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1 Introduction

The literature on model building in smooth Calabi-Yau compactifications of heterotic string
theory stretches back nearly 40 years. In the early seminal work on the subject, efforts
were focussed on the case of the “standard embedding” where the gauge bundle was taken
to be the holomorphic tangent bundle of the Calabi-Yau manifold [1-5]. In more recent
years, advances in the technology used to describe these compactifications has lead to
the construction of heterotic standard models with the exact charged spectrum of the
MSSM [5-12]. Most of this model building progress has been achieved by branching out
to more general situations where the gauge fields and the spin connection are connections
on different holomorphic vector bundles. Despite the sophisticated constructions that lead
to carefully chosen charged particle spectra, it has generally been the case that these
compactifications give rise to only marginally stable vacua. Nevertheless, this work has



been motivated by the hope that at least some of the general lessons learned in this decade-
spanning and extensive effort will carry over to more realistic situations where all of the
moduli are stabilized.

Compared to string model building focused on particle physics properties, the subject
of moduli stabilization is at a much less advanced stage of development in heterotic theories.
Although a large literature on this topic does exist, several pieces of the low energy effective
theory that would be required for a full analysis of the vacuum space of the theory are still
unknown. These include, for example, the Kéhler potential, in the case of non-standard
embeddings, for fields such as matter and bundle moduli as an explicit function of the
N =1 degrees of freedom [13-17]. In this work our goal is to compute another such
missing component of the theory — namely the vacuum contribution to the superpotential
that appears due to the presence of the gauge bundle in heterotic compactifications. If this
quantity is non-vanishing it can potentially destabilize the model, in the absence of other
effects. This superpotential due to the heterotic gauge bundle is also a crucial ingredient
in moduli stabilization scenarios and so its computation is of great importance.

In heterotic compactifications on smooth Calabi-Yau three-folds, we typically consider
a gauge bundle V over some Calabi-Yau manifold X with tangent bundle T'X. The Bianchi

identity of the ten-dimensional theory, in the absence of five-branes is,!

dH =o' (tr(RAR) —tr(FAF)) . (1.1)

This implies that the Neveu-Schwarz three-form field strength can be written, at least
locally, as

2 2
H=Hy+d (w3(w)—ws(A)), ws(4d)=tr (dA/\A+3A3> , wi(w)=tr <dw/\w+3w3> .

(1.2)
Here, Hy is a closed contribution to the field strength that obeys an integer flux quantization
condition and it can be locally written as Hy = dB, with the two-form field B. Further,
we have introduced the gauge connection A on V' and the spin connection w on T'X, along
with their respective Chern-Simons forms w3(A) and ws(w).
Given such a form for the field strength H, the Gukov-Vafa-Witten superpotential [18]
of the four dimensional effective theory can be written as

W:/ (H+idJ)/\Q:/ Ho/\Q+a'CSphys(A,w)—|—i/ dIAQ,  (1.3)
X X X

where (2 is the holomorphic (3, 0) form on the Calabi-Yau three-fold. The physics literature
usually defines the Chern-Simons contribution to this superpotential as

CSphys(A4,w) = /Xtr (w3(A) —ws(w)) AQ. (1.4)

It is often tacitly assumed that this contribution vanishes in vacuum. In general, however,
there is no reason for this to be the case and it must be computed explicitly, even to

Throughout this paper we will define ‘tr’ to include a factor of s% to avoid unnecessary cluttering of
the formulae with numerical factors.



verify the existence of simple forms of marginally stable Minkowski vacua.? It is possible
that many of the heterotic standard models in the literature are not, in fact, associated
to Minkowski vacua unless other contributions to (1.3) are included. To date, only one of
the models with an exact MSSM spectrum mentioned above is known to have a vanishing
Chern-Simons contribution to the superpotential [5]. The gauge bundle, in this model, is
a holomorphic deformation of the tangent bundle and in such instances, as we will discuss,
the vanishing of (1.4) is guaranteed.

Unfortunately, very few techniques exist in either the physics or mathematics literature
for explicitly computing the value of (1.4) and only a handful of simple examples have
been studied. This is frustrating given its importance for heterotic model building and
moduli stabilization. The goal of the present work is to improve the tools required for
calculating Chern-Simons contributions to the superpotential in relevant heterotic models.

In particular, our primary results are the following.

e We develop new computational tools to efficiently calculate the vacuum value of (1.4)
in explicit heterotic string compactifications.

e We construct new and non-trivial examples of consistent heterotic compactifications
in which the Chern-Simons contribution to the vacuum superpotential can be exactly
determined. These include cases with vanishing as well as non-vanishing and non-

integral Chern-Simons contributions.

It should be noted that Wilson line contributions to the superpotential (1.4) have been
frequently considered in the literature [19-22]. We emphasize that this is not what we
are doing here. We are interested in all contributions to (1.4), including those from the
non-flat bundles. It is this quantity which is of relevance for concrete models, since het-
erotic compactifications on Calabi-Yau three-folds necessarily require a gauge bundle with
non-vanishing curvature. Other recent papers considering this contribution to the super-
potential even for non-flat bundles include [23] which utilizes mirror symmetry and [24]
which explores deformations of the Hull-Strominger system [25, 26].

To understand the physical consequences for non-vanishing Chern-Simons contribu-
tions to the vacuum potential, it is important to keep in mind that the effect being described
here could, of course, be cancelled by the other contributions to the superpotential (1.3).
However, the Chern-Simons term is somewhat different in nature to the effects from Hy
and dJ. The contributions to (1.3) from Hj are associated with quantized quantities, which
means that the corresponding terms in the superpotential are determined by a set of inte-
gers. The same is not necessarily true for the Chern-Simons contribution (1.4). The Chern-
Simons term is determined, as we will discuss, by a set of 2(h*!(X) + 1) numbers which
may be non-integral. The contribution from d.J, by contrast, vanishes for any torsion-free
background and thus represents a highly non-trivial modification of the background geom-
etry if present. Such a modification would have to be taken into account in other aspects
of the dimensional reduction, for example in model building work. If the Chern-Simons

2We thank E. Witten for pointing this out to us and suggesting we consider this issue in the context of
the work [11, 12].



contribution (1.4) is non-zero it will typically be large so that, in the absence of other
effects, it will destabilize the theory. On the other hand, any credible scenario for moduli
stabilization which may, for example, include additional non-perturbative effects, must in-
clude the Chern-Simons contribution. Non-integral Chern-Simons contributions obtained
from Wilson lines have already been used in some moduli stabilization scenarios [20, 22].

In any eventuality, it is important to understand what values the Chern-Simons
term (1.4) takes in compactifications of heterotic string theory, and it is this
question that we will try to address in the rest of this paper.

In the next section we review the proper formulation of holomorphic Chern-Simons
terms in heterotic superpotentials, and we explain how the various physical and math-
ematical notions relate. In section 3 we describe how to use real bundle isomorphisms
between the tangent and gauge bundles of heterotic compactifications to compute the
holomorphic Chern-Simons invariant (1.4). We also provide a concrete example of such
a computation. Section 4 reviews an important theorem that explains why the Chern-
Simons contribution vanishes in many cases. In section 5 we discuss issues that arise when
considering holomorphic Chern-Simons contributions to the superpotential in compactifi-
cations on quotient manifolds. In that section we also construct an explicit example of a
heterotic compactification with a non-flat gauge bundle that gives rise to a non-integral
holomorphic Chern-Simons invariant. Finally, in section 6 we briefly conclude and discuss
possible future directions of research. The appendices contain several technical results that
are necessary for our discussion.

2 Basics of Chern-Simons terms

The reader may well be used to defining Chern-Simons invariants in the form discussed in
the introduction. In many physical applications such a definition suffices. However, in the
case of heterotic compactifications, the non-trivial topological structure of the compactifi-
cation means that more care is required. In what follows we will compare the definitions
of such invariants as they appear in the physics and mathematics literature, and we will
describe why caution is required.

2.1 Heterotic Chern-Simons terms

The Chern-Simons term CSppys(A,w) which appears in heterotic theories and forms part of
the heterotic superpotential has already been defined in (1.4). How does this Chern-Simons
term behave under gauge transformations

A hAR™Y 4+ hdh™1 | W gwg 4 gdg™t (2.1)

of the gauge connection A and the spin connection w? A short calculation reveals the
Chern-Simons forms change as

w3(A) > w3 (A) +tr |d(Adh~ h) — %(hdh‘l)?’ : (2.2)



and similarly for ws(w), but with h replaced by g. It is easy to see that the integrand of
the Chern-Simons term CSppys(A,w) in (1.4) is not invariant under these transformations.
This is problematic since contributions to the integral (1.4) from two patches can differ on
their overlap. In other words, the integral is not well-defined globally as it depends on the
choice of partition of unity that is used in its definition.

In the context of supergravity this problem is addressed by assigning a gauge transfor-
mation to the two-form field B which cancels the variation (2.2) so that the field strength
H is gauge invariant. This means that the sum of the first and second integral on the
right-hand side of (1.3) is gauge invariant, so the superpotential is well-defined as it should
be. However, for the purpose of investigating the effect of the Chern-Simons contribution
this state of affairs is quite inconvenient. It is desirable to have a well-defined version of
the Chern-Simons term and a way to express the superpotential (1.3) in terms of this ob-
ject. We will define this mathematical version of the Chern-Simons term - the holomorphic
Chern-Simons invariant - in the next sub-section and subsequently describe its relationship
to the physics Chern-Simons term.

Before we do so, it is important to note that compactifications of heterotic string theory
also contains another type of Chern-Simons integral defined over real three-manifolds.
Heterotic flux quantization [27, 28] can be stated as the condition

7 L= [ —w@yez (2.3)

for any integral three-cycle C C X. Note that this condition involves an integral over a
three-cycle in the Calabi-Yau space, in contrast to the Chern-Simons term (1.4) which
requires integration over the entire manifold. The integrand in (2.3) is not gauge vari-
ant under the transformation (2.2), and is, hence, ill-defined, much as its six-dimensional
counterpart (1.4). To formulate flux quantization properly, we will introduce the ordinary
Chern Simons invariant and subsequently explain how it enters the physical condition.

