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Abstract The single edge notch specimen (SEN) is
commonly used to measure the fracture toughness,
or critical energy release rate of soft elastic mate-
rials. To measure toughness, an expression for the
energy release rate, J , the mechanical energy avail-
able for growing the crack per unit area, is needed.
Since strains in these fracture experiments can eas-
ily exceed several hundred percent, large deformation
analysis is needed to calculate J . An approximate for-
mula for J in SEN samples subjected to moderately
large deformation was given by Rivlin and Thomas
in J Polym Sci 10:291–318. https://doi.org/10.1002/
pol.1953.120100303 (1953) and Greensmith in J Appl
Polymer Sci 7:993–1002. https://doi.org/10.1002/app.
1963.070070316 (1963). However, this formula works
only for small crack lengths, for stretch ratio up to two
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and does not match the linear elastic result in the limit
of small strains. In this paper we carry out a series
of finite element (FE) simulations to obtain accurate
approximations that are valid for all practical crack
lengths and strain levels. Our FE result shows that the
small crack approximation of by Rivlin and Thomas in
J Polym Sci 10:291–318. https://doi.org/10.1002/pol.
1953.120100303 (1953) does notworkwell in the small
strain regime, and in particular, result of Greensmith
in J Appl Polymer Sci 7:993–1002. https://doi.org/10.
1002/app.1963.070070316 (1963) underestimates the
energy release rate for stretch ratios less than 1.5.

Keywords Single edge notch specimen · Energy
release rate · Large deformation · Finite element
method

1 Introduction and previous works

Recent advances in soft materials, especially the ability
to make highly compliant and tough hydrogels (Gong
et al. 2003; Sun et al. 2012) have renewed interest in the
study of fracture behavior of elastic, stretchable mate-
rials (Tanaka et al. 2005; Kundu and Crosby 2009; Sun
et al. 2012; Kim et al. 2020). In elastic solids, the driv-
ing force for crack growth is the energy release rate J ,
defined as the change in the sum of the elastic strain
energy stored in the crack specimen and the potential
energy of the loading system per unit area of crack
growth. The resistance to fracture is usually character-
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Fig. 1 a Undeformed stress free (reference) configuration of a
SEN specimen. The specimen has thickness t in the out of plane
direction. Plane stress condition requires L , w >> t and c >> t .
b Finite element model using symmetry boundary conditions
along X2 = 0

ized by the fracture toughness Gc which is defined as
the critical energy release rate for a pre-existing crack
to grow.While the fracture toughness is amaterial prop-
erty, the energy release rate J depends on the manner
of loading as well as the specimen geometry. In test-
ing, one chooses a specimen with a pre-existing crack,
computes the energy release rate J as a function of load
and geometry, and determines Gc by noting that crack
growth occurs when J reaches Gc.

The single edge notched (SEN) specimen is shown
schematically in Fig. 1a. The undeformed sample is a
long strip of length 2L , width w and thickness twith
t << w < 2L . A crack of initial length c is cut from
the edge of the specimen. Greensmith (1963) employed
this specimen to determine the fracture toughness of
four vulcanized rubbers. It is a popular specimen to
study the fracture behavior of hydrogels since the same
specimenwithout a crack canbeused tomeasure tensile
properties (Greensmith 1963; Lindley 1972; Hamed
andPark 1999;Yeoh 2002; Lin et al. 2010, 2011;Kwon
et al. 2011; Ducrot et al. 2014; Mayumi et al. 2016;
Chen et al. 2017; Morelle et al. 2018; Roucou et al.
2018; Bai et al. 2018).

