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Design thinking and computational thinking: An ontology for 

metacognitive approaches to problems 

Nick Kelly and John S. Gero 

Introduction 

The term design thinking is widely discussed in design literature, and has its foundations in 

research on how designers know, act, and think.1 A second form of ‘thinking’, computational 

thinking has not to date been theorised in relation to design thinking, where computational 

thinking has its foundations in research on how computer scientists know, act, and think.2 

Each form of ‘thinking’ has found widespread popularity, as indicated by the international 

adoption of both terms within formal education systems,3 and, in the case of design thinking, 

within business and government.4 

The relationship between design and computational thinking lacks clarity. Neither 

term has an accepted definition that provides clear boundaries around the parts of human 

cognition that could be labelled as either design thinking or computational thinking. As a 

result, even basic questions about this relationship have no established answers: are design 

thinking and computational thinking discrete, orthogonal, or overlapping notions? Consider, 

for example, the case of a software engineer trying to understand a client’s needs. Such 

activity might readily be understood through the lens of either design thinking or 

computational thinking. In another example of the blurred boundaries between these terms, 

Jeanette Wing has suggested that computational thinking is “a creative process” that “relies 

on human ingenuity, flashes of insight and taste in design”.5 These cognitive abilities are 

typically taken to be markers of design thinking, yet they equally seem to be applicable to 

some definitions of computational thinking. 

This paper aims to compare and contrast these two forms of thinking to provide some 

clarity about the relationship between them. The significance of the work is to position design 
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thinking in relation to another form of thinking that seems, intuitively, to be counterposed to 

it, contributing to the theoretical foundations of design thinking. The work is ontological in 

that it aims to specify representational terms that describe a domain6. The paper highlights the 

significance of framing for both design thinking and computational thinking and contrasts the 

class of outcomes that each type of thinking appears to produce. This leads to a proposal for 

two orthogonal variables that frame metacognitive approaches to problems. In the discussion 

section we suggest that this space has relevance for how design thinking and computational 

thinking are taught, both inside and outside of formal education. In the rest of the paper, we 

will refer to the person engaged in either design thinking or computational thinking as the 

thinker, for consistency. Throughout, we will refer to ‘problems’ and ‘solutions’ that are 

arrived at through design thinking and computational thinking; again, this is done for 

consistency, while recognising that much design activity does not have clearly defined 

problems and that design solutions do not necessarily ‘solve’ problems but address them in a 

designerly way. 

Design thinking 

Design thinking has become an overloaded and ambiguous term but has its roots in the 

scientific study of design cognition and design methods. Design thinking is the knowledge 

that has been developed relating to how designers reason,7 also described as “designerly ways 

of knowing, thinking, and acting”.8 Disambiguation is needed, because there are currently 

multiple different understandings of this widely used and overloaded term, as described in 

two papers reviewing the use of the term. Kimbell identifies three definitions of design 

thinking in the literature, where the one that we intend here is ‘design thinking as a cognitive 

style that is observed in designers’.9 Johansson‐Sköldberg et al. identify five definitions, 

where the one that we intend here is ‘design thinking as a way of reasoning/making sense of 

things that is used by designers’.10 Design thinking is often widely used in the public sphere 
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as shorthand for the suite of concepts and tools that are well-suited for teaching non-designers 

how to approach complex problems in a designerly way.11 This is not what we refer to here. 

The core of design thinking is an understanding that a designer creates the frame 

within which design activity is undertaken.12 This idea of a frame has multiple origins. One 

can be found in situated cognition (where frame is referred to as the situation), in the 

empirically-supported argument that knowledge (e.g., concepts) cannot be abstracted from 

the situation (or frame) within which it is used and learned.13 Another can be found in 

Minsky’s suggestion that frames can be used as a way to specify the top-level of organisation 

in a system for structuring knowledge in the context of artificial intelligence.14 

The common thread and relevance for design is that while a designer might ‘know’ a 

great deal about the world, that knowledge is not stored in discrete, abstract chunks waiting to 

be ‘deployed’ during design activity. Rather, when faced with a design problem, a designer 

cognitively, but unconsciously, constructs a complex assemblage of interrelated knowledge—

what we will refer to as the frame. This frame forms the lens through which the object of 

attention—in this case, the design problem—comes to be understood and within which 

design actions that might be taken are available. 