2.2 Chern-Simons invariants

We begin by formulating the holomorphic Chern-Simons invariant, the object which will
provide us with a well-defined version of the Chern-Simons term (1.4) which appears in
the heterotic superpotential. Useful discussions of this and related topics, intended for an
audience of physicists, can be found here [29-31]. The set-up requires two connections,® A
and Ag, on the same vector bundle V over a base Calabi-Yau manifold X. The connection
A will be seen as the argument of the Chern-Simons invariant and Ay is called a “reference
connection”. Then, with the adjoint valued one form a = A — Ag, the definition of the
holomorphic Chern-Simons invariant is as follows [32].

CSa, (A) = / b

= 2
<(8A0a/\a)—|—3a/\a/\a+2a/\F0>/\Q (2.4)
X

Here, Fy is the field strength associated to the connection Ay and we define the covariant
derivative da,a = da + Ag A a + a N Ag. Note that, naively, this is quite different from

3For brevity of exposition, we will sometimes conflate connections and the local gauge fields they give
rise to in discussions where this should not cause confusion.



its supposed counterpart (1.4) in the heterotic theory which is defined in terms of two
connections seemingly on different bundles, the gauge bundle and the tangent bundle. We
will review the relationship between the mathematical and physics picture in the next sub-
section. For now, we note that the holomorphic Chern-Simons invariant can be written in
terms of the Chern-Simons forms ws(A) and ws(Ayp), defined as in (1.2), as

CSa (A) = /X br (ws(A) — wa(Ag) — d(AA Ag)) A Q. (2.5)

What happens to the holomorphic Chern-Simons invariant under simultaneous gauge
transformations of A and Ay,

A hAh '+ hdh™' and  Ag— hAgh™' + hdh ™!, (2.6)

with the same gauge parameter h? Evidently, under such a gauge transformation all of
the quantities appearing in (2.4) transform in a covariant manner and, as a result, the
holomorphic Chern-Simons invariant (2.4) is thus manifestly invariant. Note, the trans-
formation (2.6) is different to just performing a gauge transformation on A while keeping
Ay fixed, a perhaps more familiar case which we will discuss shortly. The fact that the
integrand in (2.4) is invariant under (2.6) means the integral is well-defined. More specif-
ically, since the values of A and Ay on overlaps are related by gauge transformations and
diffeomorphisms, the value of the integrand is well-defined everywhere. In practice, the
integral can then be evaluated by combining the contributions from different patches with
any suitable partition of unity.

The holomorphic Chern-Simons invariant satisfies a number of properties which can
be directly derived from its definition (2.4) or the equivalent expression (2.5) and which
will be useful for our subsequent discussion. First, for three connections A, B and C on
the same bundle we have

CSp(A) = —CSA(B),  CSc(A) = CSp(A) — CSp(C) . (2.7)

Further, the holomorphic Chern-Simons invariant is unchanged under holomorphic defor-
mations of the gauge connection. Consider an infinitesimal deformation, da = A — Ay of
the connection Ag to a connection A, so that

S, (A) = 2 / tr(SanFo) AQ . (2.8)
X
Clearly, this expression vanishes if the connection Ag is holomorphic. Thus holomorphic
connections are extrema of the Chern-Simons functional. Any, even finite, deformation A
of Ap which preserves the condition F{g9) = 0 everywhere along a path in connection space
from A to A will therefore lead to a vanishing Chern-Simons invariant, CS 4,(A4) = 0.
Computing the Chern-Simons invariant in heterotic models will often involve breaking
up the deformation from the reference connection Ag to a connection A into several parts.
Specifically, consider the sequence of deformations

Ay~ A1 — - -— A, =A. (2.9)



Then, (2.7) implies that the holomorphic Chern-Simons invariant is additive, in the sense

CS 4, (A) = zn: CSa,, (Ar) . (2.10)

k=1

Note that any of the partial deformations Ap_1 — Aj which is holomorphic satisfies
CSa,_,(Ag) = 0 and, hence, does not contribute the above sum.

The other type of Chern-Simons invariant we need to introduce is the ordinary Chern-
Simons invariant, defined by

OCSa, (A,C) = /

2
tr <(d,40a/\a)+3a/\a/\a+2a/\Fo> . (2.11)
c

Here C is some three manifold, which will be a three-cycle within the Calabi-Yau three-fold
X in our application, and A and A( are connections on a bundle V over C. Following exactly
the same logic as for the holomorphic Chern-Simons invariant, this object is invariant under
the transformations (2.6) acting on both A and Ay simultaneously and with the same gauge
parameter. This means the integral in (2.11) is well defined.

It will be crucial in section 5 to understand how the two Chern-Simons invariants
defined above behave under a different type of gauge transformation, namely one where A
changes by a large gauge transformation, while the reference connection Ag is kept fixed.
To this end we reproduce here the standard construction from the literature addressing
this issue [33].

Consider constructing a bundle V on C x S', where the circle is described by the
interval [0, 1] with ends identified, by using a large gauge transformation g to glue V¢, (0}
to V\Cx{l}. We also construct another bundle Vi on the same four manifold by using the
identity group element, rather than g, in the identification. We take A to be any connection
on V that restricts to be A on C x {0} and therefore g(A) on C x {1}. We take Ay to be
any connection on Vy that restricts to Ag on both C x {0} and C x {1}. Then, by Stokes’
theorem, we have the following.

OCS .4, (9(A),C) — OCS A, (A,C) = / CFAF)-tr(FoAR)  (212)
CxS

This is the usual statement that Chern-Simons invariants change by an integer under large
gauge transformations. Note that we are viewing the situation in two different manners
here. To use Stokes’ theorem we are dropping the gluing with g to simply have a line inter-
val with boundary in order to obtain (2.12). On this space, A and Ay are connections on the
same bundle so that the Chern-Simons invariant is well defined and we can use Stokes’ the-
orem. Then, to claim that the right hand side of (2.12) is an integer we are viewing the situ-
ation as the glued geometry described above. We can then properly define the two topolog-
ical invariants that appear independently as being associated to two different bundles and,
since they are integrated over a closed manifold, we can see they are proportional to integers.

Thus, the ordinary Chern-Simons invariant (2.11) changes by integers under large
gauge transformations of their argument, with the reference connection fixed. It should
also be pointed out that the fact that the reference connection is not transformed to obtain



this behaviour is implicit in common applications of Chern-Simons invariants where Ay
is taken to vanish. If this were not the case one would obtain a non-vanishing reference
connection after the gauge transformation.

A very similar construction to the one given above can be used to determine how the
holomorphic Chern-Simons invariant behaves under a large gauge transformations of its
argument with the reference connection fixed [34]. The result is that C'S4,(A) changes by
a period of the holomorphic three-form €.

The final question we would like to review in this sub-section is how the two types of
Chern-Simons invariants, (2.4) and (2.11), are linked. This is a little more difficult to see
than in the case of flat bundles where the Chern-Simons invariants are closed [19-21], but
is still straightforward.

We begin with a remark about the structure of the holomorphic Chern-Simons invari-
ant. From (2.4), this invariant contains the form tr(d4,aAa+2aAaAa+2aAFy) which is not
closed. However, by the Hodge decomposition any form can be written as a sum of a closed
and a co-exact form. Luckily, in the expression (2.4) for the holomorphic Chern-Simons in-
variant the co-exact piece does not contribute to the integral. To see this, write this co-exact
piece as df 8, and work out its contribution to the Chern-Simons invariant which is given by

/dTﬁ4 AQ = —i/dTﬁ4 A Q= —i <dT54,ﬁ> = —i(B4,dQ) =0. (2.13)

Given this, we can treat the holomorphic Chern-Simons invariant as an integral over a
wedge product of two closed forms. In fact this is, in part, why the Chern-Simons term
is so hard to compute. The information we have easy access to - the relation of ws(A4) to
tr(F' A F) - drops out of the integral defining the invariant.

This being the case, let us take the usual symplectic basis of the third cohomology of
X, (i, %), and the associated dual basis of three-cycles (A%, B;). These quantities obey
the following standard special geometry relations

/ai/\ﬁj:/ aizéf /ai/\ajzo
X J X

S (214
/B]/\ai—/ﬁj——ég /61/\6]_0
X B; X
In terms of the cohomology basis, we can expand the holomorphic three-form 2 as
Q= Zo -G, (2.15)

where Z? are the usual coordinates on the complex structure moduli space and the g; are
the derivatives of the pre-potential with respect to these variables. Given this set-up, the
holomorphic Chern-Simons invariant can now be expressed in terms of ordinary Chern-
Simons invariants associated to the basis three-cycles (A%, B;). A short calculation shows
that

CSuy(A) = b2 —a'Gi, o' =0CSa(A,A),  b=0CS4(AB).  (2.16)

Hence, the ordinary Chern-Simons invariants, carried out over a basis of three-cycles,
determine the holomorphic Chern-Simons invariant. Note that this result is consistent with



the above discussion of how these objects behave under a large gauge transformation. Under
such large gauge transformations, the ordinary Chern-Simons invariants and, hence, the
numbers a; and b?, change by integers. Equation (2.16) then implies that the holomorphic
Chern-Simons invariant changes by a period, in agreement with the earlier discussion.

We can now be more precise about what we mean by a “non-integral holomorphic
Chern-Simons invariant”. This terminology indicates a holomorphic Chern-Simons invari-
ant for which at least one of the numbers (a,b;) in (2.16) is not an integer. An analogous
definition has been used in related work studying flat bundles [19-21].

2.3 Chern-Simons invariants in heterotic theories

We now have the tools to examine how the Chern-Simons invariants introduced in the
previous sub-section relate to the Chern-Simons terms which appear in heterotic theories
and how we can use the former to calculate the latter. This correspondence will form the
basis of our subsequent calculations.

