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ABSTRACT ARTICLE HISTORY
We consider the scattering problem governed by the Helmholtz Received 11 September 2019
equation with inhomogeneity in both “conductivity” in the diver-  Accepted 15 June 2020

|n

gence form and “potential” in the lower order term. The support of
the inhomogeneity is assumed to contain a convex corner. We prove
that, due to the presence of such corner under appropriate assump- di ttering:
i h tential and conductivity in the vicinity of the corner, mediam scatering; non-
thnS. OI’? the pO y . ! scattering wave numbers;
any madent_ﬂeld scatters. Based on corner scattering analysis we shape determination;
present a uniqueness result on determination of the polygonal con- transmission eigenvalues
vex hull of the support of admissible inhomogeneities, from scatter-
ing data corresponding to one single incident wave. These results AMS SUBJECT
require only certain regularity around the corner for the coefficients ~ CLASSIFICATIONS |
modeling the inhomogeneity, whereas away from the corner they 35R30; 35025; 35P25;

. . . o 35P05; 81U40
can be quite general. Our main results on scattering and inverse
scattering are established for R?, while some analytic tools are
developed in any dimension n > 2.

KEYWORDS
Corner scattering; inverse

1. Introduction

The existence of non-scattering wave numbers (otherwise referred to as frequencies or
energies) in the scattering by inhomogeneous media, remains a perplexing question des-
pite the recent progress starting with the pioneering paper [1]. A non-scattering wave
number for a given inhomogeneity corresponds to the frequency for which there exists
an incident wave that is not scattered by the media. It is easily seen that non-scattering
wave numbers, if exist, are examples of the so-called transmission eigenvalues [2]. The
latter are the eigenvalues of a non-selfajoint eigenvalue problem with a deceptively sim-
ple formulation, given by two different elliptic equations in a bounded domain that
coincides with the support of inhomogeneity and sharing the same Cauchy data on the
boundary. It has been shown that, under suitable assumptions on the contrast of scat-
tering media, real transmission eigenvalues exist [3] and they can be seen in the scatter-
ing data [4, 5]. However, for a transmission eigenvalue to be non-scattering wave
number, one must be able to extend the part of the transmission eigenfunction corre-
sponding to the background equation as a solution to the background equation in the
entire space, which is not a trivial question in general. It is well-known that real trans-
mission eigenvalues corresponding to a spherically stratified inhomogeneity are non-
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scattering wave numbers [6] and furthermore, all transmission eigenvalues uniquely
determine the spherically stratified refractive index [7]. However beyond the case of
spherically stratified media, there is no other known type of bounded supported inho-
mogeneities for which non-scattering wave numbers are proven to exist. We remark
that the existence of non-scattering waves has been observed in scattering problems for
waveguides [8]. The connection between transmission eigenvalues and non-scattering
energies is also studied in some cases of hyperbolic geometries [9, 10].

The absence of non-scattering wave numbers was first shown in [1] for inhomogene-
ities whose support contains a right corner. It was further studied in [11] for convex
conic corners, in [12] for 2D corners and 3D edges, in [13] for more general corners
and edges, in [14] for weakly singular interfaces in 2D, and in [15] for the source prob-
lem. Recently, in [16] and [17] the corner scattering investigation is extended to electro-
magnetic inhomogeneous scattering problems. The fact that corners and edges always
scatter is employed to prove that the far field pattern corresponding to one single inci-
dent wave uniquely determines the support of a convex polygonal inhomogeneous
media, see e.g., [13, 18] and [19]. Related studies [20] and [21] discuss the properties of
the transmission eigenfunctions and their possible extension in a neighborhood of a
corner. We would also like to mention that there are several works on propagation of
singularities for solutions of the wave equation in manifolds with conic and other types
of singularities, using microlocal analysis related techniques (see, e.g., [22-24] and the
references therein). However our choice of the approach here is determined by particu-
larity of the question under investigation. More specifically, we are concerned with the
existence of non-scattering frequencies, which is related to the behavior of eigenfunc-
tions of the nonstandard transmission eigenvalue value problem. Hence, we do not sim-
ply analyze the scattering phenomena near a corner, but rather our problem becomes
whether certain solutions of elliptic partial differential equations can be extended out-
side a corner [25]. Moreover, our analysis applies to L™ coefficients and our results
have applications in inverse scattering problems.

In this article, we undertake a study of corner scattering for the scalar scattering
problem corresponding to inhomogeneities with contrast in both the main operator
and the lower term. For notational simplicity, with an abuse of terminology though,
we call “conductivity” the coefficient in the main operator and “potential” the coeffi-
cient in the lower term, throughout the article. We prove that, any incident wave pro-
duces non-zero scattered field in the exterior of the inhomogeneity, providing the
existence of a corner at the support of the potential with non-zero contrast where the
conductivity contrast vanishes to the second order at the vertex. In addition we show
that if the aperture of the corner is an irrational factor of n, we have the same non-
trivial scattering result for all incident waves. Otherwise, if the conductivity has non-
trivial contrast at the corner, or the conductivity contrast goes to zero slower than
second order at the vertex, we need to exclude a certain class of incident fields from
our results. For more detailed statements we refer the reader to Theorems 5.1 and 5.3
in the article. As an application of corner scattering we discuss an approximation
property of transmission eigenfunctions by Herglotz wave functions in the presence of
corners on the support of the inhomogeneity, providing more insight to this issue
already discussed in [20] and [21].
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Figure 1. Sketch of an inhomogeneity satisfying our assumptions. Dotted filling depicts supp(c — 1),
uniform coloring depicts supp(a — 1), while darker dotted filling depicts the support of supp(c —
1) Nsupp(a — 1). The domain © must contain a corner for the contrast ¢ — 1 or/and a - 1.

Another main result of our article concerns the inverse scattering problem of shape
determination for inhomogeneities, for which the uniqueness is proven by applying cor-
ner scattering analysis. We show that scattering data corresponding to a single incident
field uniquely determines the polygonal convex hull of the support of the inhomogen-
eity under appropriate assumptions on conductivity and potential contrasts at the cor-
ners of the polygonal. In particular, Theorem 6.1 states the uniqueness result for
inhomogeneities whose polygonal convex hull has potential jump at all corners and at
the vertices the conductivity contrast vanishes to the second order. However, we remark
that this uniqueness result is in fact valid for other types of inhomogeneities. For
example, we could allow that all corners of the polygonal convex hull where the con-
ductivity has a jump, have aperture as irrational factor of m. More generally, if two
inhomogeneities lead to the same scattering data when probed by the same incident
wave, we can conclude that the difference between the two convex hulls cannot contain
certain types of corners.

Our results generalize the previous work on corner scattering and shape determin-
ation in [1, 11-13, 18, 19], where the authors consider only the case when the conduct-
ivity is identically one in the whole space. In particular, this is a special case of our
setting where the contrast of the conductivity vanishes to second order at the corner.
Nevertheless, we recall that here we do not assume any additional properties of the con-
ductivity away from the corner, besides basic ellipticity and boundedness requirements
for the forward problem, making our setting much more general. For example, we allow
inhomogeneities with disconnected support or with voids inside (see e.g., Figures 1-3,
for a visualization of the support of admissible inhomogeneities), or even anisotropic
materials could be allowed away from the corners. The setting where the conductivity
possesses contrast at the corner is a novelty of this study and it presents interesting
questions related to potential exclusive incident waves for special corners, which calls
for deeper understanding.



416 (&) F.CAKONI AND J. XIAO

Figure 2. Examples of admissible inhomogeneities. Dotted filling indicates supp(c — 1), uniform col-
oring indicates supp(a — 1) darker dotted filling indicates the support of supp(c — 1) Nsupp(a — 1).
One incident field suffices to determine the polygonal convex hull depicted by the tick line.

Figure 3. Intersection of two different admissible inhomogeneities. Dotted filling indicates the sup-
port of the contrast supp(c—1), darker dotted filling indicates the support
of supp(c — 1) Nsupp(a — 1).

