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Drivers of US East Coast sea-level variability
from years to decades in a changing ocean—
What do we know and what do we need to know?

Christopher G. Piecuch

Woods Hole Oceanographic Institution

ea level varies over all time scales. At shorter periods,

from minutes to months, are the familiar sea-level
fluctuations due to waves, tides, storms, tsunamis, and
the seasons, which have been documented by coastal
populations for millennia. At longer periods, from
centuries to millennia and longer, are sea-level changes
tied to such global climatic and geologic phenomena
as the waxing and waning of the great ice sheets, plate
tectonics, and convective flow within Earth’'s mantle,
which have been the subject of scientific inquiry for more
than a century (Carlson et al. 2019; Khan et al. 2019). In
between, at periods of years to decades, are more subtle
sea-level variations mainly related to ocean dynamics
and regional climate. Understanding sea-level variations
at these intermediate time scales is informative for
inferring past changes in ocean currents and anticipating
future coastal hazards (Burgos et al. 2018; Piecuch
2020). Here, | review recent progress on understanding
past observed sea-level variability on interannual and
decadal time scales along the US East Coast—a coastline
of millions of people and homes vulnerable to sea-level
rise and coastal flooding (Strauss et al. 2012; Kulp and
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Strauss 2019). In this context, “sea level” is used to mean
relative sea level, which is the height of the sea surface
relative to Earth's crust, as measured by a tide gauge.

Large-scale ocean circulation

Climate models predict that the US East Coast will
experience greater-than-average sea-level rise during
the next century related to changes in ocean circulation
and climate (Yin et al. 2009; Landerer et al. 2007; Little
et al. 2019). Over the past decade, numerous studies
have used observations to test this hypothesis from
models that US East Coast sea-level changes are related
to changes in various components of the North Atlantic
Ocean circulation, such as the Florida Current, Gulf
Stream, and Atlantic meridional overturning circulation
(Bingham and Hughes 2009; Boon 2012; Ezer and Corlett
2012; Sallenger et al. 2012; Ezer 2013, 2015, 2019; Ezer
et al. 2013; Kopp 2013; Yin and Goddard 2013; Kenigson
et al. 2014; Rossby et al. 2014; Thompson and Mitchum
2014; Woodworth et al. 2014; Goddard et al. 2015;
McCarthy et al. 2015; Park and Sweet 2015; Domingues
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et al. 2016, 2018; Frederikse et al. 2017; Valle-Levison
et al. 2017; Dong et al. 2019; Little et al. 2019; Piecuch
et al. 2019a; Volkov et al. 2019; Ezer and Dangendorf
2020). A clear relation is observed between changes in
the Florida Current—the Gulf Stream at Florida Strait—
and coastal sea level along the South Atlantic Bight at
various time scales, including interannual and decadal,
such that sea level rises when the Current weakens or
warms. Less clear (and more subject to debate) is the
nature of any direct causal links between coastal sea
level along the Mid-Atlantic Bight or Gulf of Maine and
measures of the general circulation such as the latitude,
width, speed, and transport of the Gulf Stream at
various longitudes downstream of Cape Hatteras. To aid
interpretation, analytical theories have been formulated
for the connection between coastal sea level and open-
ocean circulation, based on geostrophy and mass
conservation in a boundary layer; these theories describe
coastal sea level on a western boundary in terms of the
superposition of signals propagating from upstream
along coastal waveguides and along planetary potential
vorticity contours, and possibly modified by friction
(Thompson and Mitchum 2014; Minobe et al. 2017; Wise
et al. 2018, 2020). Many questions remain regarding how
sea level at the coast “feels” ongoing changes over the
deep open ocean.

Local forcing and coastal processes

One reason it has been difficult to identify the “signal”
of any link between US Northeast Coast sea level and
measures of large-scale general circulation is the “noise”
of local forcing over the shelf near the coast (Woodworth
et al. 2014; Little et al. 2019). Anomalous onshore
winds can raise coastal sea level through a wind setup,
whereas anomalous alongshore winds (alongshore in
the counterclockwise sense of coastal-wave propagation
in the Northern Hemisphere) can also increase sea
level and drive an alongshore flow at the coast through
frictional dynamics. According to the inverted barometer
effect, lower barometric pressure forces sea level to
rise isostatically (without any accompanying change in
ocean circulation), while higher barometric pressure
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drives a corresponding sea-level fall. And it follows
from Knudsen's hydrographical theorem and thermal
wind balance that an increase in the volumetric rate of
freshwater runoff from a river at the coast drives an
increase in coastal sea level in the far field downstream
of that river source, in concert with a buoyant alongshore
flow. Such locally forced coastal ocean processes account
for a large portion of the variability in tide-gauge sea-
level records along the US East Coast north of Cape
Hatteras on interannual and decadal periods (Andres et
al. 2013; Li et al. 2014; Woodworth et al. 2014; Piecuch
and Ponte 2015; Piecuch et al. 2016, 2018a, 2019b;
Frederikse et al. 2017; Kenigson et al. 2018; Domingues
et al. 2018; Chen et al. 2020). For example, Piecuch et al.
(2019b) estimate that barotropic response to wind and
pressure accounts for 20-50% of the interannual-to-
decadal variance in US Northeast Coast tide-gauge data,
but <20% of the data variance along the US Southeast
Coast during the past century.

