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1 Introduction

The literature on model building in smooth Calabi-Yau compactifications of heterotic string

theory stretches back nearly 40 years. In the early seminal work on the subject, efforts

were focussed on the case of the “standard embedding” where the gauge bundle was taken

to be the holomorphic tangent bundle of the Calabi-Yau manifold [1–5]. In more recent

years, advances in the technology used to describe these compactifications has lead to

the construction of heterotic standard models with the exact charged spectrum of the

MSSM [5–12]. Most of this model building progress has been achieved by branching out

to more general situations where the gauge fields and the spin connection are connections

on different holomorphic vector bundles. Despite the sophisticated constructions that lead

to carefully chosen charged particle spectra, it has generally been the case that these

compactifications give rise to only marginally stable vacua. Nevertheless, this work has
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been motivated by the hope that at least some of the general lessons learned in this decade-

spanning and extensive effort will carry over to more realistic situations where all of the

moduli are stabilized.

Compared to string model building focused on particle physics properties, the subject

of moduli stabilization is at a much less advanced stage of development in heterotic theories.

Although a large literature on this topic does exist, several pieces of the low energy effective

theory that would be required for a full analysis of the vacuum space of the theory are still

unknown. These include, for example, the Kähler potential, in the case of non-standard

embeddings, for fields such as matter and bundle moduli as an explicit function of the

N = 1 degrees of freedom [13–17]. In this work our goal is to compute another such

missing component of the theory — namely the vacuum contribution to the superpotential

that appears due to the presence of the gauge bundle in heterotic compactifications. If this

quantity is non-vanishing it can potentially destabilize the model, in the absence of other

effects. This superpotential due to the heterotic gauge bundle is also a crucial ingredient

in moduli stabilization scenarios and so its computation is of great importance.

In heterotic compactifications on smooth Calabi-Yau three-folds, we typically consider

a gauge bundle V over some Calabi-Yau manifold X with tangent bundle TX. The Bianchi

identity of the ten-dimensional theory, in the absence of five-branes is,1

dH = α′ (tr(R ∧R)− tr(F ∧ F )) . (1.1)

This implies that the Neveu-Schwarz three-form field strength can be written, at least

locally, as

H=H0+α′(ω3(ω)−ω3(A)) , ω3(A)=tr

(
dA∧A+

2

3
A3

)
, ω3(ω)=tr

(
dω∧ω+

2

3
ω3

)
.

(1.2)

Here, H0 is a closed contribution to the field strength that obeys an integer flux quantization

condition and it can be locally written as H0 = dB, with the two-form field B. Further,

we have introduced the gauge connection A on V and the spin connection ω on TX, along

with their respective Chern-Simons forms ω3(A) and ω3(ω).

Given such a form for the field strength H, the Gukov-Vafa-Witten superpotential [18]

of the four dimensional effective theory can be written as

W =

∫
X

(H + i dJ) ∧ Ω =

∫
X
H0 ∧ Ω + α′CSphys(A,ω) + i

∫
X
dJ ∧ Ω , (1.3)

where Ω is the holomorphic (3, 0) form on the Calabi-Yau three-fold. The physics literature

usually defines the Chern-Simons contribution to this superpotential as

CSphys(A,ω) =

∫
X

tr (ω3(A)− ω3(ω)) ∧ Ω . (1.4)

It is often tacitly assumed that this contribution vanishes in vacuum. In general, however,

there is no reason for this to be the case and it must be computed explicitly, even to

1Throughout this paper we will define ‘tr’ to include a factor of 1
8π2 to avoid unnecessary cluttering of

the formulae with numerical factors.
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verify the existence of simple forms of marginally stable Minkowski vacua.2 It is possible

that many of the heterotic standard models in the literature are not, in fact, associated

to Minkowski vacua unless other contributions to (1.3) are included. To date, only one of

the models with an exact MSSM spectrum mentioned above is known to have a vanishing

Chern-Simons contribution to the superpotential [5]. The gauge bundle, in this model, is

a holomorphic deformation of the tangent bundle and in such instances, as we will discuss,

the vanishing of (1.4) is guaranteed.

Unfortunately, very few techniques exist in either the physics or mathematics literature

for explicitly computing the value of (1.4) and only a handful of simple examples have

been studied. This is frustrating given its importance for heterotic model building and

moduli stabilization. The goal of the present work is to improve the tools required for

calculating Chern-Simons contributions to the superpotential in relevant heterotic models.

In particular, our primary results are the following.

• We develop new computational tools to efficiently calculate the vacuum value of (1.4)

in explicit heterotic string compactifications.

• We construct new and non-trivial examples of consistent heterotic compactifications

in which the Chern-Simons contribution to the vacuum superpotential can be exactly

determined. These include cases with vanishing as well as non-vanishing and non-

integral Chern-Simons contributions.

It should be noted that Wilson line contributions to the superpotential (1.4) have been

frequently considered in the literature [19–22]. We emphasize that this is not what we

are doing here. We are interested in all contributions to (1.4), including those from the

non-flat bundles. It is this quantity which is of relevance for concrete models, since het-

erotic compactifications on Calabi-Yau three-folds necessarily require a gauge bundle with

non-vanishing curvature. Other recent papers considering this contribution to the super-

potential even for non-flat bundles include [23] which utilizes mirror symmetry and [24]

which explores deformations of the Hull-Strominger system [25, 26].

To understand the physical consequences for non-vanishing Chern-Simons contribu-

tions to the vacuum potential, it is important to keep in mind that the effect being described

here could, of course, be cancelled by the other contributions to the superpotential (1.3).

However, the Chern-Simons term is somewhat different in nature to the effects from H0

and dJ . The contributions to (1.3) from H0 are associated with quantized quantities, which

means that the corresponding terms in the superpotential are determined by a set of inte-

gers. The same is not necessarily true for the Chern-Simons contribution (1.4). The Chern-

Simons term is determined, as we will discuss, by a set of 2(h2,1(X) + 1) numbers which

may be non-integral. The contribution from dJ , by contrast, vanishes for any torsion-free

background and thus represents a highly non-trivial modification of the background geom-

etry if present. Such a modification would have to be taken into account in other aspects

of the dimensional reduction, for example in model building work. If the Chern-Simons

2We thank E. Witten for pointing this out to us and suggesting we consider this issue in the context of

the work [11, 12].
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contribution (1.4) is non-zero it will typically be large so that, in the absence of other

effects, it will destabilize the theory. On the other hand, any credible scenario for moduli

stabilization which may, for example, include additional non-perturbative effects, must in-

clude the Chern-Simons contribution. Non-integral Chern-Simons contributions obtained

from Wilson lines have already been used in some moduli stabilization scenarios [20, 22].

In any eventuality, it is important to understand what values the Chern-Simons

term (1.4) takes in compactifications of heterotic string theory, and it is this

question that we will try to address in the rest of this paper.

In the next section we review the proper formulation of holomorphic Chern-Simons

terms in heterotic superpotentials, and we explain how the various physical and math-

ematical notions relate. In section 3 we describe how to use real bundle isomorphisms

between the tangent and gauge bundles of heterotic compactifications to compute the

holomorphic Chern-Simons invariant (1.4). We also provide a concrete example of such

a computation. Section 4 reviews an important theorem that explains why the Chern-

Simons contribution vanishes in many cases. In section 5 we discuss issues that arise when

considering holomorphic Chern-Simons contributions to the superpotential in compactifi-

cations on quotient manifolds. In that section we also construct an explicit example of a

heterotic compactification with a non-flat gauge bundle that gives rise to a non-integral

holomorphic Chern-Simons invariant. Finally, in section 6 we briefly conclude and discuss

possible future directions of research. The appendices contain several technical results that

are necessary for our discussion.

2 Basics of Chern-Simons terms

The reader may well be used to defining Chern-Simons invariants in the form discussed in

the introduction. In many physical applications such a definition suffices. However, in the

case of heterotic compactifications, the non-trivial topological structure of the compactifi-

cation means that more care is required. In what follows we will compare the definitions

of such invariants as they appear in the physics and mathematics literature, and we will

describe why caution is required.

2.1 Heterotic Chern-Simons terms

The Chern-Simons term CSphys(A,ω) which appears in heterotic theories and forms part of

the heterotic superpotential has already been defined in (1.4). How does this Chern-Simons

term behave under gauge transformations

A 7→ hAh−1 + hdh−1 , ω 7→ gωg + gdg−1 , (2.1)

of the gauge connection A and the spin connection ω? A short calculation reveals the

Chern-Simons forms change as

ω3(A) 7→ ω3(A) + tr

[
d(Adh−1h)− 1

3
(hdh−1)3

]
, (2.2)
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and similarly for ω3(ω), but with h replaced by g. It is easy to see that the integrand of

the Chern-Simons term CSphys(A,ω) in (1.4) is not invariant under these transformations.

This is problematic since contributions to the integral (1.4) from two patches can differ on

their overlap. In other words, the integral is not well-defined globally as it depends on the

choice of partition of unity that is used in its definition.

In the context of supergravity this problem is addressed by assigning a gauge transfor-

mation to the two-form field B which cancels the variation (2.2) so that the field strength

H is gauge invariant. This means that the sum of the first and second integral on the

right-hand side of (1.3) is gauge invariant, so the superpotential is well-defined as it should

be. However, for the purpose of investigating the effect of the Chern-Simons contribution

this state of affairs is quite inconvenient. It is desirable to have a well-defined version of

the Chern-Simons term and a way to express the superpotential (1.3) in terms of this ob-

ject. We will define this mathematical version of the Chern-Simons term - the holomorphic

Chern-Simons invariant - in the next sub-section and subsequently describe its relationship

to the physics Chern-Simons term.

Before we do so, it is important to note that compactifications of heterotic string theory

also contains another type of Chern-Simons integral defined over real three-manifolds.

Heterotic flux quantization [27, 28] can be stated as the condition

1

α′

∫
C
H −

∫
C

(ω3(ω)− ω3(A)) ∈ Z (2.3)

for any integral three-cycle C ⊂ X. Note that this condition involves an integral over a

three-cycle in the Calabi-Yau space, in contrast to the Chern-Simons term (1.4) which

requires integration over the entire manifold. The integrand in (2.3) is not gauge vari-

ant under the transformation (2.2), and is, hence, ill-defined, much as its six-dimensional

counterpart (1.4). To formulate flux quantization properly, we will introduce the ordinary

Chern Simons invariant and subsequently explain how it enters the physical condition.

2.2 Chern-Simons invariants

We begin by formulating the holomorphic Chern-Simons invariant, the object which will

provide us with a well-defined version of the Chern-Simons term (1.4) which appears in

the heterotic superpotential. Useful discussions of this and related topics, intended for an

audience of physicists, can be found here [29–31]. The set-up requires two connections,3 A

and A0, on the same vector bundle V over a base Calabi-Yau manifold X. The connection

A will be seen as the argument of the Chern-Simons invariant and A0 is called a “reference

connection”. Then, with the adjoint valued one form a = A − A0, the definition of the

holomorphic Chern-Simons invariant is as follows [32].

