the
sentence.

C. Analysis technique

In order to analyze the results, we computed the point-biserial
correlation between the dichotomous variable y;;, whether or
not the listener correctly identified the jth mixture of the ¢th
utterance, and the continuous variable A;; (f,t), the audibility
of time-frequency point (f,¢) in the jth mixture of the ith
utterance. The intelligibility y;; had value zero if the listener
recognized the speech incorrectly and one otherwise. Audibility
here is defined as the proportion of attenuation (in dB) applied
to the noise at that point, i.e., the depth of the bubble, ranging
between O for no attenuation (pure noise) and 1 for total
attenuation (no noise). This correlation was performed across
mixtures, but separately for each time-frequency point for
each utterance, leading to a “massively univariate” correlation,

denoted ¢;(f,t).
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where n;y and n;; are the number of incorrectly and correctly
identified mixtures (y;; = 0, 1) of the ith sentence, respectively,
m;o and m;; are the mean audibility in the group of incorrectly
and correctly identified noisy mixtures of the ith sentence,
respectively, and s;,, is the standard deviation of all the mixtures
(nio + n;1) of the ith utterance. The significance of this

correlation was assessed using a two-sided t-test with a test
statistic s;(f,t)
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From the test statistic s;(f,t), we derived the value of the
Student’s t cumulative distribution function Fx(s;(f,t)) =
P(X < s;(f,t)), where X is a random variable following
Student’s t-distribution. The two-sided p-value of p;(f,t) is
derived from Fx (s;(f,t)) via

Fx (si(f,1))
1= Fx(si(f,1))

if Fx(si(f,t) < 0.5

if Fx(s;(f,t)) > 0.5 ©)

pi(f»t):{

The resulting p-value for each point and utterance, p;(f,t),
was compared to the significance level of 0.01 to determine if
the point-biserial correlation was significantly different from
Zero.

While the task itself was a choice between sentences, these
choices could also be analyzed at the word level. Thus the same
responses to the same stimuli could be interpreted as having
several different meanings for the purposes of our analyses,
similarly to the information transmission analysis of [44].

D. Visualization

We also demonstrated various steps leading to our importance
map visualization in Figure 1. First, the spectrogram of the
clean speech, which is the background of the importance
map is shown in Figure 1(a). Note that both rows used the
same stimulus, the GRID sentence “Bin red in E two again,”
(see Section III for details) so show the same spectrogram.
Next, in Figure 1(b), we visualize the correlation between
the intelligibility of the noisy mixtures and audibility at each
time-frequency point with red showing positive correlations
and blue showing negative. For this single sentence, we scored
the intelligibility of two different words, “red,” shown in the
top row, and “two,” shown in the bottom row. In Figure 1(c),
we visualize the value

qi(f’ t) = Sign(cl-(ﬁ t)) exp (W) 4)

which was derived from the significance p;(f,t) of every time
frequency point. In our previous publications, we used the
visualization style shown in Figure 1(d), where a false color
spectrogram has its lightness (in the HSV color space) set to
0.5+0.5exp (’&é{’t% for positive p;(f,t), so that significant
correlations were shown at full lightness and insignificant
correlations were shown at half lightness. This only permitted
the visualization of a single response per spectrogram. In
order to visualize multiple responses per spectrogram, here we
introduce the visualization shown in Figure 1(e) of a greyscale
spectrogram with a solid color overlaid on it for all points
where g;(f,t) > 0.3679 which corresponds to a p-value smaller
than two-sided significance level 0.01.
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Fig. 1. Various steps leading to the importance maps of two words: “Red” (top row) and “Two” (bottom row) both from the sentence “Bin red in E two again.”
(a) Clean speech spectrogram (b) Correlation between the intelligibility of the noisy speech and audibility at each time-frequency point. (c) Signed significance
of the correlation, ¢(f,t). (d) Importance visualization overlaying ¢(f, ) as brightness in the HSV color space on a pseudocolor spectrogram. (e) Thresholded
signed significance overlaid on the clean spectrogram (in grey). Subsequent figures will use visualization (e) which permits the importance of multiple words to

be shown on as single spectrogram in different colors.

TABLE I
SENTENCES SELECTED FROM THE GRID CORPUS. ALL SENTENCES WERE
SPOKEN BY TALKER 16, A FEMALE.

D Verb  Color Prep Let Num  Adv
BBIKZA “Bin  blue in K Zero again.”
BGIL8A “Bin  green in L eight  again.”
BRIE2A “Bin  red in E two again.”
BRIK6A “Bin  red in K six again.”
BRIRZA “Bin  red in R zero again.”
BWIESA “Bin  white in E eight  again.”
BWIL2A “Bin  white in L two again.”
BWIRGA | “Bin  white in R six again.”

