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Abstract

Bipartite projections are used in a wide range of network contexts including politics
(bill co-sponsorship), genetics (gene co-expression), economics (executive board
co-membership), and innovation (patent co-authorship). However, because bipartite
projections are always weighted graphs, which are inherently challenging to analyze and
visualize, it is often useful to examine the ‘backbone,’ an unweighted subgraph
containing only the most significant edges. In this paper, we introduce the R package
backbone for extracting the backbone of weighted bipartite projections, and use bill
sponsorship data from the 114th session of the United States Senate to demonstrate its
functionality.

Introduction

Networks are useful for studying many different phenomena in the natural and social
worlds, but network data can be difficult to collect directly. As a result, it is common
for research to measure an unobserved unipartite network of interest using a bipartite
projection in which the edges capture whether (or the extent to which) two vertices
co-participate in a relevant event. For example, friendship networks are measured using
event co-attendance [1], political networks are measured using bill co-sponsorship [2],
executive networks are measured using board co-membership [3], scholarly collaboration
networks are measured using paper co-authorship [4], knowledge networks are measured
using paper co-citation [5], and genetic networks are measured using gene
co-expression [6]. Indeed, some have gone so far as to argue that “every one-mode
network can be regarded as a projection of a bipartite network” [7, see also [8, 9]].

However, there are several challenges to studying bipartite projections. Two of these
challenges arise from the projection function itself. First, the projection function
“transforms the problem of analysing a bipartite structure into the problem of analysing
a weighted one, which is not easier” [10, p. 34-35]. Second, bipartite projections
introduce topological characteristics such as inflated clustering, such that the projection
of “even a random [bipartite] network – one that has no particular structure built into it
at all – will be highly clustered” [11, p. 128].

Two additional challenges arise from characteristics of the bipartite data, which are
usually lost in the projection transformation. First, when transforming a bipartite graph
into a unipartite graph via projection, information about the artifacts responsible for
edges between vertices is lost [10], in particular, one no longer knows which artifact(s)
gave rise to a given edge and therefore no longer knows whether the artifact(s) are large
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or small (i.e. the column sums of the bipartite matrix). This is important because
co-participation in large artifacts provides more information about the relationship
between two vertices than co-participation in small artifacts [12]. For example,
observing two people attending the same small party provides more information about a
potential social relationship between them than observing these individuals attending
the same large gathering. Similarly, observing two legislators co-sponsoring the same
unpopular bill (i.e. one that is co-sponsored by no one else) provides more information
about a potential political relationship between them than observing these legislators
co-sponsoring the same popular bill (i.e. one that is co-sponsored by many others also).

Second, bipartite projection also involves the loss of information about the
individual vertices, in particular, one no longer knows how many artifacts a given vertex
participated in (i.e. the row sums of the bipartite matrix). This information is
important to consider because the scale of each edge weight in a bipartite projection is
driven by the number of artifacts participated in by the two vertices it connects [12].
For example, on average the number of events co-attended by two people who each
attend many events will be larger (on average) than the number of events co-attended
by two people who each attend few events. Similarly, on average the number of bills
co-sponsored by two legislators who each sponsor many bills will be larger (on average)
than the number of bills co-sponsored by two legislators who each sponsor few bills.
Therefore, what counts as a ‘large’ or ‘small’ number of co-attendances or
co-sponsorships depends in part on the total number of attendances or sponsorships of
both members of a dyad. As we will see, the backbone extraction methods we consider
cope with these challenges by controlling for the row and column sums of the bipartite
matrix associated with the bipartite graph in question.

For these reasons, it is often useful to extract and study the backbone of a bipartite
projection. The backbone is an unweighted (i.e. an edge is either present or absent) or
signed (i.e. an edge can be positive, negative, or absent) graph that preserves only the
most “significant” edges from the weighted bipartite projection. Multiple methods of
backbone extraction exist for bipartite projections [12], but until now there has not
been a single software package that implements these methods. In this paper, we
introduce and demonstrate version 1.2.2 of the backbone R package, which implements
four backbone extraction methods – a universal threshold, a hypergeometric model, a
stochastic degree sequence model, and a fixed degree sequence model – in a common
framework that facilitates their use. It is possible to install the package in R [13] from
the Comprehensive R Archive Network (CRAN), load it for use, and verify its version
number using:

install.packages("backbone")

library(backbone)

sessionInfo()[["otherPkgs"]][["backbone"]][["Version"]]

## [1] "1.2.2"

Further information regarding the CRAN distribution is available at
https://CRAN.R-project.org/package=backbone. Additional materials relating to
backbone, including papers, presentations, workshop materials, and data sets are
available at http://www.zacharyneal.com/backbone. Replication data and code for
the examples presented below are available at https://osf.io/myje5/.