CSA0(A) =

∫
X

tr

(
(∂A0a ∧ a) +

2

3
a ∧ a ∧ a+ 2a ∧ F0

)
∧ Ω (2.4)

Here, F0 is the field strength associated to the connection A0 and we define the covariant

derivative dA0a = da + A0 ∧ a + a ∧ A0. Note that, naively, this is quite different from

3For brevity of exposition, we will sometimes conflate connections and the local gauge fields they give

rise to in discussions where this should not cause confusion.
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its supposed counterpart (1.4) in the heterotic theory which is defined in terms of two

connections seemingly on different bundles, the gauge bundle and the tangent bundle. We

will review the relationship between the mathematical and physics picture in the next sub-

section. For now, we note that the holomorphic Chern-Simons invariant can be written in

terms of the Chern-Simons forms ω3(A) and ω3(A0), defined as in (1.2), as

CSA0(A) =

∫
X

tr (ω3(A)− ω3(A0)− d(A ∧A0)) ∧ Ω . (2.5)

What happens to the holomorphic Chern-Simons invariant under simultaneous gauge

transformations of A and A0,

A 7→ hAh−1 + hdh−1 and A0 7→ hA0h
−1 + hdh−1 , (2.6)

with the same gauge parameter h? Evidently, under such a gauge transformation all of

the quantities appearing in (2.4) transform in a covariant manner and, as a result, the

holomorphic Chern-Simons invariant (2.4) is thus manifestly invariant. Note, the trans-

formation (2.6) is different to just performing a gauge transformation on A while keeping

A0 fixed, a perhaps more familiar case which we will discuss shortly. The fact that the

integrand in (2.4) is invariant under (2.6) means the integral is well-defined. More specif-

ically, since the values of A and A0 on overlaps are related by gauge transformations and

diffeomorphisms, the value of the integrand is well-defined everywhere. In practice, the

integral can then be evaluated by combining the contributions from different patches with

any suitable partition of unity.

The holomorphic Chern-Simons invariant satisfies a number of properties which can

be directly derived from its definition (2.4) or the equivalent expression (2.5) and which

will be useful for our subsequent discussion. First, for three connections A, B and C on

the same bundle we have

CSB(A) = −CSA(B) , CSC(A) = CSB(A)− CSB(C) . (2.7)

Further, the holomorphic Chern-Simons invariant is unchanged under holomorphic defor-

mations of the gauge connection. Consider an infinitesimal deformation, δa = A − A0 of

the connection A0 to a connection A, so that

CSA0(A) = 2

∫
X

tr (δa ∧ F0) ∧ Ω . (2.8)

Clearly, this expression vanishes if the connection A0 is holomorphic. Thus holomorphic

connections are extrema of the Chern-Simons functional. Any, even finite, deformation A

of A0 which preserves the condition F(0,2) = 0 everywhere along a path in connection space

from A0 to A will therefore lead to a vanishing Chern-Simons invariant, CSA0(A) = 0.

Computing the Chern-Simons invariant in heterotic models will often involve breaking

up the deformation from the reference connection A0 to a connection A into several parts.

Specifically, consider the sequence of deformations

A0 → A1 → · · · → An = A . (2.9)

– 6 –
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Then, (2.7) implies that the holomorphic Chern-Simons invariant is additive, in the sense

CSA0(A) =
n∑
k=1

CSAk−1
(Ak) . (2.10)

Note that any of the partial deformations Ak−1 → Ak which is holomorphic satisfies

CSAk−1
(Ak) = 0 and, hence, does not contribute the above sum.

The other type of Chern-Simons invariant we need to introduce is the ordinary Chern-

Simons invariant, defined by

OCSA0(A, C) =

∫
C

tr

(
(dA0a ∧ a) +

2

3
a ∧ a ∧ a+ 2a ∧ F0

)
. (2.11)

Here C is some three manifold, which will be a three-cycle within the Calabi-Yau three-fold

X in our application, and A and A0 are connections on a bundle V over C. Following exactly

the same logic as for the holomorphic Chern-Simons invariant, this object is invariant under

the transformations (2.6) acting on both A and A0 simultaneously and with the same gauge

parameter. This means the integral in (2.11) is well defined.

It will be crucial in section 5 to understand how the two Chern-Simons invariants

defined above behave under a different type of gauge transformation, namely one where A

changes by a large gauge transformation, while the reference connection A0 is kept fixed.

To this end we reproduce here the standard construction from the literature addressing

this issue [33].

Consider constructing a bundle V on C × S1, where the circle is described by the

interval [0, 1] with ends identified, by using a large gauge transformation g to glue V|C×{0}
to V|C×{1}. We also construct another bundle V0 on the same four manifold by using the

identity group element, rather than g, in the identification. We take A to be any connection

on V that restricts to be A on C × {0} and therefore g(A) on C × {1}. We take A0 to be

any connection on V0 that restricts to A0 on both C × {0} and C × {1}. Then, by Stokes’

theorem, we have the following.

OCSA0(g(A), C)−OCSA0(A, C) =

∫
C×S1

tr (F ∧ F)− tr (F0 ∧ F0) (2.12)

This is the usual statement that Chern-Simons invariants change by an integer under large

gauge transformations. Note that we are viewing the situation in two different manners

here. To use Stokes’ theorem we are dropping the gluing with g to simply have a line inter-

val with boundary in order to obtain (2.12). On this space, A and A0 are connections on the

same bundle so that the Chern-Simons invariant is well defined and we can use Stokes’ the-

orem. Then, to claim that the right hand side of (2.12) is an integer we are viewing the situ-

ation as the glued geometry described above. We can then properly define the two topolog-

ical invariants that appear independently as being associated to two different bundles and,

since they are integrated over a closed manifold, we can see they are proportional to integers.

Thus, the ordinary Chern-Simons invariant (2.11) changes by integers under large

gauge transformations of their argument, with the reference connection fixed. It should

also be pointed out that the fact that the reference connection is not transformed to obtain

– 7 –
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this behaviour is implicit in common applications of Chern-Simons invariants where A0

is taken to vanish. If this were not the case one would obtain a non-vanishing reference

connection after the gauge transformation.

A very similar construction to the one given above can be used to determine how the

holomorphic Chern-Simons invariant behaves under a large gauge transformations of its

argument with the reference connection fixed [34]. The result is that CSA0(A) changes by

a period of the holomorphic three-form Ω.

The final question we would like to review in this sub-section is how the two types of

Chern-Simons invariants, (2.4) and (2.11), are linked. This is a little more difficult to see

than in the case of flat bundles where the Chern-Simons invariants are closed [19–21], but

is still straightforward.

We begin with a remark about the structure of the holomorphic Chern-Simons invari-

ant. From (2.4), this invariant contains the form tr(∂A0a∧a+ 2
3a∧a∧a+2a∧F0) which is not

closed. However, by the Hodge decomposition any form can be written as a sum of a closed

and a co-exact form. Luckily, in the expression (2.4) for the holomorphic Chern-Simons in-

variant the co-exact piece does not contribute to the integral. To see this, write this co-exact

piece as d†β4 and work out its contribution to the Chern-Simons invariant which is given by∫
d†β4 ∧ Ω = −i

∫
d†β4 ∧ ∗Ω = −i

〈
d†β4,Ω

〉
= −i

〈
β4, dΩ

〉
= 0 . (2.13)

Given this, we can treat the holomorphic Chern-Simons invariant as an integral over a

wedge product of two closed forms. In fact this is, in part, why the Chern-Simons term

is so hard to compute. The information we have easy access to - the relation of ω3(A) to

tr(F ∧ F ) - drops out of the integral defining the invariant.

This being the case, let us take the usual symplectic basis of the third cohomology of

X, (αi, β
i), and the associated dual basis of three-cycles (Ai,Bi). These quantities obey

the following standard special geometry relations∫
X
αi ∧ βj =

∫
Aj
αi = δji

∫
X
αi ∧ αj = 0∫

X
βj ∧ αi =

∫
Bi
βj = −δji

∫
X
βi ∧ βj = 0

. (2.14)

In terms of the cohomology basis, we can expand the holomorphic three-form Ω as

Ω = Z iαi − Giβi , (2.15)

where Z i are the usual coordinates on the complex structure moduli space and the Gj are

the derivatives of the pre-potential with respect to these variables. Given this set-up, the

holomorphic Chern-Simons invariant can now be expressed in terms of ordinary Chern-

Simons invariants associated to the basis three-cycles (Ai,Bi). A short calculation shows

that

CSA0(A) = biZ i − aiGi , ai = OCSA0(A,Ai) , bi = OCSA0(A,Bi) . (2.16)

Hence, the ordinary Chern-Simons invariants, carried out over a basis of three-cycles,

determine the holomorphic Chern-Simons invariant. Note that this result is consistent with

– 8 –
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the above discussion of how these objects behave under a large gauge transformation. Under

such large gauge transformations, the ordinary Chern-Simons invariants and, hence, the

numbers ai and bi, change by integers. Equation (2.16) then implies that the holomorphic

Chern-Simons invariant changes by a period, in agreement with the earlier discussion.

We can now be more precise about what we mean by a “non-integral holomorphic

Chern-Simons invariant”. This terminology indicates a holomorphic Chern-Simons invari-

ant for which at least one of the numbers (ai, bi) in (2.16) is not an integer. An analogous

definition has been used in related work studying flat bundles [19–21].

2.3 Chern-Simons invariants in heterotic theories

We now have the tools to examine how the Chern-Simons invariants introduced in the

previous sub-section relate to the Chern-Simons terms which appear in heterotic theories

and how we can use the former to calculate the latter. This correspondence will form the

basis of our subsequent calculations.

The first difference to resolve is the apparent discrepancy in the set-up of vector bun-

dles. While the physical Chern-Simons term (1.4) depends on connections with independent

gauge transformations on apparently different bundles, the tangent bundle TX and the

gauge bundle V on X, the holomorphic Chern-Simons term (2.4) depends on a connection

and a reference connection, both defined on the same bundle. What comes to the rescue

is the fact that two E8 bundles are the same as real bundles4 if and only if their second

Chern characters, as elements of H4(X,Z), match [35, 36]. In the case where no five-branes

are present and we only have a bundle in one E8 factor of the heterotic gauge group the

second Chern characters for the tangent bundle and the gauge bundle must be equal.5

This follows from the integrability condition on the heterotic Bianchi identity (1.1) for the

Chern-Characters with real coefficients, and from global worldsheet anomaly considerations

for the extension to include torsion [37, 38]. Therefore the tangent bundle and gauge bundle

are the same as real bundles in such a situation. Note this does not mean that they are the

same as holomorphic objects. Indeed this could not be possible in the case, for example,

where the third Chern class of the gauge bundle differs from that of the tangent bundle.

