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On corner scattering for operators of divergence form
and applications to inverse scattering

Fioralba Cakoni and Jingni Xiao

Department of Mathematics, Rutgers University, Piscataway, NJ, USA

ABSTRACT
We consider the scattering problem governed by the Helmholtz
equation with inhomogeneity in both “conductivity” in the diver-
gence form and “potential” in the lower order term. The support of
the inhomogeneity is assumed to contain a convex corner. We prove
that, due to the presence of such corner under appropriate assump-
tions on the potential and conductivity in the vicinity of the corner,
any incident field scatters. Based on corner scattering analysis we
present a uniqueness result on determination of the polygonal con-
vex hull of the support of admissible inhomogeneities, from scatter-
ing data corresponding to one single incident wave. These results
require only certain regularity around the corner for the coefficients
modeling the inhomogeneity, whereas away from the corner they
can be quite general. Our main results on scattering and inverse
scattering are established for R2, while some analytic tools are
developed in any dimension n � 2:
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1. Introduction

The existence of non-scattering wave numbers (otherwise referred to as frequencies or
energies) in the scattering by inhomogeneous media, remains a perplexing question des-
pite the recent progress starting with the pioneering paper [1]. A non-scattering wave
number for a given inhomogeneity corresponds to the frequency for which there exists
an incident wave that is not scattered by the media. It is easily seen that non-scattering
wave numbers, if exist, are examples of the so-called transmission eigenvalues [2]. The
latter are the eigenvalues of a non-selfajoint eigenvalue problem with a deceptively sim-
ple formulation, given by two different elliptic equations in a bounded domain that
coincides with the support of inhomogeneity and sharing the same Cauchy data on the
boundary. It has been shown that, under suitable assumptions on the contrast of scat-
tering media, real transmission eigenvalues exist [3] and they can be seen in the scatter-
ing data [4, 5]. However, for a transmission eigenvalue to be non-scattering wave
number, one must be able to extend the part of the transmission eigenfunction corre-
sponding to the background equation as a solution to the background equation in the
entire space, which is not a trivial question in general. It is well-known that real trans-
mission eigenvalues corresponding to a spherically stratified inhomogeneity are non-
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scattering wave numbers [6] and furthermore, all transmission eigenvalues uniquely
determine the spherically stratified refractive index [7]. However beyond the case of
spherically stratified media, there is no other known type of bounded supported inho-
mogeneities for which non-scattering wave numbers are proven to exist. We remark
that the existence of non-scattering waves has been observed in scattering problems for
waveguides [8]. The connection between transmission eigenvalues and non-scattering
energies is also studied in some cases of hyperbolic geometries [9, 10].
The absence of non-scattering wave numbers was first shown in [1] for inhomogene-

ities whose support contains a right corner. It was further studied in [11] for convex
conic corners, in [12] for 2D corners and 3D edges, in [13] for more general corners
and edges, in [14] for weakly singular interfaces in 2D, and in [15] for the source prob-
lem. Recently, in [16] and [17] the corner scattering investigation is extended to electro-
magnetic inhomogeneous scattering problems. The fact that corners and edges always
scatter is employed to prove that the far field pattern corresponding to one single inci-
dent wave uniquely determines the support of a convex polygonal inhomogeneous
media, see e.g., [13, 18] and [19]. Related studies [20] and [21] discuss the properties of
the transmission eigenfunctions and their possible extension in a neighborhood of a
corner. We would also like to mention that there are several works on propagation of
singularities for solutions of the wave equation in manifolds with conic and other types
of singularities, using microlocal analysis related techniques (see, e.g., [22–24] and the
references therein). However our choice of the approach here is determined by particu-
larity of the question under investigation. More specifically, we are concerned with the
existence of non-scattering frequencies, which is related to the behavior of eigenfunc-
tions of the nonstandard transmission eigenvalue value problem. Hence, we do not sim-
ply analyze the scattering phenomena near a corner, but rather our problem becomes
whether certain solutions of elliptic partial differential equations can be extended out-
side a corner [25]. Moreover, our analysis applies to L1 coefficients and our results
have applications in inverse scattering problems.
In this article, we undertake a study of corner scattering for the scalar scattering

problem corresponding to inhomogeneities with contrast in both the main operator
and the lower term. For notational simplicity, with an abuse of terminology though,
we call “conductivity” the coefficient in the main operator and “potential” the coeffi-
cient in the lower term, throughout the article. We prove that, any incident wave pro-
duces non-zero scattered field in the exterior of the inhomogeneity, providing the
existence of a corner at the support of the potential with non-zero contrast where the
conductivity contrast vanishes to the second order at the vertex. In addition we show
that if the aperture of the corner is an irrational factor of p, we have the same non-
trivial scattering result for all incident waves. Otherwise, if the conductivity has non-
trivial contrast at the corner, or the conductivity contrast goes to zero slower than
second order at the vertex, we need to exclude a certain class of incident fields from
our results. For more detailed statements we refer the reader to Theorems 5.1 and 5.3
in the article. As an application of corner scattering we discuss an approximation
property of transmission eigenfunctions by Herglotz wave functions in the presence of
corners on the support of the inhomogeneity, providing more insight to this issue
already discussed in [20] and [21].
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Another main result of our article concerns the inverse scattering problem of shape
determination for inhomogeneities, for which the uniqueness is proven by applying cor-
ner scattering analysis. We show that scattering data corresponding to a single incident
field uniquely determines the polygonal convex hull of the support of the inhomogen-
eity under appropriate assumptions on conductivity and potential contrasts at the cor-
ners of the polygonal. In particular, Theorem 6.1 states the uniqueness result for
inhomogeneities whose polygonal convex hull has potential jump at all corners and at
the vertices the conductivity contrast vanishes to the second order. However, we remark
that this uniqueness result is in fact valid for other types of inhomogeneities. For
example, we could allow that all corners of the polygonal convex hull where the con-
ductivity has a jump, have aperture as irrational factor of p. More generally, if two
inhomogeneities lead to the same scattering data when probed by the same incident
wave, we can conclude that the difference between the two convex hulls cannot contain
certain types of corners.
Our results generalize the previous work on corner scattering and shape determin-

ation in [1, 11–13, 18, 19], where the authors consider only the case when the conduct-
ivity is identically one in the whole space. In particular, this is a special case of our
setting where the contrast of the conductivity vanishes to second order at the corner.
Nevertheless, we recall that here we do not assume any additional properties of the con-
ductivity away from the corner, besides basic ellipticity and boundedness requirements
for the forward problem, making our setting much more general. For example, we allow
inhomogeneities with disconnected support or with voids inside (see e.g., Figures 1–3,
for a visualization of the support of admissible inhomogeneities), or even anisotropic
materials could be allowed away from the corners. The setting where the conductivity
possesses contrast at the corner is a novelty of this study and it presents interesting
questions related to potential exclusive incident waves for special corners, which calls
for deeper understanding.

Figure 1. Sketch of an inhomogeneity satisfying our assumptions. Dotted filling depicts suppðc � 1Þ,
uniform coloring depicts suppða� 1Þ, while darker dotted filling depicts the support of suppðc�
1Þ \ suppða� 1Þ: The domain X must contain a corner for the contrast c – 1 or/and a – 1.
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Finally, we remark that our approach is based on asymptotic analysis on the integrals
appearing in an identity which is obtained as consequence of the non-scattering phenom-
enon. In order to do so, it is of fundamental importance to construct the so-called
Complex Geometric Optics (CGO) solutions with desired estimates for the corresponding
differential operator. We develop this analytical framework for any dimension n � 2,
including the construction of CGO solutions as well as the derivation of asymptotic esti-
mates on the integrals. However, in the analysis of corner scattering we restrict ourselves
to R2, avoiding technicalities that higher dimensions present in a key point of our ana-
lysis, namely deducing the strictly non-zero asymptotic behavior of a certain integral.
The article is organized as follows. Having formulated the problem in the next sec-

tion, Sections 3 and 4 are devoted to the construction of CGO solutions for the consid-
ered problem and their use to analyze the behavior of solutions of the transmission
eigenvalue problem in the vicinity of a generalized corner both in R2 and R3: In
Section 5 we restrict ourselves to the two-dimensional case, and provide a comprehen-
sive analysis of “conductivity” and “potential” corner scattering in Theorems 5.1 and
Theorem 5.3, respectively. Section 6 is devoted to the aforementioned applications of
corner scattering to inverse scattering theory.

Figure 2. Examples of admissible inhomogeneities. Dotted filling indicates suppðc� 1Þ, uniform col-
oring indicates suppða� 1Þ darker dotted filling indicates the support of suppðc � 1Þ \ suppða� 1Þ:
One incident field suffices to determine the polygonal convex hull depicted by the tick line.

