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ON THE DISCRETENESS OF TRANSMISSION EIGENVALUES FOR
THE MAXWELL EQUATIONS\ast 
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Abstract. In this paper, we establish the discreteness of transmission eigenvalues for Maxwell's
equations. More precisely, we show that the spectrum of the transmission eigenvalue problem is
discrete if the electromagnetic parameters \varepsilon , \mu , \^\varepsilon , \^\mu in the equations characterizing the inhomogeneity
and background are smooth in some neighborhood of the boundary and isotropic on the boundary,
and satisfy the conditions \varepsilon \not = \^\varepsilon , \mu \not = \^\mu , and \varepsilon /\mu \not = \^\varepsilon /\^\mu on the boundary. These are quite general
assumptions on the coefficients, which are easy to check. To our knowledge, our paper is the first
to establish discreteness of transmission eigenvalues for Maxwell's equations without assuming any
restrictions on the sign combination of the contrasts \varepsilon  - \^\varepsilon and \mu  - \^\mu near the boundary and allowing for
all the electromagnetic parameters to be inhomogeneous and anisotropic, except for on the boundary
where they are isotropic but not necessarily constant as is often assumed in the literature.
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1. Introduction. The transmission eigenvalue problem is at the heart of inverse
scattering theory for inhomogeneous media. This eigenvalue problem is a late arrival
in scattering theory with its first appearance in [11, 18], in connection with the in-
jectivity of the relative scattering operator. Transmission eigenvalues are related to
interrogating frequencies for which there is an incident field that doesn't scatterer
by the medium. The transmission eigenvalue problem has a deceptively simple for-
mulation, namely, two elliptic PDEs in a bounded domain (one governs the wave
propagation in the scattering medium and the other in the background that occupies
the support of the medium) that share the same Cauchy data on the boundary, but
presents a perplexing mathematical structure. In particular, it is a non-self-adjoint
eigenvalue problem for a nonstrongly elliptic operator, and hence the investigation of
its spectral properties becomes challenging. Roughly, the spectral properties depend
on the assumptions on the contrasts in the media (i.e., the difference of the respective
coefficients in each of the equations) near the boundary. Questions central to the
inverse scattering theory include discreteness of the spectrum that is closely related
to the determination of the support of inhomogeneity from scattering data using lin-
ear sampling and factorization methods [5], location of transmission eigenvalues in the
complex plane that is essential to the development of the time domain linear sampling
method [9], and the existence of transmission eigenvalues as well as the accurate de-
termination of real transmission eigenvalues from scattering data, which has become
important since real transmission eigenvalues could be used to obtain information
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about the material properties of the scattering media. We refer the reader to [5] for
a recent and self-contained introduction to the topic.

This paper concerns the discreteness and location of transmission eigenvalues in
the scattering of time-harmonic electromagnetic waves by an inhomogeneous (pos-
sibly anisotropic) medium of bounded support. Let us introduce the mathematical
formulation of the electromagnetic transmission eigenvalue problem. To this end, let
\Omega be an open, bounded subset of R3 representing the support of the inhomogene-
ity, which we assume to be of class C2. Let \varepsilon , \mu , \^\varepsilon , \^\mu be (3 \times 3) symmetric, uni-
formly elliptic, matrix-valued functions defined in \Omega with L\infty (\Omega ) entries. A complex
number \omega is called an eigenvalue of the transmission eigenvalue problem, or a trans-
mission eigenvalue, associated with \varepsilon , \mu , \^\varepsilon , \^\mu in \Omega if there exists a nonzero solution
(E,H, \^E, \^H) \in [L2(\Omega )]12 of the following system:

(1.1)

\Biggl\{ 
\nabla \times E = i\omega \mu H,

\nabla \times H =  - i\omega \varepsilon E
in \Omega ,

\Biggl\{ 
\nabla \times \^E = i\omega \^\mu \^H,

\nabla \times \^H =  - i\omega \^\varepsilon \^E
in \Omega ,

(1.2) ( \^E  - E)\times \nu = 0 on \partial \Omega , and ( \^H  - H)\times \nu = 0 on \partial \Omega ,

where \nu denotes the outward unit normal vector to \partial \Omega .

The main result that we prove in this paper is stated in Theorem 1.1 below. For
the reader's convenience we first must clarify some terminology used in the formulation
of this theorem. A 3\times 3 matrix-valued function M defined in a subset O \subset R3 is called
isotropic at x \in O if it is proportional to the identity matrix at x, i.e., M(x) = mI
for some scalar m = m(x), where I denotes the 3\times 3 identity matrix. In this case, for
notational ease, we also denote m(x) by M(x). If M is isotropic for x \in O, then M is
said to be isotropic in O. Condition (1.3) below is understood under the convention
m(x) = M(x).

Theorem 1.1. Assume that
(i) \varepsilon , \mu , \^\varepsilon , \^\mu are of class C1 in some neighborhood of \partial \Omega ,
(ii) \varepsilon , \mu , \^\varepsilon , \^\mu are isotropic on \partial \Omega ,
(iii)

(1.3) \varepsilon \not = \^\varepsilon , \mu \not = \^\mu , \varepsilon /\mu \not = \^\varepsilon /\^\mu on \partial \Omega .

The set of the transmission eigenvalues of (1.1) and (1.2) is discrete with \infty as the
only possible accumulation point.

The analysis used in the proof of Theorem 1.1 also allows us to obtain the following
result on the transmission eigenvalue free region of the complex plane C.

Proposition 1.1. Assume that \varepsilon , \mu , \^\varepsilon , \^\mu are of class C1 in some neighborhood
of \partial \Omega , isotropic on \partial \Omega , and

(1.4) \varepsilon \not = \^\varepsilon , \mu \not = \^\mu , \varepsilon /\mu \not = \^\varepsilon /\^\mu on \partial \Omega .

For \gamma > 0, there exists \omega 0 > 0 such that if \omega \in C with | \Im (\omega 2)| \geq \gamma | \omega | 2 and | \omega | \geq \omega 0,
then \omega is not a transmission eigenvalue.

Here and and in what follows, for z \in C, let \Im (z) denote the imaginary part of z.

Remark 1.1. Since \gamma > 0 can be chosen arbitrarily small, the result of Proposition
1.1, together with the fact that \infty is the only accumulation point of the transmission
eigenvalues proven in Theorem 1.1, implies that all the transmission eigenvalues \omega ,
but finitely many, lie in two wedges of an arbitrarily small angle.
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890 FIORALBA CAKONI AND HOAI-MINH NGUYEN

The structure of the spectrum of the transmission eigenvalue problem is better
understood in the case of scalar inhomogeneous Helmoltz equations. In this case,
the transmission eigenvalue problem can be stated as follows. Let d \geq 2 and \Omega be an
open, bounded Lipschitz subset of Rd. Let A1, A2 be two (d\times d) symmetric, uniformly
elliptic, matrix-valued functions defined in \Omega and \Sigma 1 and \Sigma 2 be two bounded positive
functions defined in \Omega . A complex number \omega is called an eigenvalue of the transmission
eigenvalue problem, or a transmission eigenvalue, if there exists a nonzero solution
(u1, u2) of the system

(1.5)

\Biggl\{ 
div(A1\nabla u1) + \omega 2\Sigma 1u1 = 0 in \Omega ,

div(A2\nabla u2) + \omega 2\Sigma 2u2 = 0 in \Omega ,

(1.6) u1 = u2, A1\nabla u1 \cdot \nu = A2\nabla u2 \cdot \nu on \partial \Omega .

The discreteness of transmission eigenvalues for the Helmholtz equation has been
investigated extensively in the literature. The first discreteness result appeared in
[29], whereas [26] proves the state-of-the-art results on the discreteness of transmis-
sion eigenvalues for anisotropic background and inhomogeneity under most general
assumptions on the coefficients using Fourier and multiplier approaches. More specif-
ically, it is shown in [26] that the transmission eigenvalue problem has a discrete
spectrum if the coefficients are smooth only near the boundary and

(i) A1(x), A2(x) satisfy the complementing boundary condition with respect to
\nu (x) for all x \in \partial \Omega , i.e., for all x \in \partial \Omega and for all \xi \in Rd \setminus \{ 0\} with \xi \cdot \nu = 0,
we have

\langle A2\nu , \nu \rangle \langle A2\xi , \xi \rangle  - \langle A2\nu , \xi \rangle 2 \not = \langle A1\nu , \nu \rangle \langle A1\xi , \xi \rangle  - \langle A1\nu , \xi \rangle 2,

(ii)
\bigl\langle 
A1\nu , \nu 

\bigr\rangle 
\Sigma 1 \not =

\bigl\langle 
A2\nu , \nu 

\bigr\rangle 
\Sigma 2 for all x \in \partial \Omega .

Additional results in [26] also include various combinations of the sign of contrasts
A1  - A2 and \Sigma 1  - \Sigma 2 on the boundary. Previous results on discreteness can be found
in [3, 19, 32] and references therein. We must emphasize that the conditions (i) and
(ii) are more general than simply one sign contrasts A2  - A1 and/or \Sigma 2  - \Sigma 1 near
the boundary. To complete the picture on the transmission eigenvalue problem in the
scalar case, we remark that the first answer to the existence of transmission eigenvalues
for one sign contrast in \Omega was given in [28], where the authors showed the existence of a
few real transmission eigenvalues for the index of refraction sufficiently large, followed
by [6, 8], which prove the existence of infinite real transmission eigenvalues removing
the size restriction on the index. The completeness of transmission eigenfunctions
and first estimates on the counting function are shown in [30, 31] for C\infty boundary
and coefficients since they use semiclassical analysis and pseudodifferential calculus.
Again in a C\infty setting, [33, 34] prove the sharpest known results in the scalar case on
eigenvalue free zones and Weyl's law for the scalar case improving an earlier result by
[17].

The story of the transmission eigenvalue problem for Maxwell's equations is not as
complete as for the scalar case discussed above. One of the first results on discreteness
is given by Haddar in [14], which considers the case of \mu = \^\varepsilon = \^\mu = I, and \varepsilon  - I
invertible in \Omega . Chesnel in [10] employs the so-called T -coercivity to prove discreteness
when \^\varepsilon = \^\mu = I, and \varepsilon  - I and \mu  - 1  - I are both greater than cI or both less than
 - cI for some positive constant c in a neighborhood of \partial \Omega . Cakoni, Haddar, and
Meng in [7] use an integral equation approach to study discreteness for the case when
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\mu = \^\varepsilon = \^\mu = I and the matrix-valued \varepsilon becomes a constant not equal to 1 near the
boundary. Theorem 1.1 therefore adds to this list quite general conditions on the
coefficients for which the discreteness holds. To our knowledge, our paper is the first
to establish discreteness of transmission eigenvalues for Maxwell's equation under sign
assumptions on the contrast \epsilon  - \^\epsilon and \mu  - \^\mu on the boundary, and allowing for all the
electromagnetic parameters to be inhomogeneous and anisotropic, except for on the
boundary where they are isotropic but not necessarily constant as is often assumed
in the literature. For the case of electromagnetic transmission eigenvalue problems,
other types of results are rather limited, and we refer the reader to [6] for the existence
of real transmission eigenvalues and [16] for the completeness of eigenfunctions for the
setting related to the one in [7] mentioned above.