Given this discussion, the physical and mathematical versions of the Chern-Simons

invariant start to look somewhat similar. Only two differences remain. The first is that in

the holomorphic Chern-Simons invariant (2.4), both A and A0 are defined relative to the

same trivialization of the bundle. This is in distinction to (1.4) where they would be written

with respect to two different trivializations adapted to the holomorphic structure on the

gauge and tangent bundles respectively. Second, (2.4) contains one additional term relative

to (1.4) which, despite initial appearances, cannot be integrated by parts to obtain zero.

4Note that we use the term “real bundle” here to refer to the underlying smooth structure (i.e. real

bundle as opposed to complex bundle), not to refer to a real structure on a holomorphic bundle (e.g. special

orthogonal or symplectic structures).
5Note that, in order for heterotic theory to be well defined more generally, there must be a generalization

of the consistent mathematical definition of the Chern-Simons invariant to include more complicated cases,

such as those involving contributions to the Bianchi Identity from M5 branes. Such generalizations would

certainly be interesting to pursue, both from the perspective of physics and mathematics, but are beyond

the scope of the current work.
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To address these differences, we recall that the H-part of the superpotential

WH =

∫
X
H ∧ Ω =

∫
X
H0 ∧ Ω + α′CSphys(A,ω) (2.17)

is actually gauge invariant due to the gauge invariance of H. The invariance is achieved by

cancelling the non-vanishing variation of the Chern-Simons term against the variation of H0

which can be written as dB locally. Hence, we can choose a gauge where A and ω, which we

can now think of as connections on the same bundle, are described relative to the same triv-

ialization. Further, in order to remove the additional term which appears in (2.4) relative

to (1.4) we can use a gauge where at least one of the connections A and A0 has a vanishing

(0, 1) component. This is always possible because the connections of physical interest can

be written as Chern-connections in appropriate trivializations.6 Having fixed a gauge in

this manner, we can express WH in terms of the holomorphic Chern-Simons invariant as

WH =

∫
X
H0 ∧ Ω + α′CSω(A) . (2.18)

We already know from (2.16) that this superpotential can be expressed in term of ordinary

Chern-Simons invariants, associated to the symplectic basis (Ai,Bi) of three-cycles. More

precisely, the two terms in (2.18) can be written as

1

α′

∫
X
H0 ∧ Ω = miZ i − niGi , CSω(A) = biZ i − aiGi , (2.19)

where
ai = OCSω(A,Ai) bi = OCSω(A,Bi)

ni =
1

α′

∫
Ai
H −OCSω(A,Ai) mi =

1

α′

∫
Bi
H −OCSω(A,Bi)

. (2.20)

Consequently, the full superpotential WH is given by

1

α′
WH = (mi + bi)Z i − (ni + ai)Gi . (2.21)

The flux quantization condition (2.3), properly expressed in terms of ordinary Chern-

Simons invariants, takes the form

1

α′

∫
C
H −OCSω(A, C) ∈ Z (2.22)

and it shows that the quantities ni and mi in (2.21) are, in fact, integers. In other words,

the integers ni and mi describe the harmonic flux in H0 while the potentially non-integral

quantities ai and bi describe the holomorphic Chern-Simons invariant. It is the latter,

which are the main subject of this paper.

6Hermitian holomorphic vector bundles admit a unique Hermitian connection whose (0, 1) part coincides

with the Dolbeault operator. This is called the Chern-connection and, given its definition, it takes the form

∇(0,1) = ∂̄ and ∇(1,0) = ∂ + A(1,0) locally. Thus, the (0, 1) component of the associated gauge field always

vanishes.
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As is clear from the above discussion, a key ingredient in computing these quantities

in actual heterotic models is knowing the isomorphism between the tangent bundle and

the vector bundle explicitly. This is needed to write the connections on the tangent and

gauge bundles relative to the same trivialization. Given that this isomorphism is typically

not holomorphic it is not easy to find and we will describe in section 3 and appendix A

how this can be done in certain cases.

3 Calculating Chern-Simons invariants

3.1 General approach

After the general discussion of the last section we return to the central goal of this paper.

We want to compute the holomorphic Chern-Simons invariant (2.4) for specific connections

over Calabi-Yau three-folds X that appear in heterotic compactifications. In particular,

we are interested in the case where A0 = ω is the spin connection on TX and A the gauge

connection on a bundle V → X solving the Hermitian Yang-Mills equations

Fab = 0 , gabFab = 0 . (3.1)

We will choose to write these connections in “math gauge” as Chern connections. Note

that different gauge transformations would be needed on A and A0 in order to write them

in the gauge, more prevalent in the physics literature, where these fields are real. Given the

transformation properties discussed in section 2, this means that the result we will obtain

will generically change by an integer if we chose to do this. Obviously, such an integer shift

cannot change whether or not a Chern-Simons invariant is non-integral, which is a main

point of interest here.

Typically, the holomorphic structure of the gauge and tangent bundles in a heterotic

compactification are different. The Chern connection solving (3.1) and the spin connec-

tion would be written in terms of different local trivializations respecting these structures.

Nevertheless, we could compute the holomorphic Chern-Simons invariant (2.4) if we had

the requisite real bundle isomorphisms between the two bundles. Let us discuss how such

a computation would proceed.

Let us phrase this discussion more generally, in terms of two bundles V → X and V ′ →
X over a Calabi-Yau three-fold X and a (possibly non-holomorphic) bundle isomorphism

f : V ′ → V . One might imagine taking V ′ = TX, for example, given the above discussion.

However, we wish to keep our notation more general because, as we will see, in practice this

might be required for the computation. We assume that we have connections ∇0 and ∇′

on V and V ′, respectively, as well as local frames sa and s′a associated to some given open

set in the base. Then, relative to these local frames, the gauge fields A0 and A′ associated

to ∇0 and ∇′ are obtained from

∇0sa = Ab0asb , ∇′s′a = A′bas
′
b . (3.2)

We can use the bundle morphism f to “transport” the connection ∇′ on V ′ to a connection

on V , which we will denote by ∇. This connection is defined by

∇(s) := f ◦ ∇′(f−1 ◦ s) , (3.3)
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where s is a section of V . The bundle morphism f can also be used to map the frame s′a of

V ′ to a frame s̃a := f ◦ s′a of V . Now we have two frames, sa and s̃a on V and thus there

is a gauge transformation

sa = P bas̃b (3.4)

relating them. We can work out the gauge field which corresponds to ∇ relative to the

frame s̃a and the frame sa. The result is

∇(s̃a) = A′bas̃b , ∇(sa) = Abasb where A = P−1A′P + P−1dP . (3.5)

In other words, relative to the frame s̃a, obtained by transporting the frame on V ′ to V ,

the gauge field remains unchanged, that is, it is given by A′ for both the frames s′a on V ′

and s̃a on V . For the frame sa on V , on the other hand, the gauge field is obtained from

A′ by the above gauge transformation.

Now that we have phrased matters in terms of two connections on the same bundle,

we can work out the holomorphic Chern-Simons term more explicitly. Suppose that both

initial connections A′ and A0 are Chern connections. (But note that A, being obtained

from A′ by a potentially non-holomorphic bundle morphism, does not need to be a Chern

connection.) Then, the term d(A ∧ A0) ∧ Ω in (2.5) vanishes simply by index structure

arguments and a quick calculation shows the remaining terms satisfy

ω(A)− ω(A0) = ω(A′)− ω(A0) + tr

(
θ dA′ −A′θ2 − 1

3
θ3

)
, θ := dP P−1 . (3.6)

In particular, in our case where A′ and A0 happen to be (1, 0) gauge fields, we have

[ω(A)− ω(A0)](0,3) = −1

3
tr(θ3)(0,3) so that CSA0(A) = −1

3

∫
X

tr(θ3) ∧ Ω . (3.7)

Thus we see from (3.7) that if the real isomorphism f is known, so that P can be obtained

from its action on frames via (3.4), then we can compute the Chern-Simons invariant

associated to Chern connections A and A0, even if we do not know the explicit form of

these connections themselves. Clearly this his helpful given the non-constructive nature of

the Yau [39] and Donaldson-Uhlenbeck-Yau theorems [40, 41].

It should be noted that, given the form of the result (3.7), one might expect this Chern-

Simons invariant to not be non-integral since the integrand looks like the wedge product

with Ω of the standard integrand giving a winding number. In fact, the holomorphic Chern-

Simons invariant can be non-integral as we will demonstrate in section 5.3. Nevertheless,

even if this were to be the case an integral result here would still be important. A non-

zero Chern-Simons invariant CSA0(A) of this type would destabilize the usual meta-stable

vacuum in the absence of other effects. In addition, non-zero integer results can lead to

non-integral Chern-Simons invariants in quotients, as we will discuss in section 5.

3.2 Finding the isomorphism

It is clear from the proceeding discussion that the key quantity we need to compute is the

real bundle isomorphism f between V ′ and V and the associated gauge transformations P .
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How do we describe such an isomorphism practically? Since this is somewhat technical,

a full description of this topic is relegated to appendix A. Here we will content ourselves

with a summary of the essential ideas, along with a simple illustrative example.

By definition, vector bundles locally look like a direct product of an open set on the

base manifold and the fiber. In other words, we have local trivializations,

φα : π−1(Uα)→Wα × F . (3.8)

Here π is the projection map of the bundle and Wα is an open subset of Cdim(X) and

F ∼= Crk(V ) is the typical fiber. These local trivializations are glued together by transition

functions φαβ := φα ◦ φ−1
β : Wβ × F → Wα × F to construct the bundle globally. The

transition functions act trivially on the base and as linear maps Tαβ on the fiber F .

In terms of these local trivializations, our real bundle isomorphism f is described by a

collection of maps

.fα : Wα × F →Wα × F . (3.9)

Because we want the isomorphism to act fiber-wise, preserving points on the base, these

maps take the form fα(z, v) = (z, Pαv) where the z are coordinates on the open set Wα in

the base and the v are coordinates in the fiber F . In short, the real bundle isomorphism f

can be described by a collection of matrices Pα which encodes, for each patch, how the fibers

of V ′ are mapped to those of V . In fact, these are precisely the matrices appearing in (3.4).

The matrices Pα must satisfy several consistency conditions. The first is that, if they

are to map V ′ to V , then they must correctly map the transition functions of the first

bundle into those of the second. That is, they must obey the intertwining conditions

Tαβ = P−1
α T ′αβPβ (3.10)

for all patches α, β. All matrices Pα must also be invertible (to define an isomorphism

rather than just a morphism) and they must be non-singular (to be well defined). We

describe all of these conditions in detail in appendix A. The non-holomorphic nature of the

bundle morphisms we will utilize manifests itself in the fact that the matrices Pα = Pα(z, z)

are, in general, not holomorphic functions of the base coordinates.