Although accurate expressions of J for SEN can
be found in Tada et al. (2000), these expressions are
based on linear elastic fracture mechanics (LEFM) and
can lead to large errors when applied to soft sam-
ples subjected to large deformation (see the Electronic
Supplementary Material (ESM) for more detailed dis-

cussions). The only available expression for J which
accounts for large deformation is given by Rivlin and
Thomas (1953). They used dimensional analysis to
show that for small cracks of length c, i.e c/w << 1,
J is

J = 2K (λ)W0 (λ) c, (1)

where λ ≡ 1 + (�/L) is the applied stretch ratio (�
is the displacement at the grips, i.e., at X2 = ±L in
Fig. 1a), W0 (λ) is the elastic strain energy density of
an uncracked sample (c = 0) subjected to the same
stretch ratioλ and K (λ) is a numerical factor that varies
only with λ. In Rivlin and Thomas (1953), the mate-
rial is assumed to be incompressible and isotropic, so
W0 depends only on the strain invariants I1 = trC and
I2 = [

(trC)2 − trC2
]
/2, where C is the right Cauchy

Green tensor. The numerical factor K (λ) in (1) was
determined empirically by Greensmith (1963) by con-
ducting experiments on four Gum vulcanized natural
rubbers. The stretch ratios in these experiments range
from 1.05 to 2 (corresponding to nominal strains of
5 to 100 percent). Within this range of λ, Greensmith
(1963) reported that the stress versus stretch behavior of
all four rubbers in simple extension obeys theMooney-
Rivlin (MR) model. It should be noted that the applied
extension ratio λ in fracture testing of hydrogels can be
much larger. For example, in some very tough hydro-
gels, λ can exceed 10 (Sun et al. 2012).

The factor K (λ) was given graphically in Fig. 5 of
Greensmith’s work. Cristiano et al. (2011) suggested
the following approximation for K (λ)

K (λ) = 3√
λ

, 1 < λ ≤ 2 (2a)

A similar expression for K (λ)was proposed earlier by
Lindley (1972) where

K (λ) = 2.95 − 0.08 (1 − λ)√
λ

, 1 < λ ≤ 2 (2b)

There are limitations in (1) and (2a,b). First, it requires
small crack lengths, c/w << 1. Rivlin and Thomas
(1953) suggested c/w < 0.2; however, (2a,b) is often
used to determine energy release rate for longer cracks
(Cristiano et al. 2011; Kwon et al. 2011). Second, the
data and calculations which support its validity are lim-
ited to stretch ratios between 1.05 to 2 whereas tough
hydrogel crack specimens fail at considerably higher
extensions (Sun et al. 2012). Third, since not all mate-
rial behavior can be fit by the MR model, it is com-
monly assumed that K is independent of the strain
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energy density function. However, there is no theoret-
ical basis for this assumption even for small cracks.
Indeed, Yeoh (2002) has carried out numerical studies
for small cracks in aMRand a three termYeoh’s (cubic)
solid. For strains greater than 20%, he found substantial
difference in K for the cubic and MR solids. Finally,
a minor point, both (2a) and (2b) underestimate K as
λ → 1. Greensmith’s data, when extrapolate to λ = 1,
is close to π . Yeoh (2002) and Lindley (1972) observed
that the energy release rates given by (2a) and (2b) do
not approach the small strain energy release rate J for
small cracks, which is

J (c/w0 << 1, λ ≈ 1) = 2π [1.1215]2 W0 (ε) c

⇒ K (λ → 1) = π [1.1215]2 ≈ 3.95, (3)

where W0 (ε) = Eε2/2 with E the Young’s modulus
and ε the strain. The behavior of (2a) for small strains
is

Js = 6W0 (ε) c ⇒ K (λ → 1) = 3. (4)

The theoretical limit given by (3) is about 24% higher
than the K (λ → 1) given by (4), and still 21% higher
even if we take K (λ → 1) = π which is extrapolated
usingGreensmith’s data. Greensmith (1963)was aware
of this discrepancy. Based on the solution of the center
crack in an infinite plate, he suggested in the discus-
sion that K (λ → 1) should be close to but not exactly
π . He overlooked, however, that the solution of the
edge crack in an infinite plate problem was solved ear-
lier by Wigglesworth where K (λ → 1) is, within one
unit of last digit, given by (1.1215)2 π ≈ 1.26π (Wig-
glesworth 1957). Lindley (1972) and Yeoh (2002) have
carried out plane stress finite element calculations to
determineK (λ) for short cracks and for 1 < λ ≤ 2.5.
Their numerical results show reasonable agreement
with Greensmith’s data. However, their FE results for
short cracks and small strains cannot be correct since
they do not converge to the theoretical limit given by
(3). In contrast, our numerical result in the next section
(and theESM) approaches this theoretical limit. Details
of comparisonwith the numerical results of Lindley are
given in the ESM.