Finally, we remark that our approach is based on asymptotic analysis on the integrals
appearing in an identity which is obtained as consequence of the non-scattering phenom-
enon. In order to do so, it is of fundamental importance to construct the so-called
Complex Geometric Optics (CGO) solutions with desired estimates for the corresponding
differential operator. We develop this analytical framework for any dimension n > 2,
including the construction of CGO solutions as well as the derivation of asymptotic esti-
mates on the integrals. However, in the analysis of corner scattering we restrict ourselves
to R?, avoiding technicalities that higher dimensions present in a key point of our ana-
lysis, namely deducing the strictly non-zero asymptotic behavior of a certain integral.

The article is organized as follows. Having formulated the problem in the next sec-
tion, Sections 3 and 4 are devoted to the construction of CGO solutions for the consid-
ered problem and their use to analyze the behavior of solutions of the transmission
eigenvalue problem in the vicinity of a generalized corner both in R* and R>. In
Section 5 we restrict ourselves to the two-dimensional case, and provide a comprehen-
sive analysis of “conductivity” and “potential” corner scattering in Theorems 5.1 and
Theorem 5.3, respectively. Section 6 is devoted to the aforementioned applications of
corner scattering to inverse scattering theory.
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2. Formulation of the scattering problem
We consider the scattering problem governed by
V- -aVu+k*cu=0 in R", (2.1)

where the total field u := u™ + u** € H]_(R") is composed of the incident field ™ and
the scattered field u*. The incident field satisfies the Helmholtz equation
Au™ + K*u™ =0 in R, (2.2)

and the scattered field satisfies the Sommerfeld radiation condition
X-Vu —iku* = 0<|x|7nz;l) (2.3)

uniformly with respect to X = x/|x|. The coefficients a and ¢ in (2.1) representing the
constitutive material properties of the media, are real valued scalar L*° functions satisfy-
ing
a(x) >ag>0 for almost all x € R", (2.4)
with a constant g, and
supp(c — 1) Usupp(a — 1) C Q, (2.5)

where Q is a simply connected bounded region in R”, ie., the inhomogeneity is
included in Q and in the background media the constitutive material properties are
a=1 and c=1. We sometimes denote such an inhomogeneity as (a,c,Q), despite the
fact that the specific domain Q could be chosen differently. Note that (2.1) implicitly
contains the continuity of the field and co-normal derivative wherever a jumps.

The far field pattern u™(x) of the scattered field u™ is defined via the following
asymptotic expansion of the scattered field

u(x) = SXp LX) (J;f|x|) u™(x) + O( 1“1) JF— 00

x|

where X = x/|x| (c.f, [2]). We are particularly interested in the situation when the sup-
port of the contrast a — 1 and/or ¢ — 1 has a corner at its shape. We would like to show
that when there is such a corner, then for any incident field u™, the scattered wave u*
cannot vanish identically outside any region containing Q, or equivalently, the far-field
amplitude 4> cannot be trivially zero. Notice that this problem, in general, cannot be
transformed into the parallel study on corner scattering for the problem governed by
1/2

Av + K (g - %%) y=0 in R", (2.6)
by the dependent change of variables v := a'/?u, since it will introduce new singular-
ities in the above equation. Later on, we impose some regularity assumptions on the
coefficients a and ¢ in a neighborhood of the corner. Nevertheless we allow for jumps
on a and c across the boundary of supp(a — 1) Usupp(c — 1). In fact, away from the
corner, a can be even L™ positive-definite matrix-valued function.
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2.1. A consequence of the non-scattering phenomenon

We assume that for a given inhomogeneity with constitutive parameters a(x) and c(x)
there exists a nontrivial incident field 4™ which would not be perturbed by a and ¢
when observed by a far-field observer. In this case, the corresponding far-field pattern
u™ will vanish identically or equivalently, the scattered field u* will be zero in the
exterior of any simple-connected Lipschitz domain Q enclosing supp(c — 1) U supp(a —
1) (see Figure 1). As a consequence, the following transmission eigenvalue problem is

satisfied

V-aVu+keu=0 Av+kv=0, inQ, (2.7)

u=v,a0,u = 0,v, on 0Q, (2.8)

with v := u™, where v is the outward unit normal to 0Q.

Lemma 2.1. If u and v satisfy (2.7), then one has

JQ(a —1)Vv-Vw dx — kzj

(c—1)vw dx = J ad,w(v —u) — w(d,v — adyu) ds
Q

0Q

for any solution w to

V- -aVw+ Kew=0, in Q.

Proof. Since u and w are both solutions to the same equation, we have from the Green’s
formula that

J aud,w ds = J aVu - Vw — k*cuw dx = J awd,u ds.
a0 Q a0

Similarly we have

J aVv - -Vw dx — kzj
Q

cow dx = J avo,w ds
Q

0Q

—J Vv-Vw dx—kzj
Q

W dx—J
Q

wo,v ds —I—J avo,w ds,
0

0Q

where in the second identity we have used that v satisfies the Helmholtz equation. It is
hence obtained that

J (a—1)Vv-Vw dx —kZJ (c—1vw dx = J avd,w — wd,vds
Q Q a0

= J ad,w(v —u) — w(0,v — ad,u) ds.
0Q (]
The identity in the above lemma is a fundamental tool in our forthcoming analysis of
the scattering by corners. Later in Section 4, we analyze in details these integrals near
the corner, i.e., in B;(xo) N Q as shown in Figure 1.
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3. Complex rapidly decaying solutions

In this section, we shall seek for solutions to the equation

V- 9yVw+kpw=0 in R", (3.1)
which are of the form
w=w, =7 V21 +r(x))e"™. (3.2)
Here, # € C" is defined as
n=—t(d+id"), (3.3)

with d,d* € S"™! satisfying d - d* = 0. These solutions are referred to in the literature
as Complex Geometrical Optics (CGO) solutions. Given s € R and p > 1, we recall the
Bessel potential space

= {f € PR):F |1+ 1P € PR,
where F and 7! denote the Fourier transform and its inverse, respectively.

Condition 3.1. Given s € R, the coefficients y and p are such that q:=y~'/?Ay"/? —
kK*py~! € H*? and

laf i < Cllf[lgsr  for any f € H*P, (3.4)

with some 1 < p < 2 satisfying
2/(n4+1)+1/p <1/p < 2/n+min{1/p,s/n}. (3.5)

Some instances of feasible choices for the parameters s,p,p such that (3.5) holds are
given next. For s=0 in R* for any p >3 one can find 1 < p < 2, whereas in R*> a num-
ber p in the interval (3/2,2) can be chosen for any p>6. If s=1 is chosen, then for
any p>6/5 in R* and any p>2 in R? one can find 1 < p < 2. We will be more spe-
cific when we apply the result from this section to our inverse scattering problem.

In order to see the relevance of introducing the function q in Condition 3.1, we note
that if we let v := y'/2w then v satisfies

Av—qv=0 in R"
Thus we can make use of existing results on the CGO solutions for the above equation.
Proposition 3.1. Given n=2, 3, s € R, let y satisfy Condition 3.1 with the constant p

subjected to p>1+4+2/(n—1) and n/p <2/(n+1)+s. Then for any ©>0 large
enough, there is a solution w to (3.1) which is of the form (3.2) with the residual

r satisfying
||| 1700 = O(zP70), (3.6)

with a constant ¢ > 0 independent of T and r.
In order to prove Proposition 3.1, we apply the following lemma from [11,
Proposition 3.3], which is based on the uniform Sobolev inequalities given in [26].
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Lemma 3.1. Suppose that n>2,seR,1<p<2 and p>1 satisfying

2/(n+1) <1/p—1/p <2/n. Then for any n € C" of the form (3.3) with t sufficiently

large, there is an operator 4, : H*? — H>P which maps f € H*? to a solution r = 4,f of
(A+2n-V)r=f in R" (3.7)

which satisfies

WHHW
195 e = Syt

We remark that in the formulation of the lemma and in what follows throughout the
article, the notation < means less than or equal to up to a constant independent of =,
for 7 sufficiently large.