The analysis in this paper is inspired by the concept of complementary conditions
suggested by Agmon, Douglis, and Nirenberg in their celebrated papers [1, 2] for el-
liptic systems. For Maxwell's equations, the complementary condition for the Cauchy
problems has been recently investigated in [27] for general anisotropic coefficients in
the context of negative index metamaterials. To be able to apply the theory of com-
plementing conditions to the Maxwell equations, various forms of the Poincar\'e lemma
and Helmholtz decomposition are used with a suitable implementation of local charts.
The analysis in this paper is in the spirit of the one developed in [26]. The idea is to
show that the system

(1.7)

\Biggl\{ 
\nabla \times E = i\omega \mu H + Je in \Omega ,

\nabla \times H =  - i\omega \varepsilon E + Jm in \Omega ,

\Biggl\{ 
\nabla \times \^E = i\omega \^\mu \^H + \^Je in \Omega ,

\nabla \times \^H =  - i\omega \^\varepsilon \^E + \^Jm in \Omega ,

(1.8) ( \^E  - E)\times \nu = 0 on \partial \Omega , and ( \^H  - H)\times \nu = 0 on \partial \Omega ,

is well-posed for some \omega \in C, where (Je, Jm, \^Je, \^Jm) is the input, which belongs to an
appropriate functional space. Moreover, a key fact is to prove that the corresponding
transformation which maps the input (Je, Jm, \^Je, \^Jm) to the output (E,H, \^E, \^H) is
compact. It is worth mentioning that the compactness is one of the crucial/critical dif-
ferences between the study of the Maxwell equations and the Helmholtz equation. In
our analysis, the functional space for the input is well-chosen so that the compactness
property holds (see (4.22)) for \omega in some domain. For example, these facts hold under
the assumptions of Theorem 1.1 provided that i\omega = | \omega | ei\pi /4, i.e., \omega = | \omega | e - i\pi /4 and
| \omega | is large. To this end, we analyze the corresponding Cauchy problem with constant
coefficients in a half-space (Proposition 3.1). Using the decay of Maxwell equations
(Lemma 4.1), we can prove the uniqueness for (1.7) and (1.8). To establish the ex-
istence of a solution, the Banach--Necas--Babuska theorem is applied. Deriving (1.3)
and handling the compactness are the key differences in the analysis of this paper and
the one for the scalar case [26].

The Cauchy problem also naturally appears in the context of negative index ma-
terials after using reflections as initiated in [21]. The well-posedness and the limiting
absorption principle for the Helmholtz equations with sign-changing coefficients were
developed in [22] using the Fourier and multiplier approach. Recently, with Sil, the
second author investigated these problems for the Maxwell equations [27]. Both pa-
pers [22, 27] deal with the stability question of negative index materials and are the
starting point for the analysis of the discreteness of transmission eigenvalues for the
Helmholtz equation [26] and Maxwell's equations in this work. Other aspects and
applications of negative index materials involving the stability and instability of the
Cauchy problem (1.7) and (1.8) are discussed in [23, 25, 24] and the references therein.

D
ow

nl
oa

de
d 

06
/2

9/
21

 to
 1

28
.6

.3
7.

32
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

892 FIORALBA CAKONI AND HOAI-MINH NGUYEN

The paper is organized as follows. In section 2, we introduce notation used fre-
quently in this paper. Section 3 is devoted to the analysis in the half space. The main
result in this section is Proposition 3.1. Condition (1.3) will appear very naturally
there. Finally, we present the proof of Theorem 1.1 in section 4. The choice of the
right functional space plays an important role there. The proof of Proposition 1.1 is
also given in this section.

2. Notation. The following notation is used frequently throughout the paper.
Denote

R3
+ =

\Bigl\{ 
x = (x1, x2, x3) \in R3; x3 > 0

\Bigr\} 
and

R3
0 =

\Bigl\{ 
x = (x1, x2, x3) \in R3; x3 = 0

\Bigr\} 
.

Let \Omega be a bounded, open subset of R3 and of class C2, or \Omega = R3
+. We define the

spaces

H(curl,\Omega ) =
\Bigl\{ 
u \in [L2(\Omega )]3;\nabla \times u \in [L2(\Omega )]3

\Bigr\} 
,

H0(curl,\Omega ) =
\Bigl\{ 
u \in H(curl,\Omega );u\times \nu = 0 on \partial \Omega 

\Bigr\} 
,

H(div,\Omega ) =
\Bigl\{ 
u \in [L2(\Omega )]3; div u \in L2(\Omega )

\Bigr\} 
.

Set \Gamma = \partial \Omega , and for s =  - 1/2, or 1/2, define the trace space

Hs
div(\Gamma ) =

\Bigl\{ 
u \in [Hs(\Gamma )]3;u \cdot \nu = 0 and div\Gamma u \in Hs(\Gamma )

\Bigr\} 
.

For a vector field u defined in a subset of R3, uj denotes its jth component for
1 \leq j \leq 3. We also denote, for s > 0,

(2.1) \Omega s =
\Bigl\{ 
x \in \Omega ; dist(x, \partial \Omega ) < s

\Bigr\} 
.

3. Analysis on a half space. In order to simplify presentation, we let k \in C be
k := i\omega . Let \varepsilon , \mu , \^\varepsilon , \^\mu be four symmetric, uniformly elliptic matrix-valued functions
defined in R3

+. In this section, we are interested in the following Cauchy problem for

Maxwell's equations in R3
+, with Je, Jm, \^Je, \^Jm \in L2(R3

+) and fe, fm \in H
 - 1/2
div (R3

0),

(3.1)

\Biggl\{ 
\nabla \times E = k\mu H + Je in R3

+,

\nabla \times H =  - k\varepsilon E + Jm in R3
+,

\Biggl\{ 
\nabla \times \^E = k\^\mu \^H + \^Je in R3

+,

\nabla \times \^H =  - k\^\varepsilon \^E + \^Jm in R3
+,

and1

(3.2) ( \^E  - E)\times e3 = fe on R3
0, and ( \^H  - H)\times e3 = fm on R3

0.

We begin with proving the following lemma.

1e3 = (0, 0, 1) \in R3.
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Lemma 3.1. Let \gamma > 0 and k \in C with
\bigm| \bigm| \Im (k2)\bigm| \bigm| \geq \gamma | k| 2 and | k| \geq 1. Furthermore,

let \Lambda \geq 1 and \varepsilon , \mu be two positive constants such that \Lambda  - 1 \leq \varepsilon , \mu \leq \Lambda . For Je, Jm \in 
[L2(R3

+)]
3, there exists a unique solution (E,H) \in [L2(R3)]6 of the system

(3.3)

\left\{       
\nabla \times E = k\mu H in R3

+,

\nabla \times H =  - k\varepsilon E + Jm in R3
+,

E \times e3 = 0 on R3
0.

Moreover, for some positive constant C depending only on \Lambda and \gamma ,

(3.4) \| (E,H)\| L2(R3
+) \leq 

C

| k| 
\| Jm\| L2(R3

+)

and

(3.5)

\biggl( \int 
R2

| H\scrF (\xi )\times e3| 2(| k| 2 + | \xi | 2) - 1/2 d\xi 

\biggr) 1/2

\leq C

| k| 
\| Jm\| L2(R3

+),

and if div Jm \in L2(\Omega ), then

(3.6) \| (E,H)\| H1(R3
+) \leq C

\biggl( 
\| Jm\| L2(R3

+) +
1

| k| 
\| div Jm\| L2(R3

+)

\biggr) 
.

Here and in what follows, we denote the Fourier transform with respect to
(x1, x2) \in R2 of an appropriate function u : R3

+ \rightarrow C by u\scrF , i.e.,

u\scrF (\xi , x3) =
1

2\pi 

\int 
R2

u(x1, x2, x3)e
 - i(x1\xi 1+x2\xi 2) dx1 dx2 for (\xi , x3) = (\xi 1, \xi 2, x3) \in R3

+.

Similar notation is used for an appropriate function defined on R3
0. We also identity

a vector (y1, y2, 0) \in R3
0 with (y1, y2) \in R2.

Remark 3.1. We emphasize here that the constant C appearing in (3.4)--(3.6) is
independent of k.

Proof. We have, from the system of (E,H),

(3.7) \nabla \times (\nabla \times E) + k2\varepsilon \mu E = k\mu Jm in R3
+.

Multiplying (3.7) by \=\varphi (the conjugate of \varphi ) with \varphi \in H0(curl,R3
+) and integrating by

parts yields

(3.8)

\int 
R3

+

\langle \nabla \times E,\nabla \times \varphi \rangle + k2\varepsilon \mu 

\int 
R3

\langle E,\varphi \rangle =
\int 
R3

k\mu \langle Jm, \varphi \rangle .

Take \varphi = E. Since
\bigm| \bigm| \Im (k2)\bigm| \bigm| \geq \gamma | k| 2 and | k| \geq 1, after considering the imaginary part

and the real part of (3.8), we obtain\int 
R3

+

| \nabla \times E| 2 + | k| 2| E| 2 \leq C

\int 
R3

+

| Jm| 2,

which implies (3.4) since \nabla \times E = k\mu H in R3
+. The uniqueness of (E,H) follows.
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To derive (3.6), we note that

\| \nabla \times E\| L2(R3
+) \leq C\| Jm\| L2(R3

+),

\| divE\| L2(R3
+) \leq 

C

| k| 
\| div Jm\| L2(R3

+),

\| E\| L2(R3
+) \leq C\| Jm\| L2(R3

+),

E \times e3 = 0 on R3
+.

It follows from the Gaffney inequality (see, e.g., [13, Theorem 3.7], [12, Theorem 1])
that E \in H1(R3

+)]
3 and

(3.9) \| E\| H1(R3
+) \leq C\| Jm\| L2(R3

+) +
C

| k| 
\| div Jm\| L2(R3

+).

We also have
\| \nabla \times H\| L2(R3

+) \leq C\| Jm\| L2(R3
+),

\| divH\| L2(R3
+) = 0,

\| H\| L2(R3
+) \leq C\| Jm\| L2(R3

+),

and, since E \times e3 = 0 on R3
+,

H \cdot e3 = 0 on R3
+.