Our analysis above still does not explainwhyGreen-
smith’s experimental data differs from the theoretical
limit given by (3). We offer three possibilities. The first
being that it is difficult to conduct experiments in the
regime of small cracks and small strains. For example,
Lindley (1972) also conducted experiments on small
crack samples. His K (λ) for λ = 1.25 is 2.66 whereas

Greensmith’s value is slightly below 2.5. This discrep-
ancy suggests there can be considerable experimen-
tal errors in this regime. A different source of error
which has been ignored by many investigators is the
3D effects. The implicit assumption in all the analy-
sis (theoretical and numerical) is to assume that plane
stress condition prevails. However, this cannot be the
case when c is on the order of the plate thickness t .
Specifically, plane stress requires c >> t. Thus, when
c ≈ t , the 3D effects can become significant. Indeed,
when the crack is sufficiently small so that c << t ,
plane strain condition must prevail. This means that the
plane stress energy release rate J given by (3) must be
replaced by the plane strain energy release rate. This
leads to a reduction of J by a factor of 3/4 due to
incompressibility, i.e.,

J pl−strain (c/t << 1, λ → 1)

= 3

4
× 2π [1.1215]2 W0 (ε) c ≈ 5.93W0 (ε) c. (5)

Note, for very small cracks, (5) is consistent with (2a)
and (2b) in the limit of small strains. This argument
is also consistent with 3D finite element calculations.
For example, Kwon and Sun (2000) have carried out
detailed 3D FE analysis on a linear elastic plate with a
center crack with different c/t values, where c is the
length of the center crack in their notation. Their FE
result shows that when c ≥ 8t , there is no difference
between the through thickness average of the 3Denergy
release rate and the plane stress energy release rate.
The 3D energy release rate decreases and approaches
the plane strain energy release rate when c/t ≤ 1/4. It
should be noted that their calculations are based on a
Poisson’s ratio of 0.3. The difference in energy release
rates would be larger for incompressible solids. The
first eight cracked samples in Fig. 3 of Greensmith
have lengths less than 8t : the smallest of these cracks
has length 0.224cm giving c/t = 2.24. This suggests
that the 3D effects are present in these samples. How-
ever, it must be noted that all these crack lengths are
greater than 2mm whereas the plate thickness is 1 mm
so the plane strain condition c/t ≤ 1/4 has not been
reached. Hence the 3D effects cannot fully explain why
Greensmith’s data does not converge to the theoreti-
cal limit. Additionally, the data reported in Fig. 3 of
Greensmith is for λ = 1.25 which is probably outside
the range of small strain theory. The third possibility is
that the small crack approximation proposed by Rivlin
and Thomas, (1), is not a good approximation for small
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strainswhere λ ≈ 1. To see this, we compare (1) to the
LEFM solution which is accurate to within 0.5% for
all crack lengths (Tada et al. 2000) (see the ESM for
details). Figure S2 in the ESM shows the energy release
rate predicted by (1) or (2a, b) has a 50% relative error
at c/w = 0.2. Even at c/w = 0.1, the relative error is
about 16%. We consider this last explanation to be the
most plausible.

Previous works focused on short cracks and stretch
ratios up to 2. The goal of this work is to provide an
accurate expression for the energy release rate that
is valid for a much wider range of crack lengths and
stretch ratios. For longer cracks, there is no theoretical
basis for (1), hence we explore whether it is possible to
write the energy release rate in a separable form:

J = [2W0 (λ,α) c] K (λ,α) f (c/w,w/L) (6)

where W0 (λ,α) is the strain energy density in an
uncracked sample in simple extension, α are dimen-
sionless parameters controlling the properties of the
strain energy density function, and K (λ,α) is a loading
factor that is independent of geometry. f is a geometri-
cal factor that is independent of applied load. For short
cracks (i.e., c << w), f ≈ 1. Specimens are assumed
to be sufficiently thin (c >> t) so plane stress condi-
tion applies. Since most experiments are displacement
controlled (to ensure stable crack growth), we impose a
uniform stretch ratio λ on the edges X2 = ±L . We also
assume that specimen is perfectly clamped so the lat-
eral displacement on the clamped edge is exactly zero.
Since in most experiments 2L is about 4 to 6 times of
w, all calculations are carried out with L/w = 2.5.
The crack lengths c in our numerical simulations are
between 0.05 and 0.9.