Proof of Proposition 3.1. Substituting the form (3.2) into the Equation (3.1) yields
Ar+2n-Vr=gqr+gq (3.8)

where g is the function defined in Condition 3.1. Conversely, one can observe that if w
is defined as in (3.2) with r satisfying (3.8), then w is a solution to (3.1).
We construct

ro=(Id. — %q)_lgnq, (3.9)

by claiming that (Id. — gnq)_l% is a bounded operator mapping from H%? to H®f,
with

[f 1

2—-n(1/p=1/p)

1(1d. = %4q) "%,

If this claim is true, one can verify straightforwardly that the function r defined in
(3.9) satisfies (3.8), by using that %, is a solution operator of (3.7). Moreover, we have

=
Hsp—

— Mallasr—_ llallgsr
HoP ™ 2-n(1/p—1/p) o—s+n/p’

7]

with the constant ¢ := 2 —n/p +s > 0. We are left to prove the claim.
Notice that ¢,q is a bounded operator on H*’. In particular, one has

Nafllpse (s

19naf 1= i1/ = sntip-17p)

for any f € H*P. Recall that 2 —n(1/p — 1/p) is positive. As a consequence, the oper-
ator Id. — %,q is invertible on H®? with a bounded inverse for t sufficiently large.
Therefore we have for any f € H*? that

Wl U lesr

2—n(1/p—1/p) - o—s+n/p’

1(1d. = %,q) " Guf |10 <| |, f|

The proof is complete. O

<
HspP—

4. Local analysis of solutions near a corner

We now use the CGO solutions introduced in Section 3 to analyze the behavior of solu-
tions to the partial differential equations of interest in a neighborhood of a corner,
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providing the bridge to final goal of understanding the scattering by an inhomogeneity
whose support contains a corner. In what follows, "' denotes the unit sphere in
R",n > 2, and S’rl denotes the upper half unit sphere.

Let X be a given open subset of Sfl which is Lipschitz and simply connected. We
define the (infinite and open) “generalized cone” C =Cx as C:= {x € R";x € K}.
Denote C. :=CN B, and K, :=C N OB, where B, is the ball centered at the origin of
radius € > 0. Given a positive constant 6, we define K as the open set of S"~' which is
composed of all directions d € S"! satisfying that

d-x>0>0, foral xel. (4.1)
Let p € L°(R") and y € L*(R") satisfy
0< A <yp(x) <A <oo, foralmost all x € C.. (4.2)

The following result is a direct consequence of Lemma 2.1.
Lemma 4.1. If u,v € H'(C,) satisfy

V- yVu + Kpu = 0,Av + kv =0, in C,,

u=v, y0,u=09,v, on 0C.\ K, (4.3)

then one has

J (y—=1)Vv-Vw—Kk(p—1)yw dx = J yO,w(v —u) —w(0,v —y0,u) ds  (4.4)
c K.

for any solution w to

V- 9yVw+kpw=0, in C.. (4.5)
Denote the vector field b = Ev as
L. v,yfl/z vyl/Z vy v,yfl
b—by(x) —_TT—W—ZT——Z '))71 —ZVIH'))

Lemma 4.2. Given y € Wb satisfying (4.2), let u,v € H'(C,) satisfy (4.3) and let w be
a solution to (4.5) of the form (3.2) with r € H'(C.) and d € S"™! satisfying (4.1). Then
one has

J (y = 1)Vv-Vw —K(p — 1)vw dx| = O(1e %), (4.6)
c.

for T sufficiently large.

Proof. It is observed that

"] < e ™ < e7™R for any x € CNB..

Hence for w of the form (3.2) we have

J w(0,v — 70,u)ds J 7V (14 (%)) (0yv — 90, u)eTds
e Ke

< e—s&rJ |1 + r(x)l(/«bl—l/2|8,,v| + A;/2|8yu|>ds
K(

Se—eér’
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where 4, and A, are the constants in (4.2). Notice that
V() 2er%) = (n — b)y~'/2e.
Then we have
Vw=y"1/2 (Vr +(1+7)(n— l’,’))en-x’ (4.7)
and hence
dw =712 (8,,r—|— (1+7r)(n—b)- y)e”'x.

Therefore we have

JK PO,w(v — u)ds| = “,CEW/I/Z ((%r +(1+r)(n—b)- 1/) (v — u)e"™ds

< z;/ZJ [(0ur] 211+ r) |y — ufee=0

€

+22}/2J Ayy(L+r1)(v—u) ‘e‘e‘ws
Ke
5167651.
Now the proof can be completed by using the identity (4.4). O

In the following, we will use repeatedly the estimate

J = le dt = T(b)/ub + ole™2),  as Ru — oo, (4.8)
0

for any real number >0 and any complex number u satisfying Ru > 1, where I
stands for the Gamma function. We include the proof of (4.8) for readers’ convenience.

Proof of (4.8). Denote y; := Ru > 1. Suppose that p; > 2(b — 1)/s. Then
< ett/2 0 for all >,

and hence

{o¢] [o¢] (o]
J tble‘”dt‘ < J trle Mgy < J e Mt = 2e7MS2

€ € €

Notice that

J " ey = £{0) () = T(b) /4,

0

where L represents the Laplace transform and I' is the gamma function. Therefore, we
have

€ 00 o0
J e 1 gy :J tble’”dt—J oLkt gy
0 0 €

=T(b)/ub 4 ole2), as p, = Ru — oo. t

Lemma 4.3. Under the same notations and conditions as in Lemma 4.2, suppose that
there are constants p,p > 1 and 6o > 0 such that the residual r in the form (3.2) of w
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satisfies
I7llzsc,) = O(x™"2~) and  [|Vr]|;(C.) = O(z'~"/2~) (4.9)

for t sufficiently large. Assume further that there exist constants o, f,0 € R, with
o > 0, # —1, and functions yp, V € L(K), which are all independent of 1, satisfying

(2(x) = 1)y 2 (x) = 9,(%)|x|” + O(|x"**), (4.10)
and
Vv(x) = V(%)[x[* + O(|x|"""), (4.11)

for all x € C.. Then one must have

N N x 1
HC Vﬁ(X)V(x) . ;/’|x|%+ﬁe’7 dx| = ||’y[j||Lo(,(}C>||V||Loc()C) O<I—n+fj’+xl>’ (4.12)

and

(5(x) = 1)Vr(x) - V() — 75(&) V() - nlx* P de
C

- ||7’ﬁ||L°O(/C)||VHL°°(’C) <Tn+ﬁ+ot) <1n+ﬂ+a 1+a>

as T — oo, for any d € K5 with 6 > 0.

(4.13)

Proof. Recalling (4.7) from before we have

J (y—1Vv-Vw dx = J yil/z(y —1)Vy- (17 —b+ (V +n— b )r)e”'xdx.
C. Ce
Using (4.10) and (4.11) we observe that
(= 129y = 2R VRl + O [l ).
Thus we are able to split the integral in (4.13) as

3
J (y—=1)Vv-Vw dx — I, = ZIU, (4.14)
3

1

where the integrals I,j,j = 0, ..., 3, are defined by
L = L pp(E)V (&) - nlx|" P e dx,
b= ‘]C D@V (E) - Bx)erda,
Iy = L IR 3)- (V41— B e,

and

hs o= [ O(r#) - (1= 5 + (¥ 40— 59 r) s
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which can all be viewed as functions of .
Notice that

[Tho| < 7:||yﬁV||Loc(,C>J e x| dx.