Graph theory preliminaries

A graph G is a set of objects called vertices, together with a set of 2-element subsets of
the vertices which are called edges. An edge between vertices i and j can be denoted as
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e = ij. If there exists an edge e = ij between vertices i and j, we say that i and j are
adjacent. The degree of vertex i is the number of edges of the form ij for some j. The
adjacency matrix of a graph G with n vertices is an n× n matrix G = [Gij ] where
Gij = 1 if an edge is present between vertex i and vertex j, or Gij = 0 if that edge is
absent. We call a graph weighted if each edge has an associated numeric value, and
unweighted otherwise. In the weighted case Gij = w(ij) where w(ij) is the weight of
the edge e = ij. We make no distinction between a graph and its adjacency matrix.

We call a graph bipartite if the set of vertices can be partitioned into two sets U and
W such that each edge of the graph is of the form ij where i ∈ U and j ∈ W . The sets
U and W are called independent, meaning there are no edges present within the sets.
These graphs can be represented by a biadjacency matrix, B. This matrix uses rows to
represent vertices in the set U and columns to represent vertices in the set W . We set
Bij = 1 if there is an edge between vertex i of U and vertex j of W , and set Bij = 0
otherwise. As with graphs, we conflate a bipartite graph with its biadjacency matrix.
The row sum of the ith row of the biadjacency matrix, denoted Ri, is equal to the
degree of the ith vertex in the set U . Similarly, the column sum of the j column of B,
denoted Cj , is the degree of the jth vertex in W .

We can use bipartite graphs to study social networks where the vertices of U are
agents (e.g., people), the vertices of W are artifacts (e.g., events), and edges represent
the affiliation of a person with an artifact. These bipartite networks are often also
called affiliation networks or two-mode networks. To transform this data into a
weighted graph, we project the bipartite adjacency matrix B by multiplying it by its
transpose B⊤. This produces a weighted graph G = BB⊤ called the bipartite projection,
where Gij is equal to the number of artifacts of W with which both i and j are
affiliated when i ≠ j. The value Gii is equal to the total number of artifacts with which
i is affiliated. Let

Mij = min(Gii, Gjj)− (|W | −max(Gii, Gjj)).

The value of each off-diagonal entry Gij is bounded by

max(0,Mij) ≤ Gij ≤ min(Gii, Gjj).

Bipartite projections are of interest in social network analysis because they allow us
to construct a network from artifact affiliations, which are often easier to obtain than
taking a survey of the network members. If the number of members of the network is
large, getting complete and reliable information regarding relationships between
members can involve long and repetitive survey techniques which can lead to survey
fatigue and costly field work. Additionally, in some settings, individuals may be
reluctant to provide information about their relationships. Moreover, in historical
contexts, a survey of long-deceased network members is simply not possible. In these
cases, it is often beneficial and easier to collect bipartite network information, such as
event attendance, then project to infer a weighted network between the social figures.

Because bipartite projections are weighted, and because what counts as a ‘large’ or
‘small’ weight can differ for each edge, it can be useful to reduce this information by
focusing on an unweighted subgraph that contains only the most important edges. We
call this subgraph a backbone of G, which we denote as G′.
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Backbone extraction methods

The simplest approach to extracting a backbone of bipartite projections applies a single,
universal threshold T to all edges such that:

G′
ij =

{︄
1 if Gij > T

0 if Gij ≤ T
.

For example, a threshold value of T = 0 indicates that as long as a pair of vertices are
affiliated with at least one of the same artifacts (i.e. they have a nonzero edge weight),
an edge between them will be present in the backbone. We call this type of backbone
binary. It is also possible to extract a signed backbone by selecting distinct upper T+

and lower T− thresholds, T− < T+, such that

G′
ij =

⎧⎪⎨⎪⎩
1 if Gij > T+

−1 if Gij < T−

0 if T− ≤ Gij ≤ T+

.

However, backbones extracted using universal thresholds are very dense and clustered,
and therefore tend to be uninformative [10,12].