In this work, we consider only incompressible
solids. We focus on strain energy densities which
depends only on the strain invariant I1 = trC where
C is the right Cauchy-Green tensor. Even with this
simplification, the number of constitutive models for
nonlinear elasticity is far too many to explore. Here we
consider two models that represent the extreme ends of
the spectrum.

WNH (I1) = μ

2
(I1 − 3) (neo-Hookean, NH) (7a)

W AB (I1,α) = μ
√
n

[
β
√
I1/3 − √

n ln

(
sinh β

β

)]
,

β = L−1

(√
I1
3n

)

(Arruda-Boyce, AB) (7b)

where μ is the small strain shear modulus, n is the
number of chain segments and L−1 is the inverse

Langevin function. The neo-Hookeanmodel represents
the behavior of an ideal rubber whose elasticity is gov-
erned purely by chain entropy. This model ignores the
finite extensibility of chains and underestimates the
stresses at high extension. A model that captures finite
extensibility is the Arruda-Boyce’s model (7b) (Arruda
and Boyce 1993). The factor n in (7b) represents the
limit of chain extensibility where the strain energy goes
to infinity. In our FEM, we use an alternative form
of (7b), which uses the first five terms of the inverse
Langevin function, i.e.,

W AB (I1,α) ≈ μ

[
I1−3
2 + I 21 −9

20λ2m
+ 11

(
I 31 −27

)

1050λ4m

+ 19
(
I 41 −81

)

7000λ6m
+ 519

(
I 51 −243

)

673750λ8m

]
(8)

where λm ≡ √
n is the critical stretch at which the

root mean square stretch of the polymer chain,
√
I1/3,

reaches its extensibility limit (Boyce andArruda 2000).
Further, to make contact with Greensmith’s work, we
also carry out calculations based on the MR model
where W is

WMR = C1 (I1 − 3) + C2 (I2 − 3) (9)

The small strain shear modulus is μ = 2C1 + 2C2.
Mathematically, the neo-Hookeanmodel (NH) (7a) can
be considered as a special case ofMRmodel withC2 =
0.

2 Dimensional analysis and separability of J

Dimensional analysis states that

J = [2W0 (λ,α) c] J̄ (λ, c/w,w/L ,α) , (10)

whereW0 (λ,α) ≡ W (I1 (λ) , I2 (λ) ,α) is the energy
density in an uncracked sample in simple extension.
For example, for the MR solid,

W0 (λ,α) = C1

(
λ2 + 2λ−1 − 3

)

+C2

(
λ−2 + 2λ − 3

)
(11)

Note the normalized energy release rate J̄ = J/
[2W0 (λ,α) c] in general depends on the choice of
strain energy density function, the applied stretch ratio
λ and the specimen geometry. In particular, except for
very small cracks, the dependence of J̄ on the stretch
ratio λ may not be factorable to a function K that
depends only on λ and a function that depends only on
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geometry. Further, even if this were the case K could
still be dependent on the material model. In the follow-
ing we explore this dependence using three different
material models (NH, MR and AB models) with dif-
ferent strain hardening behaviors. Since all our simula-
tions are conducted with w/L = 2.5, the dependence
of J̄on this parameter will not be explicitly indicated
in the following section to simplify notations.

The key questions are:

(i) What is the region of validity of (1) or (2a,b)?
(ii) Is J separable for a wide range of crack lengths

and stretch ratios? Specifically, is it possible to
split J̄ in (10) into two factors: J̄ (λ, c/w,α) =
K (λ,α) f (c/w) such that K (λ,α) is indepen-
dent of geometry and f (c/w) is independent of
stretch and material properties?

(iii) How sensitive is K (λ,α) to the material model?