Reverting the logic of the discussion, we can say that any collection of matrices Pα,

all invertible and non-singular, which satisfy the intertwining conditions (3.10) define a

bundle morphism f . Thus, in order to compute the holomorphic Chern-Simons invariant

CSA0(A) via (3.7) we need to obtain such a set of matrices Pα.

Let us illustrate this discussion with a concrete example on the simple base manifold

P1. It is known that line bundle sums on P1 are classified by their total Chern character.

In particular, this means that the line bundle sums

V ′ = OP1(−1)⊕OP1(1) and V = OP1 ⊕OP1 (3.11)

which both have vanishing first Chern class are real isomorphic. How do we write down

such an isomorphism in the form we have been discussing? The standard open cover of P1
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has two patches, which we label U0 and U1 with affine coordinates z and w, respectively.

Relative to those patches, the transition functions for the bundles V ′ and V in (3.11) are

T ′10 = diag(z, z−1) , T10 = diag(1, 1) . (3.12)

Then, two matrices Pα which satisfy the intertwining conditions (3.10) with these transition

functions can simply be written as

P0(z, z̄) =

 1 z̄
1+|z|2

−z 1
1+|z|2

 , P1(w, w̄) =

 w 1
1+|w|2

−1 w̄
1+|w|2

 . (3.13)

These are clearly non-singular and invertible in their respective patches. Note that the

matrices in (3.13) depend upon both the complex coordinates and their conjugates. This

had to be the case since the bundles (3.11) are not isomorphic as holomorphic objects.

The above construction can be generalized to relate any two rank two line bundle sums

on P1 with the same first Chern class. The resulting bundle morphisms have the following

structure

f (q,p) ∼
(
P (q,p)
α

)
:OP1(a−p)⊕OP1(a+p)

'−→OP1(a−q)⊕OP1(a+q) (3.14)

g(q,p) ∼
(
Q(q,p)
α

)
:OP1(a−p)⊕OP1(a+p+1)

'−→OP1(a−q)⊕OP1(a+q+1) , (3.15)

for even and odd first Chern classes, respectively. Their explicit form is a generalization

of (3.13) and is provided in appendix A, where we explain this construction in more detail.

Of course, these results cannot be applied to our problem directly but, as we will see, they

can be used to construct bundle isomorphisms on Calabi-Yau manifolds which are defined

in ambient spaces that involve P1 factors.

3.3 An explicit example

In this section we will work on the tetra-quadric Calabi-Yau three-fold, defined as the zero-

locus of a polynomial of multi-degree (2, 2, 2, 2) in the ambient space (P1)4, and represented

by the configuration matrix

X ∈


P1 2

P1 2

P1 2

P1 2

 . (3.16)

An appealing feature of this example is the presence of the P1 factors which, as we will see,

allows us to transfer the results for real bundle equivalence on P1 to the tetra-quadric.

Before we construct the relevant bundles on this manifold, we introduce the main

building blocks

B = OX(1, 0,−1, 0) ⊕OX(1, 1, 0, 0) ⊕OX(−1, 1, 0, 0) ⊕OX(1, 0, 1, 0)

B̃ = OX(1, 0, 0, 0) ⊕OX(1, 0, 0, 0) ⊕OX(0, 1, 0, 0) ⊕OX(0, 1, 0, 0)

R = OX(0, 0, 1, 0) ⊕OX(0, 0, 1, 0) ⊕OX(0, 0, 0, 1) ⊕OX(0, 0, 0, 1)

C = OX(2, 2, 2, 2)

(3.17)
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which underly our construction. Given these line bundle sums, we define the monad bundle

V on X by

0 −→ V −→ B ⊕R −→ C −→ 0 . (3.18)

The Chern connection on V is denoted by A and our goal is to compute the holomorphic

Chern-Simons invariant CSω(A), relative to the spin connection ω on TX. To do this, we

first find a way to deform the spin connection ω to the connection A.

Or first step is to introduce a monad representation of the tangent bundle

0 −→ V0 −→ B̃ ⊕R µ0−→ C −→ 0 . (3.19)

Indeed, for a suitable choice of the monad map µ0 we have V0
∼= TX ⊕ O⊕4

X . We denote

the Chern connection on V0 by A0. However, for different choices of the monad map the

sequence (3.19) describes holomorphic deformations away from the tangent bundle. In

particular, we can choose µ0 such that the four line bundles in B̃ split off as a direct sum.

This choice leads to a bundle V1, with Chern connection A1, which can be written as

V1 = B̃ ⊕ U , 0 −→ U −→ R −→ C −→ 0 . (3.20)

The next step is crucial. We use real bundle morphisms on P1, applied to our ambient

space and restricted to the Calabi-Yau manifold, to construct a real bundle morphism F
between the line bundle sums B̃ and B. We will explain the procedure in more detail below

but for now we continue outlining the structure of the argument.

Thanks to this real bundle morphism, we can relate the above bundle V1 to the bundle

V2 = B ⊕ U (3.21)

with Chern connection A2. Evidently, this bundle is a holomorphic deformation of our

gauge bundle V in (3.18).

To summarize, we have now related the tangent bundle TX to our gauge bundle V

via a number of deformations which can be schematically written as

TX⊕O⊕4
X

hol.−→ V0
hol.−→ V1

real−→ V2
hol.−→ V

ω −→ A0 −→ A1 −→ A2 −→ A .
(3.22)

From (2.10) the holomorphic Chern-Simons invariant CSω(A) can be computed by summing

the holomorphic Chern-Simons invariants of the four steps in the above sequence. However,

three of these steps correspond to holomorphic deformations. It is easy to see that these

are not only holomorphic deformations at the level of the bundles, but are also holomorphic

deformations of the Chern-connections. Hence, from (2.8), the Chern-Simons invariants

associated to these three steps vanish. In conclusion, the only contribution arises from the

real deformation in the above sequence, so that

CSω(A) = CSA1(A2) . (3.23)

We know from the general discussion in section 3.1 that CSA1(A2) can be worked out from

the bundle isomorphism F : B̃ → B so our next task is to construct this isomorphism.
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To do this, we recall from the previous subsection (see (3.14)) that we can find explicit

real bundle isomorphisms f (q,p) which relate pairs of rank two line bundle sums on P1 with

the same first Chern class. For our present example, we have four P1 ambient space factors,

which we label by i = 1, 2, 3, 4, as well as four line bundles in B̃, which we label by a =

1, 2, 3, 4. The maps f (q,p) can be applied to any of the four P1 factors and to any two of the

four line bundles, while leaving the other P1 factors and line bundle undisturbed. We denote

the version of f (q,p) which acts on the ith P1 factors and on the two line bundles a and b by

f
(q,p)
ab,i . As is evident, this gives rise to a large number of possibilities and a corresponding

web of real bundle isomorphisms for line bundle sums on (P1)4 (and, by restriction, on the

tetra-quadric). It would be interesting to explore this more systematically.

For present purposes, this formalism can be used to construct a real bundle isomor-

phism between B̃ and B by the following chain.

B̃ =


1 0 0 0

1 0 0 0

0 1 0 0

0 1 0 0


f
(1,0)
12,2−→


1 −1 0 0

1 1 0 0

0 1 0 0

0 1 0 0


f
(1,0)
34,1−→


1 −1 0 0

1 1 0 0

−1 1 0 0

1 1 0 0



f
(0,1)
14,2−→


1 0 0 0

1 1 0 0

−1 1 0 0

1 0 0 0


f
(1,0)
14,3−→


1 0 −1 0

1 1 0 0

−1 1 0 0

1 0 1 0

 = B

(3.24)

Here, for ease of notation, we have written the line bundle sums as matrices, with each

row representing the multi-degree of one line bundle. Hence, the desired line bundle iso-

morphism F : B̃ → B can be written as

F = f
(1,0)
14,3 ◦ f

(0,1)
14,2 ◦ f

(1,0)
34,1 ◦ f

(1,0)
12,2 , (3.25)

suitably restricted to the Calabi-Yau three-fold X. It is straightforward to promote F to

a bundle isomorphism V1 → V2 by extending it trivially onto the common summand U .

The direct computation of the holomorphic Chern-Simons invariant (3.23), based on

the formula (3.7), is not hard at this stage but simply tedious. We first compute the

matrices Pα which represent the local descriptions of the bundle isomorphism (3.25). For

the purpose of integration, it is sufficient to carry this out in the standard patch of (P1)4

whose affine coordinates we denote by zi, where i = 1, 2, 3, 4. Combining the individual

pieces in (3.25), given in (A.21), (A.19) and (A.11), we find the following expression for

the local version of F .

P =


(z̄2+1)(z2z̄3+1)

(|z2|2+1)(|z3|2+1)
− (z̄2−1)(z2z̄3+1)

2(|z2|2+1)(|z3|2+1)
(z1−1)(z̄2−z̄3)

(|z2|2+1)(|z3|2+1)
(z1+1)(z̄2−z̄3)

2(|z2|2+1)(|z3|2+1)

z2 − 1 1
2 (z2 + 1) 0 0

0 0 z̄1+1
|z1|2+1

1−z̄1
2|z1|2+2

− (z2−z3)(z̄2+1)
(|z2|2+1)

(z2−z3)(z̄2−1)
2(|z2|2+1)

(z1−1)(z3z̄2+1)
(|z2|2+1)

(z1+1)(z3z̄2+1)
2(|z2|2+1)

 (3.26)
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To restrict to the Calabi-Yau three-fold we must pick a defining relation for the configu-

ration (3.16) and then solve it on the given patch for one of the coordinates in terms of

the others. For example, the coordinate z4 on the last P1 factor in the ambient space is a

natural choice given the dependencies appearing in (3.26). Given the defining equation is

a quadric in z4, this yields two disjoint loci describing parts of X inside the open patch,

on which we know the matrix P .

Once we have computed P we can then carry out the integral in (3.7) in order to

evaluate the Chern-Simons invariant, using the standard expression for the holomorphic

(3, 0)-form on such manifolds [42–45]. The integral one obtains vanishes.

We have thus completed the first non-trivial computation of a holomorphic Chern-

Simons invariant contribution to the heterotic superpotential, for the non-flat bundle (3.18)

over the Calabi-Yau manifold (3.16), albeit obtaining a vanishing result. We have repeated

such a computation for a large number of different gauge bundles over different Calabi-Yau

manifolds. The integrands all exhibit similar structures, not very different from those which

arise in period integrals [46, 47], but the resulting Chern-Simons invariant always vanishes.

At this stage one is motivated to look for more general reasons as to why a vanishing

result might be obtained in many cases, or why non-integral Chern-Simons invariants do

not appear. This might provide some insight into our results so far and also guidance on

how to build non-flat bundles with non-integral contributions to the superpotential. We

discuss a relevant vanishing theorem in the next section, and an example with a non-integral

holomorphic Chern-Simons invariant in section 5.

4 A vanishing theorem and its consequences

In this section we will consider the consequences of the following theorem due to R.

Thomas [32].