Redistribution of ice and water

Other studies emphasize the influence of ice and water
mass redistribution on US East Coast sea level. When
water mass is redistributed at the surface and exchanged
between the ocean and other components of the climate
system, Earth's crust, gravity field, and rotation vector are
perturbed, leading to spatial patterns of sea-level change
(Gregory et al. 2019). Davis and Vinogradova (2017)
determine that ice melt from Greenland and Antarctica
accounts for most of the sea-level acceleration observed
in tide-gauge records along the US Southeast Coast
since the 1990s. Frederikse et al. (2017) estimate that
present-day mass redistribution related to the melting
of ice sheets and mountain glaciers and the building
of dams explains ~30% of the acceleration observed
in sea level from Virginia to Maine during 1965-2014.
Karegar et al. (2016) identify the role of groundwater
extraction in determining variable rates of sea-level
change seen along the US Southeast Coast between
South Carolina and Virginia in recent decades, revealing
that rates of vertical land motion can change by ~1 mm/
year on decadal time scales in response to changes in
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groundwater levels. These and other studies (Karegar et
al. 2017; Johnson et al. 2018) demonstrate that ice and
water mass redistribution, and resulting gravitational,
rotational, and deformational effects, are important
contributors to US East Coast sea-level changes on
quasi-decadal time scales over the past century.

Questions, challenges, and opportunities for the future

These recent studies have improved our understanding
of changes in US East Coast sea level on interannual and
decadal time scales. They also point to new questions,
challenges, and opportunities to be addressed in the
future. | briefly mention some possibilities below.

How did US East Coast sea level vary during earlier
time periods?

Much of our knowledge of US East Coast sea level comes
from tide-gauge records, many of which only span the

past century, whichisashort periodrelative to Earth'slong
climate history. To determine how representative these
data are of interannual and decadal sea-level variability
more generally, future studies should interrogate
US East Coast sea-level variability for earlier time
periods. Newly available instrumental and proxy data
records, which extend the record of interannual and
decadal sea-level variability centuries (Talke and Jay
2013; Talke et al. 2018) and millennia (Kemp et al. 2014,
2015) into the past, will be helpful to this end. A fuller
portrait in space and time could be painted by applying
spatiotemporal models to these new data (Cahill et al.
2015, 2016; Piecuch et al. 2017; Ashe et al. 2019; Walker
et al. 2020). For example, Gehrels et al. (2020) apply
probabilistic models to salt-marsh-sediment-based sea-
level reconstructions, and find that there was a period
of rapid multi-decadal sea-level acceleration on the US
Northeast Coast in the 1700s, which was almost as rapid
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as accelerations observed during the twentieth century.
Such studies provide a basis for evaluating whether the
basic characteristics of sea-level variability will be the
same or different under climate change.

What is the spectrum of vertical land motion along the
US East Coast?

Since the advent of continuous Global Positioning
System (GPS) monitoring, the community has
increasingly recognized the importance of vertical land
motion to coastal sea-level change (Blewitt et al. 2016;
Hamlington et al. 2016; Woppelmann and Marcos 2016;
Santamaria-Gomez et al. 2017). While it has long been
established that vertical land motion related to glacial
isostatic adjustment (Earth’s ongoing response to the last
deglaciation) is a crucial large-scale, long-term control on
sea-level trends (Love et al. 2016; Frederikse et al. 2017;
Caron et al. 2018; Piecuch et al. 2018b), it has grown
clear that high-frequency, short-scale crustal motions
also contribute importantly to coastal sea-level changes
(Featherstone et al. 2015; Frederikse et al. 2017; Johnson
etal. 2018). It remains to fully characterize the frequency-
wavenumber spectrum of vertical land motion and
identify the mechanisms responsible for crustal motion
at short periods and small scales along the US East Coast
in the context of sea level and coastal flooding. Recent
papers focusing on Norfolk, Virginia and Miami Beach,
Florida use GPS records alongside remotely sensed data
from interferometric synthetic aperture radar to map
vertical land motion on local spatial scales (Bekaert et al.
2017; Buzzanga et al. 2020; Fiaschi and Wdowinski 2020).
For example, Buzzanga et al. (2020) use Sentinel-1 data
from the past five years to show that the mean rate of
subsidence in Hampton Roads, Virginia is ~-4 mm/year,
but that there is substantial spatial variation such that
rates can vary by ~+/-3 mm/year over short spatial scales
of kilometers to tens of kilometers. Such studies serve as
potential templates towards more complete mapping of
the drivers of coastal sea-level change and vulnerability
of US East Coast communities to future flood hazards.

How are high-frequency statistics of US East Coast sea
level changing at low frequencies?