A simple observation allows us to address the last
two questions using our numerical results. First, J̄ =
K (λ,α) f (c/w) if and only if ln J̄ = ln K (λ,α) +
ln f (c/w). This means that in a plot of ln J̄ ver-
sus c/w0 curves of constant λ must be parallel to
each other—a master curve can be produced by shift-
ing these curves vertically. Specifically, the distance
between two constants λ curves is independent of
geometry and is given by

ln J̄ (λ2, c/w,α) − ln J̄ (λ1, c/w,α)

= ln K (λ2,α) − ln K (λ1,α) (12)

As for question (iii), the above reasoning implies that
K (λ,α) = K (λ) if and only if the distance between
curves of constant λ is independent of material model.
These observations suggest that J̄ should be plotted
using a log scale. In the following, we plot ln J̄ versus
c/w for different applied stretch ratios. Visual inspec-
tion of these curves will give insight on questions (ii)
and (iii).

Computations using the MR model are carried out
using Greensmith’s material data. The elastic constants
for the four rubbers used in his experiments are reported
in Table 2 of Greensmith (1963). In our simulations,
we select two of these rubbers (vulcanizates A and D
in Table 2). These two rubbers have the largest dif-
ference in shear modulus and strain hardening behav-
ior (reflected by C1/C2). Since both rubbers obey MR
model, we denote them byMR1 andMR2 respectively.
Specifically, the constants are

MR1 : C1 = 70 kPa,C2 = 80 kPa(C1/C2 = 0.88);

Fig. 2 Normalized nominal stress P/μ versus stretch ratio λ for
NH,MR1,MR2 and AB solids

MR2 : C1 = 239 kPa,C2 = 112 kPa(C1/C2 = 2.13).

Computations based on the AB model use λm = 6.
Therefore, theAB solid is expected to be extremely stiff
when the applied stretch ratio λ is close to 10 in simple
extension. The uniaxial tension behaviors of the NH,
MR1, MR2 and AB solids are shown in Fig. 2, where
the nominal stress P has been normalized by the small
strain shear modulus μ.

3 Finite element model (FEM)

The finite elemet model is shown schematically in Fig.
1b, and implemented in the commercial FEM software,
Abaqus. Due to symmetry, only a half sample is mod-
eled. On the bottom edge and directly ahead of the
crack tip, X1 > c, the vertical displacement and the
shear stress are zero. On the top edge, a uniform ver-
tical displacement � is imposed while the horizontal
displacement is constrained to be zero. Plane stress ele-
ments CPS4 are used. The smallest element size near
the crack tip is 5×10−4w. Our convergence test shows
that further refinement of mesh does not affect the FE
results. The energy release rate can be readily extracted
from Abaqus using the J -integral. The crack opening
displacement and normal stress σ22 directly ahead of
the crack tip are provided for all four material models
in the ESM at a particular crack length, c/w = 0.2. We
check our FEM results by reproducing the handbook
value (see the ESM) for a wide range of c/w from 0.1
to 0.9.
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Fig. 3 The load factor K (λ, α) defined by (7) for short cracks.
Since this load factor in general depends on the constitutive
model, we use superscript to indicate the constitutive model, e.g.
the AB in K AB represents the Arruda-Boyce model

3.1 Comparison with Greensmith: short cracks

Figure 3 plots the finite element result K (λ, α) for four
different solids (NH, MR1, MR2, AB). In these cal-
culations, c/w = 0.01. For sufficiently small cracks,
separability is expected (this will be examined in sec-
tion 4.2) so K (λ, α) is computed using (6) and realiz-
ing f (c/w << 1) = 1. An important result is that K
for the NH, MR1 and MR2 almost lie on top of each
other for stretch ratios less than 8. For convenience,
we call this factor KMR (λ) since there is no big dif-
ferences between them. The factor for the AB model is
denoted by K AB (λ). Figure 3a shows that, as expected,
K is independent of thematerial model for small defor-
mation. For a stretch greater than about 2 the results
diverge and are increasingly different as the stretch is
increased. Finally, Fig. 3 shows that K AB (λ) agrees
well with KMR (λ) for λ ≤ 2, after that it becomes
smaller. This and the previous result of Yeoh (2002)
shatters the belief that that for short crack lengths
K (λ, α) is independent of material model.