Theorem 4.1 Suppose that the Calabi-Yau three-fold X is a smooth effective anti-

canonical divisor in a four-fold Y defined by s ∈ H0(K−1
Y ). If E → X is a bundle that

extends to a bundle E → Y, then for a ∂-operator A on E, let A be any ∂-operator on E
extending A. Then we have, modulo periods and for some choice of reference connection,

CS(A) =

∫
Y

tr (F0,2 ∧ F0,2) ∧ s−1 . (4.1)

In terms of the notation in this theorem, the Chern-Simons invariant CSω(A) of the con-

nection A on the bundle V , relative to the spin connection ω on the tangent bundle, can

be written as CSω(A) = CS(A)−CS(ω). Clearly, this theorem has important implications

for the questions being addressed in this paper. For example, Theorem 4.1 sheds light

on the vanishing result obtained in section 3.3. In this instance the manifold is indeed

an anti-canonical hypersurface in a smooth ambient space. In addition, the sums of line

bundles that appear in the definition of the bundle (3.18) do extend holomorphically to

the ambient space. Although it is not guaranteed, it is also not unreasonable to think that

the connection on this bundle might also extend holomorphically to the ambient space.

Indeed, the ansatze that are used to describe fiber metrics in numerical work [48–58] are
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somewhat suggestive of this. Given all of this, Theorem 4.1, together with our discussion

of section 3.3 makes it no surprise that CSω(A) = 0.

Despite the discussion of the proceeding paragraph, one might think that Theorem 4.1

has limited applicability in physical contexts. The techniques illustrated in the simple

example in section 3.3 clearly generalize to large classes of cases and it might naively

appear that the above theorem has a very limited scope in terms of the types of bundles

and Calabi-Yau manifolds to which it applies. In fact, Theorem 4.1 is of relevance in a

surprisingly wide range of examples.

The first seemingly strong restriction in Theorem 4.1 is the requirement that the

Calabi-Yau manifold be described as an anti-canonical hypersurface in an ambient four-fold.

This is in fact not much of a restriction at all in many discussions of string compactifica-

tion. In the case of any complete intersection in a smooth ambient space, for example for

any CICY [45, 59–61] or gCICY [62] (see [63, 64] for related work), one can simply pick

Y to be described by k − 1 of the defining equations where k is the codimension of the

three-fold. The final defining equation will then be an anti-canonical hypersurface in that

ambient space. Further, for the theorem to apply it is only necessary that the Calabi-Yau

manifold under consideration admits some description of this type. Calabi-Yau manifolds

can be described in a plethora of different manners and even if a three-fold of interest is

not described in a manner compatible with Theorem 4.1 that does not mean that such a

description does not exist. Indeed, it can be hard in a given case to prove that a description

as an anti-canonical hypersurface in an ambient Y does not exist.

It is true that many ambient spaces appearing in descriptions of known Calabi-Yau

manifolds are singular. This is commonly the case for Calabi-Yau manifolds described as

hypersurfaces in toric varieties [65–67], or quotients of CICYs [68–74], for example. Even

in such cases, however, the ambient spaces which appear in constructions in the literature

are frequently resolvable and one can then simply apply Theorem 4.1 to the anti-canonical

hypersurface in that resolution. If the initial Calabi-Yau manifold was smooth, then the

ambient singularities must have missed the hypersurface and, hence, the three-fold is not

changed during the resolution process.

One might have similar reservations about the general applicability of the assumptions

made about the bundles and connections as they appear in Theorem 4.1. However, in this

case too the structure required is not as restrictive as one might think and the theorem

applies to many cases appearing in the physics literature. There are many constructions

that are utilized in heterotic compactifications where the bundle does not extend nicely

to the ambient space. Bundles constructed as two term monads over CICYs, for example,

frequently have the feature that, while they restrict to a bundle over the Calabi-Yau three-

fold they are merely a sheaf over the ambient space. As it happens, the bundle (3.18) in our

example extends to a bundle on the ambient space, but this is not necessarily the case in

other models (see [75, 76] for some explicit cases). Nevertheless, even in these cases it is not

clear that Thomas’ theorem does not apply. Since the Chern-Simons invariant is unchanged

under holomorphic deformations of its argument, we only really require some holomorphic

deformation of the bundle under consideration to extend to the ambient space. In addition,

as with manifolds, bundles over Calabi-Yau three-folds can typically be described in many
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ways. Even if some descriptions do not allow for an extension to an ambient space bundle

there may well exist others which do.

Using the tools presented in section 3, we have computed the holomorphic Chern-

Simons invariants for quite a number of different cases, and each time we have obtained

zero. We believe that the above theorem may be one of the culprits behind this conspiracy.

In the rest of this paper we will describe heterotic string compactifications in which non-

trivial Chern-Simons invariants can be obtained, culminating in a concrete example of a

non-flat gauge bundle giving rise to a non-integral invariant.

5 Non-integral Chern-Simons invariants

5.1 General remarks

In this section we will discuss two methods for constructing non-flat bundles in heterotic

compactifications which give rise to non-integral holomorphic Chern-Simons superpotential

contributions. These discussions will focus on manifolds which are freely acting quotients

of an initial simply connected Calabi-Yau three-fold (or on three-folds with a non-trivial

fundamental group). The technical results that we will need as part of this discussion are

presented in appendix B.

The first argument we wish to give makes use of large gauge transformations on a

Calabi-Yau manifold X in order to generate connections with non-integral holomorphic

Chern-Simons invariants on its quotient X̂. Working over the geometry X, it is easy to

obtain a vanishing Chern-Simons invariant. Indeed, an example of such a case is given

in section 3.3. From such a result one can easily obtain a non-vanishing, but integral

holomorphic Chern-Simons invariant, simply by performing a large gauge transformation

on the argument of the functional, A. It is not clear what integers one can obtain for the

associated ordinary Chern-Simons invariants in such a case, and for a given topology it is

not the case that every possible integer will always be obtainable. Furthermore, explicitly

writing down such large gauge transformations appears to be prohibitively difficult in many

cases. Nevertheless, non-vanishing Chern-Simons invariants can clearly be obtained on X.

Let us denote by Γ the freely acting symmetry on X by which we quotient to obtain

X̂. Further, a Γ-equivariant bundle V on X descends to a bundle on X̂ which we denote by

V̂ . In appendix B, we introduce the notion of Γ-equivariant connections on Γ-equivariant

bundles on X. Suppose we consider such Γ-equivariant connections A and A0 on V which

give rise to a holomorphic Chern-Simons invariant on X with at least one of the numbers

ai and bi in (2.19) (that is, at least one of the ordinary Chern-Simons terms involved)

not being divisible by |Γ|. In appendix B, we show that the resulting holomorphic Chern-

Simons invariant on X̂ is obtained by dividing its counterpart on X by the group order

(see (B.19)). Therefore the holomorphic Chern-Simons invariant obtained on the quotient

would be non-integral.

One might think that such cases are common place, and indeed that may well be

true. However, constructing a concrete example as an existence proof is difficult, due

to the fact that an explicit expression for, or at least proof of existence of, the large

gauge transformation involved is required. Without this one cannot concretely rule out the
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possibility that all large gauge transformations over X that exist lead to integers divisible

by |Γ| for all possible symmetries by which the manifold could be quotiented, however

unlikely this may seem.

It is interesting to ask how this method for obtaining non-integral holomorphic Chern-

Simons invariants evades the statement that large gauge transformations on X̂ should

change those functionals by integer multiples of periods. Suppose we have an equivariant

connection A0 on the (equivariant) bundle V → X, and another connection A on V , related

to A0 by a large gauge transformation, so that CSA0(A) is an integer multiple of periods.

We prove in appendix B that the large gauge transform of an equivariant gauge field is

always equivariant so that A is equivariant as well. Hence, both A0 and A descend to

the quotient, inducing connections Â0 and Â of V̂ . However, it is not true that the large

gauge transformation involved will always descend to X̂. In other words, Â0 and Â need

not be related by a large gauge transformation and, hence, the corresponding holomorphic

Chern-Simons invariant CSÂ0
(Â) on X̂ does not have to be an integer multiple of periods.

Given the non-constructive nature of such an argument for the existence of non-integral

holomorphic Chern-Simons invariants, we will, in the following subsections, present a con-

crete example of a non-flat bundle exhibiting such a structure. We construct this example

in a manner which is presumably less generic, but nevertheless more explicit, than the

discussion of the proceeding paragraphs.

5.2 Tensor product connections

To discuss the example in the next sub-section we will need a few basic facts and defini-

tions concerning tensor product connections and their Chern-Simons invariants. Given two

bundles V1 and V2 with connections ∇1 and ∇2, the tensor product V = V1 ⊗ V2, can be

equipped with the tensor product connection ∇ defined by

∇(s1 ⊗ s2) = (∇1s1)⊗ s2 + s1 ⊗ (∇2s2) . (5.1)

Here, s1 and s2 are sections of V1 and V2, respectively. If we set up local frames s1i and

s2k for V1 and V2 then these define a local frame s1i⊗ s2k for V . The corresponding gauge

fields, introduced in the usual manner as

∇1s1 i = Aj1is1 j , ∇2s2 k = Al2ks2 l ∇(s1 i ⊗ s2 a) = A jb
ia (s1 j ⊗ s2 b) , (5.2)

are then easily seen to be related by

A jl
ik = Aj1iδ

l
k + δjiA

l
2k . (5.3)

For the curvature of the tensor product connection, it follows from the definition (5.1) that

F (s1 ⊗ s2) = (F1(s1))⊗ s2 + s1 ⊗ (F2(s2)) (5.4)

Hence, if F1 and F2 satisfy the Hermitian Yang-Mills equations (3.1) then so does F .

Given this set-up, it is straightforward to compute the Chern-Simons form for the

tensor product connection

ω3(A) = rk(V2)ω3(A1) + rk(V1)ω3(A2) . (5.5)
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We introduce reference Chern-connections A10 and A20 for A1 and A2, respectively, along

with their tensor product connection A0 which serves as a reference connection for A.

Then, (5.5) combined with the formula (2.5) for the holomorphic Chern-Simons invariant

gives

CSA0(A) = rk(V2) CSA10(A1) + rk(V1) CSA20(A2) . (5.6)

5.3 A non-flat bundle with a non-integral invariant

We will now construct an example of a non-flat bundle with a non-integral holomorphic

Chern-Simons invariant as defined in section 2.2, by using the notion of tensor product

connections on a quotient of a CICY three-fold. It should be noted that finding calculable

examples of this type is also rather difficult. The structure required, as we will see, is

rather specific. In addition, most cases that both exhibit the necessary structure and

are calculationally tractable have turned out not to lead to a non-integral Chern-Simons

invariant. Nevertheless, we find it valuable to provide this example as an existence proof

for non-flat bundles in heterotic compactifications with non-integral holomorphic Chern-

Simons invariants.