In addition to year-to-year and decade-to-decade
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variations in US East Coast mean sea level, there are low-
frequency modulations of high-frequency variations in
tides, storms, and seasonality. The amplitude of the sea-
level annual cycle on the US Southeast Coast varies on
decadal time scales, reflecting a dynamic ocean response
to wind forcing over the western subtropical North
Atlantic (Wahl etal.2014; Domingues et al. 2016; Calafat et
al. 2018). The statistics of sea-level extremes along the US
East Coast, fluctuating at decadal periods, vary in tandem
with large-scale climate modes like the North Atlantic
Oscillation, Arctic Oscillation, and Atlantic Multidecadal
Variability (Wahl and Chambers 2015, 2016). Long tide-
gauge records along the US East Coast show changes
in tidal range, from more minor gradual oscillations to
major abrupt changes (see recent reviews by Talke and
Jay 2020; Haigh et al. 2020). More work is needed to
establish how and why such modulations and changes
in tides, surges, and seasonality occur along the US
East Coast, whether they are independent or covary,
and the consequences for the statistics of sea-level
extremes and high-tide flooding (Ray and Foster 2016;
Sweet et al. 2016; Burgos et al. 2018).

What is the origin of the spatial covariance structure of
US East Coast sea level variability?

There is a peculiar spatial structure to sea-level
variability along the US East Coast: sea levels north of
Cape Hatteras vary coherently along the coast from
Virginia to Maine, but are uncorrelated with sea-level
variations south of Cape Hatteras from Florida to
Virginia (Thompson and Mitchum 2014; Woodworth et
al. 2014; McCarthy et al. 2015; Piecuch et al. 2016; Calafat
et al. 2018). This “break” in covariance is surprising given
a basic expectation for coastal sea level to be coherent
over thousands of kilometers due to boundary waves
(Hughes and Meredith 2006; Hughes et al. 2019).
Hypotheses have been submitted, some having to do
with ocean currents (Thompson 1986; Thompson and
Mitchum 2014; McCarthy et al. 2015), others with the
geometry of the coast and bathymetry (Meade and
Emery 1971), but the origin of this spatial-covariance
structure in US East Coast sea level remains to be
established. Such knowledge will be important for
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evaluating climate models and assessing whether such
covariance structure is a permanent feature of coastal
sea level or if a distinct structure will emerge in the future
under climate change.

How will new altimetry data change our understanding
of US East Coast sea level variability?

Tide gauges provide long records of sea level at the coast,
but these data have shortcomings. For example, they are
spatially “one dimensional,” in the sense that networks
of tide gauges observe changes in the alongshore
direction, but are “blind” to the structure of sea level
offshore. Conventional satellite-altimetry data products
have, in the past, not been helpful in this regard, since
the quality of the data can be degraded near the coast
due to errors in the instrumental measurement itself
as well as uncertainties in the geophysical corrections.
Newly reprocessed, dedicated coastal altimetry
products and the upcoming Surface Water and Ocean
Topography wide-swath altimeter mission promise to
change the game, and revolutionize our view of sea
level and land-ocean interactions along the US East
Coast as well as over the global coastline (Passaro et
al. 2015; Birol et al. 2017; Morrow et al. 2019).

Are ongoing changes in the western North Atlantic
Ocean affecting US East Coast sea level?

Relationships between coastal sea level and large-scale
ocean circulation remain an important topic of future
investigation (Ponte et al. 2019). Noteworthy in this
context are the remarkable changes ongoing in the
western North Atlantic Ocean. In recent decades, the
Gulf of Maine has warmed much faster than the global
average (Pershing et al. 2015), marine heat waves have
grown longer and more frequent (Oliver et al. 2019), the
Gulf Stream has grown increasingly unstable (Andres
2016), warm core rings have been shed more often
from the Gulf Stream and lived longer than previously
(Gangopadhyay et al. 2019), and intrusions of warm,
salty slope and Gulf Stream waters onto the continental
shelf have become more frequent (Ullman et al. 2014;
Zhang and Gawarkiewicz 2015; Gawarkiewicz et al.
2018). It remains to establish if any of these regional
oceanographic changes are relevant to US East Coast

US CLIVAR VARIATIONS -

Fall 2020

US CLIVAR VARIATIONS

sea level. The interested reader is directed to Little et
al. (2019) for more general future research directions on
this topic.

Conclusion

Sea level is a “whole-Earth” process, and sea-level
changes reflect myriad geologic and climatic processes
acting across space and time. Here | have reviewed
recent progress on understanding drivers of observed
year-to-year and decade-to-decade US East Coast sea-
level change. | mainly emphasize observational studies
published during the past decade, and focus largely on
the relevance of large-scale circulation, locally forced
processes, and surface mass redistribution. | also point
to some opportunities for future research, highlighting
new technologies and data as well as pressing changes
ongoing in the ocean. | hope this short review (see Little
et al. 2019 for a more detailed treatment) motivates
future research and is informative to both scientific and
non-scientific audiences, serving as a jumping-off point
for a deeper dive into the literature.
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