Figure 3. Intersection of two different admissible inhomogeneities. Dotted filling indicates the sup-
port of the contrast suppðc � 1Þ, darker dotted filling indicates the support
of suppðc � 1Þ \ suppða� 1Þ:
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2. Formulation of the scattering problem

We consider the scattering problem governed by

r � aruþ k2cu ¼ 0 in Rn, (2.1)

where the total field u :¼ uin þ usc 2 H1
locðRnÞ is composed of the incident field uin and

the scattered field usc: The incident field satisfies the Helmholtz equation

Duin þ k2uin ¼ 0 in Rn, (2.2)

and the scattered field satisfies the Sommerfeld radiation condition

x̂ � rusc � ikusc ¼ o jxj�n�1
2

� �
(2.3)

uniformly with respect to x̂ ¼ x=jxj: The coefficients a and c in (2.1) representing the
constitutive material properties of the media, are real valued scalar L1 functions satisfy-
ing

aðxÞ � a0 > 0 for almost all x 2 Rn, (2.4)

with a constant a0 and

suppðc� 1Þ [ suppða� 1Þ � �X, (2.5)

where X is a simply connected bounded region in Rn, i.e., the inhomogeneity is
included in X and in the background media the constitutive material properties are
a¼ 1 and c¼ 1. We sometimes denote such an inhomogeneity as ða, c,XÞ, despite the
fact that the specific domain X could be chosen differently. Note that (2.1) implicitly
contains the continuity of the field and co-normal derivative wherever a jumps.
The far field pattern u1ðx̂Þ of the scattered field usc is defined via the following

asymptotic expansion of the scattered field

uscðxÞ ¼ exp ðikjxjÞ
jxjn�1

2

u1ðx̂Þ þ O
1

jxjnþ1
2

 !
, r ! 1

where x̂ ¼ x=jxj (c.f., [2]). We are particularly interested in the situation when the sup-
port of the contrast a� 1 and/or c� 1 has a corner at its shape. We would like to show
that when there is such a corner, then for any incident field uin, the scattered wave usc

cannot vanish identically outside any region containing X, or equivalently, the far-field
amplitude u1 cannot be trivially zero. Notice that this problem, in general, cannot be
transformed into the parallel study on corner scattering for the problem governed by

Dvþ k2
c
a
� 1
k2

Da1=2

a1=2

� �
v ¼ 0 in Rn, (2.6)

by the dependent change of variables v :¼ a1=2u, since it will introduce new singular-
ities in the above equation. Later on, we impose some regularity assumptions on the
coefficients a and c in a neighborhood of the corner. Nevertheless we allow for jumps
on a and c across the boundary of suppða� 1Þ [ suppðc� 1Þ: In fact, away from the
corner, a can be even L1 positive-definite matrix-valued function.
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2.1. A consequence of the non-scattering phenomenon

We assume that for a given inhomogeneity with constitutive parameters a(x) and c(x)
there exists a nontrivial incident field uin which would not be perturbed by a and c
when observed by a far-field observer. In this case, the corresponding far-field pattern
u1 will vanish identically or equivalently, the scattered field usc will be zero in the
exterior of any simple-connected Lipschitz domain X enclosing suppðc� 1Þ [ suppða�
1Þ (see Figure 1). As a consequence, the following transmission eigenvalue problem is
satisfied

r � aruþ k2cu ¼ 0, Dvþ k2v ¼ 0, in X, (2.7)

u ¼ v, a@�u ¼ @�v, on @X, (2.8)

with v :¼ uin, where � is the outward unit normal to @X:

Lemma 2.1. If u and v satisfy (2.7), then one hasð
X
a� 1ð Þrv � rw dx� k2

ð
X
c� 1ð Þvw dx ¼

ð
@X
a@�w v� uð Þ � w @�v� a@�uð Þ ds

for any solution w to

r � arwþ k2cw ¼ 0, in X:

Proof. Since u and w are both solutions to the same equation, we have from the Green’s
formula that ð

@X
au@�w ds ¼

ð
X
aru � rw� k2cuw dx ¼

ð
@X
aw@�u ds:

Similarly we haveð
X
arv � rw dx� k2

ð
X
cvw dx ¼

ð
@X
av@�w ds

¼
ð
X
rv � rw dx� k2

ð
X
vw dx �

ð
@X
w@�v dsþ

ð
@X
av@�w ds,

where in the second identity we have used that v satisfies the Helmholtz equation. It is
hence obtained thatð

X
a� 1ð Þrv � rw dx �k2

ð
X
c� 1ð Þvw dx ¼

ð
@X
av@�w� w@�vds

¼
ð
@X
a@�w v� uð Þ � w @�v� a@�uð Þ ds:

w

The identity in the above lemma is a fundamental tool in our forthcoming analysis of
the scattering by corners. Later in Section 4, we analyze in details these integrals near
the corner, i.e., in Beðx0Þ \ X as shown in Figure 1.
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3. Complex rapidly decaying solutions

In this section, we shall seek for solutions to the equation

r � crwþ k2qw ¼ 0 in Rn, (3.1)

which are of the form

w ¼ ws ¼ c�1=2ð1þ rðxÞÞeg�x: (3.2)

Here, g 2 Cn is defined as

g ¼ �s d þ id?ð Þ, (3.3)

with d, d? 2 Sn�1 satisfying d � d? ¼ 0: These solutions are referred to in the literature
as Complex Geometrical Optics (CGO) solutions. Given s 2 R and p � 1, we recall the
Bessel potential space

Hs, p :¼ ff 2 LpðRnÞ;F�1 ð1þ jnj2Þs=2F f
h i

2 LpðRnÞg,
where F and F�1 denote the Fourier transform and its inverse, respectively.

Condition 3.1. Given s 2 R, the coefficients c and q are such that q :¼ c�1=2Dc1=2 �
k2qc�1 2 Hs, ~p and

jjqf jjHs, ~p � C1jjf jjHs, p for any f 2 Hs, p, (3.4)

with some 1 < ~p < 2 satisfying

2=ðnþ 1Þ þ 1=p � 1=~p < 2=nþminf1=p, s=ng: (3.5)

Some instances of feasible choices for the parameters s, p, ~p such that (3.5) holds are
given next. For s¼ 0 in R2 for any p> 3 one can find 1 < ~p < 2, whereas in R3 a num-
ber ~p in the interval ð3=2, 2Þ can be chosen for any p> 6. If s¼ 1 is chosen, then for
any p> 6=5 in R2 and any p> 2 in R3 one can find 1 < ~p < 2: We will be more spe-
cific when we apply the result from this section to our inverse scattering problem.
In order to see the relevance of introducing the function q in Condition 3.1, we note

that if we let v :¼ c1=2w then v satisfies

Dv� qv ¼ 0 in Rn:

Thus we can make use of existing results on the CGO solutions for the above equation.

Proposition 3.1. Given n¼ 2, 3, s 2 R, let c satisfy Condition 3.1 with the constant p
subjected to p > 1þ 2=ðn� 1Þ and n=p < 2=ðnþ 1Þ þ s. Then for any s > 0 large
enough, there is a solution w to (3.1) which is of the form (3.2) with the residual
r satisfying

jjrjjHs, p ¼ Oðss�n=p�rÞ, (3.6)

with a constant r > 0 independent of s and r.
In order to prove Proposition 3.1, we apply the following lemma from [11,

Proposition 3.3], which is based on the uniform Sobolev inequalities given in [26].
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Lemma 3.1. Suppose that n � 2, s 2 R, 1 < ~p < 2, and p> 1 satisfying
2=ðnþ 1Þ � 1=~p � 1=p < 2=n. Then for any g 2 Cn of the form (3.3) with s sufficiently
large, there is an operator Gg : Hs, ~p ! Hs, p which maps f 2 Hs, ~p to a solution r ¼ Ggf of

ðDþ 2g � rÞr ¼ f in Rn, (3.7)

which satisfies

jjGgf jjHs, p �
jjf jjHs, ~p

s2�nð1=~p�1=pÞ :

We remark that in the formulation of the lemma and in what follows throughout the
article, the notation � means less than or equal to up to a constant independent of s,
for s sufficiently large.

Proof of Proposition 3.1. Substituting the form (3.2) into the Equation (3.1) yields

Dr þ 2g � rr ¼ qr þ q, (3.8)

where q is the function defined in Condition 3.1. Conversely, one can observe that if w
is defined as in (3.2) with r satisfying (3.8), then w is a solution to (3.1).
We construct

r :¼ Id:� Ggq
� ��1

Ggq, (3.9)

by claiming that ðId:� GgqÞ�1Gg is a bounded operator mapping from Hs, ~p to Hs, p,
with

jj Id:� Ggq
� ��1

Ggf jjHs, p�
jjf jjHs, ~p

s2�nð1=~p�1=pÞ :

If this claim is true, one can verify straightforwardly that the function r defined in
(3.9) satisfies (3.8), by using that Gg is a solution operator of (3.7). Moreover, we have

jjrjjHs, p�
jjqjjHs, ~p

s2�nð1=~p�1=pÞ ¼
jjqjjHs, ~p

sr�sþn=p
,

with the constant r :¼ 2� n=~p þ s > 0: We are left to prove the claim.
Notice that Ggq is a bounded operator on Hs, p: In particular, one has

jjGgqf jjHs, p�
jjqf jjHs, ~p

s2�nð1=~p�1=pÞ�
jjf jjHs, p

s2�nð1=~p�1=pÞ ,

for any f 2 Hs, p: Recall that 2� nð1=~p � 1=pÞ is positive. As a consequence, the oper-
ator Id:� Ggq is invertible on Hs, p with a bounded inverse for s sufficiently large.
Therefore we have for any f 2 Hs, p that

jj Id:� Ggq
� ��1

Ggf jjHs, p�jjGgf jjHs, p�
jjf jjHs, p

s2�nð1=~p�1=pÞ ¼
jjf jjHs, p

sr�sþn=p
:

The proof is complete. w

4. Local analysis of solutions near a corner

We now use the CGO solutions introduced in Section 3 to analyze the behavior of solu-
tions to the partial differential equations of interest in a neighborhood of a corner,
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providing the bridge to final goal of understanding the scattering by an inhomogeneity
whose support contains a corner. In what follows, Sn�1 denotes the unit sphere in
Rn, n � 2, and Sn�1

þ denotes the upper half unit sphere.
Let K be a given open subset of Sn�1

þ which is Lipschitz and simply connected. We
define the (infinite and open) “generalized cone” C ¼ CK as C :¼ fx 2 Rn; x̂ 2 Kg:
Denote C� :¼ C \ B� and K� :¼ C \ @B�, where B� is the ball centered at the origin of
radius � > 0: Given a positive constant d, we define K0

d as the open set of Sn�1 which is
composed of all directions d 2 Sn�1 satisfying that

d � x̂ > d > 0, for all x̂ 2 K: (4.1)

Let q 2 L1ðRnÞ and c 2 L1ðRnÞ satisfy
0 < k1 � cðxÞ � k2 < 1, for almost all x 2 C�: (4.2)

The following result is a direct consequence of Lemma 2.1.