ITI. DATASETS
A. GRID

The first dataset that we utilized is the GRID corpus [10].
The corpus consists of six-word sentences of the form: (verb)
(color) (preposition) (letter) (number) (adverb), such as, “Bin
blue in K zero again.” Each position in the sentence has a
fixed number of possible entries: 25 letters (excluding W), 10
digits (including “Zero”), and four words in each of the other
positions. Each of 34 talkers recorded 1000 sentences, covering
all combinations of colors, letters, and digits, and half of the
combinations of the other three words. These talkers represent
a wide variety of regional British accents.

We selected this corpus because it facilitates both human
and ASR experiments. For human experiments, the corpus
provides low predictability from one word to another in the
sentences. Thus testing the identification of one sentence in
noise to a large extent tests the identification of each of the
words in it individually in parallel. The words also provide a
good balance of phonetic material. One downside of the corpus
for our purposes is that the talkers are British and our listeners
are American, making the task slightly more difficult and less
natural than if it had been recorded by American talkers.

For ASR experiments, GRID provides a large training
corpus for building recognizers. This combined with a small
vocabulary (50 words total) makes acoustic models easy to train.
In addition, there is a baseline recognizer for the challenge

distributed with the Kaldi speech recognition toolkit [45], which
we utilized. One downside of using the GRID corpus for our
ASR experiments is that this baseline system does not include
the use of a deep neural network acoustic model.

From these 34,000 utterances, we selected eight to use in
the listening tests. Our goal in selecting these sentences was
that words in each position be as balanced as possible and
as independent as possible from words in the other positions.
There was no set of sentences from a single talker in GRID that
perfectly satisfied these characteristics, so we selected the set
that came as close as possible. The set size of eight sentences
was chosen so that an individual subject could perform the
entire experiment in a single listening session. The correlational
analysis described in Section II-C requires approximately 200
mixtures of each utterance to obtain acceptable levels of
significance. These 200 mixtures will take a human 10-15
minutes to listen to and label. Thus an experiment utilizing
eight utterances should take 80-120 minutes, a rather long
single-session listening test. To minimize the predictability
of individual words, we sought a set of sentences where
each position in the sentence had a uniform distribution over
candidate words. To maximize the independence between
adjacent words, we sought a set of sentences with all possible
combinations of these words. It turned out not to be possible to
find a set with all possible combinations because we found that
all sentences differed by at least two words from one another.
We thus identified the most confusable set of sentences from
a single talker with a distribution over individual words as
uniform as possible.

This selection process resulted in the sentences listed in
Table I, spoken by talker 16, a female. As can be seen in the
table, all of the sentences share the same verb, preposition, and
adverb. There are four letters, each appearing in two sentences,
and four number, each also appearing in two sentences, both
meeting our goals for balance. There are also four colors, but
two of them appear in a single sentence each and two appear
in three sentences each, not meeting the balance goal, but
allowing the words in the other positions to do so.



B. AMI

The AMI dataset is a collection of meeting recordings with
100 hours of speech in English, although the speakers are
mainly non-native. The audio is recorded in three different
rooms with dissimilar acoustic characteristics. There are several
microphone settings such as Individual Headset Microphones
(IHM), Single Distant Microphone (SDM), and Multiple Distant
Microphones (MDM), and we use the IHM setting for our
experiments. The training set is the standard training set of
the AMI IHM recipe in Kaldi [45]. There are two AMI test
sets: the first one is the standard AMI test set and the second
one, the bubble test set, comprises 1000 bubble noise mixtures
at -10 dB and 80 bubbles per second created with the single
sentence IB4010_HOO0_FIE038_0022314_0022648, “And you
pick up on things that you didn’t really notice the first time
around.”. The SNR and number of bubbles per second are
tuned so that the WER is approximately 50% for as many
words as possible. The above sentence is chosen because the
ASR achieves 100% accuracy on recognizing the words when
given the original clean audio.

IV. ASR SYSTEMS

ASR is a very large field and we only review here the very
basics necessary to understand our subsequent experiments. The
interested reader is directed to various books on the topic [46]—
[48]. The ASR task is to convert speech to text. It is made
up of several sub-systems that operate in relative isolation
from one another. In addition, there is currently an emerging
class of end-to-end ASR where the entire system is trained
together and these boundaries become less clear. The feature
extractor converts the raw audio signal into an intermediate
representation of acoustic features. The acoustic model (AM)
evaluates the probability of a given phoneme for a given
acoustic feature vector. The pronunciation model maps words
to sequences of phonemes. Finally, the language model (LM)
assigns probabilities to word sequences. By combining these
models with an efficient search procedure, the sequence of
words with the highest probability given an acoustic utterance
can be found. Our experiments evaluate different choices of
models for AM and LM, so we discuss them here along with
related techniques.