It follows from the Gaffney inequality again (see, e.g., [13, Theorem 3.9], [12, Theorem
1]) that H \in H1(R3

+) and

(3.10) \| H\| H1(R3
+) \leq C\| Jm\| L2(R3

+) +
C

| k| 
\| div Je\| L2(R3

+).

Combining (3.9) and (3.10) yields (3.6).
To establish (3.5), we proceed as follows. Set, in R3

+,

( \widetilde E, \widetilde H)(x) = (E,H)(x/| k| ) and \widetilde Jm(x) =
1

| k| 
Jm(x/| k| ).

We then have

(3.11)

\left\{           
\nabla \times \widetilde E =

k

| k| 
\mu \widetilde H in R3

+,

\nabla \times \widetilde H =  - k

| k| 
\varepsilon \widetilde E + \widetilde Jm in R3

+,\widetilde E \times e3 = 0 on R3
0.

Applying (3.4) to ( \widetilde E, \widetilde H), we have

\| ( \widetilde E, \widetilde H)\| L2(R3
+) \leq C\| \widetilde Jm\| L2(R3

+) = C| k| 1/2\| Jm\| L2(R3
+) (by a change of variables).

This implies, by the trace theory,

(3.12) \| \widetilde H \times e3\| H - 1/2(R3
0)

\leq C\| \widetilde H\| H(curl,R3
+) \leq C\| \widetilde Jm\| L2(R3

+) = C| k| 1/2\| Jm\| L2(R3
+).
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Note that \widetilde H\scrF (\xi ) = | k| 2H\scrF (| k| \xi ) for \xi \in R2.

It follows that

\| \widetilde H \times e3\| 2H - 1/2(R3
0)

=

\int 
R2

| \widetilde H\scrF (\xi )\times e3| 2(1 + | \xi | 2) - 1/2 d\xi 

=

\int 
R2

| k| 4| H\scrF (| k| \xi )\times e3| 2(1 + | \xi | 2) - 1/2 d\xi .

This yields, by a change of variables,

(3.13) \| \widetilde H \times e3\| 2H - 1/2(R3
0)

=

\int 
R2

| k| 3| H\scrF (\xi )\times e3| 2(| k| 2 + | \xi | 2) - 1/2 d\xi .

From (3.12) and (3.13), we obtain

(3.14)

\int 
R2

| H\scrF (\xi )\times e3| 2(| k| 2 + | \xi | 2) - 1/2 d\xi \leq C| k|  - 2\| Jm\| 2L2(R3
+).

Assertion (3.5) follows.

To prove the existence of (E,H), we first apply the Lax--Milgram theory for
the variational formula given in (3.8), where the bilinear form is defined by the left
hand side (LHS) and the linear functional is defined by the RHS in the Hilbert space
H0(curl,R3

+). We then derive that there exists a solution E \in H0(curl,R3
+) of (3.7).

Set

H =
1

k\mu 
\nabla \times E in R3

+.

Then
\nabla \times E = k\mu H in R3

+

and

\nabla \times H =
1

k\mu 
\nabla \times 

\bigl( 
\nabla \times E

\bigr) 
=  - k\varepsilon E + Jm in R3

+.

In other words, (E,H) \in [L2(R3
+)]

6 is a solution of (3.3). The proof is complete.

We now state the main result of this section, which plays a key role in the proof
of Theorem 1.1.

Proposition 3.1. Let \gamma > 0, k \in C with | \Im (k2)| \geq \gamma | k| 2, and | k| \geq 1, and let
\Lambda \geq 1 and \varepsilon , \mu , \^\varepsilon , \^\mu be four positive constants such that

\Lambda  - 1 \leq \varepsilon , \mu , \^\varepsilon , \^\mu \leq \Lambda .

Assume that, for some \Lambda 1 > 0,

| \varepsilon  - \^\varepsilon | \geq \Lambda 1, | \mu  - \^\mu | \geq \Lambda 1, and | \varepsilon /\mu  - \^\varepsilon /\^\mu | \geq \Lambda 1.

Let Je, Jm, \^Je, \^Jm \in L2(R3
+) and let fe, fm \in H - 1/2(div,R3

0). There exists a unique

solution (E,H, \^E, \^H) \in [L2(R3
+)]

12 of the system

(3.15)

\Biggl\{ 
\nabla \times E = k\mu H + Je in R3

+,

\nabla \times H =  - k\varepsilon E + Jm in R3
+,

\Biggl\{ 
\nabla \times \^E = k\^\mu \^H + \^Je in R3

+,

\nabla \times \^H =  - k\^\varepsilon \^E + \^Jm in R3
+,
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(3.16) ( \^E  - E)\times e3 = fe on R3
0, and ( \^H  - H)\times e3 = fm on R3

0.

Moreover, we have

(3.17) C| k| \| (E,H, \^E, \^H)\| L2(R3
+) \leq \| (Je, Jm, \^Je, \^Jm)\| L2(R3

+)

+ | k| 
\biggl( \int 

R2

| 
\bigl( 
f\scrF 
e , f\scrF 

m

\bigr) 
| 2(| \xi | 2 + | k| 2) - 1/2 d\xi 

\biggr) 1/2

+ \| (div\Gamma fe, div\Gamma fm)\| H - 1/2(R3
0)
.

Assume in addition that Je, Jm, \^Je, \^Jm \in H(div,R3
+) with (Je,3  - \^Je,3, Jm,3  - \^Jm,3) \in 

[H1/2(R3
0)]

2, and fe, fm \in H1/2(div,R3
0). We have

C
\Bigl( 
\| (E,H, \^E, \^H)\| H1(R3

+) + | k| \| (E,H, \^E, \^H)\| L2(R3
+)

\Bigr) (3.18)

\leq \| (Je, Jm, \^Je, \^Jm)\| L2(R3
+) +

1

| k| 
\| (div Je, div Jm, div \^Je, div \^Jm)\| L2(R3

+)

+
1

| k| 
\| (Je,3  - \^Je,3, Jm,3  - \^Jm,3)\| H1/2(R3

0)
+ | k| 1/2\| (fe, fm)\| L2(R3

0)

+ \| (fe, fm)\| H1/2(R3
0)
+

1

| k| 
\| (div\Gamma fe, div\Gamma fm)\| H1/2(R3

0)
.

Here C denotes a positive constant depending only on \gamma , \Lambda , and \Lambda 1.

Recall that, by our convention, Je,3, Jm,3, \^Je,3, \^Jm,3 denote the third component

of Je, Jm, \^Je, \^Jm. It is worth noting that the constant C is independent of k.

Proof. Let (E1, H1), (E2, H2), ( \^E1, \^H1), ( \^E2, \^H2) \in [L2(R3
+)]

6 be, respectively,
the unique solutions of the following systems:\left\{       

\nabla \times E1 = k\mu H1 in R3
+,

\nabla \times H1 =  - k\varepsilon E1 + Jm in R3
+,

E1 \times e3 = 0 on R3
0,

\left\{       
\nabla \times \^E1 = k\^\mu \^H1 in R3

+,

\nabla \times \^H1 =  - k\^\varepsilon \^E1 + \^Jm in R3
+,

\^E1 \times e3 = 0 on R3
0,\left\{       

\nabla \times E2 = k\mu H2 + Je in R3
+,

\nabla \times H2 =  - k\varepsilon E1 in R3
+,

H2 \times e3 = 0 on R3
0,

\left\{       
\nabla \times \^E2 = k\^\mu \^H2 + \^Je in R3

+,

\nabla \times \^H2 =  - k\^\varepsilon \^E2 in R3
+,

\^H2 \times e3 = 0 on R3
0.

We first establish (3.18). Applying Lemma 3.1, we obtain

(3.19) \| (E1, H1, E2, H2, \^E1, \^H1, \^E2, \^H2)\| H1(R3
+)

+ | k| \| (E1, H1, E2, H2, \^E1, \^H1, \^E2, \^H2)\| L2(R3
+)

\leq C
\Bigl( 
\| (Je, Jm, \^Je, \^Jm)\| L2(R3

+) +
1

| k| 
\| (div Je, div Jm, div \^Je, div \^Jm)\| L2(R3

+)

\Bigr) 
.
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Using the trace theory, we derive from (3.19) that

(3.20) \| (E1, H1, E2, H2, \^E1, \^H1, \^E2, \^H2)\| H1/2(R3
0)

\leq C\| (E1, H1, E2, H2, \^E1, \^H1, \^E2, \^H2)\| H1(R3
+)

\leq C
\Bigl( 
\| (Je, Jm, \^Je, \^Jm)\| L2(R3

+) +
1

| k| 
\| (div Je, div Jm, div \^Je, div \^Jm)\| L2(R3

+)

\Bigr) 
.

We have

\| div\Gamma (H1 \times e3) - div\Gamma ( \^H
1 \times e3)\| H1/2(R3

0)

= \| (\nabla \times H1) \cdot e3  - (\nabla \times \^H1) \cdot e3\| H1/2(R3
0)

= \| ( - k\varepsilon E1 + Jm) \cdot e3  - ( - k\^\varepsilon \^E1 + \^Jm) \cdot e3\| H1/2(R3
0)

\leq C| k| \| (E1, \^E1)\| H1/2(R3
0)
+ C\| Jm,3  - \^Jm,3\| H1/2(R3

0)
.

It follows from (3.20) that

(3.21) \| div\Gamma (H1 \times e3) - div\Gamma ( \^H
1 \times e3)\| H1/2(R3

0)
\leq C| k| 

\Bigl( 
\| (Je, Jm, \^Je, \^Jm)\| L2(R3

+)

+
1

| k| 
\| (div Je, div Jm, div \^Je, div \^Jm)\| L2(R3

+) +
1

| k| 
\| Jm,3  - \^Jm,3\| H1/2(R3

0)

\Bigr) 
.

Similarly, we obtain

(3.22) \| div\Gamma (E1 \times e3) - div\Gamma ( \^E
1 \times e3)\| H1/2(R3

0)
\leq C| k| 

\Bigl( 
\| (Je, Jm, \^Je, \^Jm)\| L2(R3

+)

+
1

| k| 
\| (div Je, div Jm, div \^Je, div \^Jm)\| L2(R3

+) +
1

| k| 
\| Je,3  - \^Je,3\| H1/2(R3

0)

\Bigr) 
.

Using the fact, for u \in H1(R3
+),

(3.23)

\int 
R3

0

| u| 2 \leq 2

\int 
R3

+

| u| | \partial x3
u| \leq 2\| u\| L2(R3

+)\| \nabla u\| L2(R3
+),

we have

\| (E1, H1, E2, H2, \^E1, \^H1, \^E2, \^H2)\| L2(R3
0)

\leq C\| (E1, H1, E2, H2, \^E1, \^H1, \^E2, \^H2)\| 1/2
L2(R3

+)

\times \| (E1, H1, E2, H2, \^E1, \^H1, \^E2, \^H2)\| 1/2
H1(R3

+)
.