The first difference to resolve is the apparent discrepancy in the set-up of vector bun-
dles. While the physical Chern-Simons term (1.4) depends on connections with independent
gauge transformations on apparently different bundles, the tangent bundle T'X and the
gauge bundle V' on X, the holomorphic Chern-Simons term (2.4) depends on a connection
and a reference connection, both defined on the same bundle. What comes to the rescue
is the fact that two Fg bundles are the same as real bundles® if and only if their second
Chern characters, as elements of H*(X,Z), match [35, 36]. In the case where no five-branes
are present and we only have a bundle in one Fg factor of the heterotic gauge group the
second Chern characters for the tangent bundle and the gauge bundle must be equal.’
This follows from the integrability condition on the heterotic Bianchi identity (1.1) for the
Chern-Characters with real coefficients, and from global worldsheet anomaly considerations
for the extension to include torsion [37, 38]. Therefore the tangent bundle and gauge bundle
are the same as real bundles in such a situation. Note this does not mean that they are the
same as holomorphic objects. Indeed this could not be possible in the case, for example,
where the third Chern class of the gauge bundle differs from that of the tangent bundle.

Given this discussion, the physical and mathematical versions of the Chern-Simons
invariant start to look somewhat similar. Only two differences remain. The first is that in
the holomorphic Chern-Simons invariant (2.4), both A and A are defined relative to the
same trivialization of the bundle. This is in distinction to (1.4) where they would be written
with respect to two different trivializations adapted to the holomorphic structure on the
gauge and tangent bundles respectively. Second, (2.4) contains one additional term relative
to (1.4) which, despite initial appearances, cannot be integrated by parts to obtain zero.

4Note that we use the term “real bundle” here to refer to the underlying smooth structure (i.e. real
bundle as opposed to complex bundle), not to refer to a real structure on a holomorphic bundle (e.g. special
orthogonal or symplectic structures).

®Note that, in order for heterotic theory to be well defined more generally, there must be a generalization
of the consistent mathematical definition of the Chern-Simons invariant to include more complicated cases,
such as those involving contributions to the Bianchi Identity from M5 branes. Such generalizations would
certainly be interesting to pursue, both from the perspective of physics and mathematics, but are beyond
the scope of the current work.



To address these differences, we recall that the H-part of the superpotential
Wy = / HAQ= / HyANQ+ O/CSphys(A,w) (2.17)
X X

is actually gauge invariant due to the gauge invariance of H. The invariance is achieved by
cancelling the non-vanishing variation of the Chern-Simons term against the variation of Hy
which can be written as dB locally. Hence, we can choose a gauge where A and w, which we
can now think of as connections on the same bundle, are described relative to the same triv-
ialization. Further, in order to remove the additional term which appears in (2.4) relative
to (1.4) we can use a gauge where at least one of the connections A and Ay has a vanishing
(0,1) component. This is always possible because the connections of physical interest can
be written as Chern-connections in appropriate trivializations.® Having fixed a gauge in
this manner, we can express Wy in terms of the holomorphic Chern-Simons invariant as

Wy = / HoAQ+d'CS,(A) . (2.18)
X

We already know from (2.16) that this superpotential can be expressed in term of ordinary
Chern-Simons invariants, associated to the symplectic basis (A?, B;) of three-cycles. More
precisely, the two terms in (2.18) can be written as

é / HoAQ=m;Z' —n'G;,  CS,(A) =2 —d'G;, (2.19)
X
where A ‘
a® = 0CS, (4, A" bi = OCS,(A4, B;)
| . 1 . (2.20)
n'=— [ H—O0CS,(AA) mi=— [ H—OCS,(4,B;)
o ) pi (6] B;

Consequently, the full superpotential Wy is given by
1 , . _
JWH = (mz + bi)ZZ — (n’ + al)gz- . (2.21)

The flux quantization condition (2.3), properly expressed in terms of ordinary Chern-
Simons invariants, takes the form

1
- / H— 0CS,(A,C) € 7 (2.22)
C

and it shows that the quantities n* and m; in (2.21) are, in fact, integers. In other words,
the integers n' and m; describe the harmonic flux in Hy while the potentially non-integral
quantities a’ and b; describe the holomorphic Chern-Simons invariant. It is the latter,
which are the main subject of this paper.

SHermitian holomorphic vector bundles admit a unique Hermitian connection whose (0, 1) part coincides
with the Dolbeault operator. This is called the Chern-connection and, given its definition, it takes the form
VO = 5 and VO = 9 + A®9 Jocally. Thus, the (0,1) component of the associated gauge field always
vanishes.

~10 -



As is clear from the above discussion, a key ingredient in computing these quantities
in actual heterotic models is knowing the isomorphism between the tangent bundle and
the vector bundle explicitly. This is needed to write the connections on the tangent and
gauge bundles relative to the same trivialization. Given that this isomorphism is typically
not holomorphic it is not easy to find and we will describe in section 3 and appendix A
how this can be done in certain cases.

3 Calculating Chern-Simons invariants

3.1 General approach

After the general discussion of the last section we return to the central goal of this paper.
We want to compute the holomorphic Chern-Simons invariant (2.4) for specific connections
over Calabi-Yau three-folds X that appear in heterotic compactifications. In particular,
we are interested in the case where Ay = w is the spin connection on T'X and A the gauge
connection on a bundle V' — X solving the Hermitian Yang-Mills equations

Fy=0, ¢"F;=0. (3.1)

We will choose to write these connections in “math gauge” as Chern connections. Note
that different gauge transformations would be needed on A and Ap in order to write them
in the gauge, more prevalent in the physics literature, where these fields are real. Given the
transformation properties discussed in section 2, this means that the result we will obtain
will generically change by an integer if we chose to do this. Obviously, such an integer shift
cannot change whether or not a Chern-Simons invariant is non-integral, which is a main
point of interest here.

Typically, the holomorphic structure of the gauge and tangent bundles in a heterotic
compactification are different. The Chern connection solving (3.1) and the spin connec-
tion would be written in terms of different local trivializations respecting these structures.
Nevertheless, we could compute the holomorphic Chern-Simons invariant (2.4) if we had
the requisite real bundle isomorphisms between the two bundles. Let us discuss how such
a computation would proceed.

Let us phrase this discussion more generally, in terms of two bundles V — X and V' —
X over a Calabi-Yau three-fold X and a (possibly non-holomorphic) bundle isomorphism
f: V" — V. One might imagine taking V' = T'X, for example, given the above discussion.
However, we wish to keep our notation more general because, as we will see, in practice this
might be required for the computation. We assume that we have connections Vi and V'
on V and V', respectively, as well as local frames s, and s/, associated to some given open
set in the base. Then, relative to these local frames, the gauge fields Ay and A’ associated
to Vo and V' are obtained from

Vosa = Aboasy , V's! = A"} . (3.2)

We can use the bundle morphism f to “transport” the connection V' on V' to a connection
on V, which we will denote by V. This connection is defined by

V(s):= foV(fos), (3.3)
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where s is a section of V. The bundle morphism f can also be used to map the frame s/, of
V' to a frame §, := f o s), of V. Now we have two frames, s, and §, on V and thus there
is a gauge transformation

5q = Pb43, (3.4)

relating them. We can work out the gauge field which corresponds to V relative to the
frame s, and the frame s,. The result is

V(5,) = A%5,,  V(sy) = Abs, where A=P AP+ P ldP. (3.5)

In other words, relative to the frame §,, obtained by transporting the frame on V' to V,
the gauge field remains unchanged, that is, it is given by A’ for both the frames s/, on V'
and 3, on V. For the frame s, on V, on the other hand, the gauge field is obtained from
A’ by the above gauge transformation.

Now that we have phrased matters in terms of two connections on the same bundle,
we can work out the holomorphic Chern-Simons term more explicitly. Suppose that both
initial connections A’ and Ay are Chern connections. (But note that A, being obtained
from A’ by a potentially non-holomorphic bundle morphism, does not need to be a Chern
connection.) Then, the term d(A A Ap) A Q in (2.5) vanishes simply by index structure
arguments and a quick calculation shows the remaining terms satisfy

W(A) — w(Ag) = w(A) — w(Ag) + tr <9 dA' — A'9> — ;93) . 9:=dPP'. (3.6)

In particular, in our case where A’ and Ag happen to be (1,0) gauge fields, we have

w(A4) — w(A)] g = —%tr(e?’)w,g) sothat  CSag(A) = —% /X (@) AQ. (3.7)

Thus we see from (3.7) that if the real isomorphism f is known, so that P can be obtained
from its action on frames via (3.4), then we can compute the Chern-Simons invariant
associated to Chern connections A and Ag, even if we do not know the explicit form of
these connections themselves. Clearly this his helpful given the non-constructive nature of
the Yau [39] and Donaldson-Uhlenbeck-Yau theorems [40, 41].

It should be noted that, given the form of the result (3.7), one might expect this Chern-
Simons invariant to not be non-integral since the integrand looks like the wedge product
with € of the standard integrand giving a winding number. In fact, the holomorphic Chern-
Simons invariant can be non-integral as we will demonstrate in section 5.3. Nevertheless,
even if this were to be the case an integral result here would still be important. A non-
zero Chern-Simons invariant CS 4,(A) of this type would destabilize the usual meta-stable
vacuum in the absence of other effects. In addition, non-zero integer results can lead to
non-integral Chern-Simons invariants in quotients, as we will discuss in section 5.

3.2 Finding the isomorphism

It is clear from the proceeding discussion that the key quantity we need to compute is the
real bundle isomorphism f between V' and V' and the associated gauge transformations P.
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How do we describe such an isomorphism practically? Since this is somewhat technical,
a full description of this topic is relegated to appendix A. Here we will content ourselves
with a summary of the essential ideas, along with a simple illustrative example.

By definition, vector bundles locally look like a direct product of an open set on the
base manifold and the fiber. In other words, we have local trivializations,

b : T H(Uy) = Wy X F. (3.8)

Here 7 is the projection map of the bundle and W, is an open subset of CH™(X) and
F =~ C™(V) is the typical fiber. These local trivializations are glued together by transition
functions ¢ng = ¢o © ¢E1 : W x F' — W, x F to construct the bundle globally. The
transition functions act trivially on the base and as linear maps 7;, 3 on the fiber F.