A. GMM acoustic model

For many years, ASR systems used Gaussian mixture model
(GMM) acoustic models. The AM can produce probabilities
for monophones or triphones, in which case each phoneme
is modeled in the context of the phonemes (or phoneme
types) before and after it. Expectation maximization is used
to find the maximum likelihood parameters for the GMM.
Some additional techniques are employed to facilitate modeling
of the features with GMMSs. Linear Discriminant Analysis
(LDA) is used to reduce the dimensionality of the features
in accordance with their utility in discriminating phonemes.
LDA not only finds the axes that maximize the variance of the
data projection on them (similar to PCA), but also maximize
the separation among different classes. Maximum Likelihood
Linear Transform (MLLT) is used to reduce the variation

between the speech of different speakers. It allows the ASR
system to better generalize to unseen speakers.

The GMM AM system used on CHiME-2 was based on
the Kaldi baseline for the first CHiME challenge [49] which
was also the baseline for the second CHiME challenge, track
1 [50]. There are 2 GMM AM systems used on AMI: the first
is a GMM-HMM triphone system using MFCCs together with
Linear Discriminant Analysis and Maximum Likelihood Linear
Transformation (LDA-MLLT), denoted “tri2b.” The second
adds Speaker Adaptive Training (SAT) [51] and is denoted
“tri3.”. Both are default systems from Kaldi.

B. Neural network acoustic model

Recent state of the art results have used acoustic models
based on time-delay neural networks (TDNN) or a combination
of time-delay neural networks and long short-term memory
networks (TDNN-LSTM). A TDNN is feed-forward, but
utilizes a sort of dilated convolution to provide an increased
temporal context to higher layers of the model. TDNNs not only
capture long term dependencies like recurrent neural networks,
but also have small training times on par with simple feed-
forward networks.

The neural network acoustic model used for CHiME-2 is a
time delay neural network (TDNN) [52] following the CHiME-
5 baseline recipe in Kaldi ported to the CHiME-2 track 1
recipe. The input to the TDNN is a 140-dimensional (140-D)
vector, which is the concatenation of a 40-D “high-resolution”
MFCC feature (calculated from a 40-D mel filterbank) and a
100-D iVector [52]. The neural network-based acoustic model
for AMI is the default hybrid TDNN-HMM chain structure in
the 5b Kaldi recipe and uses the same features. In addition, we
also analyzed TDNN-LSTM acoustic models with and without
dropout [53]. In the default configuration, some layers are
projected LSTMs [54], specifically layers 4, 7, and 10, while
other layers are TDNNSs. Dropout is applied to the 4, f, and
o gates of the LSTMs. To the best of our knowledge, our
Kaldi system for AMI is representative of the state of the
art (SOTA). It achieves a WER of 19.3 on the test set. For
example, a recent paper [55], achieves a WER of 22.02. The
current SOTA on CHIME-2 track 1 is [56], where a speech
enhancement system is used on the input to the ASR. We chose
not to include speech enhancement at the moment to evaluate
the importance maps of the ASR itself. Analyzing a combined
speech enhancement ASR system is left for future work. As
such, our systems for CHIME-2 track 1 are the best systems
provided with Kaldi, which tries to be close to SOTA while
striving to maintain generality.

C. n-gram language models

The standard n-gram language model makes a Markov
assumption that the probability of a word only depends on
the previous n — 1 words. This probability is derived using
maximum likelihood estimation as:

plws|wi, ..., wi—1) = p(w;|Wi—pt1, ..., wi—1)  (5)
CWi—nt1y. 0w
C(Wi—p+1,---Wi—1)



where C(-) is the count of how many times a word sequence
appears in the training corpus. We use the SRI Language
Modeling Toolkit (SRILM) [57] as the m-gram language
modeling tool with Kaldi. SRILM supports different kinds
of smoothing algorithms such as Kneser-Ney [58] and Jelinek-
Mercer [59] to deal with the problem of test n-grams unseen
in the training corpus. The SRILM perplexity on the AMI test
set is 79.7.

D. RNN language models

The n-gram technique is simple, but since the size of the
model grows exponentially with n, it can not capture long-term
dependencies, and the count tensor is sparse. Another way to
build a language model is to use a neural network to estimate
the probability of a word given its previous context. A model
that is suitable for this task is the recurrent neural network,
which has the ability to capture long-range dependencies
better than the n-gram technique. In this paper, we use the
RNN language model (RNNLM) from Kaldi [60]. The Kaldi
RNNLM is optimized by applying importance sampling-based
methods and utilizing unnormalized probabilities during train-
ing [60]. In addition, it uses subword information to improve
the word-embedding representation for out-of-vocabulary and
rare words. The RNNLM is trained on the Fisher and AMI
corpora following the Kaldi AMI recipe “s5b”. The RNNLM
perplexity on the AMI test set is 54.2.

V. EXPERIMENTS
A. Experiment 1: Importance maps on the GRID dataset

Our first experiment compares the importance maps of human
listeners with machine listeners on recognizing the eight GRID
sentences listed in Table I. The machine listeners include a
GMM acoustic model and a TDNN acoustic model using either
an eight-sentence language model or the full 64,000-sentence
GRID language model.