Figure 3 shows discrepancy between the Green-
smith’s equations (2a,b) and our FE results when the
strains are less than 50%. Specifically, (2a,b) underes-
timate K (λ) by about 25% for 1 ≤ λ ≤ 1.5. Note
KMR or K AB as λ → 1 is 4.0, slightly larger than the
theoretical value of 3.95 for small cracks. Thus, our
FE result approaches the theoretical limit (3) whereas
the FE results of Lindley and Yeoh did not. It is inter-
esting to note that the slope of the FE K (λ) is much
steeper than those in observed in Greensmith’s experi-
ments. This rapid decay suggests it is very difficult to

determine K (λ) experimentally in the regime of small
strains and short cracks. For 1.5 ≤ λ ≤ 2.5, there is
agreement within about 10% between (2a,b) and our
FE result. For larger stretch ratios, λ > 2.5, K (λ)

predicted by (2a) is significantly lower than our finite
element result. Interestingly, (2b) is a better approx-
imation for λ > 2.5, although it still underestimates
K (λ). It should be noted that (2a,b) are not intended to
be used for λ > 2, so it is not surprising that discrep-
ancy occurs at these larger stretches.

3.2 Normalized energy release rate for short cracks

Herewe propose expressions for the energy release rate
for short cracks which are accurate for a wide range
of stretch ratios. As noted above, these expressions
depend on the strain energy density function. For the
MR solid (including neo-Hookean as a special case), J
can be fit using the following simple expression:

J MR =
[
2WMR

0 (λ) c
]
KMR (λ) f MR (c/w) ,

1 < λ ≤ 8 (13a)

where

KMR (λ) = 1.476λ + 0.2111

λ − 0.5804
, (13b,c)

f MR (c/w << 1) = 1

Similarly, for the AB solid, we found

J AB =
[
2W AB

0 (λ) c
]
K AB (λ) f AB (c/w) ,

1 < λ ≤ 8 (14a)

K AB (λ) = 1.184λ + 0.8277

λ − 0.4980
, (14b,c)

f AB (c/w << 1) = 1

Explicit expressions for f MR and f AB will be given
below.

As shown in Fig. 4, (13) and (14) compare very well
with FEM results for small cracks, where f = 1. In
the following, we shall show that, as long as λ ≥ 1.5,
(13) or (14) are valid, provided that c/w ≤ 0.6. We
will see that these expressions do not work well if λ <

1.5; this is because the separability assumption breaks
down for small strains. In particular, the short crack
approximation of Rivlin and Thomas (1953) does not
work well in the small strain limit.
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Fig. 4 Equations (13) and (14) (symbols) versus FEM results
(blue solid and red dotted lines) for c/w = 0.01. Equation (2a)
is also plotted for comparison

3.3 Energy release rate for longer cracks c/w < 0.6

Figure 5a plots ln J̄ versus c/w for different stretch
ratios for MR. The special case of neo-Hookean solid
(C2 = 0) is provided in the ESM. If separability
exists, then curves with different λ should be paral-
lel. Figure 5a shows that separability is not satisfied for
1 ≤ λ < 1.2.There is a gradual transition asλ increases
from 1.2 to 1.5, after that all the constant λ curves are
parallel to each other as long as c/w ≤ 0.6. Sepa-
rability starts to break down for crack length longer
than c/w > 0.6. However, for larger stretch ratios,
e.g. λ ≥ 2, separability is approximately satisfied even
for c/w = 0.9. Since separability is not satisfied for
λ < 1.5, (13b) should be used with great care. How-
ever, for λ ≥ 1.5, separability is satisfied, meaning that
(13a) and (13b) still work. To account for the effect
of crack length in (13) f MR (c/w) is fit to the FEM
results. We found

f MR (c/w) = 0.9997 exp (0.1028c/w)

+0.0003 exp (9.007c/w) (15)

We plot the approximation using (13a,b) and (15)
against the FE in Fig. 5b for 1.5 ≤ λ ≤ 8. They agree
well. In the ESM, we further confirm separability by
plotting J̄/K (λ) for different λ ≥ 1.5 and show that
the resulting curves collapse onto a singlemaster curve,
which is given by (15).