In terms of these local trivializations, our real bundle isomorphism f is described by a
collection of maps

Sa i Wax F = Wax F. (3.9)

Because we want the isomorphism to act fiber-wise, preserving points on the base, these
maps take the form f,(z,v) = (2, Pyv) where the z are coordinates on the open set W, in
the base and the v are coordinates in the fiber F. In short, the real bundle isomorphism f
can be described by a collection of matrices P, which encodes, for each patch, how the fibers
of V' are mapped to those of V. In fact, these are precisely the matrices appearing in (3.4).
The matrices P, must satisfy several consistency conditions. The first is that, if they
are to map V'’ to V, then they must correctly map the transition functions of the first
bundle into those of the second. That is, they must obey the intertwining conditions

Tog = Py 'T o Pp (3.10)

for all patches a, 8. All matrices P, must also be invertible (to define an isomorphism
rather than just a morphism) and they must be non-singular (to be well defined). We
describe all of these conditions in detail in appendix A. The non-holomorphic nature of the
bundle morphisms we will utilize manifests itself in the fact that the matrices P, = P, (z,%)
are, in general, not holomorphic functions of the base coordinates.

Reverting the logic of the discussion, we can say that any collection of matrices P,,
all invertible and non-singular, which satisfy the intertwining conditions (3.10) define a
bundle morphism f. Thus, in order to compute the holomorphic Chern-Simons invariant
CS4,(A) via (3.7) we need to obtain such a set of matrices P,.

Let us illustrate this discussion with a concrete example on the simple base manifold
P'. It is known that line bundle sums on P! are classified by their total Chern character.
In particular, this means that the line bundle sums

V/ = O]pl(—l) & O]}Dl(l) and V = O]pl D O]pl (311)

which both have vanishing first Chern class are real isomorphic. How do we write down
such an isomorphism in the form we have been discussing? The standard open cover of P!
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has two patches, which we label Uy and U; with affine coordinates z and w, respectively.
Relative to those patches, the transition functions for the bundles V/ and V in (3.11) are

T1/0 = diag('z? Z_l) ) Tyg = diag(L 1) . (312)

Then, two matrices P, which satisfy the intertwining conditions (3.10) with these transition
functions can simply be written as

1 z 1
Po(z,2) = P P(w,w) = THwl® | (3.13)

% TH THuT
These are clearly non-singular and invertible in their respective patches. Note that the
matrices in (3.13) depend upon both the complex coordinates and their conjugates. This
had to be the case since the bundles (3.11) are not isomorphic as holomorphic objects.
The above construction can be generalized to relate any two rank two line bundle sums
on P! with the same first Chern class. The resulting bundle morphisms have the following
structure

Fan) (chw)) : Op1 (a—p) & Opi1 (a+p) — Opi(a—q) ® Op1 (a+q) (3.14)
glaP) ~ <Qflq’p)> :Op1(a—p)®Opi(a+p+1) — Opi(a—q) ®Opi(a+q+1), (3.15)

for even and odd first Chern classes, respectively. Their explicit form is a generalization
of (3.13) and is provided in appendix A, where we explain this construction in more detail.
Of course, these results cannot be applied to our problem directly but, as we will see, they
can be used to construct bundle isomorphisms on Calabi-Yau manifolds which are defined
in ambient spaces that involve P! factors.

3.3 An explicit example

In this section we will work on the tetra-quadric Calabi-Yau three-fold, defined as the zero-
locus of a polynomial of multi-degree (2,2,2,2) in the ambient space (P')*, and represented
by the configuration matrix

il
P2
X € ) (3.16)
P2
PL{2

An appealing feature of this example is the presence of the P! factors which, as we will see,
allows us to transfer the results for real bundle equivalence on P! to the tetra-quadric.
Before we construct the relevant bundles on this manifold, we introduce the main
building blocks
B =0x(1,0,—-1,0) ®0Ox(1,1,0,0) & Ox(-1,1,0,0) @ Ox(1,0,1,0)
B = 0x(1,0,0,0) @ 0x(1,0,0,0) & 0x(0,1,0,0) @ 0x(0,1,0,0) (3.17)
R =0x(0,0,1,0) ® 0x(0,0,1,0) @ Ox(0,0,0,1) @ 0x(0,0,0,1)
C =0x(2,2,2,2)
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which underly our construction. Given these line bundle sums, we define the monad bundle
V on X by
0—V - —B&R—C—0. (3.18)

The Chern connection on V is denoted by A and our goal is to compute the holomorphic
Chern-Simons invariant CS,,(A), relative to the spin connection w on T'X. To do this, we
first find a way to deform the spin connection w to the connection A.

Or first step is to introduce a monad representation of the tangent bundle

0—V—BaRXC—o0. (3.19)

Indeed, for a suitable choice of the monad map pg we have V) =2 TX & Og’?‘l. We denote
the Chern connection on V; by Ag. However, for different choices of the monad map the
sequence (3.19) describes holomorphic deformations away from the tangent bundle. In
particular, we can choose p such that the four line bundles in B split off as a direct sum.
This choice leads to a bundle V;, with Chern connection Ay, which can be written as

Vi=BeU, 0—U-—R—C—0. (3.20)

The next step is crucial. We use real bundle morphisms on P!, applied to our ambient
space and restricted to the Calabi-Yau manifold, to construct a real bundle morphism F
between the line bundle sums B and B. We will explain the procedure in more detail below
but for now we continue outlining the structure of the argument.

Thanks to this real bundle morphism, we can relate the above bundle V; to the bundle

Vo=BaU (3.21)

with Chern connection As. Evidently, this bundle is a holomorphic deformation of our
gauge bundle V in (3.18).

To summarize, we have now related the tangent bundle T'X to our gauge bundle V
via a number of deformations which can be schematically written as

Txe0% %y oy rel oy ey (3.22)

w — A0—> A1—> A2—> A.

From (2.10) the holomorphic Chern-Simons invariant CS,,(A) can be computed by summing
the holomorphic Chern-Simons invariants of the four steps in the above sequence. However,
three of these steps correspond to holomorphic deformations. It is easy to see that these
are not only holomorphic deformations at the level of the bundles, but are also holomorphic
deformations of the Chern-connections. Hence, from (2.8), the Chern-Simons invariants
associated to these three steps vanish. In conclusion, the only contribution arises from the
real deformation in the above sequence, so that

CSu(A) = CSa, (As) . (3.23)

We know from the general discussion in section 3.1 that CS 4, (A2) can be worked out from
the bundle isomorphism F : B — B so our next task is to construct this isomorphism.

~15 —



To do this, we recall from the previous subsection (see (3.14)) that we can find explicit
real bundle isomorphisms f (@) which relate pairs of rank two line bundle sums on P! with
the same first Chern class. For our present example, we have four P! ambient space factors,
which we label by ¢ = 1,2,3,4, as well as four line bundles in B, which we label by a =
1,2,3,4. The maps f(@P) can be applied to any of the four P! factors and to any two of the
four line bundles, while leaving the other P! factors and line bundle undisturbed. We denote
the version of f(@P) which acts on the i*" P! factors and on the two line bundles a and b by
f égf ). As is evident, this gives rise to a large number of possibilities and a corresponding
web of real bundle isomorphisms for line bundle sums on (P')* (and, by restriction, on the
tetra-quadric). It would be interesting to explore this more systematically.

For present purposes, this formalism can be used to construct a real bundle isomor-

phism between B and B by the following chain.

1000 1-100 1-100
~ 1000 #8921 1002 1 100
B = — —
0100 0 100 -1 100
0100 0 100 1 100
(3.24)
1000 10-10
el 1100|589 11 00
— — :B
1100 11 00
1000 10 10

Here, for ease of notation, we have written the line bundle sums as matrices, with each
row representing the multi-degree of one line bundle. Hence, the desired line bundle iso-
morphism F : B — B can be written as

1,0 0,1 1,0 1,0
F = f1(4,3) © f1(4,2) © 3(4,1) o 1(2,2) ) (3.25)

suitably restricted to the Calabi-Yau three-fold X. It is straightforward to promote F to
a bundle isomorphism V; — V5 by extending it trivially onto the common summand U.

The direct computation of the holomorphic Chern-Simons invariant (3.23), based on
the formula (3.7), is not hard at this stage but simply tedious. We first compute the
matrices P, which represent the local descriptions of the bundle isomorphism (3.25). For
the purpose of integration, it is sufficient to carry this out in the standard patch of (P')*
whose affine coordinates we denote by z;, where ¢ = 1,2,3,4. Combining the individual
pieces in (3.25), given in (A.21), (A.19) and (A.11), we find the following expression for
the local version of F.

(22+1)(Z223+1) _ (2271)(222'3;#1) (2171)(22723) (21+1)(22723)
(Iz2[?+1)(lzs2+1)  2(Jz2[+1)(lzs]*+1) (lz22+1)(l23>+1) 2(|22[>+1)(|z3]?+1)
29— 1 3(z2+1 0 0
P = 2 { ) _ _ (3.26)
0 0 zZ1+1 1—2z1
|Z1|2+1 2|Zl|2+2
o (22723)(22+1) (22723)(5271) (2171)(23524»1) (Z1+1)(Z322+1)
(Jz2]2+1) 2(|z2]2+1) (Jz2]2+1) 2(|z2]2+1)
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To restrict to the Calabi-Yau three-fold we must pick a defining relation for the configu-
ration (3.16) and then solve it on the given patch for one of the coordinates in terms of
the others. For example, the coordinate z4 on the last P! factor in the ambient space is a
natural choice given the dependencies appearing in (3.26). Given the defining equation is
a quadric in z4, this yields two disjoint loci describing parts of X inside the open patch,
on which we know the matrix P.

Once we have computed P we can then carry out the integral in (3.7) in order to
evaluate the Chern-Simons invariant, using the standard expression for the holomorphic
(3,0)-form on such manifolds [42-45]. The integral one obtains vanishes.