1) Human importance maps: In the human listening test,
one sentence was selected at random, mixed with bubble noise,
and presented to the listener, who then selected one of the eight
possibilities. As mentioned in Section II-B, the difficulty was
adjusted online using the weighted up-down procedure [43]. It
was applied separately for each sentence starting at 30 bubbles
per sentence. When a sentence was correctly identified, the
number of bubbles used in its next presentation was reduced
by 2% and when it was incorrectly identified, the number of
bubbles used in its next presentation was increased by 2.3%.
This asymmetry leads the procedure to converge to the number
of bubbles per sentence that allows the listener to correctly
identify 56.3% of the mixtures, half way between chance and
perfect performance. This procedure resulted in a final bubble
rate of 18-24 bubbles per sentence, varying by listener and
utterance.

The human listening test was performed over headphones via
a MATLAB interface. Subjects consisted of one expert listener,
who labeled 1600 mixtures and was familiar with bubble noise,
and three naive listeners, who together labeled another 1600
mixtures (401, 562, and 639 mixtures each) and had never heard
bubble noise before. All were native speakers of American

English. Subjects were allowed to familiarize themselves with
the clean utterances and the task for 5 minutes before noise
was added. They were allowed to adjust presentation volume
to a comfortable level, listen to each mixture as many times as
they wanted, take breaks regularly, and end their participation
whenever they wanted. Feedback was provided only at the end
of the training period and no feedback was provided during the
experiment itself. The listeners each spent approximately the
same amount of time on the test, the expert being the fastest.

Because the bubble method can analyze importance at the
word-level, in case the ASR does not recognize all the words
in a specific sentence, we can still use the correctly identified
words for analysis. Thus, we visualize the importance map
using both the sentence-level and the word-level “correctness”
when we analyze the human listening test.

2) Machine importance maps: When measuring importance
maps for ASR systems on the GRID dataset, we examine
the role of the acoustic model and language model. First,
we compare two different acoustic models on this task, one
based on a neural network AM and one on a non-neural
network AM. The non-neural network ASR system used in
these experiments was based on the Kaldi baseline for the
first CHiME challenge [49] which was also the baseline for
the second CHiME challenge, track 1 [50]. The training data
consisted of speech from the GRID corpus mixed with various
noises recorded in a household environment. The recognizer
used a Gaussian mixture model (GMM) front end operating
on mel-frequency cepstral coefficients (MFCCs) predicting
clustered triphone states. The MFCCs were transformed using
linear discriminant analysis of nine consecutive frames followed
by a global maximum likelihood linear transformation [61].

These GMMs were trained on the training data from the
second CHiME challenge, track 1, which consists of 17,000
noisy utterances, 500 from each talker. Our training excluded
utterances from talker 16, the one used in the listening test.

Several modifications to the decoding parameters of the
GMM AM were necessary to perform the same listening task as
the human listeners. First, we modified the grammar to consist
of only the eight test sentences as eight parallel paths from the
start state to the end state. After doing so, we needed to modify
the weights on each of the sentence paths in the grammar to
achieve approximate parity in the frequency with which each
sentence was selected. This required placing a large penalty (52
nats, where a nat is a unit of information like a bit, but using the
natural logarithm) on selecting BWIE8A, moderate penalties
(46, 43, 39, and 36 nats) on selecting BGILSA, BRIE2A,
BRIRZA, and BWIL2A, respectively, and low penalties (25,
16 and 0 nats) on selecting BBIKZA, BWIR6A and BRIK6A.
Apparently in bubble noise the recognizer was particularly
unlikely to select the utterances containing the word “Six.”
We also found that with the default settings, many sentences’
transcripts ended before the final state due to beam search
starvation. Because this is a small-vocabulary task, we were
able to increase the width of the beam to 200 nats to eliminate
this issue, presumably by exhaustively exploring all paths.

As expected, in order to correctly identify 50% of the
sentences, the ASR could only tolerate much milder bubble
noise than the human listeners. We performed several searches



across the number of bubbles per sentence and SNR to identify
a good operating point. One advantage of the machine listener
over the human listeners is that it can listen faster than real
time and has an unlimited attention span. We thus utilized 400
mixtures per utterance with it.

The neural network acoustic model uses a time delay neural
network (TDNN) [52] following the CHiME-5 baseline recipe
in Kaldi ported to the CHiME-2 track 1 recipe. The input of the
TDNN is a 140-dimensional vector, which is the concatenation
of a 40-dimensional traditional MFCC-based feature and a
100-demensional iVector [52] We use penalties of 22, 25, 13,
0, 39, 24, 18 and 33 nats for BBIKZA, BGIL8A, BRIE2A,
BRIK6A, BRIRZA, BWIESA, BWIL2A, BWIR6GA.