Consider the manifold, CICY 5301, in the standard list [45],7 specified by the config-

uration matrix

X ∈



P1 0 1 1 0

P1 0 1 1 0

P1 1 0 0 1

P1 1 0 0 1

P3 1 1 1 1


. (5.7)

We denote the homogeneous ambient space coordinates by xa,i, where a = 1, . . . , 5 labels

the projective factors and i = 0, 1, . . . its coordinates.

This manifold admits a freely acting Z4 symmetry whose generator acts as follows8

x1,0 7→ x3,0 x1,1 7→ −x3,1 x2,0 7→ x4,0 x2,1 7→ x4,1

x3,0 7→ x1,0 x3,1 7→ x1,1 x4,0 7→ x2,0 x4,1 7→ −x2,1

x5,0 7→ x5,3 x5,1 7→ −x5,2 x5,2 7→ x5,1 x5,3 7→ x5,0

. (5.8)

The symmetry also acts non-trivially on the normal bundle as represented by the following

action

(p1, p2, p3, p4) 7→ (p2, p1, p4,−p3) , (5.9)

on the defining polynomials. The quotient X̂ of X by the symmetry (5.8), (5.9) leads to a

transverse variety, and the action is fixed point free, and, hence, X̂ is a smooth Calabi-Yau

7A machine readable version of the CICY list and the symmetries used in this paper

can be found at http://www-thphys.physics.ox.ac.uk/projects/CalabiYau/CicyQuotients/Cicy Quotients/

Cicy Quotients.html.
8Note we have performed a linear coordinate transformation from the symmetry action as it is usually

represented in the standard list [68] (see also footnote 7). This form of the symmetry preserves a particularly

simple SLAG as we will see shortly.
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space X X̂ = X/Z4

bundle U V = U⊕2 V0 Û V̂ = Û⊕2 V̂0 Ŵ V̂ ′ = Û ⊕ Ŵ
connection AU A A0 AÛ Â Â0 AŴ Â′

Table 1. Bundles and associated connections of our construction

three-fold with fundamental group π1(X̂) = Z4. It is on X̂ that we will construct our

example.

To construct our bundle we begin by noting that the following sum of line bundles

U = OX(−2,−1, 0, 0, 1)⊕OX(0, 1,−2, 1, 0)⊕OX(2, 0, 2,−1,−1) (5.10)

has a second Chern character which is exactly half of that of the tangent bundle TX. In

addition, U has a vanishing slope on an appropriate sub-locus of the Kähler cone and admits

an equivariant structure with respect to the symmetry (5.8), (5.9), so that it descends to a

bundle Û on X̂. Now consider the bundle V = U ⊕U on X. This is an equivariant bundle

with a second Chern character which matches that of TX and thus naively gives a good

heterotic vacuum on X. Its equivariant nature means that it descends to a bundle V̂ = Û⊕
Û on X̂. We also introduce the well-know holomorphic deformation of TX⊕O⊕5

X , given by

0→V0→OX(1,0,0,0,0)⊕2⊕...⊕OX(0,0,0,0,1)⊕4→OX(0,0,1,1,1)⊕2⊕OX(1,1,0,0,1)⊕2→0

This bundle also has an equivariant structure under the above Z4 symmetry and descends to

a bundle V̂0 on X̂. For all these bundles, we introduce Chern connections which satisfy the

Hermitian Yang-Mills equations, as indicated in table 1. Note that the connection Â on V̂ is

taken as a direct sum connection constructed from two copies of the connection AÛ on Û .

We are interested in the holomorphic Chern-Simons invariant CSÂ0
(Â). If this in-

variant is non-integral then we can stop our search here. If it is not, however, there is a

simple modification that allows us to generate a new bundle on the quotient manifold X̂

which does have a non-integral invariant. More specifically, we can carry out the following

modification

V̂ = Û ⊕ Û = Û ⊗ (OX̂ ⊕OX̂) −→ V̂ ′ = Û ⊗ Ŵ (5.11)

of the bundle V̂ , where Ŵ is a rank two flat bundle (a Wilson line) on X̂ which we have

used to replace the trivial bundle OX̂ ⊕ OX̂ . In doing so we do not change the second

Chern-character of the bundle. In addition, if we choose the connection Â′ on V̂ ′ to

be the tensor product connection of the Hermitian-Yang-Mills connection AÛ on Û and

the flat connection AŴ on Ŵ then the result will still obey the Hermitian Yang-Mills

equations (3.1). Thus the resulting bundle V̂ ′ still gives rise to a good heterotic vacuum

before considering Chern-Simons contributions to the superpotential.

We would now like to compare the holomorphic Chern-Simons invariants CSÂ0
(Â) and

CSÂ0
(Â′) for Â and Â′, relative to the same reference connection Â0. From (2.5) we know

that

CSÂ0
(Â) =

∫ (
ω3(Â)− ω3(Â0)

)
∧ Ω̂ =

∫ (
2ω3(AÛ )− ω3(Â0)

)
∧ Ω̂ (5.12)

– 22 –



J
H
E
P
0
9
(
2
0
2
0
)
1
4
1

Here Ω̂ is the holomorphic (3, 0)-form on the quotient X̂. Of course, appropriate morphisms

must be used to ensure that the two connections in the above integral are written with

respect to the same trivialization on the underlying real bundle.

On the other hand, for the connection Â′, we make use of the formula (5.5) which gives

ω3(Â′) = 2ω3(AÛ ) + 3ω3(AŴ ) . (5.13)

This, in turn, leads to the following relation

CSÂ0
(Â′) =

∫ (
2ω3(AÛ ) + 3ω3(AŴ )− ω3(Â0)

)
∧ Ω̂ = CSÂ0

(Â) + 3 CS0(AŴ ) , (5.14)

where CS0(AŴ ) denotes the holomorphic Chern-Simons invariant with a trivial reference

connection, which is always available on flat bundles. Thus, under our assumption that

CSÂ0
(AV̂ ) is integral, a flat bundle Ŵ with a non-integer value for 3 CS0(AŴ ), leads to a

non-integral Chern-Simons invariant for Â′. The study of Chern-Simons invariants of flat

bundles of this type is more advanced in the heterotic literature than for their non-flat

cousins [19–21]. The above construction allows us to use these methods for flat bundles in

order to construct non-flat bundles with non-integral Chern-Simons invariants.

In order to show that 3CS0(AŴ ) can be non-integer, it is enough to find a spe-

cial Lagrangian three-cycle (SLAG) C such that the ordinary Chern-Simons invariant

3 OCS0(AŴ , C) is non-integer. In the following we follow the analysis and notation of

ref. [21]. It turns out, the Calabi-Yau three-fold X described by the configuration ma-

trix (5.7) admits an A-type SLAG which can be written as the configuration

C ∈



RP1 0 1 1 0

RP1 0 1 1 0

RP1 1 0 0 1

RP1 1 0 0 1

RP3 1 1 1 1


. (5.15)

One can always solve the four equations given here to obtain a single point in RP1 ×
RP1 × RP1 × RP1. Perhaps the easiest way to see this is to consider (5.7) as a point

fibration over P3. That point fibration does degenerate, of course, but the degeneracy

locus misses the SLAG. Hence, the above configuration is simply a description of the Lens

space RP3 = S3/Z2.

It is clear that the Z4 symmetry (5.8) and (5.9) leaves the SLAG C invariant and, in

the quotient X̂, it turns into the lense space Ĉ = S3/Z8. Flat bundles are defined uniquely

by a map from the fundamental group of the base space to the structure group. As such,

we can easily see how a flat bundle defined on the whole Calabi-Yau three-fold restricts to

a SLAG simply by looking at how non-trivial one-cycles embedded in the SLAG descend

from the ambient manifold.

For a Lens space with fundamental group is Zp we can define an SU(N) flat

bundle by specifying the images of the map Zp → SU(N) and we denote these by
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diag(e2πik1/p, . . . , e2πikN/p) , where ki ∈ Z. Then the general formula for the Chern-Simons

invariant of such a flat bundle, using the trivial connection as the reference, is as fol-

lows [37, 77–79].

OCS0(AŴ , S
3/Zp) = −

∑
i

k2
i

2p
mod Z (5.16)

For the case at hand, we have p = 8 and we choose the images of the defining map

Z4 → SU(2) as diag(e2πi2/8, e2πi6/8). This restricts to the Lens space in an obvious manner.

The ordinary Chern-Simons invariant evaluated on this Lens space with the restricted flat

bundle is then

OCS0(AŴ , Ĉ) =
5

2
mod Z . (5.17)

As a result 3 OCS0(AŴ , C) is non-integer and, hence, from (5.14), either CSÂ0
(Â) or

CSÂ0
(Â′) is non-integral. In conclusion, we have obtained a contribution to a heterotic

superpotential from a non-integral holomorphic Chern-Simons invariant associated to a

non-flat bundle.

There is an important caveat in the above example that should be mentioned. Although

it is true that second Chern-characters of V̂ and V̂ ′ match at the level of the image of the

Chern-Weil homomorphism, it is not clear they match in torsion. This is also required for

a viable heterotic vacuum, and indeed for the holomorphic Chern-Simons invariant (2.4) to

be well defined. The Brauer group of the manifold X̂ is, to our knowledge, unknown and its

computation is beyond the scope of this paper. This is unfortunately, a common situation

in heterotic compactifications. Nevertheless we believe the present example exemplifies

well the idea of the construction.

6 Conclusions and outlook

In this paper we have computed the Chern-Simons contribution to the heterotic super-

potential arising from the interplay between the gauge and the tangent bundles. To do

this we have split the superpotential which originates from the NS fields strength H up

into two pieces, one from harmonic flux which is integer quantized and the other from the

Chern-Simons invariant. The second contribution is potentially non-integral and has been

the main focus of the present work. Alternative, we might say that the main purpose of

this paper has been to determine the quantization condition for H. From this point of

view, bundles with non-integral Chern-Simons invariants do not allow for a vanishing H

and, hence, lead to a non-zero flux superpotential.

Chern-Simons invariants in the context of heterotic string compactifications have been

considered previously, but only in the context of flat (Wilson line) bundles. However,

heterotic compactifications on Calabi-Yau manifolds require non-flat gauge bundles and it

is, therefore, essential to analyze Chern-Simons invariants for such cases. In the present

paper, we have presented the first analysis of this kind.

We have developed a number of new methods to carry out our computations. Explicit

real bundle isomorphisms between line bundle sums on P1 have been derived and we have

shown how these isomorphisms can be used to construct real bundle isomorphisms between
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line bundle sums on Calabi-Yau manifolds which are defined in ambient spaces with P1

factors. These isomorphisms, together with holomorphic deformations, can be combined

to isomorphisms between the tangent bundle of the Calabi-Yau manifold and the heterotic

gauge bundle. This in turn allows for an explicit calculation of the gauge bundle’s Chern-

Simons invariant, with the tangent bundle as the reference connection.