Lemma 4.1. If u, v 2 H1ðC�Þ satisfy
r � cruþ k2qu ¼ 0,Dvþ k2v ¼ 0, in C�,
u ¼ v, c@�u ¼ @�v, on @C� n K�,

(4.3)

then one hasð
C�

c� 1ð Þrv � rw� k2ðq� 1Þvw dx ¼
ð
K�

c@�w v� uð Þ � w @�v� c@�uð Þ ds (4.4)

for any solution w to

r � crwþ k2qw ¼ 0, in C�: (4.5)

Denote the vector field ~b ¼~bc as

~b ¼~bcðxÞ :¼ �rc�1=2

c�1=2
¼ rc1=2

c1=2
¼ 2

rc
c

¼ �2
rc�1

c�1
¼ 2r ln c:

Lemma 4.2. Given c 2 W1,1 satisfying (4.2), let u, v 2 H1ðC�Þ satisfy (4.3) and let w be
a solution to (4.5) of the form (3.2) with r 2 H1ðC�Þ and d 2 Sn�1 satisfying (4.1). Then
one has ð

C�
c� 1ð Þrv � rw� k2ðq� 1Þvw dx

���� ���� ¼ Oðse�ds�Þ, (4.6)

for s sufficiently large.

Proof. It is observed that

eg�xj j � e�sd�x � e�sdjxj, for any x 2 C \ B� :

Hence for w of the form (3.2) we haveð
K�

w @�v� c@�uð Þds
���� ���� ¼ ð

K�

c�1=2ð1þ rðxÞÞ @�v� c@�uð Þeg�xds
���� ����

� e��ds

ð
K�

1þ rðxÞj j k�1=2
1 @�vj j þ k1=22 @�uj j

� �
ds

�e��ds,
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where k1 and k2 are the constants in (4.2). Notice that

r c�1=2eg�x
� �

¼ ðg�~bÞc�1=2eg�x:

Then we have

rw ¼ c�1=2 rr þ 1þ rð Þðg�~bÞ
� �

eg�x, (4.7)

and hence

@�w ¼ c�1=2 @�r þ 1þ rð Þðg�~bÞ � �
� �

eg�x:

Therefore we haveð
K�

c@�w v� uð Þds
���� ���� ¼ Ð

K�
c1=2 @�r þ 1þ rð Þðg�~bÞ � �
� �

v� uð Þeg�xds
��� ���

� k1=22

ð
K�

��� @�rj j þ 2 1þ rj jð Þ
���v� ujse��dsds

þ2k1=21

ð
K�

���@�c 1þ rð Þ v� uð Þ
���e��dsds

�se��ds:

Now the proof can be completed by using the identity (4.4). w

In the following, we will use repeatedly the estimateð�
0
tb�1e�ltdt ¼ CðbÞ=lb þ o e��Rl=2ð Þ, as Rl ! 1, (4.8)

for any real number b> 0 and any complex number l satisfying Rl � 1, where C
stands for the Gamma function. We include the proof of (4.8) for readers’ convenience.

Proof of (4.8). Denote l1 :¼ Rl � 1: Suppose that l1 � 2ðb� 1Þ=s: Then
tb�1 � el1t=2, for all t � s,

and hence ð1
�

tb�1e�ltdt

���� ���� � ð1
�

tb�1e�l1tdt �
ð1
�

e�l1t=2dt ¼ 2e�l1s=2=l1:

Notice that ð1
0
tb�1e�ltdt ¼ Lftb�1gðlÞ ¼ CðbÞ=lb,

where L represents the Laplace transform and C is the gamma function. Therefore, we
have ð�

0
tb�1e�ltdt ¼

ð1
0
tb�1e�ltdt �

ð1
�

tb�1e�ltdt

¼ CðbÞ=lb þ o e�l1s=2ð Þ, as l1 ¼ Rl ! 1: w

Lemma 4.3. Under the same notations and conditions as in Lemma 4.2, suppose that
there are constants p, p̂ > 1 and r0 > 0 such that the residual r in the form (3.2) of w
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satisfies

jjrjjLpðC�Þ ¼ Oðs�n=p�r0Þ and jjrrjjLp̂ðC�Þ ¼ Oðs1�n=p̂�r0Þ (4.9)

for s sufficiently large. Assume further that there exist constants a, b, r 2 R, with
r > 0, a 6¼ �1, and functions cb,V 2 L1ðKÞ, which are all independent of s, satisfying

ðcðxÞ � 1Þc�1=2ðxÞ ¼ cbðx̂Þjxjb þ OðjxjbþrÞ, (4.10)

and

rvðxÞ ¼ Vðx̂Þjxja þ OðjxjaþrÞ, (4.11)

for all x 2 C�. Then one must haveð
C�
cbðx̂ÞVðx̂Þ � gjxjaþbeg�xdx

���� ���� ¼ jjcbjjL1ðKÞjjVjjL1ðKÞ O
1

snþbþa�1

� �
, (4.12)

and ð
C�

cðxÞ � 1ð ÞrvðxÞ � rwðxÞ � cbðx̂ÞVðx̂Þ � gjxjaþbeg�x
h i

dx

���� ����
¼ jjcbjjL1ðKÞjjVjjL1ðKÞ O

1
snþbþa

� �
þ O

1
snþbþa�1þr

� �
,

(4.13)

as s ! 1, for any d 2 K0
d with d > 0:

Proof. Recalling (4.7) from before we haveð
C�

c� 1ð Þrv � rw dx ¼
ð
C�
c�1=2 c� 1ð Þrv � g�~b þ rþ g�~b

� �
r

� �
eg�xdx:

Using (4.10) and (4.11) we observe that

c� 1ð Þc�1=2rv ¼ cbðx̂ÞVðx̂Þjxjaþb þ O jxjaþbþr
� �

:

Thus we are able to split the integral in (4.13) asð
C�

c� 1ð Þrv � rw dx � I10 ¼
X3
j¼1

I1j, (4.14)

where the integrals I1j, j ¼ 0, :::, 3, are defined by

I10 :¼
ð
C�
cbðx̂ÞVðx̂Þ � gjxjaþbeg�xdx,

I11 :¼ �
ð
C�
cbðx̂ÞjxjaþbVðx̂Þ �~bðxÞeg�xdx,

I12 :¼
ð
C�
cbðx̂ÞjxjaþbVðx̂Þ � r þ g�~bðxÞ

� �
reg�xdx,

and

I13 :¼
ð
C�
O jxjaþbþr
� �

� g�~bðxÞ þ rþ g�~bðxÞ
� �

r
� �

eg�xdx,
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which can all be viewed as functions of s.
Notice that

jI10j � sjjcbVjjL1ðKÞ

ð
C�
e�sd�xjxjaþb dx:

By applying (4.8) and the property (4.1) for d 2 K0
d we obtain that

jI10j� s jjcbVjjL1ðKÞ

ð�
0

ð
K
tnþaþb�1e�tsd�x̂ drðx̂Þdt

� s jjcbVjjL1ðKÞ

ð�
0
tnþaþb�1e�tsd dt�

jjcbVjjL1ðKÞ
snþaþb�1

:

(4.15)

Using the same arguments and recalling (2.4) we also observe that

jI11j � k�1
1 jjrcjjL1ðC�ÞjjcbVjjL1ðKÞ

ð
C�
e�sd�xjxjaþb dx�

jjcbVjjL1ðKÞ
snþaþb

:

For the estimate concerning I12, we first have that����ðC�reg�xcbðx̂ÞjxjaþbVðx̂Þ � ðg�~bðxÞÞdx
�����sjjcbVjjL1ðKÞ

ð
C�
e�sd�xjxjaþbr dx

�sjjcbVjjL1ðKÞjjrjjLpðC�Þð
Ð
C�e

�p0sd�xjxjp0ðaþbÞ dxÞ1=p0 ,
where p0 denotes the H€older conjugate of p. In the same way as for (4.15), we can
derive that ð

C�
e�p0sd�xjxjp0ðaþbÞ dx � rðKÞ

ð�
0
tnþp0ðaþbÞ�1e�tp0sd dt�

1
snþp0ðaþbÞ ,

and hence thatð
C�
reg�xcbðx̂ÞjxjaþbVðx̂Þ � g�~bðxÞ

� �
dx

���� ����� jjcbVjjL1ðKÞjjrjjLpðC�Þ
sn=p0þaþb�1

¼ jjcbVjjL1ðKÞjjrjjLpðC�Þ
snþaþb�1�n=p

:

Similarly, we can obtain the following estimate for the rest part of the integral I12,����ðC�eg�xcbðx̂ÞjxjaþbVðx̂Þ � rr dx

�����jjcbVjjL1ðKÞjjrrjjLp̂ðC�Þ
�ð

C�
e�p̂ 0sd�xjxjp̂0ðaþbÞ dx

�1=p̂ 0

�
jjcbVjjL1ðKÞjjrrjjLp̂ðC�Þ

snþaþb�n=p̂
:

Therefore, the condition (4.9) implies

jI12j ¼ jjcbVjjL1ðKÞ O
1

snþaþb�1þr0

� �
:

As for the integral I13, analogous to the estimates for I11 and I12 one hasð
C�
eg�xO jxjaþbþr

� �
� �~b þ rþ g�~b

� �
r

� �
dx

���� ���� ¼ O
1

snþaþbþr

� �
þ O

1
snþaþb�1þrþr0

� �
:

Applying the argument in (4.15) for the rest of I13 we obtain that

424 F. CAKONI AND J. XIAO



Ð
C�e

g�xg � O jxjaþbþr
� �

dx
��� ��� �s

Ð
C�e

�sd�x xjaþbþrdx�
1

snþaþbþr�1
:

����
Hence we have

jI13j ¼ O
1

snþaþbþr�1

� �
:

The proof is complete. w

Lemma 4.4. Adopting the same notations and assumptions as in Lemma 4.3, assume fur-
ther that there exist constants a0, b0 2 R and functions q0,~v 2 L1ðKÞ, which are all
independent of s, satisfying

ðqðxÞ � 1Þc�1=2ðxÞ ¼ q0ðx̂Þjxjb0 þ Oðjxjb0þrÞ, (4.16)

and

vðxÞ ¼ ~vðx̂Þjxja0 þ Oðjxja0þrÞ, (4.17)

with some d > 0, for all x 2 C�. Then one must haveð
C�
q0ðx̂Þ~vðx̂Þjxja0þb0eg�xdx

���� ���� ¼ jjq0jjL1ðKÞjj~vjjL1ðKÞ O
1

snþb0þa0

� �
, (4.18)

and Ð
C� ðq� 1Þvw� q0ðx̂Þ~vðx̂Þjxja0þb0eg�x
h i

dx
��� ���
¼ jjq0jjL1ðKÞjj~vjjL1ðKÞ O

1
snþb0þa0þr0

� �
þ O

1
snþb0þa0þr

� �
,

(4.19)

as s ! 1, for any d 2 K0
d with d > 0:

Proof. We first observe from (4.16) and (4.17) that

ðq� 1Þc�1=2v ¼ q0ðx̂Þ~vðx̂Þjxja0þb0 þ Oðjxja0þb0þrÞ:
Substituting the form (3.2) of w we can split the integralð

C�
ðq� 1Þvw dx� I20 ¼ I21 þ I22, (4.20)

where the integrals I20, I21 and I22 are defined by

I20 :¼
ð
C�
q0ðx̂Þ~vðx̂Þjxja0þb0eg�xdx,

I21 :¼
ð
C�
q0ðx̂Þ~vðx̂Þjxja0þb0rðxÞeg�xdx,

and

I22 :¼
ð
C�
O jxja0þb0þr
� �

ð1þ rÞeg�xdx,
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which can be regarded as functions of s. Applying similar arguments as in the proof of
Lemma 4.3 and using (4.8) we have

jI20j�jjq0~vjjL1ðKÞ

ð
C�
e�sd�xjxja0þb0 dx

¼ jjq0~vjjL1ðKÞ

ð�
0

ð
K
tnþa0þb0�1e�tsd�x̂ drðx̂Þdt

�jjq0~vjjL1ðKÞ

ð�
0
tnþa0þb0�1e�tsd dt�

jjq0~vjjL1ðKÞ
snþa0þb0

:

Making use of (4.9) we can derive

jI21j �jjq0~vjjL1ðKÞ

ð
C�
re�sd�xjxja0þb0 dx

�jjq0~vjjL1ðKÞjjrjjLpðC�Þð
Ð
C�e

�p0sd�xjxjp0ðb0þa0Þ dxÞ1=p0

�jjq0~vjjL1ðKÞ
jjrjjLpðC�Þ
sn=p0þb0þa0

¼ jjq0~vjjL1ðKÞ
jjrjjLpðC�Þ

snþb0þa0�n=p
�
jjq0~vjjL1ðKÞ
snþb0þa0þr0

:

Now the following estimate for I22 can be obtained analogously from those for I20
and I21,

jI22j� 1
snþb0þa0þr

þ 1
snþb0þa0þrþr0

:

The proof is complete. w

The following result provides an estimate of an integral over C� involving the solution
v of the problem (4.3).

Proposition 4.1. Under the same notations and assumptions as in Lemmas 4.3 and 4.4,
one must haveð

C�
cbðx̂ÞVðx̂Þ � gjxjaþbeg�xdx

���� ����
¼ k2jjq0jjL1ðKÞjj~vjjL1ðKÞ O

1
snþb0þa0

� �
þ k2O

1
snþb0þa0þr

� �
þjjcbjjL1ðKÞjjVjjL1ðKÞ O

1
snþbþa

� �
þ O

1
snþbþa�1þr

� �
,

(4.21)

k2
ð
C�
eg�x~vðx̂Þq0ðx̂Þjxja0þb0dx

���� ����
¼ k2jjq0jjL1ðKÞjj~vjjL1ðKÞ O

1
snþb0þa0þr0

� �
þ k2O

1
snþb0þa0þr

� �
þjjcbjjL1ðKÞjjVjjL1ðKÞ O

1
snþbþa�1

� �
þ O

1
snþbþa�1þr

� �
,

(4.22)

and
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ð
C�
eg�x �k2~vðx̂Þq0ðx̂Þjxja0þb0 þ cbðx̂ÞVðx̂Þ � gjxjaþb
h i

dx

���� ����
¼ k2jjq0jjL1ðKÞjj~vjjL1ðKÞ O

1
snþb0þa0þr0

� �
þ k2O

1
snþb0þa0þr

� �
þjjcbjjL1ðKÞjjVjjL1ðKÞ O

1
snþbþa

� �
þ O

1
snþbþa�1þr

� �
,

(4.23)

as s ! 1, for any d 2 K0
d with some d > 0:

Proof. This is a direct consequence of Lemmas 4.2, 4.3, and 4.4, more precisely, by
rewriting ð

C�
eg�x �k2~vðx̂Þq0ðx̂Þjxja0þb0 þ cbðx̂ÞVðx̂Þ � gjxjaþb
h i

dx

¼ k2
ð
C�

ðq� 1Þvw� q0ðx̂Þ~vðx̂Þjxja0þb0eg�x
h i

dx

�
ð
C�

c� 1ð Þrv � rw� cbðx̂ÞVðx̂Þ � gjxjaþbeg�x
h i

dx

þ
ð
C�

c� 1ð Þrv � rw� k2ðq� 1Þvw dx,

and using the estimates (4.6), (4.13), (4.18), (4.12), and (4.19). w

Remark 4.1. Under sufficient regularity, the term cbðx̂Þjxjb in (4.10) can be regarded as
the first non-zero term, which is a homogeneous polynomial in this case, of the Taylor
expansion for c�1=2ðc� 1Þ around x¼ 0. The same situation is true for (4.11), (4.16)
and (4.17), concerning V, q and v, respectively.

Remark 4.2. Later on, we will present some situations or conditions which would yield
a contradiction of (4.23). As a consequence, we will be able to characterize the non-scat-
tering property as well as some behavior of transmission eigenfunctions under certain
circumstances.

Corollary 4.1. Under the same notations and assumptions as in Proposition 4.1, assume
further that b ¼ b0 ¼ 0,N :¼ a � 0 an integer and both cb ¼ c0 and q0 are constants. If
a0 � N ¼ a, then one has

c0
Ð
C�Vðx̂Þ � gjxj

Neg�x dx
��� ��� ¼ oðs1�n�NÞ: (4.24)

Otherwise if a0 ¼ N � 1, then

c0

ð
C�
Vðx̂Þ � gjxjNeg�x dx � k2q0

ð
C�
eg�x~vðx̂ÞjxjN�1dx

���� ���� ¼ oðs1�n�NÞ: (4.25)

Remark 4.3. The constants c0 and q0 in Corollary 4.1 can be viewed as the contrast of
the coefficients cðxÞ and qðxÞ comparing to the constant 1. In fact, under sufficient
smoothness, one has
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c0 ¼ cð0Þ � 1ð Þc�1=2ð0Þ and q0 ¼ qð0Þ � 1ð Þc�1=2ð0Þ:
The above corollary highlights the complicated interplay of the behavior near the corner
of the contrasts in c and q, as well as of the fields v and rv, in deciding whether (4.22)
or (4.23) or both are the dominating terms in the asymptotic expansions.

5. Scattering by inhomogeneities with corners in 2D

We revisit the problem (4.3), or (2.7), in this section. We prove in space dimension
n¼ 2 that, when certain conditions are satisfied, the asymptotics (4.23) can not hold
true unless the vector field V is trivial. As a consequence, we are able to derive some
results concerning the “never trivial” scattering property of an inhomogeneous media in
dimension two whose contrast in the main operator or/and the lower order term has a
corner in its support.