Second, we examine the role of the language model on
the importance map. We compare two language models: the
first contains only the 8 sentences listed in Table III (TDNN-
8LM) and the second is the full GRID language model
(TDNN-64kL.M) containing 64,000 sentences. The TDNN-8LM
perplexity is 2.1 while the TDNN-64kLLM perplexity is 6.3.
Since the words are not entirely independent, the 8-sentence
language model could take advantage of this while the 64k
LM could not. The acoustic model is fixed to be the TDNN
for both language models. The TDNN-8LM ASR system is
analyzed using bubble noise with a baseline SNR of —9 dB
while the TDNN-64kLLM ASR uses 0 dB so that each achieves
an accuracy around 50%.

B. Experiment 2: Importance maps on the AMI dataset

In the second experiment, we examine how different acoustic
models and language models change ASR importance maps
on the AMI dataset.

First, we compare several acoustic models on the AMI IHM
dataset: a conventional Gaussian mixture model (GMM), a
time delay neural network (TDNN), a combination of time
delay neural network and long short-term memory network
(TDNN-LSTM), and a TDNN-LSTM with dropout (LSTMd).
These systems are trained on the standard AMI IHM dataset
and tested on the two AMI test sets described in Section III.

The non-neural network setting is a GMM-HMM baseline
in the Kaldi AMI recipe. We follow the Kaldi script to train
a sequence of systems, in which alignments from one system
are used to train the next system.

Two non-neural network systems are evaluated: the first is
a GMM-HMM triphone system using MFCCs together with
Linear Discriminant Analysis and Maximum Likelihood Linear
Transformation (LDA-MLLT), denoted “tri2b.” The second
adds Speaker Adaptive Training (SAT) [51] and is denoted
“tri3.”

The neural network-based acoustic model is the default
hybrid TDNN-HMM chain structure in Kaldi AMI recipe 5b.
In addition, we also analyzed TDNN-LSTM acoustic models
with and without dropout [53]. In the default configuration,
some layers are projected LSTMs [54], specifically layers 4,
7, and 10, while other layers are TDNNs. Dropout is applied
to the ¢, f, and o gates of the LSTMs.

Second, the effect of the language model on the importance
map is investigated. We compare the standard n-gram-based

SRILM [57] language model with two RNN language models.
Both use the same TDNN acoustic model. The RNN language
model is better at capturing long term dependencies, but has a
longer training time than an n-gram model. We use the Kaldi
RNNLM in two distinct ways: for rescoring lattices using a
4-gram approximation to the history [60] and to rescore the
top 50 transcripts. Rather than using only the RNN language
model, it is combined with SRILM predictions with each given
equal weight (0.5). We ported part of this RNNLM from the
Switchboard recipe to the AMI recipe.

In general, we observe that GMM acoustic models tend to
focus on areas of the spectrogram that contain little speech
energy in a wide range of frequency bins while the neural
network AMs pay attention to the high-energy, low-frequency
regions. We also examine the role of the language model (LM)
and show that the importance map of an ASR with a neural
LM does not differ much from those of traditional n-gram
backoff LMs on the particular sentences studied here.

VI. RESULTS AND DISCUSSION
A. Experiment 1: Importance map on the GRID dataset

1) Human results and discussion: Time-frequency impor-
tance functions derived from the human responses are shown in
the top row of Figure 2. It can be seen that the human listeners
are attending to time-frequency locations in the spectrogram
corresponding to various speech cues. These cues include the
initial glides of “white” and “red”, the initial stop burst of “two”,
and the initial sibilance of “six”. These results are consistent
across different productions of the same word. They also follow
the well-established cues of speech production for these words
[62] and agree with other analyses of cues for speech perception
of individual tokens [32]. The identified regions, however,
only include a subset of the distinctive features that might be
expected. For example, the final sibilance in “six” does not
appear to be utilized consistently, even though it is nearly as
energetic as the initial sibilance in BWIR6A. Nor is the initial
sibilance in “zero” utilized, although low frequency information
in the /z/ does appear to be utilized.

Another interesting feature of these results is that different
“correctness” signals (different colors in Figure 2) show corre-
lations with different time-frequency regions of the utterances.
This analysis is possible because of the use of sentence stimuli,
in contrast to previous auditory bubbles experiments, which
employed isolated words [7]-[9]. For word-level correctness,
these correlations generally appear in the spectro-temporal
regions of the word in question, an effect that is very noticeable
in all of the “red” and “white” sentences, but especially for the
sentences BRIE2A, BRIRZA, and BWIL2A. For example, in
BRIRZA, when the correctness of identifying the color word
“red” is considered, the importance is high in the region of the
second formant transition of the /r/ in “red”. When correctness
for the letter word “R” is considered instead, the importance
shifts to the second formant transition into and during that
word. And when correctness for the number word “Zero” is
considered, the importance shifts to the first formant of the
initial /z/.

Frequently, however, the importance for one word includes
regions of other words. These importance overlaps could be a



TABLE II
CONFUSION MATRICES FOR HUMAN AND ASR WITH TDNN ACOUSTIC MODEL IN EXPERIMENT 1. NOTE THAT THEY ARE RESPONDING TO DIFFERENT
TOKENS, WITH SIGNIFICANTLY MORE NOISE IN THE MIXTURES PRESENTED TO THE HUMANS. SENTENCES ARE ABBREVIATED HERE TO THREE
CHARACTERS: COLOR, LETTER, NUMBER.