Further, we have developed methods for calculating Chern-Simons invariants on

Calabi-Yau quotient manifolds, that is, on manifolds with a non-trivial first fundamental

group, which apply to non-flat bundles. Since realistic heterotic Calabi-Yau compactifica-

tions rely on such a quotient constructions for both the manifold and the bundle, these

methods are essential for analyzing the superpotential for phenomenologically relevant

models.

Using the methods based on real bundle morphisms, we have calculated the holomor-

phic Chern-Simons invariants for many examples and have always found a vanishing result.

Presumably many of these results can be attributed to the vanishing theorem 4.1. A non-

zero Chern-Simons invariant causes a large superpotential contribution which, on it own,

de-stabilizes the model, so the frequent vanishing we have found can be considered good

news. However, we have also presented an example of a non-zero and indeed non-integral

Chern-Simons invariant for a non-flat bundle on a quotient Calabi-Yau.

Knowledge of Chern-Simons superpotentials in heterotic theories is a crucial piece of

information, particularly in view of vacuum stability and moduli stabilization. In this pa-

per, we have presented some progress in calculating such superpotentials but much remains

to be done for a systematic understanding of heterotic vacua. To generalize our methods

to larger classes of models more general real bundle isomorphisms need to be constructed.

So far, our approach is based on rank two line bundle sums on P1. Explicit knowledge of

bundle isomorphisms for higher rank line bundle sums on P1 and for higher-dimensional

projective spaces would significantly expand the scope for applications. Other methods

to construct real bundle isomorphisms, for example through deformations to exceptional

structure groups such as G2, might also be of interest (or perhaps methods taking a com-

plementary geometric approach [80]). One long term goal of this work is to derive a general

quantization rule for H. Such a rule would be a potentially powerful model-building tool,

and would allow us to distinguish marginally stable from unstable heterotic models.

Another obvious extension of the present work would be to include cases where five-

branes are present in the vacuum. This would require new mathematics in that a suit-

able generalization of Chern-Simons invariants would have to be formulated. This would

certainly be interesting to pursue, and is perhaps a case where physics could guide the

discovery of new mathematical structures.

It would also be interesting to study the effects which lead to these Chern-Simons

superpotentials in dual theories, such as, for example, F-theory models with heterotic

duals [76, 81–83]. The authors are planning to explore some of these directions in future

publications.
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A Real bundle morphisms

In this appendix, we review some standard mathematics concerning bundles and their

morphisms and we construct explicitly the real bundle isomorphisms between rank two

line bundle sums on P1 which are used in the main part of the paper.

We start by recalling some general facts about bundle morphisms. Suppose we have

two bundles

V
π−→ X , Ṽ

π̃−→ X , (A.1)

with typical fiber F over a manifold X with cover Uα and charts ϕα : Uα → Wα ⊂ Cn. A

bundle morphism is a map f : V → Ṽ , for which the diagram

V
f−→ Ṽ

π ↓ ↓ π̃

X
id−→ X

(A.2)

commutes. We are looking for a practical way to construct such bundle morphisms and to

this end we introduce local trivializations and their associated transition functions

φα : π−1(Uα)→Wα×F φ̃α : π̃−1(Uα)→Wα×F
φαβ :=φα ◦φ−1

β : Wβ×F →Wα×F φ̃αβ := φ̃α ◦ φ̃−1
β : Wβ×F →Wα×F

. (A.3)

Given this set-up, we can define local versions of the bundle morphism f by

fα := φ̃α ◦ f ◦ φ−1
α : Wα × F →Wα × F , (A.4)

and a simple calculation shows that these local morphisms have to satisfy the intertwining

rules

fα ◦ φαβ = φ̃αβ ◦ fβ , (A.5)

on the overlaps (Wα∩Wβ)×F . Conversely, any collection of local morphisms fα which sat-

isfies the conditions (A.5) defines a bundle morphism f . To be more explicit, we introduce

coordinates (z, v) ∈Wβ × F and write the transition functions and local morphisms as

φαβ(z, v) = (z, Tαβ(z)v) , φ̃αβ(z, v) = (z, T̃αβ(z)v) , fβ(z, v) = (z, Pα(z, z̄)v) , (A.6)

where Tαβ , T̃αβ and Pα are z-dependent matrices which act on the fiber. Using this

notation, the intertwining conditions (A.5) translate into the matrix equations

PαTαβ = T̃αβPβ . (A.7)
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These conditions point to a practical way of finding bundle morphisms. Suppose we are

given the transition functions Tαβ and T̃αβ for the two bundles V and Ṽ . Then, the task

is to find matrices Pα which contain smooth functions on Wα, are invertible for all z ∈Wα

and satisfy the matrix relations (A.7). These matrices then define a bundle isomorphism

f ∼ (Pα) : V → Ṽ which establishes the equivalence of the two bundles.

We will now apply this method to find isomorphisms between line bundle sums on

X = P1. The two standard patches on P1 are denoted by U0
∼= C and U1

∼= C, with affine

coordinates z ∈ U0 and w = 1/z ∈ U1. Line bundles on P1 are denoted by OP1(k), as usual.

It is known that two line bundle sums on P1 with the same rank are (real) isomorphic

if their first Chern classes match. Our task is to construct this isomorphism explicitly for

the case of rank two line bundle sums

V (k, l) := OP1(k)⊕OP1(l) , T
(k,l)
10 = diag(z−k, z−l) , (A.8)

with transition functions T
(k,l)
10 . We start by considering the two bundles V = V (−p, p) and

Ṽ = V (0, 0) where p > 0. Evidently, they are both rank two bundles with vanishing first

Chern class so they must be a real isomorphism f (p) ∼ (P
(p)
0 , P

(p)
1 ) : V (−p, p) → V (0, 0).

To find this isomorphism explicitly, we write down the transition functions

T10 = T
(−p,p)
10 (z) = diag(zp, z−p) , T̃10 = T

(0,0)
10 (z) = diag(1, 1) , (A.9)

and we try to find non-singular matrices P
(p)
α which satisfy the intertwining condi-

tions (A.7). For the present case, we have only two patches so there is only one such

condition which reads

P
(p)
1 T

(−p,p)
10 = T

(0,0)
10 P

(p)
0 . (A.10)

Here P
(p)
0 contains smooth functions in z ∈ U0

∼= C and is invertible everywhere in its

domain and P
(p)
1 contains smooth functions in w ∈ U1

∼= C and is also invertible everywhere

in its domain. Starting with a guess for P
(p)
1 , (A.10) then determines P

(p)
0 and this leads to

P
(p)
1 (w, w̄) =

 wp 1
1+|w|2p

−1 w̄p

1+|w|2p

 =⇒ P
(p)
0 (z, z̄) =

 1 z̄p

1+|z|2p

−zp 1
1+|z|2p

 . (A.11)

Evidently, both matrices are smooth in their respective domain, they are invertible since

det(P
(p)
0 ) = det(P

(p)
1 ) = 1 for all z, w ∈ C and they satisfy (A.10) by construction. So, in

conclusion, this defines real bundle isomorphisms

f (p) ∼
(
P (p)
α

)
: V (−p, p) '−→ V (0, 0) . (A.12)

As mentioned above, it is a well-known fact that these bundles are real isomorphic [84]

(see [85] for a discussion in the physics literature). However, their isomorphy is normally

established in a somewhat different manner and we are not aware of the explicit real iso-

morphism being written down in this form in the literature. It is this kind of construction

that we will need in the rest of the paper, hence the above discussion.
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The above construction can easily be generalized by twisting up with another line

bundle. The transitions function for the bundle V (a − p, a + p) = V (−p, p) ⊗ OP1(a)

satisfies

T
(a−p,a+p)
10 = z−aT

(−p,p)
10 . (A.13)

Hence, multiplying (A.10) with z−a it follows easily that

P
(p)
1 T

(a−p,a+p)
10 = T

(a,a)
10 P

(p)
0 , (A.14)

for the same matrices P
(p)
0 and P

(p)
1 as given in (A.11). Hence, we have explicitly con-

structed the real bundle isomorphisms

f (p) ∼
(
P (p)
α

)
: V (a− p, a+ p)

'−→ V (a, a) . (A.15)

between two rank two line bundle sums on P1 with the same even first Chern class.

What about the case of two rank two line bundle sums with the same odd first Chern

class? Define the matrix D = diag(1, z) and multiply (A.14) with this matrix from the

right. This leads to

Q
(p)
1 T

(a−p,a+p+1)
10 = T

(a,a+1)
10 Q

(p)
0 , (A.16)

where

Q
(p)
1 = P

(p)
1 , Q

(p)
0 = D−1P

(p)
0 D =

 1 zz̄p

1+|z|2p

−zp−1 1
1+|z|2p

 . (A.17)

Note that Q
(p)
0 and Q

(p)
1 are still smooth in their respective coordinates and det(Q

(p)
0 ) =

det(Q
(p)
1 ) = 1 for all z, w ∈ C. This means we have the real bundle isomorphisms

g(p) ∼
(
Q(p)
α

)
: V (a− p, a+ p+ 1)

'−→ V (a, a+ 1) . (A.18)

between two rank two line bundle sums on P1 with the same odd first Chern.

So far, we have constructed isomorphism to somewhat special bundles of the form

V (a, a) or V (a, a+ 1). This limitation is easily removed by introducing the matrices

P (q,p)
α (z, z̄) := P (q)

α (z, z̄)
−1
P (p)
α (z, z̄) , Q(q,p)

α (z, z̄) := Q(q)
α (z, z̄)

−1
Q(p)
α (z, z̄) . (A.19)

Note that these matrices are still well-defined on their respective patches - since we are deal-

ing with SL(2,C) matrices the inverse does not introduce any singularities. By transitivity,

these matrices satisfy

P (q,p)
α T

(a−p,a+p)
αβ = T

(a−q,a+q)
αβ P

(q,p)
β , Q(q,p)

α T
(a−p,a+p+1)
αβ = T

(a−q,a+q+1)
αβ Q

(q,p)
β . (A.20)

and, hence, they define bundle isomorphisms

f (q,p) ∼
(
P (q,p)
α

)
: V (a− p, a+ p)

'−→ V (a− q, a+ q) (A.21)

g(q,p) ∼
(
Q(q,p)
α

)
: V (a− p, a+ p+ 1)

'−→ V (a− q, a+ q + 1) (A.22)
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between two arbitrary rank two line bundle sums on P1 with even and odd first Chern

class, respectively.

In conclusion, we have shown explicitly, by writing down the relevant real bundle

isomorphisms, the well known fact that the first Chern class really does classify rank two

line bundle sums on P1 as topological bundles. Crucially we have explicit forms for the

relevant isomorphisms which will be important to us in the main part of this paper.

B Quotients and equivariant structures

We require a small amount of mathematical formalism in order to describe the relation-

ship between holomorphic Chern-Simons invariants on Calabi-Yau three-folds X and their

quotients by freely acting symmetries X̂.