5.1. Preliminaries

We first introduce some preliminary results. The first one is a standard result, see
e.g., [27].

Lemma 5.1. If v is a solution to the Helmholtz equation

Dvþ k2v ¼ 0: (5.1)

in an open domain in Rn, then v is real analytic in that domain.

Lemma 5.2. Let v be defined in a neighborhood of a point x0 2 Rn and satisfy the
Helmholtz Equation (5.1). Write the Taylor series of v and rv around x0 as

v ¼
X1
j¼N0

vj and rv ¼
X1
j¼N

Vj ,

where vj and Vj are homogeneous (vectorial) polynomials of ðx � x0Þ with degree j for
each j 2 N, vN0 and VN are not identically zero, and N0,N 2 N. Then the following are
true, in the neighborhood where both of the Taylor series converges,

1. The vector field Vj is curl free for each j.
2. There holds N � N0 � N þ 1, except for the case that N0 ¼ 0 and N ¼ 1. In the

latter case, one must have in addition, v1 ¼ r � V2 ¼ Dv3 � 0:
3. VN is divergence free if N 6¼ 1, and r � VN ¼ �k2v0 when N ¼ 1.
4. The polynomials vN0 , vN0þ1, VN and VNþ1 are harmonic.

Proof. Notice that

rv ¼
X1
j¼N0

rvj,

with rvj homogeneous vectorial polynomials of degree j� 1, which is curl free, for
each j � 1: Hence each Vj is curl free, and we also observe N0 � 1 � N: On the other

428 F. CAKONI AND J. XIAO



hand from the Helmholtz equation we have

�k2v ¼ r � rv ¼
X1
j¼N

r � Vj :

Compare it to the original Taylor series of v we obtain that N � 1 � N0: Now let us
look at the case when N0 ¼ N � 1 � 0: If N 6¼ 1, then rvN0 ¼ rvN�1 is either identi-
cally zero or a homogeneous vectorial polynomial of degree N � 2 � 0: However, we
know that the first nonzero term from the Taylor series of rv should be VN. Therefore,
we must have rvN�1 � 0, which implies that vN�1 ¼ vN0 is a constant, namely, N¼ 1.
Next, we verify that r � VN ¼ 0 when N 6¼ 1: If N¼ 0, this is trivial since V0 is a con-
stant vector. For N � 2, we have that r � VN ¼ �k2vN�1 ¼ 0, because we have shown
that vj � 0 for all j � N � 1: The last statement is known, see, [1, 11]. It can be seen
directly by taking Laplacian on each term of the Taylor series and using the fact that
both v and rv solve the Helmholtz equation. w

We are now in a position to introduce an estimate which can be related to (4.23). In
the following, we shall restrict ourselves only in dimension n¼ 2. However, similar esti-
mates and results are expected for dimension three or higher. Under this consideration,
we still keep the notation n, instead of 2, and specify n¼ 2 when needed.
We define our local corner first. Denote w0 2 ð0, pÞ as the aperture of a (convex) cor-

ner. Given positive constants � and d, let K ¼ fð cosw, sinwÞ; 0 < w < w0g, C, C� and
K0

d be defined accordingly as in the beginning of Section 4. In particular, we remind
here that K0

d is an open set of Sn�1 where elements d satisfy (4.1).

Lemma 5.3. Let n¼ 2, and let the complex vector g be of the form (3.3) with s > 0 and
d 2 K0

d. Given N 2 N, let ~V ¼ ~V ðxÞ be the gradient of a homogeneous polynomial of
degree Nþ 1 which is harmonic. Suppose that ~V is not identically zero. Then one
must have ð

C�
eg�x ~V � g dx ¼ C0s

1�n�N þ o se��s=2ð Þ, (5.2)

with a constant C0 independent of s. Moreover, if C0 is zero when taking both the two
opposite directions of d? for fixed d, then one must have

w0 ¼
2lp

nþ 2N
¼ lp

1þ N
2 ð0, pÞ, i:e:, N ¼ p

w0
l� 1 2 N, (5.3)

for some l 2 N:

Remark 5.1. When N¼ 0, namely when ~V is a constant vector, then C0 6¼ 0 for corners
of any angle unless ~V is the zero vector. If N¼ 1, then (5.3) implies that w0 ¼ p=2 is
the only case for C0 ¼ 0 with ~V not identically zero.

Before proving the above lemma, it is insightful to remark that the above exception
of w0 (which translates to a particular form of uin) is not an exception for the potential
case ðDþ k2qÞu ¼ 0, i.e., when c¼ 1 (see i.e., [1]). For our case concerning the oper-
ator r � crþ k2q, even if we replace ~V � g in (5.2) with ~V �~p, with ~p 2 C2 and ~p � g ¼
0, would not exempt us from getting exceptional w0 that yield C0 ¼ 0 and non zero ~V :
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In fact, such a vector ~p would satisfy

~p ¼ c0ðd? � idÞ ¼ �ic0ðd þ id?Þ ¼ �ic0g=s:

This basically means that even a “direct” CGO solution for rw of the form rw ¼
c1=2ð~p þ~rÞeg�x with ~p 2 C2 satisfying ~p � g ¼ 0 might not be of help in improving
the results.

Proof of Lemma 5.3. It is known that ðx16ix2ÞN form a base of all homogeneous har-
monic polynomial of degree N, where x1 and x2 denote the Cartesian components of
x 2 R2: Therefore, the vector field ~V can be written as

~V ðxÞ ¼ b1
1
i

� �
ðx1 þ ix2ÞN þ b2

i
1

� �
ðx1 � ix2ÞN

¼ b1
1
i

� �
jxjNeiNw þ b2

i
1

� �
jxjNe�iNw,

where we have adopted the parametrization as x̂ ¼ ð cosw, sinwÞT : Denote d ¼
ð cosu, sinuÞT : Taking u7p=2 as the angular coordinate of d?, then d? ¼
6ð sinu, � cosuÞT and

d þ id? ¼ cosu6i sinu
sinu7i cosu

� �
¼ 1

7i

� �
e6iu:

Under these notations we have

g � x̂ ¼ �se6iu cosw7i sinwð Þ ¼ �se6iðu�wÞ: (5.4)

and, depending on the opposite direction choices of d?,

�jxj�N ~V ðxÞ � gs�1 ¼ 2b1eiðNwþuÞ or � jxj�N ~V ðxÞ � gs�1 ¼ 2ib2e�iðNwþuÞ: (5.5)

It is observed thatð
C�
jxjNeg�xe6iNw dx ¼

ð�
0

ðw0

0
tNþn�1e�tse6iðu�wÞ

e6iNwdwdt:

Applying the estimate (4.8) yieldsð
C�
jxjNeg�xe6iNw dx� o e��s=2ð Þ

¼CðN þ nÞ
sNþn

e7iuðNþnÞ
ðw0

0
e6iðNþnÞwe6iNwdw ¼ C6

CðN þ nÞ
sNþn

,

(5.6)

with the constant

C6 :¼ e7iðNþnÞu Ð w0

0 e6ið2NþnÞwdw ¼ 6i

2N þ n
1� e6ið2NþnÞw0ð Þe7iðNþnÞu:

Therefore, we have from (5.5) and (5.6) thatð
C�
eg�x ~V � g dx ¼ �2b1e6ius

ð
C�
jxjNe6iNweg�xdx

¼ �2b1C6
CðN þ nÞ
sNþn�1

e6iu þ o se��s=2ð Þ,
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where the constant b1 should be in fact ib2 when the 7 is taken as theþ sign. We have
now verified (5.2) with the constant

C0 ¼ �2ib1
CðN þ nÞ
2N þ n

e�iðNþn�1Þu 1� eið2NþnÞw0ð Þ,

if we take u� p=2 as the angular of d?, or if we take uþ p=2 as the angular of d?

C0 ¼ �2b2
CðN þ nÞ
2N þ n

eiðNþn�1Þu 1� e�ið2NþnÞw0ð Þ:

If C0 ¼ 0 for both cases, then one must have either

ð2N þ nÞw0 ¼ 2lp, for some l 2 N, (5.7)

or b1 ¼ b2 ¼ 0: However, the latter cannot be true since we have assumed the non-trivi-
ality of ~V : w

The following result is known, see [11]. It was first established in [1] for rectangular
corners and c¼ 1.

Lemma 5.4. Let n¼ 2, and let g be of the form (3.3) with s > 0 and d 2 K0
d. Let vN0 be

a homogeneous polynomial of degree N0 2 N which is harmonic. Then there is a constant
C1,N0 , which depends on d but not on s, such thatð

C�
vN0ðxÞeg�x dx ¼ C1,N0s

�n�N0 þ o se��s=2ð Þ: (5.8)

Moreover, the constant C1,N0 ¼ C1,N0ðdÞ cannot be zero for all directions d in any open
subset of Sn�1:

The next result is a particular case of Lemma 5.4, when N0 ¼ 0: We give a proof for
the sake of obtaining the explicit value of the constant C1,N0 in (5.8), which will be
used later.

Lemma 5.5. Under the same notations as in Lemma 5.4, one hasð
C�
eg�x dx ¼ C1s

�n þ o se��s=2ð Þ, (5.9)

with a constant C1 6¼ 0 which is independent of s.