€

By applying (4.8) and the property (4.1) for d € Kj we obtain that

€
Lol= = |v,;V||Lm(,<>J j S () dy
0JK
4.15)
) 176Vl (
<z ||y/3V||L°°(IC J protp—1,-ttd dt<W

Using the same arguments and recalling (2.4) we also observe that

178Vl k)

|III| < Ay 1||V’V||L0° Tn+“+ﬁ

T I

¢

For the estimate concerning I;,, we first have that

j 1BV (E) - (1 — b)) dx

€

Sr||yﬁV||Lm(,QL ede"‘|x|“+ﬁr dx

€

ST\|V/3V||Loc(/c>|M|Lp(c()(Jﬂcéejﬁ%d'x|x|p/(o‘+ﬁ) dx) /7,

where p’ denotes the Holder conjugate of p. In the same way as for (4.15), we can
derive that

€
—p'td-x| . |p!(a+B) < n+p'(a+p)—1 ,—tp'td g4 —
Lse |x] dx < a(K) L t e dt= prETEE R
and hence that

o (o - s Vilego Ity 117Vl
L re’7x/ﬁ(x)|x| V(%) - (’7 - b(x))d ' /P +oc+/3 1 - htotB—1-n/p

Similarly, we can obtain the following estimate for the rest part of the integral I;,,

N . 1/p
yﬁVHLDC(}C)HerLIS (Cf) <JC e P Td~x|x|p/(o<+ﬁ) dx)

||V5V\|Lo< IVl (Ce)
ontotp— n/p '

J e”"‘yﬁ(&)|x|“+ﬂV(5c) -Vr dx|=<
c.

Therefore, the condition (4.9) implies

1
T2| = {174Vl c) O(m)

As for the integral I3, analogous to the estimates for I;; and I, one has
R - 1 1
. o+p+o _ .
“C e0(|x ) (<5 + (V4n—5 )r)dy| = o(TnMwH) + o(fmw_lwm).

Applying the argument in (4.15) for the rest of I;3 we obtain that




‘fceen'x”l . O(|x|ﬁ+ﬁ+0> dx) S,L.Icfef‘rd-x

Hence we have

The proof is complete.
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1
s = O(m)

atpto g
x| dx= ntot+pto—1"

|

Lemma 4.4. Adopting the same notations and assumptions as in Lemma 4.3, assume fur-
ther that there exist constants o, fy € R and functions p,,v € L°(K), which are all

independent of 1, satisfying

(p(x) = 1)y72(x) = po(%) |2l + O(|x"*),

and

v(x) = 9(&)1x]" + O™,

with some 6 > 0, for all x € C.. Then one must have

H 0o (3)7 (%) x| e * dx
.

and

e 0 = 1w = po(&) () rer+]

- 1
= lpollz=o) 1711 (1) O(m) +O<m

as T — oo, for any d € K with 6 > 0.
Proof. We first observe from (4.16) and (4.17) that

(p— 1)y 20 = po(2) (%) x| o 4 O(|x| o).

Substituting the form (3.2) of w we can split the integral

J (p—1)vw dx — Iy = I; + I,
Ce

where the integrals Iy, I,; and I,, are defined by

Ly =

121 =

and

by =

JC.

€

€

Po(R)(R)|x e,

o (37 (%) x| Por(x) e dx,

O(|x|°‘°+ﬁ””> (14 r)e"*dx,

= [P0l ey 17l (k) 0<7

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)
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which can be regarded as functions of 7. Applying similar arguments as in the proof of
Lemma 4.3 and using (4.8) we have

|120|s||pov||m,<>J e oo e

= ||p0i}||Lx(l€>J J tn+0¢0+ﬁofle*tfd-fc dU(fC)dl’
0JK

||p01~’HL°°(}C)

€
- 112
S||p0V||Loc(;C> JO tn+o{0+ﬁ0 Lot < prr—

Making use of (4.9) we can derive

N s||pov|m<,<>j re ot

~ —p'td-x Bo+ao /
=1po 7|l ooy 17l e 0y (o €72 745 |xP"Po0) ) /P

iy 17l (e 5 ey _ o lie i)
SH'DOVHL%(’C) m - ||p0v||Lw(’C) ntBotoo—n/p = HPotootay

Now the following estimate for I, can be obtained analogously from those for I,
and L,

1
<
I |= Byt +o + o +Botat+otog

The proof is complete. O

The following result provides an estimate of an integral over C. involving the solution
v of the problem (4.3).

Proposition 4.1. Under the same notations and assumptions as in Lemmas 4.3 and 4.4,
one must have

' [ V) e era
2 7 1 2 1 (4.21)
k ||p0||L°°(K)||V||LD°()C) O m +k O W .
1 1
+||V[3HL”°(}C)||V||L°C(/C) o oy +0 tptra—lto )

J €150 (%) po () x| P dx
Ce

= RllpolligolPllege) O( =) + K0~ (4.22)
= Poll= o) VIl ) Y\ Znoraotoo T :

1 1
Fvpllz o) 1V e i) O<W> + O(m)

k2

and
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L 1|~ KT ()0 () o+ 33V V(E) -l dx
: 1 1
— 12 ~ 5

= k ||p0||L>o(IC)||VHLao(K) O<m> +k O<m> (4.23)

1 1
+||V/3||L°°(/C)HV||L‘>°(}C) O(—TH/;M) + O(Tn+[3+o¢1+rr)’

as T — oo, for any d € K5 with some 6 > 0.

Proof. This is a direct consequence of Lemmas 4.2, 4.3, and 4.4, more precisely, by
rewriting

J, &[Gl 3y VIE) et

= kzL [(p —1)vw — po(ﬁc)fz(fc)|x|“°+ﬁ°e”‘x} dx

€

_J (0= )Vv- T = 3@ V(E) -l Per| dx
Ce
+H =1V Vw =k (p - yw dx,
Ce
and using the estimates (4.6), (4.13), (4.18), (4.12), and (4.19). -

Remark 4.1. Under sufficient regularity, the term yﬁ(fc)|x|ﬁ in (4.10) can be regarded as
the first non-zero term, which is a homogeneous polynomial in this case, of the Taylor
expansion for yil/ 2(y — 1) around x=0. The same situation is true for (4.11), (4.16)
and (4.17), concerning V, p and v, respectively.

Remark 4.2. Later on, we will present some situations or conditions which would yield
a contradiction of (4.23). As a consequence, we will be able to characterize the non-scat-
tering property as well as some behavior of transmission eigenfunctions under certain
circumstances.

Corollary 4.1. Under the same notations and assumptions as in Proposition 4.1, assume
further that B = B, =0,N := o > 0 an integer and both yy = 7, and p, are constants. If
oy > N = a, then one has

Yolle.V ) -l Ner dx‘ =o(c' " N). (4.24)

Otherwise if og = N — 1, then

o V) e ds—Rpy| il lax -

C(

= o(t!"N). (4.25)

Remark 4.3. The constants 7, and p, in Corollary 4.1 can be viewed as the contrast of
the coefficients y(x) and p(x) comparing to the constant 1. In fact, under sufficient
smoothness, one has
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7o = (7(0) = 1)y 2(0) and  py = (p(0) — 1)y *(0).
The above corollary highlights the complicated interplay of the behavior near the corner

of the contrasts in y and p, as well as of the fields v and Vv, in deciding whether (4.22)
or (4.23) or both are the dominating terms in the asymptotic expansions.

5. Scattering by inhomogeneities with corners in 2D

We revisit the problem (4.3), or (2.7), in this section. We prove in space dimension
n=2 that, when certain conditions are satisfied, the asymptotics (4.23) can not hold
true unless the vector field V is trivial. As a consequence, we are able to derive some
results concerning the “never trivial” scattering property of an inhomogeneous media in
dimension two whose contrast in the main operator or/and the lower order term has a
corner in its support.

5.1. Preliminaries
We first introduce some preliminary results. The first one is a standard result, see
e.g., [27].
Lemma 5.1. If v is a solution to the Helmholtz equation

Av+ kv =0. (5.1)
in an open domain in R", then v is real analytic in that domain.