We have thus completed the first non-trivial computation of a holomorphic Chern-
Simons invariant contribution to the heterotic superpotential, for the non-flat bundle (3.18)
over the Calabi-Yau manifold (3.16), albeit obtaining a vanishing result. We have repeated
such a computation for a large number of different gauge bundles over different Calabi-Yau
manifolds. The integrands all exhibit similar structures, not very different from those which
arise in period integrals [46, 47|, but the resulting Chern-Simons invariant always vanishes.
At this stage one is motivated to look for more general reasons as to why a vanishing
result might be obtained in many cases, or why non-integral Chern-Simons invariants do
not appear. This might provide some insight into our results so far and also guidance on
how to build non-flat bundles with non-integral contributions to the superpotential. We
discuss a relevant vanishing theorem in the next section, and an example with a non-integral
holomorphic Chern-Simons invariant in section 5.

4 A vanishing theorem and its consequences

In this section we will consider the consequences of the following theorem due to R.
Thomas [32].

Theorem 4.1 Suppose that the Calabi-Yau three-fold X is a smooth effective anti-
canonical divisor in a four-fold Y defined by s € HO(Kgl). If E — X is a bundle that
extends to a bundle E — Y, then for a O-operator A on E, let A be any 0-operator on E
extending A. Then we have, modulo periods and for some choice of reference connection,

CS(A) = /Ytl" (}FO’Q VAN F(LQ) As L. (4.1)

In terms of the notation in this theorem, the Chern-Simons invariant CS,,(A) of the con-
nection A on the bundle V', relative to the spin connection w on the tangent bundle, can
be written as CS,(A) = CS(A) — CS(w). Clearly, this theorem has important implications
for the questions being addressed in this paper. For example, Theorem 4.1 sheds light
on the vanishing result obtained in section 3.3. In this instance the manifold is indeed
an anti-canonical hypersurface in a smooth ambient space. In addition, the sums of line
bundles that appear in the definition of the bundle (3.18) do extend holomorphically to
the ambient space. Although it is not guaranteed, it is also not unreasonable to think that
the connection on this bundle might also extend holomorphically to the ambient space.
Indeed, the ansatze that are used to describe fiber metrics in numerical work [48-58] are
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somewhat suggestive of this. Given all of this, Theorem 4.1, together with our discussion
of section 3.3 makes it no surprise that CS,(A) = 0.

Despite the discussion of the proceeding paragraph, one might think that Theorem 4.1
has limited applicability in physical contexts. The techniques illustrated in the simple
example in section 3.3 clearly generalize to large classes of cases and it might naively
appear that the above theorem has a very limited scope in terms of the types of bundles
and Calabi-Yau manifolds to which it applies. In fact, Theorem 4.1 is of relevance in a
surprisingly wide range of examples.

The first seemingly strong restriction in Theorem 4.1 is the requirement that the
Calabi-Yau manifold be described as an anti-canonical hypersurface in an ambient four-fold.
This is in fact not much of a restriction at all in many discussions of string compactifica-
tion. In the case of any complete intersection in a smooth ambient space, for example for
any CICY [45, 59-61] or gCICY [62] (see [63, 64] for related work), one can simply pick
Y to be described by k — 1 of the defining equations where k is the codimension of the
three-fold. The final defining equation will then be an anti-canonical hypersurface in that
ambient space. Further, for the theorem to apply it is only necessary that the Calabi-Yau
manifold under consideration admits some description of this type. Calabi-Yau manifolds
can be described in a plethora of different manners and even if a three-fold of interest is
not described in a manner compatible with Theorem 4.1 that does not mean that such a
description does not exist. Indeed, it can be hard in a given case to prove that a description
as an anti-canonical hypersurface in an ambient Y does not exist.

It is true that many ambient spaces appearing in descriptions of known Calabi-Yau
manifolds are singular. This is commonly the case for Calabi-Yau manifolds described as
hypersurfaces in toric varieties [65-67], or quotients of CICYs [68-74], for example. Even
in such cases, however, the ambient spaces which appear in constructions in the literature
are frequently resolvable and one can then simply apply Theorem 4.1 to the anti-canonical
hypersurface in that resolution. If the initial Calabi-Yau manifold was smooth, then the
ambient singularities must have missed the hypersurface and, hence, the three-fold is not
changed during the resolution process.

One might have similar reservations about the general applicability of the assumptions
made about the bundles and connections as they appear in Theorem 4.1. However, in this
case too the structure required is not as restrictive as one might think and the theorem
applies to many cases appearing in the physics literature. There are many constructions
that are utilized in heterotic compactifications where the bundle does not extend nicely
to the ambient space. Bundles constructed as two term monads over CICYs, for example,
frequently have the feature that, while they restrict to a bundle over the Calabi-Yau three-
fold they are merely a sheaf over the ambient space. As it happens, the bundle (3.18) in our
example extends to a bundle on the ambient space, but this is not necessarily the case in
other models (see [75, 76] for some explicit cases). Nevertheless, even in these cases it is not
clear that Thomas’ theorem does not apply. Since the Chern-Simons invariant is unchanged
under holomorphic deformations of its argument, we only really require some holomorphic
deformation of the bundle under consideration to extend to the ambient space. In addition,
as with manifolds, bundles over Calabi-Yau three-folds can typically be described in many
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ways. Even if some descriptions do not allow for an extension to an ambient space bundle
there may well exist others which do.

Using the tools presented in section 3, we have computed the holomorphic Chern-
Simons invariants for quite a number of different cases, and each time we have obtained
zero. We believe that the above theorem may be one of the culprits behind this conspiracy.
In the rest of this paper we will describe heterotic string compactifications in which non-
trivial Chern-Simons invariants can be obtained, culminating in a concrete example of a
non-flat gauge bundle giving rise to a non-integral invariant.

5 Non-integral Chern-Simons invariants

5.1 General remarks

In this section we will discuss two methods for constructing non-flat bundles in heterotic
compactifications which give rise to non-integral holomorphic Chern-Simons superpotential
contributions. These discussions will focus on manifolds which are freely acting quotients
of an initial simply connected Calabi-Yau three-fold (or on three-folds with a non-trivial
fundamental group). The technical results that we will need as part of this discussion are
presented in appendix B.

The first argument we wish to give makes use of large gauge transformations on a
Calabi-Yau manifold X in order to generate connections with non-integral holomorphic
Chern-Simons invariants on its quotient X. Working over the geometry X, it is easy to
obtain a vanishing Chern-Simons invariant. Indeed, an example of such a case is given
in section 3.3. From such a result one can easily obtain a non-vanishing, but integral
holomorphic Chern-Simons invariant, simply by performing a large gauge transformation
on the argument of the functional, A. It is not clear what integers one can obtain for the
associated ordinary Chern-Simons invariants in such a case, and for a given topology it is
not the case that every possible integer will always be obtainable. Furthermore, explicitly
writing down such large gauge transformations appears to be prohibitively difficult in many
cases. Nevertheless, non-vanishing Chern-Simons invariants can clearly be obtained on X.

Let us denote by I' the freely acting symmetry on X by which we quotient to obtain
X. Further, a I'-equivariant bundle V on X descends to a bundle on X which we denote by
V. In appendix B, we introduce the notion of I'-equivariant connections on I'-equivariant
bundles on X. Suppose we consider such I'-equivariant connections A and Ay on V which
give rise to a holomorphic Chern-Simons invariant on X with at least one of the numbers
a’ and b; in (2.19) (that is, at least one of the ordinary Chern-Simons terms involved)
not being divisible by |I'|. In appendix B, we show that the resulting holomorphic Chern-
Simons invariant on X is obtained by dividing its counterpart on X by the group order
(see (B.19)). Therefore the holomorphic Chern-Simons invariant obtained on the quotient
would be non-integral.

One might think that such cases are common place, and indeed that may well be
true. However, constructing a concrete example as an existence proof is difficult, due
to the fact that an explicit expression for, or at least proof of existence of, the large
gauge transformation involved is required. Without this one cannot concretely rule out the

~19 —



possibility that all large gauge transformations over X that exist lead to integers divisible
by |I'| for all possible symmetries by which the manifold could be quotiented, however
unlikely this may seem.

It is interesting to ask how this method for obtaining non-integral holomorphic Chern-
Simons invariants evades the statement that large gauge transformations on X should
change those functionals by integer multiples of periods. Suppose we have an equivariant
connection Ap on the (equivariant) bundle V' — X, and another connection A on V, related
to Ap by a large gauge transformation, so that CS4,(A) is an integer multiple of periods.
We prove in appendix B that the large gauge transform of an equivariant gauge field is
always equivariant so that A is equivariant as well. Hence, both Ay and A descend to
the quotient, inducing connections Ay and A of V. However, it is not true that the large
gauge transformation involved will always descend to X. In other words, Ay and A need
not be related by a large gauge transformation and, hence, the corresponding holomorphic
Chern-Simons invariant CS Ag(/l) on X does not have to be an integer multiple of periods.

Given the non-constructive nature of such an argument for the existence of non-integral
holomorphic Chern-Simons invariants, we will, in the following subsections, present a con-
crete example of a non-flat bundle exhibiting such a structure. We construct this example
in a manner which is presumably less generic, but nevertheless more explicit, than the
discussion of the proceeding paragraphs.