This yields

(3.24) k1/2\| (E1, H1, E2, H2, \^E1, \^H1, \^E2, \^H2)\| L2(R3
0)

\leq C| k| \| (E1, H1, \^E1, \^H1)\| L2(R3
+) + C\| (E1, H1, \^E1, \^H1)\| H1(R3

+).
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By considering (E  - E1  - E2, H  - H1  - H2, \^E  - \^E1  - \^E2, \^H  - \^H1  - \^H2), from
(3.19), (3.20), (3.21), (3.22), and (3.24), without loss of generality, one might assume
that

Je = Jm = \^Je = \^Jm = 0 in R3
+.

This will be assumed later on. Thus

(3.25)

\Biggl\{ 
\nabla \times E = k\mu H in R3

+,

\nabla \times H =  - k\varepsilon E in R3
+,

\Biggl\{ 
\nabla \times \^E = k\^\mu \^H in R3

+,

\nabla \times \^H =  - k\^\varepsilon \^E in R3
+,

(3.26) ( \^E  - E)\times e3 = fe on R3
0, and ( \^H  - H)\times e3 = fm on R3

0.

Using the identity for a vector field A

\nabla \times (\nabla \times A) = \nabla (\nabla \cdot A) - \Delta A,

we obtain the following equations for E and \^E:

(3.27)

\Biggl\{ 
\Delta E  - k2\varepsilon \mu E = 0 in R3

+,

\Delta \^E  - k2\^\varepsilon \^\mu \^E = 0 in R3
+

(recall that here the coefficients are all constants).
Consider the first two equations of the system for E and the first two equations

of the system for \^E in (3.27). Solving these equations using the Fourier transform
with respect to (x1, x2) yields

(3.28) E\scrF 
j (\xi , x3) = aj(\xi )e

 - x3

\surd 
| \xi | 2+k2\varepsilon \mu in R3

+,

(3.29) \^E\scrF 
j (\xi , x3) = \^aj(\xi )e

 - x3

\surd 
| \xi | 2+k2\^\varepsilon \^\mu in R3

+

for j = 1, 2, where

aj(\xi ) = E\scrF 
j (\xi , 0) and \^aj(\xi ) = \^E\scrF 

j (\xi , 0) for \xi \in R2.

We then have, with a = (a1, a2) and \^a = (\^a1, \^a2),

(3.30) \^a(\xi ) - a(\xi ) = h(\xi ), where h(\xi ) =  - f\scrF 
e (\xi , 0)\times e3.

Recall that we identify a vector (y1, y2, 0) \in R3
0 with (y1, y2) \in R2.

Since divE = 0 in R3
+, it follows that

\partial x3
E3 =  - (\partial x1

E1 + \partial x2
E2) in R3

+.

This implies

\partial x3
E\scrF 

3 (\xi , x3) =  - i\xi 1E
\scrF 
1 (\xi , x3) - i\xi 2E

\scrF 
2 (\xi , x3) in R3

+.

Using (3.28), we obtain

\partial x3
E\scrF 

3 (\xi , x3) =  - i\xi \cdot a(\xi )e - x3

\surd 
| \xi | 2+k2\varepsilon \mu in R3

+.
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We thus get
(3.31)

E\scrF 
3 (\xi , x3) =  - 

\int \infty 

x3

i\xi \cdot a(\xi )e - s
\surd 

| \xi | 2+k2\varepsilon \mu ds =
i\xi \cdot a(\xi )e - x3

\surd 
| \xi | 2+k2\varepsilon \mu \sqrt{} 

| \xi | 2 + k2\varepsilon \mu 
in R3

+.

Similarly, we have

(3.32) \^E\scrF 
3 (\xi , x3) =

i\xi \cdot \^a(\xi )e - x3

\surd 
| \xi | 2+k2\^\varepsilon \^\mu \sqrt{} 

| \xi | 2 + k2\^\varepsilon \^\mu 
in R3

+.

Since \^H \times e3  - H \times e3 = fm on R3
0, and \nabla \times H =  - k\varepsilon E and \nabla \times \^H =  - k\^\varepsilon \^E in

R3
+, it follows that

\^\varepsilon \^E3  - \varepsilon E3 =  - 1

k
divR3

0
fm on R3

0.

Using (3.31) and (3.32), we derive that

(3.33)
\^\varepsilon \xi \cdot \^a(\xi )\sqrt{} 
| \xi | 2 + k2\^\varepsilon \^\mu 

 - \varepsilon \xi \cdot a(\xi )\sqrt{} 
| \xi | 2 + k2\varepsilon \mu 

= g :=
\bigl( i
k
divR3

0
fm
\bigr) \scrF 

on R2.

Combining (3.30) and (3.33), and noting a = \^a - h, yields, on R2,

\xi \cdot \^a

\Biggl( 
\^\varepsilon \sqrt{} 

| \xi | 2 + k2\^\varepsilon \^\mu 
 - \varepsilon \sqrt{} 

| \xi | 2 + k2\varepsilon \mu 

\Biggr) 
=  - \varepsilon \sqrt{} 

| \xi | 2 + k2\varepsilon \mu 
\xi \cdot h+ g,

which implies

\xi \cdot \^a =

\sqrt{} 
| \xi | 2 + k2\varepsilon \mu 

\sqrt{} 
| \xi | 2 + k2\^\varepsilon \^\mu 

\Bigl( 
\varepsilon 
\sqrt{} 
| \xi | 2 + k2\^\varepsilon \^\mu + \^\varepsilon 

\sqrt{} 
| \xi | 2 + k2\varepsilon \mu 

\Bigr) 
(\^\varepsilon 2  - \varepsilon 2)| \xi | 2 + k2\varepsilon \^\varepsilon \mu \^\mu (\^\varepsilon /\^\mu  - \varepsilon /\mu )

\times 

\Biggl( 
 - \varepsilon \sqrt{} 

| \xi | 2 + k2\varepsilon \mu 
\xi \cdot h+ g

\Biggr) 
.

Since \varepsilon \not = \^\varepsilon , \varepsilon /\mu \not = \^\varepsilon /\^\mu , and | \Im (k2)| \geq \gamma | k| 2, | k| \geq 1, we get

(3.34) | (\^\varepsilon 2  - \varepsilon 2)| \xi | 2 + k2\varepsilon \^\varepsilon \mu \^\mu (\^\varepsilon /\^\mu  - \varepsilon /\mu )| \geq C(| \xi | 2 + | k| 2).

We deduce that

| \xi \cdot \^a(\xi )| \leq C
\Bigl( 
| \xi \cdot h(\xi )| +

\sqrt{} 
| \xi | 2 + | k| 2| g(\xi )| 

\Bigr) 
,

which yields, since a = \^a - h,

(3.35) | \xi \cdot a(\xi )| + | \xi \cdot \^a(\xi )| \leq C
\Bigl( 
| \xi \cdot h(\xi )| +

\sqrt{} 
| \xi | 2 + | k| 2| g(\xi )| 

\Bigr) 
.

We have, in R3
+,

k\mu H1 = \partial x2
E3  - \partial x3

E2, k\^\mu \^H1 = \partial x2
\^E3  - \partial x3

\^E2.

D
ow

nl
oa

de
d 

06
/2

9/
21

 to
 1

28
.6

.3
7.

32
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

900 FIORALBA CAKONI AND HOAI-MINH NGUYEN

Since \^H1  - H1 = fm,2 := fm \cdot e2 with e2 = (0, 1, 0) on R3
0, it follows from (3.28),

(3.29), (3.31), (3.32) that

1

\^\mu 

\Biggl( 
 - \xi 2\xi \cdot \^a(\xi )\sqrt{} 

| \xi | 2 + k2\^\varepsilon \^\mu 
+
\sqrt{} 
| \xi | 2 + k2\^\varepsilon \^\mu \^a2(\xi )

\Biggr) 

=
1

\mu 

\Biggl( 
 - \xi 2\xi \cdot a(\xi )\sqrt{} 

| \xi | 2 + k2\varepsilon \mu 
+
\sqrt{} 
| \xi | 2 + k2\varepsilon \mu a2(\xi )

\Biggr) 
+ kf\scrF 

m,2(\xi ).

We derive from (3.30) that

(3.36)
1

\^\mu 

\sqrt{} 
| \xi | 2 + k2\^\varepsilon \^\mu \^a2(\xi ) - 

1

\mu 

\sqrt{} 
| \xi | 2 + k2\varepsilon \mu \^a2(\xi )

=

\Biggl( 
\xi \cdot \^a(\xi )

\^\mu 
\sqrt{} 
| \xi | 2 + k2\^\varepsilon \^\mu 

 - \xi \cdot a(\xi )
\mu 
\sqrt{} 
| \xi | 2 + k2\varepsilon \mu 

\Biggr) 
\xi 2  - 

1

\mu 

\sqrt{} 
| \xi | 2 + k2\varepsilon \mu h2(\xi ) + kf\scrF 

m,2(\xi ).

We thus obtain

(3.37) \^a2(\xi ) =
\mu 
\sqrt{} 
| \xi | 2 + k2\^\varepsilon \^\mu + \^\mu 

\sqrt{} 
| \xi | 2 + k2\varepsilon \mu 

(\mu 2  - \^\mu 2)| \xi | 2 + k2\varepsilon \^\varepsilon \mu \^\mu (\mu /\varepsilon  - \^\mu /\^\varepsilon )

\times 

\Biggl\{ \Biggl( 
\mu \xi \cdot \^a(\xi )\sqrt{} 
| \xi | 2 + k2\^\varepsilon \^\mu 

 - \^\mu \xi \cdot a(\xi )\sqrt{} 
| \xi | 2 + k2\varepsilon \mu 

\Biggr) 
\xi 2  - \^\mu 

\sqrt{} 
| \xi | 2 + k2\varepsilon \mu h2(\xi ) + k\mu \^\mu f\scrF 

m,2(\xi )

\Biggr\} 
.

Since \mu \not = \^\mu , \varepsilon /\mu \not = \^\varepsilon /\^\mu , and | \Im (k2)| \geq \gamma | k| 2, | k| \geq 1, we get

(3.38) | (\mu 2  - \^\mu 2)| \xi | 2 + k2\varepsilon \^\varepsilon \mu \^\mu (\mu /\varepsilon  - \^\mu /\^\varepsilon )| \geq C(| \xi | 2 + | k| 2).