Lemma 5.2. Let v be defined in a neighborhood of a point xo € R" and satisfy the
Helmbholtz Equation (5.1). Write the Taylor series of v and Vv around x, as

v:ivj and Vv:iv ,
=N

j=No

where v; and V; are homogeneous (vectorial) polynomials of (x — xo) with degree j for
each j € N,vy, and Vy are not identically zero, and No,N € N. Then the following are

true, in the neighborhood where both of the Taylor series converges,

1. The vector field V; is curl free for each j.

2. There holds N < Ny < N + 1, except for the case that No =0 and N = 1. In the
latter case, one must have in addition, vi =V - V, = Av; = 0.

3. Vyis divergence free if N # 1, and V - Vy = —k*vy when N = 1.

4. The polynomials vn,, VNy+1, Vv and Vg are harmonic.

Proof. Notice that
o8
Vv = Z VV]',
j=No

with Vv; homogeneous vectorial polynomials of degree j— 1, which is curl free, for
each j > 1. Hence each V; is curl free, and we also observe Ny —1 < N. On the other



COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS (&) 429
hand from the Helmholtz equation we have

—KRyv=V-Vv=> V.V;.
=N

Compare it to the original Taylor series of v we obtain that N — 1 < Nj. Now let us
look at the case when Ny =N — 1> 0. If N # 1, then Vvy, = Vvy_; is either identi-
cally zero or a homogeneous vectorial polynomial of degree N —2 > 0. However, we
know that the first nonzero term from the Taylor series of Vv should be Vy. Therefore,
we must have Vvy_; =0, which implies that vy_; = vy, is a constant, namely, N=1.
Next, we verify that V- Vy = 0 when N # 1. If N=0, this is trivial since Vj is a con-
stant vector. For N > 2, we have that V- Vy = —k?*vy_; = 0, because we have shown
that v; =0 for all j < N — 1. The last statement is known, see, [1, 11]. It can be seen
directly by taking Laplacian on each term of the Taylor series and using the fact that
both v and Vv solve the Helmholtz equation. O

We are now in a position to introduce an estimate which can be related to (4.23). In
the following, we shall restrict ourselves only in dimension n=_2. However, similar esti-
mates and results are expected for dimension three or higher. Under this consideration,
we still keep the notation #, instead of 2, and specify n =2 when needed.

We define our local corner first. Denote i, € (0,7) as the aperture of a (convex) cor-
ner. Given positive constants ¢ and 9, let K = {(cosi, siny});0 < ¢ < ,},C,C, and
K5 be defined accordingly as in the beginning of Section 4. In particular, we remind
here that K is an open set of S"~' where elements d satisfy (4.1).

Lemma 5.3. Let n=2, and let the complex vector n be of the form (3.3) with T > 0 and
de Kj. Given NeN, let V="V(x) be the gradient of a homogeneous polynomial of
degree N+ 1 which is harmonic. Suppose that V is not identically zero. Then one
must have

J eV .p dx = Cort "N 4 olze=%/2), (5.2)
C.

with a constant C, independent of 1. Moreover, if Cy is zero when taking both the two
opposite directions of d* for fixed d, then one must have

2w In T
- - 0,7), ie.N=—l-1€N, 53
Vo= N 1aNCE O™ he Vo < (53)

for some | € N.

Remark 5.1. When N =0, namely when V is a constant vector, then Cy # 0 for corners
of any angle unless V is the zero vector. If N=1, then (5.3) implies that y, = 7/2 is
the only case for Cy = 0 with V not identically zero.

Before proving the above lemma, it is insightful to remark that the above exception
of Yo (which translates to a particular form of u™) is not an exception for the potential
case (A +k?p)u =0, ie., when y=1 (see ie., [1]). For our case concerning the oper-
ator V -9V + k%p, even if we replace V - 17 in (5.2) with V - p, with p € C* and p - =
0, would not exempt us from getting exceptional v, that yield C; = 0 and non zero V.
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In fact, such a vector p would satisfy
ﬁ = C()(dl — ld) = —iC0<d+ ldL) = —iC()I’]/’E.

This basically means that even a “direct” CGO solution for Vw of the form Vw =
Y2(p +7)e"* with p € C? satisfying p -7 =0 might not be of help in improving
the results.

Proof of Lemma 5.3. It is known that (x;=1ix,)" form a base of all homogeneous har-
monic polynomial of degree N, where x; and x, denote the Cartesian components of
x € R2. Therefore, the vector field V can be written as

V(x) =b < i > (x1 + ix)N + by < i ) (x1 — ix)N
_ LY N iny 1\ N —iny
=b i x| e + b, 1 |x|"e )

where we have adopted the parametrization as % = (cosy, sinyy)’. Denote d =
(cos, sin@)’. Taking ¢@Fn/2 as the angular coordinate of d*, then dt =
*(sing, — cos)’ and

osae = (oziine) (1)
sin ¥ 1 cos ¢ Fi
Under these notations we have
n-x=—1e"(cosyFisiny) = —1e OV, (5.4)
and, depending on the opposite direction choices of d-,

x| TNV (x) et = 261NV or  — x| NV (x) - et = 2ibye NUHO) - (5.5)

It is observed that
N _nx _ *iNy <V N+n—1 —tte* 0V _+iNy
x| e e dx = t e e~ "Wdidt.
C. 0Jo

Applying the estimate (4.8) yields

J |x|Ne;7-xeiiN1// dx — 0(6767:/2)
Ce

5.6

F(N+n) —ipnin o +1(N+m)y £iNy G0

:We e e dlﬂ = Ci
0

I'(N + n)
N+n >

with the constant

o ,Fi(N+n)e (Yo i n o *i +i(2N+n), ), F1i(N+n
C. = e ilN+ )wjo pri(2N+ )¢d¢_2N+n(1_e N+ ) pFi(N+n)o
Therefore, we have from (5.5) and (5.6) that
J Vo dx = —2bleii‘/’rJ |x[Ne™ NV 1%
C. Ce
I'(N +n)

= —2b;C+ e" 10 4 o(re/2),

N+n—1
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where the constant b; should be in fact ib, when the  is taken as the + sign. We have
now verified (5.2) with the constant

Co = —2ib, I'(N +n) e i N+n=1)o (] _ Gi@N+mo)
2N +n

if we take ¢ — m/2 as the angular of d*, or if we take ¢ + m/2 as the angular of d*

(N +n) F(N+n=1)

?(] — g i2N+ms).
2N +n

C() - —2b2

If Cy = 0 for both cases, then one must have either
(2N + n)y, = 2In, for some I € N, (5.7)

or by = b, = 0. However, the latter cannot be true since we have assumed the non-trivi-
ality of V. O

The following result is known, see [11]. It was first established in [1] for rectangular
corners and y=1.

Lemma 5.4. Let n=2, and let 1 be of the form (3.3) with t > 0 and d € K. Let vy, be
a homogeneous polynomial of degree Ny € N which is harmonic. Then there is a constant
Cy,N,» Which depends on d but not on 1, such that

J vy (%)™ dx = Cyp v "N + o(ze™/?). (5.8)
C(

Moreover, the constant Cy N, = Cy,n,(d) cannot be zero for all directions d in any open
subset of S"7!.

The next result is a particular case of Lemma 5.4, when Ny = 0. We give a proof for
the sake of obtaining the explicit value of the constant C; y, in (5.8), which will be
used later.

Lemma 5.5. Under the same notations as in Lemma 5.4, one has
J e dx = Cyt " + olre?), (5.9)
Ce

with a constant C, # 0 which is independent of t.
Proof. Applying (5.4) and (4.8) we have

Jo e dx = J e Y gy = J
‘ C ’ 0

T o _.