Many insights into designerly ways of acting and knowing relate to the way that 

designers frame problems and the strategies that they have for acting such that the frame 

changes in a desirable way. One such insight is that designers typically have a conception of 

the understanding of the problem, a problem space, and a conception of possible solutions, a 

solution space, that both form a part of the frame. Designers, when observed, appear to be co-

evolving these two different spaces, changing the understanding of possible designs and 

possible solutions in parallel and in an interdependent way.15 Another frame-based design 

phenomenon, identified by Suwa, Gero, and Purcell, is that designers make unexpected 

discoveries within their own external representations (e.g., sketches) that change the 
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trajectory of the design process.16 These insights fit with the description of design as 

something that occurs “within a context which depends on the designer’s perception of the 

context”.17 This has broad implications; for example, that the same design problem 

approached by the same designer at two different times might be conceived in entirely 

different ways.18 

Problems that are well suited to design thinking are problems in which frames that 

include a useful solution are not immediately available to a thinker—the solution space needs 

to be evolved in some way for a solution to become apparent. Wicked problems are a good 

example of the type of problem in which design thinking is needed, in which variables are 

unknown and the knowledge needed to address the problem is incomplete, such as the kinds 

of problems encountered in social planning.19 A problem in which all of the variables are 

known at the outset (e.g., solving a tangram puzzle) is not a good candidate for design 

thinking. Skill in addressing this type of problem requires a capability for working with 

frames in a particular way. Expert designers have metacognitive skills that enable them to 

observe the frame that they have created for the design problem and, critically, have access 

within this frame to conceive of appropriate actions that might expand their understanding of 

the problem in a useful direction. 

Many renowned examples of outstanding design—examples like Jørn Utzon’s Sydney 

Opera House, Frank Lloyd Wright’s Fallingwater—can be recast as tales of exceptional 

capability in framing and bringing things into or out of the frame. The Sydney Opera House 

was designed through a competition; where other entrants heeded the rules in their designs 

(keeping them in the frame), Jørn Utzon broke them in service to his vision for a design. 

Frank Lloyd Wright introduced many novel ideas in his design of Fallingwater, driven, in 

part, by his inclusion in the frame the idea that the design of any house should enhance the 
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landscape within which it is situated—leading him to challenge many of the requests of the 

client including even the location of the house. 

In schools of design around the world, whether they are studying architecture, 

industrial design, engineering, fashion design, web design, etc., students are taught how to 

think about the user of their design, how to think about the context/site/situation, and how to 

do research about the design. All of these can be considered useful guides for actions to take 

when confronted with a novel design problem; they all also denote strategies that will 

implicitly change the frame in a direction that is useful for moving towards a design solution. 

The outcome from the design process is design documentation, some kind of 

communicable representation of the design solution. A notable feature of design solutions is 

that they tend to be specific to the problem that they were created for—they cannot 

(typically) be taken and applied directly to other users or other design scenarios. For example, 

the architectural design of a house needs to be specific to the site where it is located—aspect, 

topography, landscape, surroundings, history—as well as its inhabitants—the specific needs 

of the people who will be living in it—to be considered an example of good design. The reuse 

of the design of a house from one design situation to another in cookie cutter fashion 

generally results in poor design outcomes. This tendency for design solutions to be specific to 

a design problem is common across different design disciplines. 

Computational thinking 

The term computational thinking has its origins in the recognition that computer science is a 

vital part of innovation and discovery in solving human problems in the modern world; and 

that there is thus a broad need for people in society to have the cognitive capabilities to do 

computer science.20 Through computer science (and the engineering that has enabled 

technological progress) humans have been able to solve problems in such a way that, once 

solved, they can be replicated at scale and at very low cost. As a result, the fruits of 
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computational thinking now underpin much of modern life. Because of its importance to 

society and to economies,21 there has been widespread uptake of computational thinking in 

educational systems worldwide. Countries such as Russia, South Africa, New Zealand, and 

Australia have already brought computational thinking into the K–12 curriculum, and there 

has been a move towards making computational thinking a part of compulsory education in 

many nations.22 

There is a pattern for review articles about computational thinking to commence by 

noting its importance, its widespread uptake within education, but also its lack of robust 

definition.23 The definitional confusion around computational thinking is summarised by 