Using (3.38), we derive from (3.37) that

| \^a2(\xi )| \leq 
C| \xi | 

| \xi | 2 + | k| 2
\Bigl( 
| \xi \cdot a(\xi )| + | \xi \cdot \^a(\xi )| 

\Bigr) 
+ C

\Bigl( 
| h2(\xi )| + | f\scrF 

m,2(\xi )| 
\Bigr) 
,

which yields, since \^a - a = h,

(3.39) | a2(\xi )| + | \^a2(\xi )| \leq 
C| \xi | 

| \xi | 2 + | k| 2
\Bigl( 
| \xi \cdot a(\xi )| + | \xi \cdot \^a(\xi )| 

\Bigr) 
+ C

\Bigl( 
| h(\xi )| + | f\scrF 

m(\xi )| 
\Bigr) 
.

Combining (3.35) and (3.39) yields

(| a2(\xi )| 2 + | \^a2(\xi )| 2)
\sqrt{} 
| \xi | 2 + | k| 2 \leq C(| h| 2 + | f\scrF 

m | 2
\bigr) \sqrt{} 

| \xi | 2 + | k| 2 + C| g(\xi )| 2| \xi | .

From the definition of g and h, we obtain

(3.40)

\int 
R2

(| a2(\xi )| 2 + | \^a2(\xi )| 2)
\sqrt{} 
| \xi | 2 + | k| 2 d\xi \leq C

\Bigl( 
\| (fe, fm)\| 2H1/2(R3

0)

+ | k| \| (fe, fm)\| 2L2(R3
0)
+

1

| k| 2
\| (div\Gamma fe, div\Gamma fm)\| 2H1/2(R3

0)

\biggr) 
.
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Similarly, we reach

(3.41)

\int 
R2

(| a1(\xi )| 2 + | \^a1(\xi )| 2)
\sqrt{} 
| \xi | 2 + | k| 2 d\xi \leq C

\Bigl( 
\| (fe, fm)\| 2H1/2(R3

0)

+ | k| \| (fe, fm)\| 2L2(R3
0)
+

1

| k| 2
\| (div\Gamma fe, div\Gamma fm)\| 2H1/2(R3

0)

\biggr) 
.

On the other hand, from (3.28), (3.29), (3.31), and (3.32), we have

(3.42)

\int 
R3

+

| (\nabla E,\nabla \^E)| 2 + | k| 2| (E, \^E)| 2 dx \leq C

\int 
R2

| 
\bigl( 
a(\xi ), \^a(\xi )

\bigr) 
| 2
\sqrt{} 
| \xi | 2 + | k| 2 d\xi .

Combining (3.40), (3.41), and (3.42) yields

(3.43)

\int 
R3

+

| (\nabla E,\nabla \^E)| 2 + | k| 2| (E, \^E)| 2 dx \leq C
\Bigl( 
\| (fe, fm)\| 2H1/2(R3

0)

+ | k| \| (fe, fm)\| 2L2(R3
0)
+

1

| k| 2
\| (div\Gamma fe, div\Gamma fm)\| 2H1/2(R3

0)

\biggr) 
.

Similarly, we obtain

(3.44)

\int 
R3

+

| (\nabla H,\nabla \^H)| 2 + | k| 2| (H, \^H)| 2 dx \leq C
\Bigl( 
\| (fe, fm)\| 2H1/2(R3

0)

+ | k| \| (fe, fm)\| 2L2(R3
0)
+

1

| k| 2
\| (div\Gamma fe, div\Gamma fm)\| 2H1/2(R3

0)

\biggr) 
.

Assertion (3.18) now follows from (3.43) and (3.44).

We next deal with (3.17), whose proof is in the same spirit. Applying Lemma 3.1,
we obtain

(3.45) | k| \| (E1, H1, E2, H2, \^E1, \^H1, \^E2, \^H2)\| L2(R3
+) \leq C\| (Je, Jm, \^Je, \^Jm)\| L2(R3

+),

and, with u = E1, H1, E2, H2, \^E1, \^H1, \^E2, or \^H2,

(3.46) | k| 
\biggl( \int 

R2

| u\scrF (\xi )\times e3| 2(| \xi | 2 + | k| 2) - 1/2 d\xi 

\biggr) 1/2

\leq C\| (Je, Jm, \^Je, \^Jm)\| L2(R3
+).

As in the proof of (3.21) we obtain

\| div\Gamma (H1 \times e3) - div\Gamma ( \^H
1 \times e3)\| H - 1/2(R3

0)

= \| (\nabla \times H1) \cdot e3  - (\nabla \times \^H1) \cdot e3\| H - 1/2(R3
0)

= \| ( - k\varepsilon E1 + Jm) \cdot e3  - ( - k\^\varepsilon \^E1 + \^Jm) \cdot e3\| H - 1/2(R3
0)

\leq C\| ( - k\varepsilon E1 + Jm) - ( - k\^\varepsilon \^E1 + \^Jm)\| L2(R3
+) (by the trace theory),

D
ow

nl
oa

de
d 

06
/2

9/
21

 to
 1

28
.6

.3
7.

32
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

902 FIORALBA CAKONI AND HOAI-MINH NGUYEN

which yields, by (3.45),

(3.47) \| div\Gamma (H1 \times e3) - div\Gamma ( \^H
1 \times e3)\| H - 1/2(R3

0)
\leq C\| (Je, Jm, \^Je, \^Jm)\| L2(R3

+).

Similarly, we obtain

(3.48) \| div\Gamma (E1 \times e3) - div\Gamma ( \^E
1 \times e3)\| H - 1/2(R3

0)
\leq C\| (Je, Jm, \^Je, \^Jm)\| L2(R3

+).

Using (3.45)--(3.48), without loss of generality, one might assume that Je = Jm =
\^Je = \^Jm = 0 in R3

+.
Combining (3.35) and (3.39) yields

(| a2(\xi )| 2 + | \^a2(\xi )| 2)(| \xi | 2 + | k| 2) - 1/2 \leq C(| h| 2 + | f\scrF 
m | 2 + | g(\xi )| 2

\bigr) 
(| \xi | 2 + | k| 2) - 1/2.

From the definition of g and h, we obtain

(3.49)

\int 
R2

(| a2(\xi )| 2 + | \^a2(\xi )| 2)(| \xi | 2 + | k| 2) - 1/2 d\xi 

\leq C

\biggl( \int 
R2

| (f\scrF 
e , f\scrF 

m)(\xi )| 2(| \xi | 2 + | k| 2) - 1/2 d\xi +
1

| k| 2
\| (div\Gamma fe, div\Gamma fm)\| 2H - 1/2(R3

0)

\biggr) 
.

Similarly, we reach

(3.50)

\int 
R2

(| a1(\xi )| 2 + | \^a1(\xi )| 2)(| \xi | 2 + | k| 2) - 1/2 d\xi 

\leq C

\biggl( \int 
R2

| (f\scrF 
e , f\scrF 

m)(\xi )| 2(| \xi | 2 + | k| 2) - 1/2 d\xi +
1

| k| 2
\| (div\Gamma fe, div\Gamma fm)\| 2H - 1/2(R3

0)

\biggr) 
.

On the other hand, from (3.28), (3.29), (3.31), and (3.32), we have

(3.51)

\int 
R3

+

| k| 2| (E, \^E)| 2 dx \leq C

\int 
R2

| k| 2 | 
\bigl( 
a(\xi ), \^a(\xi )

\bigr) 
| 2(| \xi | 2 + | k| 2) - 1/2 d\xi .

Combining (3.49), (3.50), and (3.51) yields

(3.52)

\int 
R3

+

| k| 2| (E, \^E)| 2 dx

\leq C

\biggl( 
| k| 2

\int 
R2

| (f\scrF 
e , f\scrF 

m)(\xi )| 2(| \xi | 2 + | k| 2) - 1/2 d\xi + \| (div\Gamma fe, div\Gamma fm)\| 2H - 1/2(R3
0)

\biggr) 
.

Similarly, we obtain

(3.53)

\int 
R3

+

| k| 2| (H, \^H)| 2 dx

\leq C

\biggl( 
| k| 2

\int 
R2

| (f\scrF 
e , f\scrF 

m)(\xi )| 2(| \xi | 2 + | k| 2) - 1/2 d\xi + \| (div\Gamma fe, div\Gamma fm)\| 2H - 1/2(R3
0)

\biggr) 
.

Assertion (3.17) now follows from (3.52) and (3.53).

The existence and uniqueness of (E,H, \^E, \^H) follow from the computations given
above. The proof is complete.
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As a consequence of Proposition 3.1, we obtain the following.

Corollary 3.1. Let \gamma > 0, k \in C with | \Im (k2)| \geq \gamma | k| 2, and | k| \geq 1, and
let \varepsilon , \mu , \^\varepsilon , \^\mu \in [L\infty (R3

+)]
3\times 3 be symmetric, uniformly elliptic, and of class C1. Let

\Lambda \geq 1 be such that

\Lambda  - 1 \leq \varepsilon , \mu , \^\varepsilon , \^\mu \leq \Lambda in B1 \cap R3
+ and \| (\varepsilon , \mu , \^\varepsilon , \^\mu )\| C1(R3

+\cap B1) \leq \Lambda .

Assume that \varepsilon (0), \^\varepsilon (0), \mu (0), \^\mu (0) are isotropic, and for some \Lambda 1 \geq 0

| \varepsilon (0) - \^\varepsilon (0)| \geq \Lambda 1, | \mu (0) - \^\mu (0)| \geq \Lambda 1, and | \varepsilon (0)/\mu (0) - \^\varepsilon (0)/\^\mu (0)| \geq \Lambda 1.

Let Je, Jm, \^Je, \^Jm \in L2(R3
+) and assume that (E,H, \^E, \^H) \in [L2(R3)]12 is a solution

of (3.15) and (3.16) with fe = fm = 0. There exist 0 < r0 < 1 and k0 > 1 depending

only on \gamma , \Lambda , and \Lambda 1 such that if the supports of E, H, \^E, \^H are in Br0 \cap R3
+ and

| k| \geq k0, then

(3.54) | k| \| (E,H, \^E, \^H)\| L2(R3
+) \leq C\| (Je, Jm, \^Je, \^Jm)\| L2(R3

+).

We also have, if Je, Jm, \^Je, \^Jm \in H(div,R3
+) and Je,3 - \^Je,3, Jm,3 - \^Jm,3 \in H1/2(R3

0),

(3.55) \| (E,H, \^E, \^H)\| H1(R3
+) + | k| \| (E,H, \^E, \^H)\| L2(R3

+)

\leq C
\Bigl( 
\| (Je, Jm, \^Je, \^Jm)\| L2(R3

+) +
1

| k| 
\| (div Je, div Jm, div \^Je, div \^Jm)\| L2(R3

+)

+
1

| k| 
\| (Je,3  - \^Je,3, Jm,3  - \^Jm,3)\| H1/2(R3

0)

\Bigr) 
.