5.2 Tensor product connections

To discuss the example in the next sub-section we will need a few basic facts and defini-
tions concerning tensor product connections and their Chern-Simons invariants. Given two
bundles V; and V5 with connections Vi and Vo, the tensor product V = V; ® V5, can be
equipped with the tensor product connection V defined by

V(s1 ®s2) =(Vi1s1) ® s2+ 81 ® (Vasa) . (5.1)

Here, s; and s9 are sections of V; and V3, respectively. If we set up local frames s1; and
sok for V7 and V5 then these define a local frame si; ® soi, for V. The corresponding gauge
fields, introduced in the usual manner as

Visi1i = A{islj , Vasap = Abyso; V(s1i® s24) = Agf(Slj ® $23) , (5.2)

are then easily seen to be related by
Al = A5, + 6] Aby (5.3)
For the curvature of the tensor product connection, it follows from the definition (5.1) that
F(s1® s2) = (F1(s1)) ® 52 + 51 ® (F2(s2)) (5.4)

Hence, if F} and F; satisfy the Hermitian Yang-Mills equations (3.1) then so does F'.
Given this set-up, it is straightforward to compute the Chern-Simons form for the
tensor product connection

w3(A) = rk(Va) ws(A1) + rk(V1) ws(A2) . (5.5)
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We introduce reference Chern-connections Ao and Agg for A; and Ao, respectively, along
with their tensor product connection Ay which serves as a reference connection for A.
Then, (5.5) combined with the formula (2.5) for the holomorphic Chern-Simons invariant
gives

CSAO (A) = rk(VQ) CSAw (Al) + rk(Vi) CSAQO (A2) : (5'6)

5.3 A non-flat bundle with a non-integral invariant

We will now construct an example of a non-flat bundle with a non-integral holomorphic
Chern-Simons invariant as defined in section 2.2, by using the notion of tensor product
connections on a quotient of a CICY three-fold. It should be noted that finding calculable
examples of this type is also rather difficult. The structure required, as we will see, is
rather specific. In addition, most cases that both exhibit the necessary structure and
are calculationally tractable have turned out not to lead to a non-integral Chern-Simons
invariant. Nevertheless, we find it valuable to provide this example as an existence proof
for non-flat bundles in heterotic compactifications with non-integral holomorphic Chern-
Simons invariants.

Consider the manifold, CICY 5301, in the standard list [45],” specified by the config-
uration matrix

P10 110]
Plo110
Xe |PH1001 ]| - (5.7)
Pl1001
P31111

We denote the homogeneous ambient space coordinates by x,;, where a = 1,...,5 labels
the projective factors and ¢ = 0, 1,... its coordinates.
This manifold admits a freely acting Z, symmetry whose generator acts as follows®

T1,0 = T30 1,1 > —T31 X207 T40 X217 T4,1
r3o0+r> 1,0 3,1 T1,1 T40 > T20 L4172 —T271 - (58)

T50 7 53 51> —T52 T52+> T51 X53+> T50

The symmetry also acts non-trivially on the normal bundle as represented by the following
action

(p1,p2, 3, Pa) = (P2,P1,P4, —DP3) (5.9)

on the defining polynomials. The quotient X of X by the symmetry (5.8), (5.9) leads to a
transverse variety, and the action is fixed point free, and, hence, X is a smooth Calabi-Yau

"A machine readable version of the CICY list and the symmetries used in this paper
can be found at http://www-thphys.physics.ox.ac.uk/projects/CalabiYau/CicyQuotients/Cicy -Quotients/
Cicy_Quotients.html.

8Note we have performed a linear coordinate transformation from the symmetry action as it is usually
represented in the standard list [68] (see also footnote 7). This form of the symmetry preserves a particularly
simple SLAG as we will see shortly.
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space X X =X/7

bundle U | V=UP2 |V | U |V=UR2| V| W | V=UaW

connection | Ay A Ao | Ay

Table 1. Bundles and associated connections of our construction

three-fold with fundamental group m;(X) = Z4. It is on X that we will construct our
example.
To construct our bundle we begin by noting that the following sum of line bundles

U=0x(-2,-1,0,0,1)® Ox(0,1,-2,1,0) ® Ox(2,0,2, -1, —1) (5.10)

has a second Chern character which is exactly half of that of the tangent bundle TX. In
addition, U has a vanishing slope on an appropriate sub-locus of the Kéhler cone and admits
an equivariant structure with respect to the symmetry (5.8), (5.9), so that it descends to a
bundle U on X. Now consider the bundle V = U @ U on X. This is an equivariant bundle
with a second Chern character which matches that of T'X and thus naively gives a good
heterotic vacuum on X. Its equivariant nature means that it descends to a bundle V=Uo
U on X. We also introduce the well-know holomorphic deformation of TX & O%°, given by

0—Vo—0x(1,0,0,0,0%2@...20x(0,0,0,0,1)** - 0x(0,0,1,1,1)P?®0x(1,1,0,0,1)%2 =0

This bundle also has an equivariant structure under the above Z4 symmetry and descends to
a bundle Vp on X. For all these bundles, we introduce Chern connections which satisfy the
Hermitian Yang-Mills equations, as indicated in table 1. Note that the connection AonVis
taken as a direct sum connection constructed from two copies of the connection Ay on U.
We are interested in the holomorphic Chern-Simons invariant CS 4 (A). If this in-
variant is non-integral then we can stop our search here. If it is not, however, there is a
simple modification that allows us to generate a new bundle on the quotient manifold X
which does have a non-integral invariant. More specifically, we can carry out the following
modification
V=UalU=U0;8&05) — V=UaW (5.11)

of the bundle V, where W is a rank two flat bundle (a Wilson line) on X which we have
used to replace the trivial bundle O¢ @ Oy. In doing so we do not change the second
Chern-character of the bundle. In addition, if we choose the connection A" on V' to
be the tensor product connection of the Hermitian-Yang-Mills connection A on U and
the flat connection Ay, on W then the result will still obey the Hermitian Yang-Mills
equations (3.1). Thus the resulting bundle V' still gives rise to a good heterotic vacuum
before considering Chern-Simons contributions to the superpotential.

We would now like to compare the holomorphic Chern-Simons invariants CS Ao (fl) and
CS AO(A’ ) for A and A/, relative to the same reference connection Ag. From (2.5) we know
that

0S ;. (A) = / (w3(A) — ws(Ao)) A Q2= / (2w3(4p) — w3(do)) A D (5.12)
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Here ) is the holomorphic (3, 0)-form on the quotient X. Of course, appropriate morphisms
must be used to ensure that the two connections in the above integral are written with
respect to the same trivialization on the underlying real bundle.

On the other hand, for the connection A’, we make use of the formula (5.5) which gives

w3(A') = 2w3(Ap) + 3ws(Ayy) - (5.13)

This, in turn, leads to the following relation
s, (A) = / (2 w3(Ap) + Bws(Ay) — wg(Ao)) AQ=CS; (A)+3CSe(Ay), (5.14)

where CSo(A;;,) denotes the holomorphic Chern-Simons invariant with a trivial reference
connection, which is always available on flat bundles. Thus, under our assumption that
CS4,(Ay) is integral, a flat bundle W with a non-integer value for 3 CSo(Ay5), leads to a
non-integral Chern-Simons invariant for A’. The study of Chern-Simons invariants of flat
bundles of this type is more advanced in the heterotic literature than for their non-flat
cousins [19-21]. The above construction allows us to use these methods for flat bundles in
order to construct non-flat bundles with non-integral Chern-Simons invariants.

In order to show that 3CSg(Aj;,) can be non-integer, it is enough to find a spe-
cial Lagrangian three-cycle (SLAG) C such that the ordinary Chern-Simons invariant
30CSy(Ay;,,C) is non-integer. In the following we follow the analysis and notation of
ref. [21]. It turns out, the Calabi-Yau three-fold X described by the configuration ma-
trix (5.7) admits an A-type SLAG which can be written as the configuration

RP'0110]
RPLO110
Ce |RP1001] - (5.15)
RPL1001
RP3{1111 |

One can always solve the four equations given here to obtain a single point in RP! x
RP! x RP! x RP!. Perhaps the easiest way to see this is to consider (5.7) as a point
fibration over P3. That point fibration does degenerate, of course, but the degeneracy
locus misses the SLAG. Hence, the above configuration is simply a description of the Lens
space RP3 = S3/Zs.

It is clear that the Z4 symmetry (5.8) and (5.9) leaves the SLAG C invariant and, in
the quotient X , it turns into the lense space C=593 /Zsg. Flat bundles are defined uniquely
by a map from the fundamental group of the base space to the structure group. As such,
we can easily see how a flat bundle defined on the whole Calabi-Yau three-fold restricts to
a SLAG simply by looking at how non-trivial one-cycles embedded in the SLAG descend
from the ambient manifold.

For a Lens space with fundamental group is Z, we can define an SU(N) flat
bundle by specifying the images of the map Z, — SU(N) and we denote these by

~ 93 -



diag(e2mk1/ P ... emikn/ P) | where k; € Z. Then the general formula for the Chern-Simons
invariant of such a flat bundle, using the trivial connection as the reference, is as fol-
lows [37, 77-79].

2
0CSo(Ayy, 5°/Z,) = — Z’;p mod Z (5.16)
For the case at hand, we have p = 8 and we choose the images of the defining map
Z4 — SU(2) as diag(e2™2/8, ¢2™6/8) . This restricts to the Lens space in an obvious manner.
The ordinary Chern-Simons invariant evaluated on this Lens space with the restricted flat
bundle is then
OCSo(Ay;,,€) = g mod Z . (5.17)

As a result 30CSy(Ayy,,C) is non-integer and, hence, from (5.14), either CS 4 (A) or
CS4, (fl’ ) is non-integral. In conclusion, we have obtained a contribution to a heterotic
superpotential from a non-integral holomorphic Chern-Simons invariant associated to a
non-flat bundle.

There is an important caveat in the above example that should be mentioned. Although
it is true that second Chern-characters of V and V’ match at the level of the image of the
Chern-Weil homomorphism, it is not clear they match in torsion. This is also required for
a viable heterotic vacuum, and indeed for the holomorphic Chern-Simons invariant (2.4) to
be well defined. The Brauer group of the manifold X is, to our knowledge, unknown and its
computation is beyond the scope of this paper. This is unfortunately, a common situation
in heterotic compactifications. Nevertheless we believe the present example exemplifies
well the idea of the construction.

6 Conclusions and outlook

In this paper we have computed the Chern-Simons contribution to the heterotic super-
potential arising from the interplay between the gauge and the tangent bundles. To do
this we have split the superpotential which originates from the NS fields strength H up
into two pieces, one from harmonic flux which is integer quantized and the other from the
Chern-Simons invariant. The second contribution is potentially non-integral and has been
the main focus of the present work. Alternative, we might say that the main purpose of
this paper has been to determine the quantization condition for H. From this point of
view, bundles with non-integral Chern-Simons invariants do not allow for a vanishing H
and, hence, lead to a non-zero flux superpotential.