Shute et al. who suggest that “[computational thinking] definitions vary in their 

operationalization of [computational thinking] in certain studies, and are not particularly 

generalizable”.24 There are two trends in attempts to define computational thinking. The first 

trend defines computational thinking based upon the types of reasoning that are used. An 

example of this is Wing’s initial work in suggesting that “computational thinking involves 

solving problems, designing systems, and understanding human behaviour, by drawing on the 

concepts fundamental to computer science” (p. 33).25 The second trend defines computational 

thinking based upon the types of solutions that it produces. Many papers in the literature refer 

to a definition developed by Wing and colleagues as “the thought processes involved in 

formulating problems and their solutions so that the solutions are represented in a form that 

can be effectively carried out by an information-processing agent”; where the idea is that an 

information-processing agent can be either human or computational.26 Here we will first 

consider the cognitive markers of computational thinking, and then discuss the types of 

solutions that it produces. The term computational thinking is not used to suggest that 

humans reason in ways that are similar to computers (e.g., theories subscribing to 
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computationalism27); it is shorthand for referring to the problem-solving approaches that 

computer scientists make use of. 

The primary cognitive ability required for computational thinking is abstraction and 

the competencies that support abstraction. Abstraction is concerned with “defining patterns, 

generalizing from specific instances,”28 and the “value of abstraction as [computational 

thinking]’s keystone (distinguishing it from other types of thinking) is undisputed”.29 

Abstraction is the type of reasoning that involves moving from specific instances to general 

patterns, keeping relevant information and discarding irrelevant data. Through abstraction 

people “glean relevant information (and discard irrelevant data) from complex systems to 

generate patterns and find commonalities among different representations”.30 A cliché in 

teaching computational thinking is to take the process of making toast, break it down into 

individual steps, and specify an algorithm for how anybody could make toast. This is a useful 

activity, because it demonstrates an algorithm as a sequence of steps whilst simultaneously 

making it clear that it is useful to specify certain things in the algorithm (e.g., putting toast in 

the toaster) while unhelpful to specify others (e.g., how to co-ordinate the hand to reach 

inside a bag of sliced bread). One of the core skills in computational thinking is learning to 

find the right abstraction. 

Problems that require computational thinking are typically highly structured; or 

rather, the way that the problem is framed requires that a well-structured solution (e.g., an 

algorithm) be a part of that frame. They are also typically recurrent problems, problems that 

either occur in many places, or recur within the same place. The value in taking the time to 

solve a problem in such a way that a computer can carry out the process is so that the solution 

can be deployed in other circumstances with similar problems. For example, businesses often 

invest significant resources in developing specific software that automates workflow, as they 

know that eventually the software will pay for itself in time saved or in a competitive 
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advantage. Software developers can create a solution to a very specific problem in their 

immediate circumstance and then suddenly find that, by solving this problem better than 

anyone else, they have a global market of people interested in it. 

Computational thinking requires thinking about problems in a way that enables 

solutions to be found—often, but not always, using computers—that apply to many other 

similar problems and where the steps required to solve those problems can be represented and 

used in applicable circumstances. For example, the problem of wayfinding within a city can 

be solved by the development of navigational software combined with GPS enabled 

smartphones and data about city geography (e.g., Google maps). Solving the problem in one 

city enables the solution to be deployed in another city with only a change of the data being 

used—the algorithms and hardware can remain unchanged. 

The solution to a computational thinking problem is typically a representation of a 

solution at the appropriate level of abstraction to allow the solution to be applied in other 

similar circumstances, as typified by an algorithm. In this respect the solutions provided by 

computational thinking aim to be generally applicable. However, they also tend to have 

clearly stated conditions on applicability—such as the kind of variables that a function can 

accept—and solutions are transferable and repeatable to other situations in which these 

conditions apply. 