Here C denotes a positive constant depending only on \gamma , \Lambda , and \Lambda 1.

Remark 3.2. The constant C in (3.55) is independent of k. Concerning the iso-
tropic properties of \varepsilon , \mu , \^\varepsilon , \^\mu , we emphasize here that \varepsilon , \mu , \^\varepsilon , \^\mu are not required to
be isotropic in B1 \cap R3

+; we only assume that \varepsilon (0), \mu (0), \^\varepsilon (0), \^\mu (0) are.

Here and in what follows Br for r > 0 denotes the ball of radius r centered at the
origin.

Proof. We only prove (3.55). The proof of (3.54) is in the same spirit and even
easier, and omitted. We rewrite (3.15) under the form\Biggl\{ 

\nabla \times E = k\mu (0)H + J1
e in R3

+,

\nabla \times H =  - k\varepsilon (0)E + J1
m in R3

+,

\Biggl\{ 
\nabla \times \^E = k\^\mu (0) \^H + \^J1

e in R3
+,

\nabla \times \^H =  - k\^\varepsilon (0) \^E + \^J1
m in R3

+,

where, in R3
+,

J1
e (x) = Je(x) + k(\mu (x) - \mu (0))H(x), J1

m(x) = Jm(x) - k(\varepsilon (x) - \varepsilon (0))E(x),

\^J1
e (x) = \^Je(x) + k(\^\mu (x) - \^\mu (0)) \^H(x), \^J1

m(x) = \^Jm(x) - k(\^\varepsilon (x) - \^\varepsilon (0)) \^E(x).

From Proposition 3.1, we obtain

(3.56) C
\Bigl( 
\| (E,H, \^E, \^H)\| H1(R3

+) + | k| \| (E,H, \^E, \^H)\| L2(R3
+)

\Bigr) 
\leq \| (J1

e , J
1
m, \^J1

e , \^J
1
m)\| L2(R3

+) +
1

| k| 
\| (div J1

e , div J
1
m, div \^J1

e , div \^J1
m)\| L2(R3

+)

+
1

| k| 
\| (J1

e,3  - \^J1
e,3, J

1
m,3  - \^J1

m,3)\| H1/2(R3
0)
.
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On the other hand, from the definition of (J1
e , J

1
m, \^J1

e , \^J
1
m), one has

(3.57)
\| (J1

e , J
1
m, \^J1

e , \^J
1
m)\| L2(R3

+) \leq C\| (Je, Jm, \^Je, \^Jm)\| L2(R3
+) + Cr0| k| \| (E,H, \^E, \^H)\| L2(R3

+),

(3.58)
1

| k| 
\| (div J1

e , div J
1
m, div \^J1

e , div \^J1
m)\| L2(R3

+)

\leq C

| k| 
\| 
\bigl( 
div Je, div Jm, div \^Je, div \^Jm

\bigr) 
\| L2(R3

+)

+ C\| (E,H, \^E, \^H)\| L2(R3
+) + Cr0

\bigm\| \bigm\| \bigm\| \Bigl( \nabla E,\nabla H,\nabla \^E,\nabla \^H
\Bigr) \bigm\| \bigm\| \bigm\| 

L2(R3
+)

,

and

(3.59)
1

| k| 
\| (J1

e,3  - \^J1
e,3, J

1
m,3  - \^J1

m,3)\| H1/2(R3
0)

\leq C

| k| 
\| (Je,3  - \^Je,3, Jm,3  - \^Jm,3)\| H1/2(R3

0)

+ Cr0\| (E,H, \^E, \^H)\| H1(R3
+) + C\| (E,H, \^E, \^H)\| L2(R3

+).

Here in the last inequality, we involved the trace theory and used\bigm\| \bigm\| \bigm\| \Bigl( (\mu (x) - \mu (0))H, (\varepsilon (x) - \varepsilon (0))E, (\^\mu (x) - \^\mu (0)) \^H, (\^\varepsilon (x) - \^\varepsilon (0)) \^E
\Bigr) \bigm\| \bigm\| \bigm\| 

H1(R3
+)

\leq Cr0\| (E,H, \^E, \^H)\| H1(R3
+) + C\| (E,H, \^E, \^H)\| L2(R3

+).

Combining (3.56)--(3.59) yields

(3.60) C
\Bigl( 
\| (E,H, \^E, \^H)\| H1(R3

+) + | k| \| (E,H, \^E, \^H)\| L2(R3
+)

\Bigr) 
\leq \| (Je, Jm, \^Je, \^Jm)\| L2(R3

+) +
1

| k| 
\| (div Je, div Jm, div \^Je, div \^Jm)\| L2(R3

+)

+
1

| k| 
\| (Je,3  - \^Je,3, Jm,3  - \^Jm,3)\| H1/2(R3

0)

+ (| k| r0 + 1)\| (E,H, \^E, \^H)\| L2(R3
+) + r0\| (E,H, \^E, \^H)\| H1(R3

+).

Fix r0 = min\{ C/4, 1/4\} , where C is the constant in (3.60). Take k0 such that k0r0 \geq 1.
One then can absorb the last two terms of the RHS of (3.60) by the LHS. The
conclusion then follows.

4. Proof of Theorem 1.1. In this section, we give the proof of Theorem 1.1.
We begin with a result which yields the uniqueness and the stability of (1.7) and
(1.8).

Proposition 4.1. Let \gamma > 0, and let \varepsilon , \mu , \^\varepsilon , \^\mu \in [L\infty (\Omega )]3\times 3 be symmetric.
Assume that there exist \Lambda \geq 1, \Lambda 1 > 0, and s0 > 0 such that

\Lambda  - 1 \leq \varepsilon , \mu , \^\varepsilon , \^\mu \leq \Lambda a.e. in \Omega , \| (\varepsilon , \mu , \^\varepsilon , \^\mu )\| C1(\=\Omega s0
) \leq \Lambda ,

\varepsilon , \mu , \^\varepsilon , \^\mu are isotropic on \partial \Omega ,
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and, for x \in \partial \Omega ,

| \varepsilon (x) - \^\varepsilon (x)| \geq \Lambda 1, | \mu (x) - \^\mu (x)| \geq \Lambda 1, and | \varepsilon (x)/\mu (x) - \^\varepsilon (x)/\^\mu (x)| \geq \Lambda 1.

There exist two positive constants k0 \geq 1 and C > 0 depending only on \Lambda , \Lambda 1,
s0, \gamma , and \Omega such that for k \in C with | \Im (k2)| \geq \gamma | k| 2 and | k| \geq k0, for every
(Je, Jm, \^Je, \^Jm) \in [L2(\Omega )]12 and for every solution (E,H, \^E, \^H) \in [L2(\Omega )]12 of

(4.1)

\Biggl\{ 
\nabla \times E = k\mu H + Je in \Omega ,

\nabla \times H =  - k\varepsilon E + Jm in \Omega ,

\Biggl\{ 
\nabla \times \^E = k\^\mu \^H + \^Je in \Omega ,

\nabla \times \^H =  - k\^\varepsilon \^E + \^Jm in \Omega ,

(4.2) ( \^E  - E)\times \nu = 0 on \partial \Omega , and ( \^H  - H)\times \nu = 0 on \partial \Omega ,

we have

(4.3) | k| \| (E,H, \^E, \^H)\| L2(\Omega ) \leq C\| (Je, Jm, \^Je, \^Jm)\| L2(\Omega ).

Moreover, if (Je, Jm, \^Je, \^Jm) \in [H(div,\Omega )]4 with (Je \cdot \nu  - \^Je \cdot \nu , Jm \cdot \nu  - \^Jm \cdot \nu ) \in 
[H1/2(\partial \Omega )]2, then

(4.4) | k| \| (E,H, \^E, \^H)\| L2(\Omega ) + \| (E,H, \^E, \^H)\| H1(\Omega s0/2) \leq C\| (Je, Jm, \^Je, \^Jm)\| L2(\Omega )

+
C

| k| 
\| (div Je, div Jm, div \^Je, div \^Jm)\| L2(\Omega )+

C

| k| 
\| (Je \cdot \nu  - \^Je \cdot \nu , Jm \cdot \nu  - \^Jm \cdot \nu )\| H1/2(\Omega ).

Recall that \Omega s is given in (2.1).

Proof. We only prove (4.4). The proof of (4.3) is similar to the one of (4.4) and
even easier, and omitted. We use local charts for \Gamma = \partial \Omega . In what follows, we denote
Q = ( - 1, 1)3, Q+ = Q \cap R3

+, and Q0 = Q \cap R3
0.

Let m \geq 1 and let \varphi \ell \in C2
c (R3), U\ell \subset R3 open ball, and \scrT \ell : U\ell \rightarrow Q with

1 \leq \ell \leq m be such that \scrT \ell (U\ell \cap \Omega ) = Q+, and \scrT \ell (U\ell \cap \Gamma ) = Q0, supp\varphi \ell \Subset U\ell , and
\Phi = 1 in a neighborhood of \Gamma , where

\Phi :=

m\sum 
\ell =1

\varphi \ell in R3.

In what follows, we also assume that the diameter of the support of \varphi \ell is sufficiently
small and \nabla \scrT \ell (\varphi  - 1

\ell (0)) is a rotation, i.e.,
\bigl( 
\nabla \scrT \ell \nabla \scrT T

\ell 

\bigr) 
(\varphi  - 1

\ell (0)) = I. Set, in \Omega \cap U\ell ,

(E\ell , H\ell , \^E\ell , \^H\ell ) = (\varphi \ell E,\varphi \ell H,\varphi \ell 
\^E,\varphi \ell 

\^H),

and

(J\ell 
e , J

\ell 
m, \^J\ell 

e , \^J
\ell 
m) = (\varphi \ell Je+\nabla \varphi \ell \times E,\varphi \ell Jm+\nabla \varphi \ell \times H,\varphi \ell 

\^Je+\nabla \varphi \ell \times \^E,\varphi \ell 
\^Jm+\nabla \varphi \ell \times \^H).

We have
(4.5)\Biggl\{ 

\nabla \times E\ell = k\mu H\ell + J\ell 
e in \Omega \cap U\ell ,

\nabla \times H\ell =  - k\varepsilon E\ell + J\ell 
m in \Omega \cap U\ell ,

\Biggl\{ 
\nabla \times \^E\ell = k\^\mu \^H\ell + \^J\ell 

e in \Omega \cap U\ell ,

\nabla \times \^H\ell =  - k\^\varepsilon \^E\ell + \^J\ell 
m in \Omega \cap U\ell ,
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(4.6) ( \^E\ell  - E\ell )\times \nu = 0 on \partial \Omega \cap U\ell , and ( \^H\ell  - H\ell )\times \nu = 0 on \partial \Omega \cap U\ell .