Chern-Simons invariants in the context of heterotic string compactifications have been
considered previously, but only in the context of flat (Wilson line) bundles. However,
heterotic compactifications on Calabi-Yau manifolds require non-flat gauge bundles and it
is, therefore, essential to analyze Chern-Simons invariants for such cases. In the present
paper, we have presented the first analysis of this kind.

We have developed a number of new methods to carry out our computations. Explicit
real bundle isomorphisms between line bundle sums on P! have been derived and we have
shown how these isomorphisms can be used to construct real bundle isomorphisms between
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line bundle sums on Calabi-Yau manifolds which are defined in ambient spaces with P!
factors. These isomorphisms, together with holomorphic deformations, can be combined
to isomorphisms between the tangent bundle of the Calabi-Yau manifold and the heterotic
gauge bundle. This in turn allows for an explicit calculation of the gauge bundle’s Chern-
Simons invariant, with the tangent bundle as the reference connection.

Further, we have developed methods for calculating Chern-Simons invariants on
Calabi-Yau quotient manifolds, that is, on manifolds with a non-trivial first fundamental
group, which apply to non-flat bundles. Since realistic heterotic Calabi-Yau compactifica-
tions rely on such a quotient constructions for both the manifold and the bundle, these
methods are essential for analyzing the superpotential for phenomenologically relevant
models.

Using the methods based on real bundle morphisms, we have calculated the holomor-
phic Chern-Simons invariants for many examples and have always found a vanishing result.
Presumably many of these results can be attributed to the vanishing theorem 4.1. A non-
zero Chern-Simons invariant causes a large superpotential contribution which, on it own,
de-stabilizes the model, so the frequent vanishing we have found can be considered good
news. However, we have also presented an example of a non-zero and indeed non-integral
Chern-Simons invariant for a non-flat bundle on a quotient Calabi-Yau.

Knowledge of Chern-Simons superpotentials in heterotic theories is a crucial piece of
information, particularly in view of vacuum stability and moduli stabilization. In this pa-
per, we have presented some progress in calculating such superpotentials but much remains
to be done for a systematic understanding of heterotic vacua. To generalize our methods
to larger classes of models more general real bundle isomorphisms need to be constructed.
So far, our approach is based on rank two line bundle sums on P!. Explicit knowledge of
bundle isomorphisms for higher rank line bundle sums on P! and for higher-dimensional
projective spaces would significantly expand the scope for applications. Other methods
to construct real bundle isomorphisms, for example through deformations to exceptional
structure groups such as G2, might also be of interest (or perhaps methods taking a com-
plementary geometric approach [80]). One long term goal of this work is to derive a general
quantization rule for H. Such a rule would be a potentially powerful model-building tool,
and would allow us to distinguish marginally stable from unstable heterotic models.

Another obvious extension of the present work would be to include cases where five-
branes are present in the vacuum. This would require new mathematics in that a suit-
able generalization of Chern-Simons invariants would have to be formulated. This would
certainly be interesting to pursue, and is perhaps a case where physics could guide the
discovery of new mathematical structures.

It would also be interesting to study the effects which lead to these Chern-Simons
superpotentials in dual theories, such as, for example, F-theory models with heterotic
duals [76, 81-83]. The authors are planning to explore some of these directions in future
publications.
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A Real bundle morphisms

In this appendix, we review some standard mathematics concerning bundles and their
morphisms and we construct explicitly the real bundle isomorphisms between rank two
line bundle sums on P! which are used in the main part of the paper.

We start by recalling some general facts about bundle morphisms. Suppose we have
two bundles i

V-5 X, VX, (A1)

with typical fiber F' over a manifold X with cover U, and charts ¢, : U, = W, C C". A
bundle morphism is a map f : V — V, for which the diagram

v v

Tl 1 7 (A.2)
X 24 x

commutes. We are looking for a practical way to construct such bundle morphisms and to
this end we introduce local trivializations and their associated transition functions

P s N Uy) > Wy x F ) ¢3~a ) :ﬁ_l(Ua)%WaxF' (A.3)
¢a5::¢ao¢51:ngF—>WaxF ¢a5::qﬁao¢§1:W5xF—>WaxF
Given this set-up, we can define local versions of the bundle morphism f by
far=¢aofodil :Woyx F— Wy xF, (A.4)

and a simple calculation shows that these local morphisms have to satisfy the intertwining
rules

fao¢aﬂz¢aﬂofﬁﬂ (A'E’)
on the overlaps (W,NW3) x F. Conversely, any collection of local morphisms f, which sat-
isfies the conditions (A.5) defines a bundle morphism f. To be more explicit, we introduce
coordinates (z,v) € W x F' and write the transition functions and local morphisms as

%6(277)) = (ZaTaB(Z)v) ) anﬁ(zvv) = (valaﬂ(z)v) ’ fﬁ(z7v) = (Z7Poz(z72)v) ) (AG)

where T3, T, and P, are z-dependent matrices which act on the fiber. Using this
notation, the intertwining conditions (A.5) translate into the matrix equations

P, T.5 = TapPs . (A7)
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These conditions point to a practical way of finding bundle morphisms. Suppose we are
given the transition functions 7,3 and T np for the two bundles V' and V. T hen, the task
is to find matrices P, which contain smooth functions on W, are invertible for all z € W,
and satisfy the matrix relations (A.7). These matrices then define a bundle isomorphism
f ~ (P,) : V — V which establishes the equivalence of the two bundles.

We will now apply this method to find isomorphisms between line bundle sums on
X =P!. The two standard patches on P! are denoted by Uy = C and U; = C, with affine
coordinates z € Uy and w = 1/z € U;. Line bundles on P! are denoted by Op1 (k), as usual.

It is known that two line bundle sums on P! with the same rank are (real) isomorphic
if their first Chern classes match. Our task is to construct this isomorphism explicitly for
the case of rank two line bundle sums

V(k,0):=Op(k) ®Op(l), TED = diag(z"*,27), (A.8)
with transition functions 7’ 1((’; D We start by considering the two bundles V' = V(—p, p) and
V = V(0,0) where p > 0. Evidently, they are both rank two bundles with vanishing first
Chern class so they must be a real isomorphism f®) ~ (Pép), Pl(p)) : V(—p,p) — V(0,0).
To find this isomorphism explicitly, we write down the transition functions

Tio = TP (2) = diag(2",277),  Tio =TV (2) = diag(1,1) , (A.9)

and we try to find non-singular matrices P(§]’ ) which satisfy the intertwining condi-
tions (A.7). For the present case, we have only two patches so there is only one such
condition which reads

pOT PP = OO PP (A.10)

Here Pép ) contains smooth functions in z € Up = C and is invertible everywhere in its

domain and Pl(p ) contains smooth functions in w € U; =2 C and is also invertible everywhere

in its domain. Starting with a guess for Pl(p ), (A.10) then determines Pép ) and this leads to

w? 172 1 721]2
PP (w,w) = W) — BP(z2) = R (A.11)
1 =2 T

Evidently, both matrices are smooth in their respective domain, they are invertible since
det(Pép)) = det(Pl(p)) =1 for all z,w € C and they satisfy (A.10) by construction. So, in
conclusion, this defines real bundle isomorphisms

70 (ng)> SV (—p,p) =5 V(0,0) . (A.12)

As mentioned above, it is a well-known fact that these bundles are real isomorphic [84]
(see [85] for a discussion in the physics literature). However, their isomorphy is normally
established in a somewhat different manner and we are not aware of the explicit real iso-
morphism being written down in this form in the literature. It is this kind of construction
that we will need in the rest of the paper, hence the above discussion.
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The above construction can easily be generalized by twisting up with another line
bundle. The transitions function for the bundle V(a — p,a + p) = V(—p,p) ® Opi(a)
satisfies

Tio Pt = e P (A.13)

Hence, multiplying (A.10) with z=¢ it follows easily that
Pl(p)Tl(g*Pﬂer) — ng’a) PO(p) , (A14)

for the same matrices Pép ) and Pl(p ) as given in (A.11). Hence, we have explicitly con-
structed the real bundle isomorphisms

«

F®) <p(p>) V(a—p,a+p) = Viaa). (A.15)

between two rank two line bundle sums on P! with the same even first Chern class.

What about the case of two rank two line bundle sums with the same odd first Chern
class? Define the matrix D = diag(1l,z) and multiply (A.14) with this matrix from the
right. This leads to

iy Z el a19
where
1 zZp
QU =prP, QP =p'RPp=| T (A.17)
—27 T

Note that Q[()p ) and Qgp ) are still smooth in their respective coordinates and det(Q(()p )) =
det(Q(lp )) =1 for all z,w € C. This means we have the real bundle isomorphisms

9P ~ (Q&m) Vie—pa+tp+1) = Via,a+1). (A.18)

between two rank two line bundle sums on P! with the same odd first Chern.
So far, we have constructed isomorphism to somewhat special bundles of the form
V(a,a) or V(a,a+ 1). This limitation is easily removed by introducing the matrices

-1

PP (z,2) = PW(2,2) PP (2,2), QUM (22 :=QW(22) QP (z2) . (A.19)

Note that these matrices are still well-defined on their respective patches - since we are deal-
ing with SL(2, C) matrices the inverse does not introduce any singularities. By transitivity,
these matrices satisfy

P(;(éq’p)To(é%_p7a+p) _ T(a_q’aﬂ)Pﬁ(q’p) : Q((xq,p)Tc(yz—p,aanH) - T(S{%—q,a+q+1)Qr(Bq7p) . (A.20)

ap

and, hence, they define bundle isomorphisms

f@p) o (pcgq,p)> :Via—p,a+p) — Vie—q,a+q) (A.21)
glP) ~ (Q&q’p)) Via—pa+p+1) —Vie—qa+q+1) (A.22)

~ 98 —



between two arbitrary rank two line bundle sums on P! with even and odd first Chern
class, respectively.

In conclusion, we have shown explicitly, by writing down the relevant real bundle
isomorphisms, the well known fact that the first Chern class really does classify rank two
line bundle sums on P! as topological bundles. Crucially we have explicit forms for the
relevant isomorphisms which will be important to us in the main part of this paper.