Human response

ASR response

True ID BKZ GL8 RE2 RK6 RRZ WE8 WL2 WR6 Sum BKZ GL8 RE2 RK6 RRZ WE8 WL2 WR6 Sum
BKZ 256 30 18 26 43 12 6 9 400 245 42 15 10 28 23 13 24 400
GL8 23 273 16 12 6 39 23 8 400 32 255 7 19 17 23 23 24 400
RE2 4 6 229 41 52 19 42 7 400 12 19 204 67 19 30 26 23 400
RK6 6 6 28 2069 21 27 10 33 400 15 11 114 189 13 14 34 10 400
RRZ 10 8§ 33 20 272 13 22 22 400 26 8 69 62 176 8 18 33 400
WES 4 15 24 12 15 242 39 50 401 20 35 21 9 12 200 45 58 400
WL2 7 7 38 12 20 27 253 35 399 11 21 26 16 12 63 179 72 400
WR6 5 8 7 54 10 23 42 250 399 17 18 12 64 31 61 94 103 400
Sum 315 353 393 446 439 402 437 414 3199 378 409 468 436 308 422 432 347 3200

result of contextual effects, if pronouncing one word affects
the pronunciation of another, or of the task itself, in which
recognizing one word can aid in recognizing other words in the
sentence. While these two effects are difficult to distinguish,
it appears than many of these overlaps could be explained
by the construction of the task. For example, in BWIROA,
the importance regions for correctly recognizing the word “R”
include both the formant transition of the /w/ in “White” and
the sibilance of the /s/ in “Six”. This could be explained by
the fact that correctly identifying the words “White” and “Six”
uniquely identifies this sentence, regardless of whether “R” was
audible. Similarly, for the two sentences with unique colors
(BBIKZA and BGIL8A), the importance tends to focus on just
the color words, even for correct identification of other word
positions. This effect can be explained by the fact that the
word “Green” only appears in the sentence BGILSA. Thus, if
a human listener can identify the word “Green,” then they can
predict the other words in the sentence without even hearing
them. That is why the importance maps of other words contain
the importance map of word “Green.”.

2) Machine results and discussion: Figure 2 shows the
importance maps for several recognition systems on multiple
words in multiple GRID sentences. The systems are the
human listeners, the GMM triphone acoustic model, the TDNN
acoustic model with the eight-sentence language model, and
the TDNN acoustic model with the full GRID language model.
The TDNN has importance maps that are much more similar
to the human ones than the GMM system’s maps, however, it
does not capture all the cues that the human listeners utilize.

The GMM generally attends to regions where there is little
speech energy. For example, the GMM’s importance map for
“zero” in the sentence BRIRZA spans the low energy regions
from 4 to 8 kHz, however, the human importance for this
word is at a high-energy region under 1 kHz. Similarly, there
is importance in the low-energy regions at 6-8 kHz for “E”
in BWIESA. Interestingly, there is also importance between
the first two formants in “E” in BRIE2A, a low-frequency
region of low energy. The GMM TFIFs appear much less
sensitive to the type of correctness under consideration, i.e.,
the importance maps are similar across different word targets.
The GMM importance does include some formant transitions,
although it seems to be focusing more on the lack of energy
adjacent to the formants as opposed to the high energy of the

formants themselves. For example, there are large importance
regions before the rising second formant of “White” in all
of the sentences that include it. Overall these results suggest
that the GMM can correctly identify a word or sentence when
the noise that is added to it has a similar spectral profile to
the speech itself. The GMM thus appears to be using gaps in
the noise very differently from the human listeners. While the
humans use gaps to identify speech that is revealed, the GMM
uses the general spectral shape of the mixture to identify the
speech. This is very likely a result of the GMM using MFCC
features, which characterize the gross spectral shapes of the
entire mixture, and cannot separate the speech from the noise.

The importance maps of the neural network AM with the 8
sentence language model (third row) are more similar to the
humans’, in particular sharing some cues in high-energy regions.
For example, in BRIK6A of Figure 2, the region below 1 kHz
of “six” is important for both the human and the neural network
AM, but not for the GMM. Moreover, the region around 2
kHz of “R” in BRIRZA is not important for the GMM, but is
important for the other listeners. The neural network AM has
not, however, captured all the cues that human listeners utilize,
such as some specific transitions from silence to high-energy.
For example, human listeners are attentive to such a transition
above 3 kHz for “two” in BRIE2A and BWIL2A; for “six” in
BWIRG6A,; and to a transition from high energy to low for “six”
in BRIK6A. The neural network AM does not pay attention
to these specific cues.