Given a diffeomorphism \scrT from an open D onto an open D\prime , the following stan-
dard notation is used:

\scrT \ast u(x\prime ) = \nabla \scrT (x)u(x),

\scrT \ast a(x\prime ) =
\nabla \scrT (x)a(x)\nabla \scrT T (x)

det\nabla \scrT (x)
, and \scrT \ast j(x\prime ) =

\nabla \scrT (x)j(x)

det\nabla \scrT (x)

with x\prime = \scrT (x), for a matrix-valued function a, and for vector fields u and j defined
in D. Set, in Q+,

(E\ell ,H\ell , \^E\ell , \^H\ell ) =
\bigl( 
\scrT \ell \ast E\ell , \scrT \ell \ast H\ell , \scrT \ell \ast \^E\ell , \scrT \ell \ast \^H\ell 

\bigr) 
,

(\varepsilon \ell , \mu \ell , \^\varepsilon \ell , \^\mu \ell ) = (\scrT \ell \ast \varepsilon , \scrT \ell \ast \mu , \scrT \ell \ast \^\varepsilon , \scrT \ell \ast \^\mu ),
(J\ell e, J

\ell 
m, \^J\ell e, \^J

\ell 
m) = (\scrT \ell \ast J\ell 

e , \scrT \ell \ast J\ell 
m, \scrT \ell \ast \^J\ell 

e , \scrT \ell \ast \^J\ell 
m).

By a change of variables (see, e.g., [23, Lemma 7]),

(4.7)

\Biggl\{ 
\nabla \times E\ell = k\mu \ell H\ell + J\ell e in Q+,

\nabla \times H\ell =  - k\varepsilon \ell E\ell + J\ell m in Q+,

\Biggl\{ 
\nabla \times \^E\ell = k\^\mu \^H\ell + \^J\ell e in Q+,

\nabla \times \^H\ell =  - k\^\varepsilon \^E\ell + \^J\ell m in Q+,

(4.8) (\^E\ell  - E\ell )\times \nu = 0 on Q0, and (\^H\ell  - H\ell )\times \nu = 0 on Q0.

Since \nabla \scrT \ell (\varphi  - 1
\ell (0)) is a rotation, and \varepsilon , \mu , \^\varepsilon , \^\mu are isotropic on \partial \Omega , one has

\varepsilon \ell (0), \mu \ell (0), \^\varepsilon \ell (0), \^\mu \ell (0) are isotropic.

By considering the diameter of supp\varphi \ell sufficiently small, one can then apply Corol-
lary 3.1 to (E\ell ,H\ell , \^E\ell , \^H\ell ). We then obtain

(4.9) C
\Bigl( 
\| (E\ell ,H\ell , \^E\ell , \^H\ell )\| H1(Q+) + | k| \| (E\ell ,H\ell , \^E\ell , \^H\ell )\| L2(Q+)

\Bigr) 
\leq \| (J\ell e, J\ell m, \^J\ell e,

\^J\ell m)\| L2(Q+) +
1

| k| 
\| (div J\ell e, div J\ell m, div \^J\ell e, div

\^J\ell m)\| L2(Q+)

+
1

| k| 
\| (J\ell e \cdot e3  - \^J\ell e \cdot e3, J\ell m \cdot e3  - \^J\ell m \cdot e3)\| H1/2(Q0).

We have, by [20, Corollary 3.59],

\| (div J\ell e, div J\ell m, div \^J\ell e, div \^J
\ell 
m)\| L2(Q+) \leq C\| (div J\ell 

e , div J
\ell 
m, div \^J\ell 

e , div \^J\ell 
m)\| L2(\Omega \cap U\ell ),

and we also obtain

\| (J\ell e \cdot e3 - \^J\ell e \cdot e3, J\ell m \cdot e3 - \^J\ell m \cdot e3)\| H1/2(Q0) \leq C\| (J\ell 
e \cdot \nu  - \^J\ell 

e \cdot \nu , J\ell 
m \cdot \nu  - \^J\ell 

m \cdot \nu \| H1/2(\partial \Omega \cap U\ell ).

We deduce from (4.9) that

(4.10) C
\Bigl( 
\| (E\ell , H\ell , \^E\ell , \^H\ell )\| H1(\Omega \cap U\ell ) + | k| \| (E\ell , H\ell , \^E\ell , \^H\ell )\| L2(\Omega \cap U\ell )

\Bigr) 
\leq \| (J\ell 

e , J
\ell 
m, \^J\ell 

e , \^J
\ell 
m)\| L2(\Omega \cap U\ell ) +

1

| k| 
\| (div J\ell 

e , div J
\ell 
m, div \^J\ell 

e , div \^J\ell 
m)\| L2(\Omega \cap U\ell )

+
1

| k| 
\| (J\ell 

e \cdot \nu  - \^J\ell 
e \cdot \nu , Jm \cdot \nu  - \^Jm \cdot \nu )\| H1/2(\partial \Omega \cap U\ell ).
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Take the sum with respect to \ell . We then have, for some \tau 0 < s0/4,

(4.11) C
\Bigl( 
\| (E,H, \^E, \^H)\| H1(\Omega \tau 0

) + | k| \| (E,H, \^E, \^H)\| L2(\Omega \tau 0
)

\Bigr) 
\leq \| (Je, Jm, \^Je, \^Jm)\| L2(\Omega ) +

1

| k| 
\| (div Je, div Jm, div \^Je, div \^Jm)\| L2(\Omega )

+
1

| k| 
\| (Je \cdot \nu  - \^Je \cdot \nu , Jm \cdot \nu  - \^Jm \cdot \nu )\| H1/2(\partial \Omega )

+ \| (E,H, \^E, \^H)\| L2(\Omega s0/2) +
1

| k| 
\| (E,H, \^E, \^H)\| H1(\Omega s0/2).

Applying Lemma 4.1 below, we have

(4.12) \| (E,H, \^E, \^H)\| L2(\Omega \setminus \Omega \tau 0
) \leq c1e

 - c2| k| \| (E,H, \^E, \^H)\| L2(\Omega \tau 0
)

for some positive constants c1, c2 depending only on \Lambda , \gamma , \tau 0, and \Omega . Since (\varepsilon , \mu , \^\varepsilon , \^\mu ) \in 
C1(\Omega 3\tau 0 \setminus \Omega \tau 0/2), it follows from (4.1) that

(4.13) \| (E,H, \^E, \^H)\| H1(\Omega s0/2\setminus \Omega \tau 0
) \leq C| k| \| (E,H, \^E, \^H)\| L2(\Omega s0

\setminus \Omega \tau 0/2)

+ C\| (Je, Jm, \^Je, \^Jm)\| L2(\Omega ) +
C

| k| 
\| (div Je, div Jm, div \^Je, div \^Jm)\| L2(\Omega ).

Taking k0 sufficiently large and | k| \geq k0, from (4.12) and (4.13), one can absorb the
last two terms of the RHS of (4.11) by the LHS of (4.11). We then have

(4.14) C
\Bigl( 
\| (E,H, \^E, \^H)\| H1(\Omega \tau 0

) + | k| \| (E,H, \^E, \^H)\| L2(\Omega \tau 0
)

\Bigr) 
\leq \| (Je, Jm, \^Je, \^Jm)\| L2(\Omega ) +

1

| k| 
\| (div Je, div Jm, div \^Je, div \^Jm)\| L2(\Omega )

+
1

| k| 
\| (Je \cdot \nu  - \^Je \cdot \nu , Jm \cdot \nu  - \^Jm \cdot \nu )\| H1/2(\partial \Omega ).

Using (4.12) and (4.14), we derive from (4.13) that

(4.15) C\| (E,H, \^E, \^H)\| H1(\Omega s0/2\setminus \Omega \tau 0 )
\leq \| (Je, Jm, \^Je, \^Jm)\| L2(\Omega )

+
1

| k| 
\| (div Je, div Jm, div \^Je, div \^Jm)\| L2(\Omega )+

1

| k| 
\| (Je\cdot \nu  - \^Je\cdot \nu , Jm\cdot \nu  - \^Jm\cdot \nu )\| H1/2(\partial \Omega ).

The conclusion now follows from (4.12), (4.14), and (4.15). The proof is complete.

In the proof of Proposition 4.1, we used the following decay result on the Maxwell
equations.

Lemma 4.1. Let \gamma > 0, k \in C with | \Im (k2)| \geq \gamma | k| 2 and | k| \geq 1, and let \varepsilon , \mu \in 
[L\infty (\Omega )]3\times 3 be symmetric and uniformly elliptic, i.e.,

\Lambda  - 1 \leq \varepsilon , \mu , \^\varepsilon , \^\mu \leq \Lambda 
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for some \Lambda \geq 1. Given Je, Jm \in L2(\Omega ), let (E,H) \in [L2(\Omega )]6 be a solution of\Biggl\{ 
\nabla \times E = k\mu H + Je in \Omega ,

\nabla \times H =  - k\varepsilon E + Jm in \Omega .

For all s > 0, there exists two positive constants c1 and c2 depending only on \Lambda , \gamma , s,
and \Omega such that

\| (E,H)\| L2(\Omega \setminus \Omega s) \leq c1 exp( - c2| k| )\| (E,H)\| L2(\Omega s) + c1\| (Je, Jm)\| L2(\Omega ).

Proof. Let (E1, H1) \in [L2(\Omega )]6 be the unique solution of

(4.16)

\left\{       
\nabla \times E1 = k\mu H1 + Je in \Omega ,

\nabla \times H1 =  - k\varepsilon E1 + Jm in \Omega ,

E1 \times e3 = 0 on \partial \Omega .

As in the proof of Lemma 3.1, we have

\| (E1, H1)\| L2(\Omega ) \leq C\| (Je, Jm)\| L2(\Omega ).

Considering (E  - E1, H  - H1), without loss of generality, one might assume that
Je = Jm = 0 in \Omega . This is now assumed in what follows.

Fix \varphi \in C2(\Omega ) such that \varphi = cs in \Omega \setminus \Omega s and \varphi = 0 in \Omega s/2, and | \nabla \varphi | \leq c in \Omega ,
where c is a small positive constant defined later. (The smallness of c depends only
on \gamma , \Lambda , and \Omega ; it is independent of s.) Set \phi (x) = e| k| \varphi (x) and E1(x) = \phi (x)E(x)
and H1(x) = \phi (x)H(x) for x \in \Omega . We have\Biggl\{ 

\nabla \times E1 = k\mu H1 + J1
e in \Omega ,

\nabla \times H1 =  - k\varepsilon E1 + J1
m in \Omega ,

where
J1
e = \nabla \phi \times E and J1

m = \nabla \phi \times H in \Omega .