Design thinking and computational thinking 

Despite the popularity of both terms, there is little in the literature that compares design 

thinking and computational thinking to consider the relationship between the two—perhaps 

due to the lack of a consensus on definition for both terms. One exception is a brief 

comparison by Shute et al. who suggest that the main difference lies in the domains where 

each type of thinking operates, but do not discuss differences in the types of thinking 

utilised.31 Additionally, there is theory within the design literature that recognises the nature 
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of design problems as being inherently embedded within complex systems (e.g., technical, 

political, economic, ethical, etc.), where the embedded systemic way of ‘seeing the whole’ 

can be juxtaposed with the need for designers to, at times, see component parts and the 

relationships between them.32 This view is taken up in the Discussion section of this paper, in 

suggesting that design thinking and computational thinking can be considered archetypes 

within a spectrum of metacognitive approaches to problem solving. 

There are clearly activities that are almost entirely focused on design thinking—say, 

the engineering design of a machine—with little or no computational thinking involved; and 

the inverse also, tasks such as sorting a list which require computational thinking and little or 

no design thinking. There are also tasks that appear to involve both computational and design 

thinking, such as a web designer responding to a client’s brief. In all three tasks there is a 

thinker, a problem to be addressed, and a solution. On what basis can these three tasks be 

compared? 

We identify two variables that can form the basis for differentiation between design 

and computational thinking as: (1) the generality/specificity of solutions; and (2) the 

generality/specificity of the frame. 

Specificity of solutions 

A synthesis of the descriptions of design thinking and computational thinking suggests that 

solutions from each type of thinking seem to fall at opposite ends of a continuum. A typical 

design solution is highly specific to the design problem that the thinker is addressing—

specific to the users, the site, the context, etc. It is rare that a design solution from a prior 

problem can be directly transferred into a new problem without further design thinking being 

done to adapt it. In contrast to this, most computational thinking solutions can be applied to 

new problems without any further computational thinking being done—for some scholars,26 
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this is a definitional quality of computational thinking. 

This leads to the proposal that one variable that explains the difference between 

design and computational thinking is the specificity of the solution in relation to the problem 

to which it pertains. In design thinking solutions tend to be specific to the problem. In 

computational thinking the solution tends to be more general than the problem that it was 

created to solve. Figure 1 depicts this as an ontological category with values ranging from 

specific to general. 

 

 

Figure 1 The specificity of the solution in relation to the problem as an ontological category 

 with values ranging from specific to general 

Specificity of framing 

A second variable that can be used to explain much of the difference between design thinking 

and computational thinking relates to the way that the thinker frames the problem. In design 

thinking, many of the activities—doing user research, playing with materials, researching 

theory and cases, etc.—are all oriented towards an expansion of the frame. For example, it is 

usually an indicator of good design if parts of culture relating to the design are given 

consideration by the thinker and are brought into the frame. In contrast, computational 

thinking involves abstraction—capturing what is the core relationship between information 

and processes and abstracting away what can be removed. To continue the previous example, 

in the context of computational thinking, culture tends to be abstracted away. 

This leads to the proposal that a second ontological category that is used to explains 

the difference between design thinking and computational thinking is the specificity of the 
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frame in relation to the problem to which it pertains. Figure 2 depicts this as an ontological 

category with values ranging from specific to general. 

 

 

Figure 2 The specificity of the framing in relation to the problem as an ontological category 

 with values ranging from specific to general 

An ontology for reasoning about problems 

These two categories, of solution specificity and frame specificity, are independent of one 

another. Given that these categories are orthogonal, a space can be created, which we propose 

is a useful ontology for how people reason about problems using design thinking or 

computational thinking, Figure 3. It is an ontology in that it specifies representational 

terms—the two axes—that are useful for specifying a domain of the ways in which humans 

reason about problems. 

In the space created by these two axes, the upper left-hand quadrant is a good match 

with the characterisation of design thinking that is provided in the literature. Here the thinker 

is aiming for a very specific solution and is getting there by trying to gain a broad 

understanding of the problem. In contrast, the lower right-hand quadrant is a good fit with the 

characterisation of computational thinking. The thinker is producing general solutions and is 

getting there by honing a precise understanding of the problem in a form that has the most 

helpful abstraction possible. 
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Figure 3 Space created by graphing the two orthogonal ontological categories, with design 

thinking and computational thinking located in the space. 