The TDNN-64kLLM importance maps (the last row) include
many low-energy high-frequency regions such as at 4-8 kHz
on the right of “again” in BRIE2A. In addition, the importance
map of “six” in BRIK6A is located to the left of “bin” at
5-8 kHz, which is unreasonable. Despite these mistakes, the
TDNN-64kLM still shares some similar areas with the human
maps, such as the region under 1 kHz in “two” in BRIE2A,
under 1 kHz for “six” in both BRIK6A and BWIR6A, and the
region at 1-2 kHz in “white” in BWIL2A.

Additionally, we quantified the similarity of machine and
human listeners importance maps using the Jaccard index,
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Fig. 2. Importance maps on the GRID dataset for human (top row), GMM acoustic model with 8-sentence language model (second row), TDNN acoustic
model with the same LM (third row) and TDNN AM with the 64,000-sentence GRID language model (bottom row).

TABLE III
RECOGNITION ACCURACY (%) OF DIFFERENT COMBINATIONS OF
ACOUSTIC MODEL (AM) AND LANGUAGE MODEL (LM) ON THE BUBBLE
GRID TEST SET WITH 400 NOISY MIXTURES OF EACH OF THE 8
SENTENCES AT 54 BUBBLES PER SECOND.

AM LM SNR  Overall Letter Digit
GMM-HMM +LDA+MLLT 8 sents -9 dB 41.6 44.3 38.8
TDNN 8 sents -9 dB 55.1 54.2 55.9
GMM-HMM +LDA+MLLT 64K sents 0 dB 23.9 26.8 21.0
TDNN 64K sents 0 dB 43.6 37.2 499

the thresholded human (machine) importance maps of word at
position p in sentence n.

We choose P as the set of three word positions: second,
fourth, and fifth representing the color, letter, and number
words. If V is the set of six sentences in Figure 2, then the
Jaccard similarity between the human importance map and that
of the GMM acoustic model with 8-sentence language model
(second row) is 0.045, the TDNN acoustic model with the
same LM (third row) is 0.059, and the TDNN AM with the
64,000-sentence GRID language model (bottom row) is 0.089
respectively. When NN is the set of all eight sentences in table
I, these numbers are quite similar: 0.044, 0.067 and 0.089,
respectively. In both cases, we can observe that importance
maps for the neural network AM are more similar to humans’
than the non-neural network AM'’s. In addition, somewhat
surprisingly, those of the full GRID language model are more
similar to the humans’ than the task-dependent language model,
perhaps because the task dependent language model is too
limited to be realistic.

Table III shows the recognition accuracy of these models
on the noisy mixtures. The TDNN AM has higher recognition
accuracy at 55.1% compared to 41.6% for the GMM. The
previous result from [9] showed that the human listeners
achieved 63.89% accuracy at -24 dB with 18-24 bubbles per
second. Thus the TDNN is both more similar to the human in
its importance maps and more noise robust. These results also
show that the TDNN-64kLM model (broad search space) has
a lower recognition accuracy than the TDNN-8sLM model, at
43.6% compared to 55.1%.

In general, the human experiments highlight the fact that not
all speech energy is equally important (e.g., transitions between

silence and speech energy are also essential). The non-neural
acoustic model (AM), in contrast, did not utilize these cues.
Instead, it paid attention to the gross spectral shape of the
speech, for instance, a low-energy region around the border
of a high-energy area. The neural network acoustic model
importance maps contain some high-energy regions similar to
human ones but do not include other human cues, such as
certain transitions between silence and speech energy.

B. Experiment 2: Importance maps on the AMI dataset

The first five rows of Figure 3 show the importance maps
of different acoustic models on the AMI test sentence: the
GMM-HMM with LDA+MLLT (tri2b), GMM-HMM with
LDA+MLLT+SAT (tri3), TDNN-LSTM (without dropout),
TDNN-LSTM with dropout, and TDNN. All these acoustic
models are combined with the same SRILM language model,
except for the sixth row where the TDNN AM is combined
with the RNNLM. For visualization purposes, the importance
map of each word is shown in a unique color. For instance,
the pink salient regions of “really” mainly span from 1kHz to
3kHz in the neural network configurations, while it spans from
1 kHz to 3 kHz and above 3 kHz in the non-neural-network
settings. As in the GRID dataset results, correlations in the
word-level correctness in the AMI dataset usually emerge
in the spectral regions of that word. For example, we see
that when the correctness of recognizing “and” is taken into
account, the importance is high in the region of the spectrogram
that has been force-aligned with “and.” When correctness of
“really” is considered instead, the importance shifts to the
speech energy aligned with “really.” Moreover, we can see
there some overlap in important regions, thus audibility of
one word can be important for recognizing another. This co-
occurrence is especially high for “did” and “n’t”, which are
scored separately by the recognizer, but often co-occur.

Generally, the GMM models pay more attention to the low-
energy, high-frequency regions than the neural network AMs.
For example, for “and,” “really,” “n’t,” the tri2b and tri3 models
focus on the low-energy high-frequency region at 5 to 8 kHz,
while these regions are not important to the TDNN and LSTM.