_ (”)J e+zn((p—l//) dl,b—i—o(re_”/z).
™ Jo

S

Vo +i(p—
J tnfleft‘re— (o=¥) dlpdt
0

Therefore, we have derived (5.9) with the constant
o _ .
C = F(n)e*’”‘pj e My = +il(n)/ne”m?(1 — =),
0

where the plus or minus signs depend on the choice of direction or angular, ¢+7r/2, of
the unit vector d-. 0
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Lemma 5.6. Let the dimension n = 2, and Let V = V(x) be a fixed homogeneous poly-
nomial for x of degree N = 1 which is curl free and satisfies V - V = —k>vy # 0, where
Vo is a constant. Let the complex vector § = n(t,d) be of the form (3.3) with © > 0 and
d € K, and let yo and p, be two constants with 7y, # 0. Then one has

J eV . dx = Cot "+ olre=/?), (5.10)
Ce
and

yOJ eV -y dx — kzv()poj M dx = Cit "+ olre=/2), (5.11)
c

€ €

with constants Co and C, independent of t but possibly dependent on d. Moreover, C, =
0 for two opposite directions of dt if and only if Y, = /2 and py =y, or Y, # /2
and V takes the following form

- K 1 1
Vi) =—2 V[ (1= xmtany, — 22002 -2 (2202 ). (5.12)
2 Yo 27 2 Yo

Proof. We apply the parametrization % = (cos, siny/)” as before and write

- b . b . b\ 4 b\ s
V(x):<b;>(x1—|—1x2)+<bz>(x1—1x2):<bi>e‘//—|—<bz>e ‘//.

It is obtained from the curl and divergence condition that
by — iby = ik*vp/2 and by, — iby = —k*v/2.
We adopt the notations in the proof of Lemma 5.3 for d, d* and 7. Then
n-V(x) = —tlx|e™? (bee™V — Ky 7V )2),
where b, = by; — iby; and b_ = by, + 1b,;. By straightforward computation we have

—rlaletion) +iy Vo (€, eiton +iy
x| e eV dx = re e~V drdy
Ce o Jo

I'(1+n)

g + ole™/2),

= Cu

and similarly

*+i(p—y -z r 1 + n
J |X| e,-c‘x|e (¢ l‘)e+llj/ dx = C:z¥+0(eiﬂ/2),
C. T +n
with the constants
_ o xi(n2)y iy
Ciq = +ie tlrthe Lome? ™ and Ci, = +ie ilrthe 1ze ™™
= n+2 - h
Therefore, we have derived (5.10) with the constant
N . 1— eiinl//() 1— eii(ﬂ+2)l//0
C :i'l“l—i—ne“”‘”(kzv — b
0 * ( ) 0 2n - n—+2

= +ie 120 (KPy(1 — ™ 20) —p. (1 — et“‘/’o))/z.
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Notice that e***o # 1 for , € (0,7), and that e***o =1 if i, = m/2. Then Co can

never be zero when y, = /2. Suppose that , # n/2 and Cy = 0 for both * signs. Then
bi = LKO-)

1+ e*i%0

in which case

_ 2 t 2
V(x) :m< 2 tan iy > _Kn V (x12, tan g — x3).

2\ xtanyyy — 2x; 2
Further, combining (5.10) with (5.9) we arrive at (5.11) with the constant
C = Voéo - k2V0p0C1>
namely,
T 2167208, = (s — po) (1 - ¢*20) g, b (1 — &%),

Similar as before, we observe that C, = 0 implies 7, = p, if ¥, = n/2. Otherwise if
Wy # 1/2 then C; = 0 for both + signs yields

k2V0 P
d be =— (1 -22),
Y0 7 Po an E T eti2l < Vo)

and as a consequence,

5.2. Do corners in 2D always scatter?

Now we return our attention to the scattering problem governed by (2.1). We first
introduce the mathematical definition of the corners in the support of the inhomogen-
eity we are concerned with. Roughly speaking, we are able to deal with constitutive
material properties a and ¢, whose support of the contrast to the background, i..,
supp(c — 1) or supp(a — 1), contains a convex corner which could be small. As a par-
ticular case when a =1, our results recover those proven in [1, 12] and [13]. We
require some regularity of a and c locally around the corner. We do not need to impose
any additional assumptions on a and c elsewhere (see Figure 1).

Definition 5.1. A function f is said to have a corner at its support if the following is
satisfied: Let a simple connected domain Q € R? be such that suppf C Q. There is a
point xy € 0Q, a ball B.(xy) of radius ¢ > 0 centered at x, and a cone C(xp) := {x €
R? : xxo € K} with K = {(cosw, siny); 0 < < wo}, such that
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Q N B.(x0) = suppf N Bc(x) = C(x0) N Be(x0) := Ce(x0)-
In this case, we call xo = [x0; Cc(x0)] a corner of (the support of) f of radius e.

Definition 5.2. Given constitutive material properties a € L™(R?),c € L*°(R?), suppose
that xo = [x0; Cc(x0)] is a corner of either a — 1 or ¢ - 1 with radius e. The corner x, is
called regular, with respect to a and ¢, if there exist y € L°(R?*) and p € L*(R?) satisfying
the following:

1. There is a constant g > 0 such that y € H>!™® and p € H"1%,
2. Y, = alg, in H>%(C.) NL™(C.) and p|, = c|p in HY'*%(C) NL®(C.).
3. There are constants y,, p, and some ¢ > 0 such that

(r(x) = 1)y 2 (x) = 90 + O(|x — x0|"), (5.13)

and
(p(x) = 1)972(x) = po + O(|x — x0|%), (5.14)

for almost all x € C.(xp).
Moreover, by an abuse of terminology, we say that there is a conductivity jump (for
a(x)) at xo if ) # 0, or a potential jump (for c(x)) if p, # 0.

Remark 5.2. We note here that the first listed condition in Definition 5.2 suffices for y
and p to satisfy the assumptions in Proposition 3.1 and Condition 3.1 with n=2 and
s=0, 1. In particular, we can take p =1+ ¢y/2 and p > 3(1 + 2¢9)/(1 — 4&y) > 3. The
property (3.4) now holds by taking 1/p=1/p —1/(1+¢&) and using the Holder’s
inequality [|gh||;; < Cllg||i[[Pllra-

Theorem 5.1 and Theorem 5.3 in the following state our main results concerning the lack
of non-scattering phenomena. To this end, we give a class of incident fields for which we
cannot conclude yet whether or not they will be scattered by inhomogeneities with corners.

Definition 5.3. Given a corner of aperture 1, and an incident field 4™, denote N € N
as the order of the first nonzero term from the Taylor expansion of Vu™ at the corner.
We say that the pair (u",1),) belongs to the class E if there holds N = (I/y,) 7 —1
with some positive integer 1.

Theorem 5.1 (Conductivity corner scattering). Given a,c € L®(R?) satisfying (2.4) and
(2.5), let u=u™+ u® be the total field of the scattering problem (2.1)-(2.3). Suppose
that there is a corner xo = [xo;Cc(Xo)] at the support of a — 1 which is regular with
respect to a and c in the sense of Definition 5.2. Assume further that there is a conductiv-
ity jump for a at x,. Then the scattered field u* cannot be identically zero in the exterior
of any bounded ball in R* except, perhaps, if (u™,V,) belongs to the class & with Yy the
aperture of Cc(xp).

Proof. We prove this result by contradiction. Assume, up to a rigid change of coordi-
nates, that x, locates at the origin. Suppose that u* is identically zero outside some
bounded ball. Then by unique continuation, ¥ is zero in R*\ Q for any Lipschitz
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domain Q as in Definition 5.1 for a - 1. As a consequence, the interior transmission
eigenvalue problem (2.7) and (2.8) are satisfied for u the total field and v = 4™ the inci-
dent field of the scattering problem. In particular, the local problem (4.3) is satisfied
with functions y and p as in Definition 5.2 for a and ¢, respectively.