Discussion and conclusions 

Significance of the ontology for design thinking 

The ontology identifies design thinking and computational thinking as ‘archetypal’ 

descriptions of approaches to problems a larger domain of such approaches. It is productive 

in the sense that there are two spaces in Figure 3 that do not map uniquely onto either design 

or computational thinking, and certain notions within the literature can be mapped onto these 

spaces. For example, the upper right quadrant is an area that suggests both general framing 

and general solutions. This maps well with the kind of thinking that can be seen in the 

creation of design patterns, where a design pattern is a way of capturing the essence of a 

design solution at a level of abstraction that allows the thinking behind it to be reused: 

Each pattern describes a problem that occurs over and over again in our environment, 

and then describes the core of the solution to that problem, in such a way that you can 

use this solution a million times over, without ever doing it the same way twice.33 
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This is an attempt to pose enough information about a design solution such that it can be 

transferred to other situations; while also meeting the demands of the particular problem. 

Similarly, there is a space in the lower left quadrant that denotes an orientation 

towards including less in the frame and of having solution that are not expected to be general. 

We suggest that an example of this kind of thinking is a good fit with that observed by 

designers engaged in parametric design approaches, such as is widely used in architectural 

design and in engineering design.34 Here the aim is to create a specific abstraction of the 

problem—and thus an orientation of having less in the frame—but with the intention of using 

its output to address a very specific problem. 

Understanding how thinkers think 

This paper compares and contrasts the relationship between design thinking and 

computational thinking. In the proposed ontology these two forms of thinking represent two 

spaces within a larger space. This raises further questions about the remaining spaces and 

about how humans reason in response to problems. Does the preponderance of design 

thinking and computational thinking suggest that these two forms of thinking are more useful 

for humans than the two spaces that are not clearly defined? Or is it an invitation to give a 

clearer characterisation of the two remaining spaces? 

There is also a lack of understanding about how humans move around within this 

space during their thinking. One way of talking about this movement between different types 

of thinking has been proposed by Goodyear and Markauskaite as epistemic fluency.35 

Epistemic fluency requires “being flexible and adept with respect to different ways of 

knowing about the world” (p. 1) and the term can be used to describe the need for a problem 

solver to have capacity to both ‘think like a designer’ and ‘think like a computer scientist’ 

and to know how to move between the two. Students need to develop the metacognitive 
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capacity for multiple ways of thinking alongside an awareness of which of these strategies for 

thought are most useful at a particular time in responding to a situation. 

Implications for formal education 

In recent decades there has been a revision of Bloom’s taxonomy,36 to include a second 

dimension for cognitive processes. In this revised taxonomy the highest educational objective 

is to create “Putting elements together to form a novel, coherent whole or make an original 

product”.37 The emphasis on cognitive processes within the context of learner expectations is 

also reflected in Webb’s Depth-of-Knowledge schema where Level 4, extended thinking, 

correlates with Bloom’s two highest levels.38 These educational objectives target students’ 

development of metacognitive skills, and computational thinking and design thinking both 

respond to these educational objectives. Given the suggested ontology, and in the context of 

epistemic fluency, it may be appropriate to teach these two forms of thinking as 

complementary ways of approaching problems—as opposed to the current status quo, in 

which they are taught and discussed largely in isolation from one another. 

Conclusions 

This paper has positioned design thinking in relation to computational thinking, and in doing 

so contributed to the theoretical foundations of design thinking. The proposed ontology 

places design and computational thinking in relation to each other as regions within a space 

of ‘metacognitive approaches to problems’ with axes of specificity of framing and specificity 

of solutions. There are spaces in the top-right and bottom-left of Figure 3 that are not yet well 

described; the presence of these spaces leads to further questions that have been discussed, 

and the responses to which lie beyond the scope of this paper. The paper raises new questions 

about the ways in which persons engaged in design activity move around within this 

metacognitive space. For example: What are the expectations of how different professionals 
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(e.g., designers, computer scientists) might move within this space when addressing 

problems? What are the implications for how design thinking and computational thinking are 

taught within formal education, at all levels? 

Relevant to the aim of this paper is the space between computational and design 

thinking. This space between each of the labels of design thinking and computational 

thinking in Figure 3, close to the centre, is a region within which we can propose that design 

thinking might include computational thinking in some situations, and vice versa in others. 

We suggest that design thinking and computational thinking are not mutually exclusive—as 

might be implied by the lack of literature addressing the relationship between them—but 

rather are mirror images of each other in relation to the two ontological categories of 

solutions and framing. 
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