Proof. Applying (5.4) and (4.8) we haveÐ
C�e

g�x dx ¼
ð
C�
e�sjxje6iðu�wÞ

dx ¼
ðs
0

ðw0

0
tn�1e�tse6iðu�wÞ

dwdt

¼ CðnÞ
sn

ðw0

0
e7inðu�wÞ dwþ o se��s=2ð Þ:

Therefore, we have derived (5.9) with the constant

C1 ¼ CðnÞe7inu
ðw0

0
e6inwdw ¼ 6iCðnÞ=ne7inu 1� e6inw0ð Þ,

where the plus or minus signs depend on the choice of direction or angular, u7p=2, of
the unit vector d?: w
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Lemma 5.6. Let the dimension n ¼ 2, and Let ~V ¼ ~V ðxÞ be a fixed homogeneous poly-
nomial for x of degree N ¼ 1 which is curl free and satisfies r � ~V ¼ �k2v0 6¼ 0, where
v0 is a constant. Let the complex vector g ¼ gðs, dÞ be of the form (3.3) with s > 0 and
d 2 K0

d, and let c0 and q0 be two constants with c0 6¼ 0. Then one hasð
C�
eg�x ~V � g dx ¼ ~C0s

�n þ o se��s=2ð Þ, (5.10)

and

c0

ð
C�
eg�x ~V � g dx � k2v0q0

ð
C�
eg�x dx ¼ ~C1s

�n þ o se��s=2ð Þ, (5.11)

with constants ~C0 and ~C1 independent of s but possibly dependent on d. Moreover, ~C1 ¼
0 for two opposite directions of d? if and only if w0 ¼ p=2 and q0 ¼ c0, or w0 6¼ p=2
and ~V takes the following form

~V ðxÞ ¼ k2v0
2

r 1� q0
c0

� �
x1x2 tanw0 �

1
2
q0
c0

x21 �
1
2

2� q0
c0

� �
x22

 !
: (5.12)

Proof. We apply the parametrization x̂ ¼ ð cosw, sinwÞT as before and write

~V ðxÞ ¼ b11
b21

� �
ðx1 þ ix2Þ þ b12

b22

� �
ðx1 � ix2Þ ¼ b11

b21

� �
eiw þ b12

b22

� �
e�iw:

It is obtained from the curl and divergence condition that

b21 � ib11 ¼ ik2v0=2 and b12 � ib22 ¼ �k2v0=2:

We adopt the notations in the proof of Lemma 5.3 for d, d? and g. Then

g � ~V ðxÞ ¼ �sjxje6iu b6e
6iw � k2v0 e7iw=2

� �
,

where bþ ¼ b11 � ib21 and b� ¼ b12 þ ib22: By straightforward computation we haveð
C�
jxj e�sjxje6iðu�wÞ

e6iw dx ¼
ðw0

0

ð�
0
r2 e�sre6iðu�wÞ

e6iw drdw

¼ C6, 1
Cð1þ nÞ
s1þn

þ o e��s=2ð Þ,

and similarly ð
C�
jxj e�sjxje6iðu�wÞ

e7iw dx ¼ C6, 2
Cð1þ nÞ
s1þn

þ o e��s=2ð Þ,

with the constants

C6, 1 ¼ 6ie7iðnþ1Þu 1� e6iðnþ2Þw0

nþ 2
and C6, 2 ¼ 6ie7iðnþ1Þu 1� e6inw0

n
:

Therefore, we have derived (5.10) with the constant

~C0 ¼ 6iCð1þ nÞe7inu k2v0
1� e6inw0

2n
� b6

1� e6iðnþ2Þw0

nþ 2

� �
¼ 6ie7i2u k2v0 1� e6i2w0ð Þ � b6 1� e6i4w0ð Þ� �

=2:

432 F. CAKONI AND J. XIAO



Notice that e6i2w0 6¼ 1 for w0 2 ð0, pÞ, and that e6i4w0 ¼ 1 if w0 ¼ p=2: Then ~C0 can
never be zero when w0 ¼ p=2: Suppose that w0 6¼ p=2 and ~C0 ¼ 0 for both±signs. Then

b6 ¼ k2v0
1þ e6i2w0

,

in which case

~V ðxÞ ¼ k2v0
2

x2 tanw0

x1 tanw0 � 2x2

 !
¼ k2v0

2
r x1x2 tanw0 � x22
� �

:

Further, combining (5.10) with (5.9) we arrive at (5.11) with the constant

~C1 ¼ c0~C0 � k2v0q0C1,

namely,

7 2ie6i2u~C1 ¼ k2v0 c0 � q0ð Þ 1� e6i2w0ð Þ � c0 b6 1� e6i4w0ð Þ:
Similar as before, we observe that ~C1 ¼ 0 implies c0 ¼ q0 if w0 ¼ p=2: Otherwise if
w0 6¼ p=2 then ~C1 ¼ 0 for both ± signs yields

c0 6¼ q0 and b6 ¼ k2v0
1þ e6i2w0

1� q0
c0

� �
,

and as a consequence,

~V ðxÞ ¼ k2v0
2

�q0
c0

x1 þ 1� q0
c0

� �
x2 tanw0

1� q0
c0

� �
x1 tanw0 � 2� q0

c0

� �
x2

0BBB@
1CCCA

¼ k2v0
2

r 1� q0
c0

� �
x1x2 tanw0 �

1
2
q0
c0

x21 �
1
2

2� q0
c0

� �
x22

 !
:

5.2. Do corners in 2D always scatter?

Now we return our attention to the scattering problem governed by (2.1). We first
introduce the mathematical definition of the corners in the support of the inhomogen-
eity we are concerned with. Roughly speaking, we are able to deal with constitutive
material properties a and c, whose support of the contrast to the background, i.e.,
suppðc� 1Þ or suppða� 1Þ, contains a convex corner which could be small. As a par-
ticular case when a � 1, our results recover those proven in [1, 12] and [13]. We
require some regularity of a and c locally around the corner. We do not need to impose
any additional assumptions on a and c elsewhere (see Figure 1).

Definition 5.1. A function f is said to have a corner at its support if the following is
satisfied: Let a simple connected domain X 2 R2 be such that suppf � �X: There is a
point x0 2 @X, a ball B�ðx0Þ of radius � > 0 centered at x0 and a cone Cðx0Þ :¼ fx 2
R2 : cx �x0 2 Kg with K ¼ ð cosw, sinwÞ; 0 < w < w0

	 

, such that
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�X \ B�ðx0Þ ¼ suppf \ B�ðx0Þ ¼ Cðx0Þ \ B�ðx0Þ :¼ C�ðx0Þ:
In this case, we call x0 ¼ ½x0; C�ðx0Þ	 a corner of (the support of) f of radius �.

Definition 5.2. Given constitutive material properties a 2 L1ðR2Þ, c 2 L1ðR2Þ, suppose
that x0 ¼ ½x0; C�ðx0Þ	 is a corner of either a – 1 or c – 1 with radius �. The corner x0 is
called regular, with respect to a and c, if there exist c 2 L1ðR2Þ and q 2 L1ðR2Þ satisfying
the following:

1. There is a constant e0 > 0 such that c 2 H3, 1þe0 and q 2 H1, 1þe0 :
2. cjC� ¼ ajC� in H3, 1þe0ðC�Þ \ L1ðC�Þ and qjC� ¼ cjC� in H1, 1þe0ðC�Þ \ L1ðC�Þ:
3. There are constants c0, q0 and some r > 0 such that

cðxÞ � 1ð Þc�1=2ðxÞ ¼ c0 þ Oðjx� x0jrÞ, (5.13)

and

ðqðxÞ � 1Þc�1=2ðxÞ ¼ q0 þ Oðjx � x0jrÞ, (5.14)

for almost all x 2 C�ðx0Þ:
Moreover, by an abuse of terminology, we say that there is a conductivity jump (for

a(x)) at x0 if c0 6¼ 0, or a potential jump (for c(x)) if q0 6¼ 0:

Remark 5.2. We note here that the first listed condition in Definition 5.2 suffices for c
and q to satisfy the assumptions in Proposition 3.1 and Condition 3.1 with n¼ 2 and
s¼ 0, 1. In particular, we can take ~p ¼ 1þ e0=2 and p � 3ð1þ 2e0Þ=ð1� 4e0Þ > 3: The
property (3.4) now holds by taking 1=p ¼ 1=~p � 1=ð1þ e0Þ and using the H€older’s
inequality jjghjjL~p � CjjgjjLp jjhjjL1þe0 :

Theorem 5.1 and Theorem 5.3 in the following state our main results concerning the lack
of non-scattering phenomena. To this end, we give a class of incident fields for which we
cannot conclude yet whether or not they will be scattered by inhomogeneities with corners.

Definition 5.3. Given a corner of aperture w0 and an incident field uin, denote N 2 N

as the order of the first nonzero term from the Taylor expansion of ruin at the corner.
We say that the pair ðuin,w0Þ belongs to the class E if there holds N ¼ ðl=w0Þ p� 1
with some positive integer l.