Given d € K with a fixed constant é > 0, for any positive 7 sufficiently large, we
can find from Proposition 3.1 a solution w to (3.1) that is of the form (3.2) with the
residual r satisfying

H*Ps = 0(15_2/1)5)’ s = 0) 1: (515)

7]

where p, and p, are those constants as specified in Definition 5.2. Let the vector field
V = V(x) = V(&)|x|" be the first nonzero (the N-th) term from the Taylor expansion
of Vu™™ at the corner. Then we can always write v = 4™ in the form (4.17) around the
corner. Moreover, our assumptions on vanishing/nonvanishing of 4™ and Vu" at the
corner imply Ny > N, according to Lemma 5.2. Letting y, be the constant defined in
Definition 5.2 for y or a, we denote the integral

I:= yOJ V(x) - ne"™ dx. (5.16)
Then we know from (4.24) in Corollary 4.1 that I = o(t!™""V), where n=2 is the space
dimension. However, Lemma 5.3 implies that I = ,Cyt' "N + o(te~*/2). These two
asymptotics can not both be true unless Cy = 0, namely, when (5.7) holds. O

Remark 5.3. In Theorem 5.1 we are confined with the case when u!"(x;) = 0 or when
u™(x0) # 0 and Vu'™(xp) # 0. In fact, the complementary situation, i.e., when u"(x,) #
0 and Vu™(xy) =0, can be dealt with by similar arguments. In this case, we have
N=1 and Ny = 1. As a counterpart of (5.16), we will have

=o(t").

yOJ V(x) - ne"™ dx — kpoVOJ e dx
Ce

Ce

However, Lemma 5.6 implies that this cannot be true and hence ul® is always scattered,
except (perhaps) for some specific cases. In particular, if , = n/2, then the only pos-
sible nonscattering case is when ¢(xo) = a(xo); and if \, # ©/2, the only possible non-
scattering case is when c¢(x;) # a(xp) and u™™ takes a specific form depending on v, and
00/70 which can be derived from (5.12).

Next, we give some consequent results of Theorem 5.1, which shows that for the case
when , = 1/2 a wide class of incident waves of interest in applications always scatter.

Corollary 5.2. Assume that the constitutive material properties a and c satisfy the
assumptions in Theorem 5.1. Then, for the right corner i, = 1/2, any incident field u™
that satisfies either one of the following conditions:

1. u™(x0) # 0 and Vu™(x,) # 0,
2. u™(xp) # 0, Vu"(xg) = 0 and in addition, a(xo) # c(xo),

must scatter.
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Proof. We adopt the notations in the proof of Theorem 5.1. The first condition is
equivalent to Ny = N = 0. Recalling Definition 5.3 for the case of N=0 and y, = /2,
then Theorem 5.1 already implies that u™™ is always scattered. When the second condi-
tion is true, we have Ny = 0 and N=1. Then from the discussion in Remark 5.3 we
have that 4" is always scattered unless, perhaps, when c¢(xo) = a(xo). O

Theorem 5.3 (Potential corner scattering). Given a,c € L°(R?) satisfying (2.4) and
(2.5), let u = u™ + u*° be the total field of the scattering problem (2.1)-(2.3). Suppose that
there is a corner xo = [xo; Cc(x0)] at the support of ¢ — 1 which is regular with respect to
a and c in the sense of Definition 5.2. Let 7y be the function as in Definition 5.2 corre-
sponding to a. Assume further that there is a potential jump for ¢ at x,. Then the scat-
tered field u* cannot be trivially zero in the exterior of any bounded ball in R* if any of
the following conditions is satisfied:

1. For all x € C.(xy) and some constant ¢ > 0

(7(x) = 1)y72(x) = O(]x — x|*"™). (5.17)
2. For all x € Cc(xo) and some constant ¢ > 0

(7(x) = 1)y 12(x) = O(lx = x| ™), (5.18)

and Ny = N, where Ny and N are the degrees of the first nonzero term from the
Taylor expansion of u™ and Vu™, respectively, at the corner.
3. Forall x € C(xo) and some constant ¢ > 0

(7(x) = 1)y (x) = O(|x — x0|°), (5.19)
(i.e. yo = 0, where y, is defined in Definition 5.2), and u™(x) # 0 and Vu™(x,) = 0.

Remark 5.4. We note here that the conditions (5.17), (5.18) or (5.19), essentially
describe the order of vanishing at the corner of y — 1, or in other words of the contrast
a - 1 at the corner. As a consequence, Theorem 5.3, in particular in the case of (5.17),
generalizes the previous results proven in [1, 12] and [13] for the scattering problem
where a = 1.

Proof of Theorem 5.3. We first follow the proof of Theorem 5.1 and the notations
therein up to (5.16). Then we let the vy, (x) = #(x)|x|"° be the first nonzero (the No-th)
term from the Taylor expansion of u", and let p, # 0 be the constant defined in
Definition 5.2 for p or c. Lemma 5.4 implies that one can alway find a direction d € K
and a constant C; y, # 0, which satisfy

I:= kpoJ VN, (x)e" dx = Cl,N0k2p017”7N° + olze=/?). (5.20)

€

On the other hand, applying Proposition 4.1, in particular the estimate (4.22) with
f, = 0, we obtain

I =o(x™7N0) + ||pgllpe ey Oz N=1HA)) 4 o(rn=(N=1HR)), (5.21)
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where the function y; and the constant f8; are chosen for y to satisfy (4.10). Recall from
Lemma 5.2 that Ny > N or Ny = 0 and N=1.

In the first case when (5.17) holds true, we can take f; =2 and 7p =0 in (4.10).
Since N < Ny + 1, we obtain from (5.21) that I = o(z "), which contradicts (5.20).
When the second condition is valid, namely, if Ny = N and there holds (5.18), then set-
ting f; =1 and y; =0 in (4.10) we arrive at the same contradiction I =o(t )
against (5.19). Lastly in the third case, we have Ny =0 and N=1. Taking f; = 0 and
7 =7 =0 in (4.10) lead to the same contradiction as before. The proof is com-
pleted. O

We end this section with a remark on the “exclusive” corners and incident waves in
Theorems 5.1 and 5.3. As seen from the statement of these results, in the most general
settings, there are particular conductivity or potential corners and related special inci-
dent fields for which we cannot conclude that the corresponding scattered field is non-
zero. At this time we don’t know whether these exceptions are artifact of our technique
or a more fundamental issue arising from the presence of the contrast in conductivity
near the corner, as we were not able to construct a counter example of a non-scattering
corner along with the corresponding incident field.

6. Applications to inverse scattering for inhomogeneous media

In this section we present some applications of the above corner scattering results to
inverse scattering theory for two dimensional inhomogeneous media. More precisely we
consider the scattering problem (2.1) with n=2, where the constitutive material proper-
ties a and ¢ defined in the beginning of Section 2.

6.1. A global uniqueness theorem

We consider the inverse problem of determining the convex hull of (the support of) an
inhomogeneity from the scattered data. We prove that the polygonal convex hull of cer-
tain inhomogeneities can be uniquely determined by a single far-field measurement.
Our uniqueness result extends the ones proven in [13] and [19]. We start by defining
the admissible set of the inhomogeneities.

Definition 6.1 (Admissible inhomogeneities). Given constitutive material properties a €
WE2(R?),c € L®(R?),a(x) > ay >0, and D the convex hull of supp(c— 1)U
supp(a — 1), the inhomogeneity (a, ¢, D) is called admissible if it satisfies the follow-
ing properties:

1. The convex hull D is a polygon.
Each corner x, of the polygon D is a corner for ¢ — 1 as in Definition 5.1 (which
may or may not be a corner for a - 1); in particular, there exist a cone C(xy) of
aperture Yo and a constant € > 0 such that

Ce = Cc(x0) := C(xp) N Be(x0) = supp(c — 1) N Be(xp).

3. At each corner x, of D, there exist constant & := g, > 0 and functions y =
Ve, € H>'T(R") NL>*(R") and p = p, € H>'T(R") N L™(R") satisfying
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a

¢c. = ey and cle = ycp,
where y. denotes the characteristic function of the set C.. Moreover, there are
constants o = gy, > 0 and p, := p, ,, # 0 such that for almost all x € C(xo),

(p(x) = 1) = py + O(Ix = x0|") and (y(x) = 1) = Olx = x[*"").  (6.1)

We denote by A the set of admissible inhomogeneities (a, ¢, D) (see Figure 2 for
some examples).