TABLE IV
RECOGNITION ACCURACY (%) OF INDIVIDUAL WORDS IN THE AMI
BUBBLE TEST SENTENCE. TRI2B: GMM-HMM WITH LDA+MLLT; TRI3:
TRI12+SAT; TDNN-LSTMD 1s TDNN-LSTM WITH DROPOUT
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Similarly, for “pick,” the GMM pays more attention to the low-
energy high-frequency region than the neural network AMs.

Table IV shows the accuracy of each model at recognizing
several of the words in the noisy test sentence across the 1000
mixtures. The accuracy scores of model tri2b and tri3 on “and,”
“really,” “n’t,” and “pick” are low compared to the TDNN.
Moreover, the TDNN and TDNN-LSTM importance maps
look similar to each other as do their scores in Table 1V. Thus,
we can see that there exists a relationship between the model’s
importance map and its performance.

Table V shows the recognition accuracy of the different
acoustic models on the clean AMI IHM test set and the bubble
noise test sentence. It shows that the performance of the neural
network acoustic models is more similar on the clean test set
and more diverse on the noisy test sentence. For example,
the TDNN-LSTM with dropout has a similar WER on the
standard AMI test set to that of the TDNN-LSTM without
dropout (21.2% vs 21.3%), but has a much higher WER on the
noisy test sentence (32.4% vs 22.4%). In Figure 3, the TDNN-
LSTMs with and without dropout have similar importance
maps for “really,” while for “notice” they are different: the
importance for “notice” for the model trained with dropout
contains an area of low energy at 5.5 to 7 kHz. Interestingly,
the two models have a small difference in accuracy on the
word with similar importance maps, while the model trained
with dropout has a much lower score on “notice” as shown in
Table IV. Thus, dropout seems to make the model less robust
to noise in our bubble test sentence.

Comparing the results in Table V with the importance maps
show in Figure 3 in general, it seems that the recognizers
with lower WER utilize more compact regions than those with
higher WER. Because the importance maps are identifying
points where noise is especially disruptive to recognition, a
larger area of such points may indicates a higher sensitivity to
noise overall.

Next, we analyze the role of the language model in these
importance maps. For the AMI sentence, as can be seen in
Figure 3, the importance maps are slightly different between
the SRILM (the fifth row) and the RNN language models
(the last row). The RNNLM 4-gram lattice rescoring generates
similar performance and a similar importance map to RNNLM
with n-best rescoring, therefore, we only plot the former. We
can see that the importance map of “and” and “really” of
the two models shown are quite similar and the recognition
accuracy of these words in Table IV is quite similar as well
(93.6% compared to 94.3%, 83.8% compared to 86.3%). The
importance maps of “notice” are different between the two
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Fig. 3. Importance maps for ASR on AMI test sentence. In order from top:
GMM-HMM with LDA+MLLT (tri2b) with SRILM LM, GMM-HMM with
LDA+MLLT+SAT (tri3) with SRILM LM, TDNN-LSTM with SRILM LM,
TDNN-LSTM with dropout and SRILM LM, TDNN-LSTM with dropout and
RNNLN 4-gram language model. The supplementary material contains audio
files of example mixtures used to calculate these maps.

TABLE V
‘WORD ERROR RATE (%) ON THE AMI STANDARD TEST SET AND THE
BUBBLE TEST SENTENCE.

AM ‘ LM AMI test set  Bubble test sent.
Tri2b SRILM 39.8 80.1
Tri3 SRILM 352 60.1
TDNN SRILM 21.2 21.2
TDNN-LSTM SRILM 21.3 22.4
TDNN-LSTMd | SRILM 21.2 32.4
TDNN RNNLM 4-gram 19.3 20.6
TDNN RNNLM 50 best 19.6 20.6

models, and the recognition accuracies are different as well
(71.2% compared to 88.9%).

VII. CONCLUSIONS AND FUTURE WORK

This paper has described an experiment to directly compare
human listeners with automatic speech recognizers in terms of
their strategies for recognizing speech in noise. It has shown
that in this task, humans focus on time-frequency regions
corresponding to formant transitions, stop bursts, and sibilance
but a traditional GMM-based acoustic model operating on
MFCCs seems to focus on regions of low energy. Additionally,



neural network AMs attend to certain high-energy regions
similar to those of humans, but do not use all the cues
that human listeners make use of, such as certain transitions
between silence and high speech energy. While we show
large differences in importance and accuracy between different
acoustic models on this task, using an RNN language model
does not change either one much. These results suggest that the
performance of ASR in noisy conditions might be improved
by adapting it to pay better attention to the cues used by
human listeners, e.g., by using [22]. The paper has also shown
that the auditory bubbles technique [7]-[9] can operate just as
well on running sentences as isolated words and on machine
listeners just as well as human listeners. In the future, it would
be interesting to apply the same analysis to end-to-end ASR
systems.
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