B Quotients and equivariant structures

We require a small amount of mathematical formalism in order to describe the relation-
ship between holomorphic Chern-Simons invariants on Calabi-Yau three-folds X and their
quotients by freely acting symmetries X.

Calabi-Yau quotients and equivariant bundles. Let us introduce a finite group
I'={g0=-¢e,91,.-..,9n}, where n = |[I'| — 1, which acts freely on the Calabi-Yau three-fold
X. The quotient by this symmetry is denoted X = X /Tand p : X — X is the natural
projection to the quotient. We need to define the notion of a I'-equivariant vector bundle
V — X. A bundle is equivariant if there exists bundle morphisms @4, for all g € I', such
that the diagrams
v iy
Tl I (B.1)
X L x
commute and the bundle morphisms satisfy the group law ®,, = ®, 0 ®), for all g,h € T
Such a I'-equivariant bundle descends to a bundle V — X on the quotient such that
V = p*V. More constructively, the downstairs bundle can be defined as V= V/ ~, with
the equivalence relation defined by v/ ~ v < v/ = ®4(v) for a ¢ € I'. The downstairs
projection can be defined as 7 ([v]) := [7(v)].
We also recall that the bundle morphisms ®, can be used to defined maps ¥, :
I'(X,V) = I'(X, V) between sections of V' by

U,(s):=Pg0s0 g ', (B.2)

Interplay of equivariant structure and real bundle morphisms. The possible
choices of equivariant structure on holomorphic bundles V' on X are in 1-1 correspondence
with holomorphic bundles V on X. Because of this there is a compatibility requirement
between the possible real isomorphisms f between two bundles V' and V and choices of
equivariant structure on each, if a real bundle isomorphism is to descend to the quotient.
If two equivariant structures are to give rise to real isomorphic bundles on X then there
should exist some real bundle isomorphism f for the choices of equivariant structure @,
and ég such that the following diagram commutes for all g € T

1%
®, | 1 @, (B.3)
1%
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Note that any given real isomorphism f : V — V may not satisfy this condition. The
requirement, if the two bundles on X are to be real isomorphic, is simply that there exists
some bundle morphism that does.

Pullback of a connection. In the context of this paper we need to go beyond the
bundles themselves and consider also connections on them. In order to consider how maps
such as ®, or f induce a mapping on connections we will need to recall how pullbacks of
such objects can be defined. Consider an invertable differentiable map f : X — X between
two manifolds X, X and a vector bundle V — X with connection V. Then a connection
f*V on the pullback bundle V = f*V — X can be defined locally as follows [86]

VO = VI = d A (B.4)

Here, /ll is the gauge field on UZ relative to the frames 3;, on the cover UZ C X and

U, = f_l(UZ) There are natural frames on U; C X defined by s;, = 8,4 0 f, and we
(0)

can glue the local connections V"’ together to a global connection V() relative to these
g i g g

frames. To see how this works we first note that gauge transformations
Ay = g tAg + ¢ g, (B.5)
and pull-backs f*A commute, that is,
A= (f"A)peg - (B.6)

This means, if the gauge fields Aj and A; on U ; and U; are related by the gauge transfor-

mation A; = Aiv.@(ij)’ then

f*Aj = (f*Ai)g(ij) s (B7)

so the pulled-back gauge fields f*flj and f *A; are glued together by the pull-backs g
J*9(iz) of the original gauge transformations.

ij) =

The above is natural but is not the most general way we can define the pullback.
Suppose that, instead of (B.4), we define local connections V; on U; by

Vi=d+4;, f‘A=Ap =P AP +PdP, (B.8)

where P; are gauge transformations which can be chosen and the second equation defines
what we mean by A;. These local connections glue together to a global connection V by
virtue of

A=A gy o (B.9)

(which follows immediately by combining (B.7) and (B.8)), so the glueing gauge trans-
ij)Pj_l. Of course the so-defined gauge field A;
depends on the choice of the local gauge transformations P;. These different gauge fields

formations in this case are given by Pjg

describe the same pullback connection for different choices of local trivializations.
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Equivariant connections. We will say that a connection V on V — X is I'-equivariant®
(with respect to the equivariant structure on V' defined by bundle morphisms @) iff

V(Ty(s)) = Ty (V(s)) , (B.10)

for all g € I'. Here, s is a section of V' and the maps ¥, have been defined in (B.2). The
prime on the right-hand-side of (B.10) indicates that an action of the induced equivariant
structure on the co-tangent bundle should be included (since V(s) is a one-form).
What do the gauge fields associated to such an equivariant connection look like?
To see this consider an open set Uy which is sufficiently small that no two points inside
it are mapped in to each other under the symmetry action I'.  We define the open sets
U; = ¢i(Up) where i = 0,1,...,n which are the image of Uy under the elements of
the finite group. On each such patch U; we choose a frame s;,. This choice does not
necessarily have to be aligned with the “natural” choice W, (s0,,) (Which is swept out by
the equivariant structure once a frame sg, on Uy has been fixed). Let us parametrize the
difference between those two frames by
Uy, (s0.a) = Pb 4Sip - (B.11)
It follows from the group law for ¥, that the P, are matrices which must satisty Py, = P, Pj,.
Consider a situation where we have sets of such matrices P, one set for all possible choices
of initial open set Uy within an open cover composed of such objects. Then, if we fix
the frames s; , once and for all, the sets of matrices P, encode the choice of equivariant
structure on V. Call A; the gauge field for V on U; and relative to the frame s; 4, that is,

V(sia) = AS,sic . (B.12)

Then, a short calculation shows that the equivariance condition (B.10) translates to the
conditions

(971" Ao = PP AP, + PP, = A p, . (B.13)

on the local gauge fields. This should be compared with (B.8). In the special case when all
P; =1 (which corresponds to a particular choice of equivariant structure), these conditions
simplify to

In short, for two points on X related by the symmetry, the corresponding gauge fields
relate by a pull-back combined with a gauge transformation. This is certainly an intuitively
reasonable definition for a gauge field we would expect to descend to a quotient. We
discuss this further next.

For later discussion it will be useful to note that it is obvious given the above definitions
that any globally defined gauge transformation, ¢t : X — G where G is the gauge group,
acting on an equivariant connection gives rise to another equivariant connection.

9See [87] for related definitions in a different geometric context.
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Descent of connections. Suppose we have a (local) section s of V' which is invariant,
that is, ¥4(s) = s and which descends to a section p(s) of V. For an equivariant connection
V on V such an invariant section satisfies, from (B.10), that

W, (V(s)) = V(s) . (B.15)

We therefore see that V(s) is an invariant section of V @ TX" and thus descends to a well-
defined section of V ® TX" on the quotient. Thus we can define an associated downstairs
connection by V(5(s)) := p(V(s)), where by a slight abuse of notation we are using p to
indicate the descent of sections for two different sets of bundles.

To show this structure from a different perspective, let us start with a connection on the
quotient and show that the pullback of the associated gauge field under the projection map,
as defined in (B.8), is an equivariant connection on X as defined in (B 10). Let us denote by
V a connection on X and, given the projections p; := p|y, : U; — U; C X of the open sets
defined above (B.11), we can define the local pull-back connections V; := piV = d + A;.
Here the associated gauge field A; is defined as the generalized pull-back of the gauge field
on X following the discussion above, so that, according to (B.8)

piA; = PTYA P + PP, (B.16)

for some P;. In this equation A; is the pullback of A; under p; as an ordinary one-form.
Note that on any given patch we are free to choose the gauge transformation appearing in
this expression to be P = I, simply by performing a globally defined gauge transformation
on each of the patches which agrees on all overlaps. If, for example, we choose Py to be
the identity, then the gauge field Ay = pgfl on that patch is the straightforward pull-back
of the downstairs gauge field. For a set of projections that are consistent with the group
action we would have that pg = p; o ¢g; so that, in terms of ordinary pullbacks of one
forms, p§ = g o p;. Thus pj A =g “(p; (A)) so that p*A = (g71)*Ap. Given this and
equation (B.16), we find the following relationship between the generalized pullbacks of
the gauge fields to patches Uy and U;.

(g; )" Ao = P AP, + P dP; (B17)
This is precisely the relationship we saw in (B.13) for an equivariant connection.

Pullbacks and integration. Let f: X — X be a (smooth, surjective) map between
manifolds, as before and v a top form on X. Then

/Xf*u:deg(f)/j(y, (B.18)

where deg denotes the degree of a map. The degree is the integer which arises in the
pullback of a top form. It is +1 for orientation-preserving diffeomorphisms and —1 for
orientation-reversing diffeomorphisms. For non-injective maps which corresponds to an
N-fold cover the degree is =N, with the sign is determined by what happens to the orien-
tation [88].
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Note that this can immediately be applied to see how the holomorphic Chern-Simons
invariant (2.4) descends to a quotient in some cases. We would define the Chern-Simons
invariant in a heterotic string context by using a real isomorphism f as in section 3. We
would choose this real isomorphism and equivariant structures on the two bundles involved
to obey the commutativity condition (B.3). In addition, it is necessary, if the integral (2.4)
is to be well defined, that both connections are written with respect to the same local
trivialization. With (B.3) effectively saying that the two equivariant structures are the
same for the mapped connection A and reference connection Ag, and with the choice of
trivializations being the same, we then see from (B.11) that the gauge transformations ap-
pearing in the equivariance conditions for the two connections would be identical. Because
the integrand in (2.4) is a gauge invariant if we transform both A and Ay simultaneously,
we see that the group I' simply acts upon the integrand of the Chern-Simons invariant as
though it were an ordinary differential form. Thus (B.18) applies and we have that,

CS ;. (A) = de;(mcsAo (A). (B.19)

Here, A and Ay are the equivariant connections for the bundle V' — X that are pullbacks
of the connections A and Ag on V — X , in the sense we have described above.

Open Access. This article is distributed under the terms of the Creative Commons
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any medium, provided the original author(s) and source are credited.
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