Calabi-Yau quotients and equivariant bundles. Let us introduce a finite group

Γ = {g0 = e, g1, . . . , gn}, where n = |Γ| − 1, which acts freely on the Calabi-Yau three-fold

X. The quotient by this symmetry is denoted X̂ = X/Γ and p : X → X̂ is the natural

projection to the quotient. We need to define the notion of a Γ-equivariant vector bundle

V → X. A bundle is equivariant if there exists bundle morphisms Φg, for all g ∈ Γ, such

that the diagrams

V
Φg−→ V

π ↓ ↓ π

X
g−→ X

(B.1)

commute and the bundle morphisms satisfy the group law Φgh = Φg ◦ Φh for all g, h ∈ Γ.

Such a Γ-equivariant bundle descends to a bundle V̂ → X̂ on the quotient such that

V = p∗V̂ . More constructively, the downstairs bundle can be defined as V̂ = V/ ∼, with

the equivalence relation defined by v′ ∼ v ⇔ v′ = Φg(v) for a g ∈ Γ. The downstairs

projection can be defined as π̂([v]) := [π(v)].

We also recall that the bundle morphisms Φg can be used to defined maps Ψg :

Γ(X,V )→ Γ(X,V ) between sections of V by

Ψg(s) := Φg ◦ s ◦ g−1 . (B.2)

Interplay of equivariant structure and real bundle morphisms. The possible

choices of equivariant structure on holomorphic bundles V on X are in 1-1 correspondence

with holomorphic bundles V̂ on X̂. Because of this there is a compatibility requirement

between the possible real isomorphisms f between two bundles V and Ṽ and choices of

equivariant structure on each, if a real bundle isomorphism is to descend to the quotient.

If two equivariant structures are to give rise to real isomorphic bundles on X̂ then there

should exist some real bundle isomorphism f for the choices of equivariant structure Φg

and Φ̃g such that the following diagram commutes for all g ∈ Γ.

V
f−→ Ṽ

Φg ↓ ↓ Φ̃g

V
f−→ Ṽ

(B.3)
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Note that any given real isomorphism f : V → Ṽ may not satisfy this condition. The

requirement, if the two bundles on X̂ are to be real isomorphic, is simply that there exists

some bundle morphism that does.

Pullback of a connection. In the context of this paper we need to go beyond the

bundles themselves and consider also connections on them. In order to consider how maps

such as Φg or f induce a mapping on connections we will need to recall how pullbacks of

such objects can be defined. Consider an invertable differentiable map f : X → X̂ between

two manifolds X, X̂ and a vector bundle V̂ → X̂ with connection ∇̂. Then a connection

f∗∇̂ on the pullback bundle V = f∗V̂ → X can be defined locally as follows [86]

∇(0)
i := f∗∇̂|Ui := d+ f∗Âi . (B.4)

Here, Âi is the gauge field on Ûi relative to the frames ŝi,a on the cover Ûi ⊂ X̂ and

Ui = f−1(Ûi). There are natural frames on Ui ⊂ X defined by si,a = ŝi,a ◦ f , and we

can glue the local connections ∇(0)
i together to a global connection ∇(0) relative to these

frames. To see how this works we first note that gauge transformations

Ag := g−1Ag + g−1dg , (B.5)

and pull-backs f∗A commute, that is,

f∗Ag = (f∗A)f∗g . (B.6)

This means, if the gauge fields Âj and Âi on Ûj and Ûi are related by the gauge transfor-

mation Âj = Âi,ĝ(ij) , then

f∗Âj = (f∗Âi)g(ij) , (B.7)

so the pulled-back gauge fields f∗Âj and f∗Âi are glued together by the pull-backs g(ij) =

f∗ĝ(ij) of the original gauge transformations.

The above is natural but is not the most general way we can define the pullback.

Suppose that, instead of (B.4), we define local connections ∇i on Ui by

∇i = d+Ai , f∗Âi = Ai,Pi = P−1
i AiPi + P−1

i dPi , (B.8)

where Pi are gauge transformations which can be chosen and the second equation defines

what we mean by Ai. These local connections glue together to a global connection ∇ by

virtue of

Aj = Ai,Pig(ij)P−1
j

(B.9)

(which follows immediately by combining (B.7) and (B.8)), so the glueing gauge trans-

formations in this case are given by Pig(ij)P
−1
j . Of course the so-defined gauge field Ai

depends on the choice of the local gauge transformations Pi. These different gauge fields

describe the same pullback connection for different choices of local trivializations.
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Equivariant connections. We will say that a connection ∇ on V → X is Γ-equivariant9

(with respect to the equivariant structure on V defined by bundle morphisms Φg) iff

∇(Ψg(s)) = Ψ′g(∇(s)) , (B.10)

for all g ∈ Γ. Here, s is a section of V and the maps Ψg have been defined in (B.2). The

prime on the right-hand-side of (B.10) indicates that an action of the induced equivariant

structure on the co-tangent bundle should be included (since ∇(s) is a one-form).

What do the gauge fields associated to such an equivariant connection look like?

To see this consider an open set U0 which is sufficiently small that no two points inside

it are mapped in to each other under the symmetry action Γ. We define the open sets

Ui = gi(U0) where i = 0, 1, . . . , n which are the image of U0 under the elements of

the finite group. On each such patch Ui we choose a frame si,a. This choice does not

necessarily have to be aligned with the “natural” choice Ψgi(s0,a) (which is swept out by

the equivariant structure once a frame s0,a on U0 has been fixed). Let us parametrize the

difference between those two frames by

Ψgi(s0,a) = P bgi,asi,b . (B.11)

It follows from the group law for Ψg that the Pg are matrices which must satisfy Pgh = PgPh.

Consider a situation where we have sets of such matrices Pg, one set for all possible choices

of initial open set U0 within an open cover composed of such objects. Then, if we fix

the frames si,a once and for all, the sets of matrices Pg encode the choice of equivariant

structure on V . Call Ai the gauge field for ∇ on Ui and relative to the frame si,a, that is,

∇(si,a) = Aciasi,c . (B.12)

Then, a short calculation shows that the equivariance condition (B.10) translates to the

conditions

(g−1
i )∗A0 = P−1

i AiPi + P−1
i dPi = Ai,Pi . (B.13)

on the local gauge fields. This should be compared with (B.8). In the special case when all

Pi = I (which corresponds to a particular choice of equivariant structure), these conditions

simplify to

(g−1
i )∗A0 = Ai . (B.14)

In short, for two points on X related by the symmetry, the corresponding gauge fields

relate by a pull-back combined with a gauge transformation. This is certainly an intuitively

reasonable definition for a gauge field we would expect to descend to a quotient. We

discuss this further next.

For later discussion it will be useful to note that it is obvious given the above definitions

that any globally defined gauge transformation, t : X → G where G is the gauge group,

acting on an equivariant connection gives rise to another equivariant connection.

9See [87] for related definitions in a different geometric context.

– 31 –



J
H
E
P
0
9
(
2
0
2
0
)
1
4
1

Descent of connections. Suppose we have a (local) section s of V which is invariant,

that is, Ψg(s) = s and which descends to a section p̃(s) of V̂ . For an equivariant connection

∇ on V such an invariant section satisfies, from (B.10), that

Ψ′g(∇(s)) = ∇(s) . (B.15)

We therefore see that ∇(s) is an invariant section of V ⊗TX∨ and thus descends to a well-

defined section of V̂ ⊗ TX̂∨ on the quotient. Thus we can define an associated downstairs

connection by ∇̂(p̃(s)) := p̃(∇(s)), where by a slight abuse of notation we are using p̃ to

indicate the descent of sections for two different sets of bundles.

To show this structure from a different perspective, let us start with a connection on the

quotient and show that the pullback of the associated gauge field under the projection map,

as defined in (B.8), is an equivariant connection on X as defined in (B.10). Let us denote by

∇̂ a connection on X̂, and, given the projections pi := p|Ui : Ui → Ûi ⊂ X̂ of the open sets

defined above (B.11), we can define the local pull-back connections ∇i := p∗i ∇̂ = d + Ai.

Here the associated gauge field Ai is defined as the generalized pull-back of the gauge field

on X̂ following the discussion above, so that, according to (B.8)

p∗i Âi = P−1
i AiPi + P−1

i dPi , (B.16)

for some Pi. In this equation Ai is the pullback of Âi under pi as an ordinary one-form.

Note that on any given patch we are free to choose the gauge transformation appearing in

this expression to be P = I, simply by performing a globally defined gauge transformation

on each of the patches which agrees on all overlaps. If, for example, we choose P0 to be

the identity, then the gauge field A0 = p∗0Â on that patch is the straightforward pull-back

of the downstairs gauge field. For a set of projections that are consistent with the group

action we would have that p0 = pi ◦ gi so that, in terms of ordinary pullbacks of one

forms, p∗0 = g∗i ◦ p∗i . Thus p∗0Â = g∗(p∗i (Â)) so that p∗i Â = (g−1)∗A0. Given this and

equation (B.16), we find the following relationship between the generalized pullbacks of

the gauge fields to patches U0 and Ui.

(g−1
i )∗A0 = P−1

i AiPi + P−1
i dPi (B.17)

This is precisely the relationship we saw in (B.13) for an equivariant connection.

Pullbacks and integration. Let f : X → X̂ be a (smooth, surjective) map between

manifolds, as before and ν a top form on X̂. Then∫
X
f∗ν = deg(f)

∫
X̂
ν , (B.18)

where deg denotes the degree of a map. The degree is the integer which arises in the

pullback of a top form. It is +1 for orientation-preserving diffeomorphisms and −1 for

orientation-reversing diffeomorphisms. For non-injective maps which corresponds to an

N -fold cover the degree is ±N , with the sign is determined by what happens to the orien-

tation [88].
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Note that this can immediately be applied to see how the holomorphic Chern-Simons

invariant (2.4) descends to a quotient in some cases. We would define the Chern-Simons

invariant in a heterotic string context by using a real isomorphism f as in section 3. We

would choose this real isomorphism and equivariant structures on the two bundles involved

to obey the commutativity condition (B.3). In addition, it is necessary, if the integral (2.4)

is to be well defined, that both connections are written with respect to the same local

trivialization. With (B.3) effectively saying that the two equivariant structures are the

same for the mapped connection A and reference connection A0, and with the choice of

trivializations being the same, we then see from (B.11) that the gauge transformations ap-

pearing in the equivariance conditions for the two connections would be identical. Because

the integrand in (2.4) is a gauge invariant if we transform both A and A0 simultaneously,

we see that the group Γ simply acts upon the integrand of the Chern-Simons invariant as

though it were an ordinary differential form. Thus (B.18) applies and we have that,

CSÂ0
(Â) =

1

deg(p)
CSA0(A) . (B.19)

Here, A and A0 are the equivariant connections for the bundle V → X that are pullbacks

of the connections Â and Â0 on V̂ → X̂, in the sense we have described above.
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