Multiplying the first equation with \=H1, integrating by parts in \Omega \setminus \Omega \tau for s/4 < \tau <
s/2, and using the second equation, we have\bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
\Omega \setminus \Omega \tau 

k\langle \mu H1, H1\rangle dx+ \=k

\int 
\Omega \setminus \Omega \tau 

\langle \varepsilon E1, E1\rangle dx

\bigm| \bigm| \bigm| \bigm| \bigm| 
\leq 
\int 
\Omega \setminus \Omega \tau 

| J1
e | | H1| + | J1

m| | E1| dx+ C

\int 
\partial (\Omega \setminus \Omega \tau )

(| E1| 2 + | H1| 2) dx.

This yields

(4.17)

\bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
\Omega \setminus \Omega \tau 

k2\langle \mu H1, H1\rangle dx+ | k| 2
\int 
\Omega \setminus \Omega \tau 

\langle \varepsilon E1, E1\rangle dx

\bigm| \bigm| \bigm| \bigm| \bigm| 
\leq | k| 

\int 
\Omega \setminus \Omega \tau 

| J1
e | | H1| + | J1

m| | E1| dx+ C| k| 
\int 
\partial (\Omega \setminus \Omega \tau )

(| E1| 2 + | H1| 2) dx.
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By the definition of J1
e , J

1
m and of E1 and H1,

| J1
e | \leq c| k| | E1| , | J1

m| \leq c| k| | H1| in \Omega , and E1  - E = H1  - H = 0 in \Omega s/2,

we derive from (4.17) that, for c sufficiently small,\bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
\Omega \setminus \Omega \tau 

k2\langle \mu H1, H1\rangle dx+ | k| 2
\int 
\Omega \setminus \Omega \tau 

\langle \varepsilon E1, E1\rangle dx

\bigm| \bigm| \bigm| \bigm| \bigm| \leq C| k| 
\int 
\partial (\Omega \setminus \Omega \tau )

(| E| 2 + | H| 2) dx.

The conclusion follows by taking \tau such that\int 
\partial (\Omega \setminus \Omega \tau )

(| E| 2 + | H| 2) dx \leq Cs - 1

\int 
\Omega s

(| E| 2 + | H| 2) dx.

This yields \int 
\partial (\Omega \setminus \Omega \tau )

(| E1| 2 + | H1| 2) dx \leq Cs - 1

\int 
\Omega s

(| E| 2 + | H| 2) dx,

and the conclusion follows by the definition of E1 and H1. The proof is complete.

Remark 4.1. The proof of Lemma 4.1 is quite standard; see, e.g., [15, Theorem
2.2] for a variant dealing with the Helmholtz equation.

We next establish the following.

Proposition 4.2. Assume that the assumptions of Proposition 4.1 hold. There
exist two positive constants k0 \geq 1 and C > 0 depending only on \Lambda , \Lambda 1, \gamma , s0, and \Omega 
such that for k \in C with | \Im (k2)| \geq \gamma | k| 2 and | k| \geq k0, and for every (Je, Jm, \^Je, \^Jm) \in 
[L2(\Omega )]3, there exists a unique solution (E,H, \^E, \^H) \in [L2(\Omega )]12 of (4.1) and (4.2).
Moreover,

(4.18) | k| \| (E,H, \^E, \^H)\| L2(\Omega ) \leq C\| (Je, Jm, \^Je, \^Jm)\| L2(\Omega ).

Before giving the proof, we denote

H1(\Omega ) =
\Bigl\{ 
(u, v) \in [H(curl,\Omega )]2; (u - v)\times \nu = 0 on \partial \Omega 

\Bigr\} 
.

One can check that H1(\Omega ) is a Hilbert space equipped with the natural scalar product
induced from the one of [H(curl,\Omega )]2.

Proof. Applying Proposition 4.1, it suffices to establish the existence. Consider
the following equation:

(4.19)

\int 
\Omega 

\langle \mu  - 1\nabla \times E,\nabla \times \varphi \rangle + k2\langle \varepsilon E, \varphi \rangle  - 
\int 
\Omega 

\langle \^\mu  - 1\nabla \times \^E,\nabla \times \^\varphi \rangle + k2\langle \^\varepsilon \^E, \^\varphi \rangle 

=

\int 
\Omega 

\langle \mu  - 1Je,\nabla \times \varphi \rangle + k\langle Jm, \varphi \rangle  - 
\int 
\Omega 

\langle \^\mu  - 1 \^Je,\nabla \times \^\varphi \rangle + k\langle \^Jm, \^\varphi \rangle 

for all (\varphi , \^\varphi ) \in H1(\Omega ).
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We first note that system (4.1) and (4.2) and system (4.19) are equivalent in the
following sense. If (E,H, \^E, \^H) \in [L2(\Omega )]12 is a solution of (4.1) and (4.2), then
(E, \^E) \in H1(\Omega ) is a solution of (4.19). Conversely, if (E, \^E) \in H1(\Omega ) is a solution of
(4.19), then (E,H, \^E, \^H) \in [L2(\Omega )]12 is a solution of (4.1) and (4.2), where

(4.20) H = k - 1\mu  - 1
\Bigl( 
\nabla \times E  - Je

\Bigr) 
and \^H = k - 1\^\mu  - 1

\Bigl( 
\nabla \times \^E  - \^Je

\Bigr) 
.

The first assertion is clear. Concerning the second assertion, we have, by considering
\varphi , \^\varphi \in C1

c (\Omega ) in (4.19),

\nabla \times 
\Bigl( 
\mu  - 1\nabla \times E

\Bigr) 
+ k2\varepsilon E = \nabla \times (\mu  - 1Je) + kJm in \Omega 

and
\nabla \times 

\Bigl( 
\^\mu  - 1\nabla \times \^E

\Bigr) 
+ k2\^\varepsilon \^E = \nabla \times (h\mu  - 1 \^Je) + k \^Jm in \Omega .

This yields, by (4.20),

\nabla \times H =  - k\varepsilon E\delta + Jm in \Omega and \nabla \times \^H =  - ik\^\varepsilon \^E + \^Jm in \Omega .

This in turn implies, by using (4.19) again, that

( \^H  - H)\times \nu = 0 on \partial \Omega .

Therefore, the equivalence is proved.
Consider

a : H1(\Omega )\times H1(\Omega ) \rightarrow C

defined as follows. For (E, \^E) \in H1(\Omega ) and (\varphi , \^\varphi ) \in H1(\Omega ), a
\bigl( 
(E, \^E), (\varphi , \^\varphi )

\bigr) 
is given

by the RHS of (4.19). It is clear that a is bilinear and continuous. Define

A : H1(\Omega ) \rightarrow H1(\Omega )

by, for (E, \^E) \in H1(\Omega ),

\langle A(E, \^E), (\varphi , \^\varphi )\rangle H(curl,\Omega ) = a
\bigl( 
(E, \^E), (\varphi , \^\varphi )

\bigr) 
for all (\varphi , \^\varphi ) \in H1(\Omega ).

Applying Proposition 4.1 and using the equivalence of system (4.1) and (4.2) and
system (4.19), we have

\| A(E, \^E)\| H(curl,\Omega ) \geq Ck\| (E, \^E)\| H(curl,\Omega ).

This yields, for all (E, \^E) \in H1(\Omega ),

(4.21) a
\bigl( 
(E, \^E), A(E, \^E)

\bigr) 
\geq Ck\| (E, \^E)\| \bfH 1(\Omega )\| A(E, \^E)\| \bfH 1(\Omega ).

On the other hand, if a
\bigl( 
(E, \^E), (\varphi , \^\varphi )

\bigr) 
= 0 for all (E, \^E) \in H1(\Omega ) and for some

(\varphi , \^\varphi ) \in H1(\Omega ), then
\varphi = \^\varphi = 0 in \Omega .

Indeed, this is just a consequence of Proposition 4.1 and the equivalence of system
(4.1) and (4.2) and system (4.19) (applied to \=k). Combining this and (4.21), we obtain
the existence of a solution of (4.19) by the Banach--Necas--Babuska theorem. This in
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turn implies the existence of a solution (4.1) and (4.2) using the equivalence of system
(4.1) and (4.2) and system (4.19). The proof is complete.

Denote

(4.22)

H(\Omega ) =
\Bigl\{ 
(u, v, \^u, \^v) \in [L2(\Omega )]12; div(\varepsilon u) = div(\mu v) = div(\^\varepsilon \^u) = div(\^\mu \^v) = 0 in \Omega ,

and \varepsilon u \cdot \nu  - \^\varepsilon \^u \cdot \nu = \mu v \cdot \nu  - \^\mu \^v \cdot \nu = 0 on \partial \Omega 
\Bigr\} 
,

and let
\| (u, v, \^u, \^v)\| \bfH (\Omega ) = \| (u, v, \^u, \^v)\| L2(\Omega ).

One can check that H(\Omega ) is a Hilbert space with the corresponding scalar product.
We are ready to give the proof of our main theorem.

Proof of Theorem 1.1. Fix k \in C satisfying the assumptions in Proposition 4.2.
Define the operator

T : H(\Omega ) \rightarrow H(\Omega ),

(J1
e , J

1
m, \^J1

e , \^J
1
m) \mapsto \rightarrow (E,H, \^E, \^H),

(4.23)

where (E,H, \^E, \^H) \in [L2(\Omega )]12 is the unique solution of (4.1) and (4.2) with

(Je, Jm, \^Je, \^Jm) = (\mu J1
m, - \varepsilon J1

e , \^\mu \^J1
m, - \^\varepsilon \^J1

e ).

Since div Je = div Jm = div \^Je = div \^Jm = 0, it follows that

(4.24) div(\varepsilon E) = div(\mu H) = div(\^\varepsilon \^E) = div(\^\mu \^H) = 0.

We derive that (E,H, \^E, \^H) \in H(\Omega ).
We claim that T is compact. Indeed, this follows from (4.24) and (4.18). By

the theory of compact operator (see, e.g., [4]), the spectrum of T is discrete. It is
clear that an eigenfunction pair of the ITE problem corresponding to the eigenvalue
\omega is an eigenfunction pair of T corresponding to the eigenvalue k = i\omega . Hence, the
spectrum of the ITE problem is discrete, and the only possible accumulation point
of the transmission eigenvalues is \infty since they coincide with the eigenvalues of the
inverse of T .

Finally, we present the following.

Proof of Proposition 1.1. Proposition 1.1 is just a consequence of Proposition 4.1
by noting that the solution given there is 0 if (Je, Jm, \^Je, \^Jm) = 0.
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