Figure 6a plots ln J̄ versus c/w for different stretch
ratios for the AB solid. For c/w ≤ 0.6 and λ ≥ 1.5, the
curves of differentλ are parallel to each other indicating
separability of load and geometry. For this case, we fit

f AB (c/w) as

f AB (c/w) = 0.9988 exp (0.03329c/w)

+0.0012exp (6.485c/w) (16)

Equations (14a,b) with (14c) replaced by (16) are plot-
ted as dashed curves in Fig. 6b. Again, separability
is approximately satisfied for larger stretch ratios, e.g.
2 ≤ λ < 6, even for c/w = 0.9. The stretch ratio that
produces the large error is λ ≥ 6. This is expected since
the limit of extensibility in the calculation is λm = 6.

4 Summary and discussion

The key result in this paper is that simple expressions
for the energy release rate J of a SEN specimen are
developed. These expressions can be used to deter-
mine fracture toughness in tests of soft, tough mate-
rials using the SEN geometry. For the Mooney-Rivlin
solid (which includes the neo-Hookean solid as a spe-
cial case), J is given by (13a) with KMR (λ) given
by (13b) and f MR (c/w) given by (15). For the AB
solid, J is given by (14a) with K AB (λ) given by (14b)
and f AB (c/w) given by (16). The solution of the AB
model depends on the critical stretch λm whichwe have
taken to be 6. Specifically, K AB (λ) will increase with
increasing critical stretch λm , and approaches the NH
solution at λm = ∞. Therefore, in general, the agree-
ment between the AB and theMRmodels will improve
with increasing λm . These expressions for J are strictly
valid for λ ≥ 1.5 and c/w ≤ 0.6. However, for large
stretch ratios in MR model (λ ≥ 2) or in AB model
(2 ≤ λ < 6), these expressions still provide reason-
able approximation of the energy release rate (∼ 10%
error) up to c/w = 0.9. Our results also show that, in
contrast to Greensmith’s results, the energy release rate
as λ → 1 is equal to the linear elastic fracture result.

The separability of the energy release rate into a
part that depends on geometry (mainly c/w) and a part
that depends only on the applied stretch greatly sim-
plifies the analysis as well as interpretation of results.
An unexpected feature is that separability is favored
by large stretch ratios but fails at stretch ratios below
1.5. For typical tough elastic solids, this is not a prob-
lem as the critical stretch ratio at failure is much larger.
Our results show that the energy release rate depends
on elasticity model, although this dependence is not
strong, at least for the MR and AB model. Here we
note that the ABmodel has very similar behavior to the
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Fig. 5 a ln J̄ versus c/w
for the MR solid. Different
curves correspond to
different applied stretch
ratio λ. b Comparison of FE
results with (13a,b) with
f MR (c/w) in (13a)
replaced by (15). Solid
curves are FE, dashed
curves are approximate
results

Fig. 6 a ln J̄ versus c/w
for the AB solid. Different
curves correspond to
different applied stretch
ratio λ. b Comparison of FE
results with (14a,b) with
f AB (c/w) in (14a)
replaced by (16). Solid
curves are FE, dashed
curves are approximate
results

Gent model, so our result applies to the Gent model as
well (Gent 1996; Boyce andArruda 2000). On the other
hand, Yeoh (2002) has shown considerable discrepan-
cies between the MR and the 3-term Yeoh solid for
strains in excess of 20%, so exceptions do exist. Nev-
ertheless, this work suggests that separability is likely
to hold for any material model and when in doubt, one
can perform additional numerical analysis for themate-
rial of interest.

Our numerical results show that strain hardening
behavior can affect the energy release rate. Indeed, the
energy release rate predicted by theABmodel at stretch
ratios λ ≥ 3 is lower than those predicted by the NH
or MRmodel. Since strains near the crack tip are much
larger than the applied stretch, significant strain hard-
ening can occur near the crack tip. Hence, a reasonable
way to determine a material model for tough materials
is to conduct uniaxial tension test in uncracked sample
until failure.
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