Theorem 5.1 (Conductivity corner scattering). Given a, c 2 L1ðR2Þ satisfying (2.4) and
(2.5), let u ¼ uin þ usc be the total field of the scattering problem (2.1)–(2.3). Suppose
that there is a corner x0 ¼ ½x0; C�ðx0Þ	 at the support of a – 1 which is regular with
respect to a and c in the sense of Definition 5.2. Assume further that there is a conductiv-
ity jump for a at x0. Then the scattered field usc cannot be identically zero in the exterior
of any bounded ball in R2 except, perhaps, if ðuin,w0Þ belongs to the class E with w0 the
aperture of C�ðx0Þ:

Proof. We prove this result by contradiction. Assume, up to a rigid change of coordi-
nates, that x0 locates at the origin. Suppose that usc is identically zero outside some
bounded ball. Then by unique continuation, usc is zero in R2 n �X for any Lipschitz
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domain X as in Definition 5.1 for a – 1. As a consequence, the interior transmission
eigenvalue problem (2.7) and (2.8) are satisfied for u the total field and v ¼ uin the inci-
dent field of the scattering problem. In particular, the local problem (4.3) is satisfied
with functions c and q as in Definition 5.2 for a and c, respectively.
Given d 2 K0

d with a fixed constant d > 0, for any positive s sufficiently large, we
can find from Proposition 3.1 a solution w to (3.1) that is of the form (3.2) with the
residual r satisfying

jjrjjHs, ps ¼ oðss�2=psÞ, s ¼ 0, 1, (5.15)

where p0 and p1 are those constants as specified in Definition 5.2. Let the vector field
~V ¼ ~V ðxÞ ¼ Vðx̂ÞjxjN be the first nonzero (the N-th) term from the Taylor expansion
of ruin at the corner. Then we can always write v ¼ uin in the form (4.17) around the
corner. Moreover, our assumptions on vanishing/nonvanishing of uin and ruin at the
corner imply N0 � N, according to Lemma 5.2. Letting c0 be the constant defined in
Definition 5.2 for c or a, we denote the integral

I :¼ c0

ð
C�
~V ðxÞ � geg�x dx: (5.16)

Then we know from (4.24) in Corollary 4.1 that I ¼ oðs1�n�NÞ, where n¼ 2 is the space
dimension. However, Lemma 5.3 implies that I ¼ c0C0s1�n�N þ oðse��s=2Þ: These two
asymptotics can not both be true unless C0 ¼ 0, namely, when (5.7) holds. w

Remark 5.3. In Theorem 5.1 we are confined with the case when uinðx0Þ ¼ 0 or when
uinðx0Þ 6¼ 0 and ruinðx0Þ 6¼ 0: In fact, the complementary situation, i.e., when uinðx0Þ 6¼
0 and ruinðx0Þ ¼ 0, can be dealt with by similar arguments. In this case, we have
N¼ 1 and N0 ¼ 1: As a counterpart of (5.16), we will have

c0

ð
C�
~V ðxÞ � geg�x dx � k2q0v0

ð
C�
eg�xdx

���� ���� ¼ oðs�nÞ:

However, Lemma 5.6 implies that this cannot be true and hence uin is always scattered,
except (perhaps) for some specific cases. In particular, if w0 ¼ p=2, then the only pos-
sible nonscattering case is when cðx0Þ ¼ aðx0Þ; and if w0 6¼ p=2, the only possible non-
scattering case is when cðx0Þ 6¼ aðx0Þ and uin takes a specific form depending on w0 and
q0=c0 which can be derived from (5.12).
Next, we give some consequent results of Theorem 5.1, which shows that for the case

when w0 ¼ p=2 a wide class of incident waves of interest in applications always scatter.

Corollary 5.2. Assume that the constitutive material properties a and c satisfy the
assumptions in Theorem 5.1. Then, for the right corner w0 ¼ p=2, any incident field uin

that satisfies either one of the following conditions:

1. uinðx0Þ 6¼ 0 and ruinðx0Þ 6¼ 0,
2. uinðx0Þ 6¼ 0,ruinðx0Þ ¼ 0 and in addition, aðx0Þ 6¼ cðx0Þ,

must scatter.
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Proof. We adopt the notations in the proof of Theorem 5.1. The first condition is
equivalent to N0 ¼ N ¼ 0: Recalling Definition 5.3 for the case of N¼ 0 and w0 ¼ p=2,
then Theorem 5.1 already implies that uin is always scattered. When the second condi-
tion is true, we have N0 ¼ 0 and N¼ 1. Then from the discussion in Remark 5.3 we
have that uin is always scattered unless, perhaps, when cðx0Þ ¼ aðx0Þ: w

Theorem 5.3 (Potential corner scattering). Given a, c 2 L1ðR2Þ satisfying (2.4) and
(2.5), let u ¼ uin þ usc be the total field of the scattering problem (2.1)-(2.3). Suppose that
there is a corner x0 ¼ ½x0; C�ðx0Þ	 at the support of c – 1 which is regular with respect to
a and c in the sense of Definition 5.2. Let c be the function as in Definition 5.2 corre-
sponding to a. Assume further that there is a potential jump for c at x0. Then the scat-
tered field usc cannot be trivially zero in the exterior of any bounded ball in R2 if any of
the following conditions is satisfied:

1. For all x 2 C�ðx0Þ and some constant r > 0

cðxÞ � 1ð Þc�1=2ðxÞ ¼ Oðjx � x0j2þrÞ: (5.17)

2. For all x 2 C�ðx0Þ and some constant r > 0

cðxÞ � 1ð Þc�1=2ðxÞ ¼ Oðjx � x0j1þrÞ, (5.18)

and N0 ¼ N, where N0 and N are the degrees of the first nonzero term from the
Taylor expansion of uin and ruin, respectively, at the corner.

3. For all x 2 C�ðx0Þ and some constant r > 0

cðxÞ � 1ð Þc�1=2ðxÞ ¼ Oðjx � x0jrÞ, (5.19)

(i.e. c0 ¼ 0, where c0 is defined in Definition 5.2), and uinðx0Þ 6¼ 0 and ruinðx0Þ ¼ 0:

Remark 5.4. We note here that the conditions (5.17), (5.18) or (5.19), essentially
describe the order of vanishing at the corner of c� 1, or in other words of the contrast
a – 1 at the corner. As a consequence, Theorem 5.3, in particular in the case of (5.17),
generalizes the previous results proven in [1, 12] and [13] for the scattering problem
where a � 1:

Proof of Theorem 5.3. We first follow the proof of Theorem 5.1 and the notations
therein up to (5.16). Then we let the vN0ðxÞ ¼ ~vðxÞjxjN0 be the first nonzero (the N0-th)
term from the Taylor expansion of uin, and let q0 6¼ 0 be the constant defined in
Definition 5.2 for q or c. Lemma 5.4 implies that one can alway find a direction d 2 K0

d
and a constant C1,N0 6¼ 0, which satisfy

~I :¼ k2q0

ð
C�
vN0ðxÞeg�xdx ¼ C1,N0k

2q0s
�n�N0 þ o se��s=2ð Þ: (5.20)

On the other hand, applying Proposition 4.1, in particular the estimate (4.22) with
b2 ¼ 0, we obtain

~I ¼ o s�n�N0ð Þ þ jjcbjjL1ðKÞ Oðs�n�ðN�1þb1ÞÞ þ oðs�n�ðN�1þb1ÞÞ, (5.21)
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where the function cb and the constant b1 are chosen for c to satisfy (4.10). Recall from
Lemma 5.2 that N0 � N or N0 ¼ 0 and N¼ 1.
In the first case when (5.17) holds true, we can take b1 ¼ 2 and cb � 0 in (4.10).

Since N � N0 þ 1, we obtain from (5.21) that ~I ¼ oðs�n�N0Þ, which contradicts (5.20).
When the second condition is valid, namely, if N0 ¼ N and there holds (5.18), then set-
ting b1 ¼ 1 and cb � 0 in (4.10) we arrive at the same contradiction ~I ¼ o s�n�N0ð Þ
against (5.19). Lastly in the third case, we have N0 ¼ 0 and N¼ 1. Taking b1 ¼ 0 and
cb ¼ c0 ¼ 0 in (4.10) lead to the same contradiction as before. The proof is com-
pleted. w

We end this section with a remark on the “exclusive” corners and incident waves in
Theorems 5.1 and 5.3. As seen from the statement of these results, in the most general
settings, there are particular conductivity or potential corners and related special inci-
dent fields for which we cannot conclude that the corresponding scattered field is non-
zero. At this time we don’t know whether these exceptions are artifact of our technique
or a more fundamental issue arising from the presence of the contrast in conductivity
near the corner, as we were not able to construct a counter example of a non-scattering
corner along with the corresponding incident field.

6. Applications to inverse scattering for inhomogeneous media

In this section we present some applications of the above corner scattering results to
inverse scattering theory for two dimensional inhomogeneous media. More precisely we
consider the scattering problem (2.1) with n¼ 2, where the constitutive material proper-
ties a and c defined in the beginning of Section 2.

6.1. A global uniqueness theorem

We consider the inverse problem of determining the convex hull of (the support of) an
inhomogeneity from the scattered data. We prove that the polygonal convex hull of cer-
tain inhomogeneities can be uniquely determined by a single far-field measurement.
Our uniqueness result extends the ones proven in [13] and [19]. We start by defining
the admissible set of the inhomogeneities.