We can prove the following uniqueness theorem. We recall that an incident field u™
is an entire solution the Helmholtz equation

Au™ + 4" =0 in R

Theorem 6.1. Given an admissible inhomogeneity (a,c, D) € A. Then the far field pattern
u™ corresponding to one single incident wave u™ uniquely determines the convex hull D

of supp(c — 1) U supp(a — 1).

Proof. Let (aj,c;,D;j) € A, j=1, 2 be two admissible inhomogeneities, and let u; =
u;"+u" and u° # 0 be the corresponding total field and far field pattern, respect-
ively, due to the incident field u™. Assume that u{°(x) = u3°(x) for all X in the unit
circle. Then from Rellich’s Lemma the scattered fields u{® = u5° coincide, and conse-
quently so do the total fields u; = uy, up to the boundary of R*\ D, UD,, where we
recall D; and D, are the (polygon) convex hull of supp(c; — 1) Usupp(a; — 1) and
supp(c; — 1) Usupp(ay — 1), respectively. If D; # D,, then there is a corner x,:=
[x0;C¢] for some small € > 0 (to fix the idea) of D; that lies in the exterior of D, (see
Figure 3). Hence, we have that V-a;Vu;, +kciu; =0 in C., Auy + k*u; =0 in B,,
and u; = u, and a,0,u; = O,u, at the vertices of C.. Since, by assumption of the
admissible inhomogeneities, the corner xq:= [xo;C.| satisfies the assumption 1 of
Theorem 5.3 and hence by exactly the same argument as in the proof of Theorem 5.3
we conclude that u, =0 in B. whence u, =0 in R? by unique continuation [28].
The latter means that the (radiating) scattered field uf* = —u™ satisfies the Helmholtz
equation in R?, therefore u =0 and u$® = 0. We arrive at a contradiction, which
proves that D; = D,. O

Although, for simplicity of the statement, we give the uniqueness result only for
inhomogeneities from the admissible class A as specified in Definition 5.2, similar
shape determination results can be shown for more general class of inhomogeneities.
What type of additional inhomogeneities can be included, is easily seen from the
proof of Theorem 6.1. In particular, the admissible inhomogeneities in Definition 5.2
require the conductivity contrast to vanish to second order at the corners of the con-
vex hull. However, we can enlarge the admissible class .4 by including also inhomoge-
neities whose polygonal convex hull has corners with conductivity jump, ie., 7y
satisfies (5.12) with y, # 0 assuming in addition that such corner has aperture which
is an irrational factor of m. Formally speaking, we can even consider any bounded
inhomogeneities. In this case, if the far-field data corresponding to one single incident
wave is the same for two inhomogeneities, then we can conclude that the difference
between the two corresponding convex hulls (not necessarily polygons) cannot contain
any “admissible pair of corner and total field” as specified in Section 5.2. Here, by
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admissible pairs we mean corners and related waves which will always be non-trivially
scattered by the corner ([xo;C.] and u, in the proof of Theorem 6.1 for example).

As a particular case of Theorem 6.1 we have the following uniqueness theorem for
the support of a polygonal inhomogeneity.

Corollary 6.2. Given an admissible inhomogeneity (a,c,D) € A, and assume further that
supp(c — 1) Usupp(a — 1) is a convex polygon (ie., supp(c—1)Usupp(a—1)= D).
Then the far field pattern corresponding to a single incident wave uniquely determines the
support of the inhomogeneity supp(c — 1) U supp(a — 1).

6.2. Approximation by Herglotz functions

Most of the reconstruction techniques using the linear sampling methods and transmis-
sion eigenvalues depends on denseness properties of the so-called Herglotz functions,
which are entire solutions to the Helmholtz equation defined by

Ve(x) := Lnlg(d)eikx'ddsd, g€ L*(S"),

where S"! := {x € R": |x| = 1}, and g is referred to as kernel of the Herglotz func-
tion vg. It is well-known (see e.g., [2]) that the set

{vg: ge’(8" )}
is dense in
{veH'(Q): Av+Kkv=0 inQ}

with respect to the H'(Q)-norm, where Q € R” is a bounded region with con-
nected complement.

Given the inhomogeneity (a, ¢, Q) defined at the beginning of Section 2, let k>0 be a
transmission eigenvalue, i.e., the following problem

V- -aVu+kca=0,Av+kv=0, in Q,
u=v,a0,u = 0,v, on 0Q,

has nonzero solution u,v € H'(Q). Our corner scattering analysis in the two dimen-
sional case yields the following result, which concerns the approximation of the eigen-
function v by Herglotz functions. To this end, at a transmission eigenvalue k > 0, let the
sequence of Herglotz functions {v, } approximate the eigenfunction v, i.e.

11_1’)13 Hng — V||H1(Q) =0. (62)

Lemma 6.1. Assume that Q C R* has a corner xo = [xo;Cc(x0)] for a - 1 with the
assumptions of Theorem 5.1 for corner aperture W, & {pm;p € QN (0,1)}, or for ¢ - 1
with the assumptions of Theorem 5.3 with condition 1. Let v be an eigenfunction, and let
the sequence of Herglotz functions {vg,} satisfy (6.2). Then limsup)||ge||;2(s1) = oo

Proof. Assume to the contrary that {||g||;2s)} is bounded. Then up to a subsequence
g — g € L*(S") weakly as € — 0. Obviously vy — v, in C'(Q) and thus v:= v



440 @ F. CAKONI AND J. XIAO

which means that v, does not scatter. This contradicts the assumptions, and the lemma
is proven. 0O

We remark that for the case of a =1 in [21] the authors have shown that if the
transmission eigenfunction v is approximated by a sequence of Herglotz functions with
uniformly bounded kernels (which according to Lemma 6.1 never happens in this case),
then v must vanish at the corner. Indeed our analysis for “potential corner” shows that
v has to vanish at any order at the corner and by analyticity be identically zero. The
exceptional cases due to the presence of the contrast a — 1 stated in Theorem 5.1 and
Theorem 5.3 describe necessary vanishing properties at the corner of the transmission
eigenfunction v if it can be approximated by a sequence of Herglotz functions with uni-
formly bounded kernel, which is equivalent to k being a non-scattering wavenumber.
However, these are not sufficient conditions for the latter to occur.

7. Conclusions

We conclude the article with a few remarks. Firstly, our construction of CGO solutions
and their use to study local behavior of solutions of concerning PDEs near the vertex of
a generalized corner in any dimension higher than one lays out the needed analytical
framework to study corner scattering. Although, here for sake of presentation, the latter
is carried out only in two dimensional case, we strongly believe that the analogue is
true for conical corners in dimension three. Moreover, similar techniques are expected
to be developed to analyze edge scattering in three dimensions. If proven, such results
can then be used to obtain similar uniqueness theorem as in Section 6.1 for polyhedral
convex hull of the support of inhomogeneity in R”.

Secondly, we are perplexed by the exceptional corners in the case of contrast in conduct-
ivity. We don’t know yet whether this is a shortcoming of our approach or is a more essen-
tial continuation question related to this case. Unfortunately, for geometries with corners
even in R? it is hard to get simple explicit calculations for the transmission eigenvalue prob-
lem in order to see if for any of such exceptional corners the eigenfunction corresponding
to the equation of the background can be extended outside the corner, i.e., to conclude that
corner does scatter. In order to have a different angle of investigation to this issue, in a
forthcoming study, we consider singularity analysis on the pair of the solution to the interior
transmission problem near a generalized corner, following the lines of [13]. We are hoping
to perform this singularity analysis for anisotropic conductivity coefficient also, for which
the construction of CGO solutions is more complicated.
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