Definition 6.1 (Admissible inhomogeneities). Given constitutive material properties a 2
W1,1ðR2Þ, c 2 L1ðR2Þ, aðxÞ � a0 > 0, and D the convex hull of suppðc� 1Þ [
suppða� 1Þ, the inhomogeneity (a, c, D) is called admissible if it satisfies the follow-
ing properties:

1. The convex hull D is a polygon.
2. Each corner x0 of the polygon D is a corner for c – 1 as in Definition 5.1 (which

may or may not be a corner for a – 1); in particular, there exist a cone Cðx0Þ of
aperture w0 and a constant � > 0 such that

C� ¼ C�ðx0Þ :¼ Cðx0Þ \ B�ðx0Þ ¼ suppðc� 1Þ \ B�ðx0Þ:
3. At each corner x0 of D, there exist constant e0 :¼ e0, x0 > 0 and functions c ¼

cx0 2 H3, 1þe0ðRnÞ \ L1ðRnÞ and q ¼ qx0 2 H1, 1þe0ðRnÞ \ L1ðRnÞ satisfying
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ajC� ¼ vC�c and cjC� ¼ vC�q,
where vC� denotes the characteristic function of the set C�: Moreover, there are
constants r ¼ rx0 > 0 and q0 :¼ q0, x0 6¼ 0 such that for almost all x 2 C�ðx0Þ,

ðqðxÞ � 1Þ ¼ q0 þ Oðjx � x0jrÞ and ðcðxÞ � 1Þ ¼ Oðjx� x0j2þrÞ: (6.1)

We denote by A the set of admissible inhomogeneities (a, c, D) (see Figure 2 for
some examples).
We can prove the following uniqueness theorem. We recall that an incident field uin

is an entire solution the Helmholtz equation

Duin þ k2uin ¼ 0 in R2:

Theorem 6.1. Given an admissible inhomogeneity ða, c,DÞ 2 A. Then the far field pattern
u1 corresponding to one single incident wave uin uniquely determines the convex hull D
of suppðc� 1Þ [ suppða� 1Þ:

Proof. Let ðaj, cj,DjÞ 2 A, j¼ 1, 2 be two admissible inhomogeneities, and let uj ¼
uscj þ uin and u1j 6¼ 0 be the corresponding total field and far field pattern, respect-
ively, due to the incident field uin: Assume that u11 ðx̂Þ ¼ u12 ðx̂Þ for all x̂ in the unit
circle. Then from Rellich’s Lemma the scattered fields usc1 ¼ usc2 coincide, and conse-
quently so do the total fields u1 ¼ u2, up to the boundary of R2 n D1 [ D2 , where we
recall D1 and D2 are the (polygon) convex hull of suppðc1 � 1Þ [ suppða1 � 1Þ and
suppðc2 � 1Þ [ suppða2 � 1Þ, respectively. If D1 6¼ D2, then there is a corner x0 :¼
½x0; C�	 for some small � > 0 (to fix the idea) of D1 that lies in the exterior of D2 (see
Figure 3). Hence, we have that r � a1ru1 þ k2c1u1 ¼ 0 in C�,Du2 þ k2u2 ¼ 0 in B�,
and u1 ¼ u2 and a1@�u1 ¼ @�u2 at the vertices of C�: Since, by assumption of the
admissible inhomogeneities, the corner x0 :¼ ½x0; C�	 satisfies the assumption 1 of
Theorem 5.3 and hence by exactly the same argument as in the proof of Theorem 5.3
we conclude that u2 � 0 in B� whence u2 � 0 in R2, by unique continuation [28].
The latter means that the (radiating) scattered field usc2 ¼ �uin satisfies the Helmholtz
equation in R2, therefore usc2 � 0 and u12 ¼ 0: We arrive at a contradiction, which
proves that D1 ¼ D2. w

Although, for simplicity of the statement, we give the uniqueness result only for
inhomogeneities from the admissible class A as specified in Definition 5.2, similar
shape determination results can be shown for more general class of inhomogeneities.
What type of additional inhomogeneities can be included, is easily seen from the
proof of Theorem 6.1. In particular, the admissible inhomogeneities in Definition 5.2
require the conductivity contrast to vanish to second order at the corners of the con-
vex hull. However, we can enlarge the admissible class A by including also inhomoge-
neities whose polygonal convex hull has corners with conductivity jump, i.e., c
satisfies (5.12) with c0 6¼ 0 assuming in addition that such corner has aperture which
is an irrational factor of p. Formally speaking, we can even consider any bounded
inhomogeneities. In this case, if the far-field data corresponding to one single incident
wave is the same for two inhomogeneities, then we can conclude that the difference
between the two corresponding convex hulls (not necessarily polygons) cannot contain
any “admissible pair of corner and total field” as specified in Section 5.2. Here, by
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admissible pairs we mean corners and related waves which will always be non-trivially
scattered by the corner (½x0; C�	 and u2 in the proof of Theorem 6.1 for example).
As a particular case of Theorem 6.1 we have the following uniqueness theorem for

the support of a polygonal inhomogeneity.

Corollary 6.2. Given an admissible inhomogeneity ða, c,DÞ 2 A, and assume further that
suppðc� 1Þ [ suppða� 1Þ is a convex polygon (i.e., suppðc� 1Þ [ suppða� 1Þ ¼ D).
Then the far field pattern corresponding to a single incident wave uniquely determines the
support of the inhomogeneity suppðc� 1Þ [ suppða� 1Þ:

6.2. Approximation by Herglotz functions

Most of the reconstruction techniques using the linear sampling methods and transmis-
sion eigenvalues depends on denseness properties of the so-called Herglotz functions,
which are entire solutions to the Helmholtz equation defined by

vgðxÞ :¼
ð
Sn�1

gðdÞeikx�ddsd, g 2 L2ðSn�1Þ,

where Sn�1 :¼ x 2 Rn : jxj ¼ 1f g, and g is referred to as kernel of the Herglotz func-
tion vg. It is well-known (see e.g., [2]) that the set

fvg : g 2 L2ðSn�1Þg
is dense in

fv 2 H1ðXÞ : Dvþ k2v ¼ 0 inXg
with respect to the H1ðXÞ-norm, where X 2 Rn is a bounded region with con-
nected complement.
Given the inhomogeneity ða, c,XÞ defined at the beginning of Section 2, let k> 0 be a

transmission eigenvalue, i.e., the following problem

r � aruþ k2cu ¼ 0,Dvþ k2v ¼ 0, in X,
u ¼ v, a@�u ¼ @�v, on @X,

has nonzero solution u, v 2 H1ðXÞ: Our corner scattering analysis in the two dimen-
sional case yields the following result, which concerns the approximation of the eigen-
function v by Herglotz functions. To this end, at a transmission eigenvalue k> 0, let the
sequence of Herglotz functions vg�f g approximate the eigenfunction v, i.e.

lim
�!0

jjvg� � vjjH1ðXÞ ¼ 0: (6.2)

Lemma 6.1. Assume that X 
 R2 has a corner x0 ¼ ½x0; C�ðx0Þ	 for a – 1 with the
assumptions of Theorem 5.1 for corner aperture w0 62 fpp; p 2 Q \ ð0, 1Þg, or for c – 1
with the assumptions of Theorem 5.3 with condition 1. Let v be an eigenfunction, and let
the sequence of Herglotz functions vg�f g satisfy (6.2). Then limsupjjg�jjL2ðS1Þ ¼ 1:

Proof. Assume to the contrary that fjjg�jjL2ðS1Þg is bounded. Then up to a subsequence
g� * g 2 L2ðS1Þ weakly as � ! 0: Obviously vg� ! vg in C1ð�XÞ and thus v :¼ vg jX
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which means that vg does not scatter. This contradicts the assumptions, and the lemma
is proven. w

We remark that for the case of a � 1 in [21] the authors have shown that if the
transmission eigenfunction v is approximated by a sequence of Herglotz functions with
uniformly bounded kernels (which according to Lemma 6.1 never happens in this case),
then v must vanish at the corner. Indeed our analysis for “potential corner” shows that
v has to vanish at any order at the corner and by analyticity be identically zero. The
exceptional cases due to the presence of the contrast a� 1 stated in Theorem 5.1 and
Theorem 5.3 describe necessary vanishing properties at the corner of the transmission
eigenfunction v if it can be approximated by a sequence of Herglotz functions with uni-
formly bounded kernel, which is equivalent to k being a non-scattering wavenumber.
However, these are not sufficient conditions for the latter to occur.

7. Conclusions

We conclude the article with a few remarks. Firstly, our construction of CGO solutions
and their use to study local behavior of solutions of concerning PDEs near the vertex of
a generalized corner in any dimension higher than one lays out the needed analytical
framework to study corner scattering. Although, here for sake of presentation, the latter
is carried out only in two dimensional case, we strongly believe that the analogue is
true for conical corners in dimension three. Moreover, similar techniques are expected
to be developed to analyze edge scattering in three dimensions. If proven, such results
can then be used to obtain similar uniqueness theorem as in Section 6.1 for polyhedral
convex hull of the support of inhomogeneity in R3:
Secondly, we are perplexed by the exceptional corners in the case of contrast in conduct-

ivity. We don’t know yet whether this is a shortcoming of our approach or is a more essen-
tial continuation question related to this case. Unfortunately, for geometries with corners
even in R2 it is hard to get simple explicit calculations for the transmission eigenvalue prob-
lem in order to see if for any of such exceptional corners the eigenfunction corresponding
to the equation of the background can be extended outside the corner, i.e., to conclude that
corner does scatter. In order to have a different angle of investigation to this issue, in a
forthcoming study, we consider singularity analysis on the pair of the solution to the interior
transmission problem near a generalized corner, following the lines of [13]. We are hoping
to perform this singularity analysis for anisotropic conductivity coefficient also, for which
the construction of CGO solutions is more complicated.
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