An alternative approach to backbone extraction, and the approach that backbone is
designed to facilitate, identifies important edges to be retained in the backbone using a
statistical test that compares an edge’s observed weight to the distribution of its weights
under a null model. Given a null model that can generate a distribution of an edge’s
weights G∗

ij , it is possible to compute the probability that an edge’s observed weight is
in the upper (P (G∗

ij ≥ Gij)) or lower (P (G∗
ij ≤ Gij)) tail of this distribution, and

therefore not likely to be the result of such a null model. Using these probabilities and a
significance level α for the test, a signed backbone can be extracted such that:

G′
ij =

⎧⎪⎨⎪⎩
1 if P (G∗

ij ≥ Gij) < α/2

−1 if P (G∗
ij ≤ Gij) < α/2

0 otherwise

.

In many cases, a simpler binary backbone may be more useful, which can be achieved
by discarding the negative edges such that:

G′
ij =

{︄
1 if P (G∗

ij ≥ Gij) < α/2

0 if P (G∗
ij ≥ Gij) ≥ α/2

.

However, whether a binary or signed backbone is extracted, a two-tailed significance
test is used because, for any given edge, the observed value in the projection could be in
either tail of the null distribution.

The challenge to using the statistical approach to backbone extraction lies in
defining a suitable null model and computing the required probabilities (i.e. edge-wise
p-values). A family of nine null models can be defined by the constraints they place on
the row and column sums in a random bipartite graph B∗: The row sums in B∗, and
separately the column sums in B∗, can be unconstrained, constrained to match those in
B on average, or constrained to match those in B exactly [14, 15]. Let R be a set of
restrictions on the row and column vertex degrees corresponding to one of these nine
possibilities, and let B(R) be the space of all bipartite graphs B∗ which satisfy those
conditions. This approach to backbone extraction compares the values Gij , the
bipartite projection of interest, to the distributions that describe G∗

ij = (B∗B∗⊤)ij for
all bipartite graphs B∗ ∈ B(R). Here, we focus on three sets of restrictions B(R),
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defining three distinct null models: (1) the hypergeometric model, in which row sums
are constrained to match those in B exactly, but column sums are unconstrained; (2)
the stochastic degree sequence model, in which both row and column sums are
constrained to match those in B on average; and (3) the fixed degree sequence mode, in
which both row and column sums are constrained to match those in B exactly.

Hypergeometric Model (HM)

The hypergeometric model constrains the row sums in B∗ as equal to their values in B
(i.e. fixed), but places no constraints on the column sums [16,17]. The distribution of
(B∗B∗⊤)ij for all bipartite graphs B∗ ∈ B(R) is given by the hypergeometric
distribution.

The hypergeometric distribution is a discrete probability distribution that models
the probability of having k “successes” in a random sample of size n (drawn without
replacement) from a population of size N , where K of the objects are considered
successes. The probability mass function is given by

P (X = k) =

(︁
K
k

)︁(︁
N−K
n−k

)︁(︁
N
n

)︁
where X is the random variable of the distribution.

In the case of a bipartite projection, let B∗ be a bipartite graph with independent
sets U and W . Let U = {u1, u2, . . . , um}. We denote the neighborhood of a vertex i by
N(i), meaning the set of vertices to which i is adjacent. Then entry G∗

ij = (B∗B∗⊤)ij is
the number of vertices in N(ui) which are also in N(vj). So the corresponding
distribution is hypergeometric with population N = |W |, sample size n = |N(ui)|,
K = |N(uj)| possible “successful” objects, and k = |N(ui) ∩N(uj)| successes.

This method ensures that both i and j are affiliated with the same number of
artifacts we’ve observed in the original data, but the number of individuals that are
affiliated with each artifact may vary. From the probability mass function we can find
the probability of i and j participating in at least Gij events (for positive backbone
edges) or at most Gij events (for negative backbone edges).

Stochastic Degree Sequence Model (SDSM)

The stochastic degree sequence model constrains B∗ so that its expected row sums and
expected column sums equal those observed in B [12]. That is, for any given B∗, each
row and column sum may be higher or lower than what is observed in B, but if one
takes the average over all the possible B∗ of the sum of a given row or column then one
obtains the corresponding sum in B. When B∗ is generated by filling the B∗

ij with the

outcomes of independent Bernoulli trials, the distribution of (B∗B∗⊤)ij for all bipartite
graphs B∗ ∈ B(R) is given by a Poisson binomial distribution [18]1. A Bernoulli trial
is a random variable with exactly two outcomes, often referred to as “success” and
“failure”, or “1” and “0.” The Poisson binomial distribution is the distribution of a sum
of independent Bernoulli trials. We let pk be the probability of success of the kth trial
and call the pk the parameters of the distribution. When the probability of success on
each Bernoulli trial is equal, this reduces to the ordinary binomial distribution.

The Poisson binomial distribution models the probability of getting k successes in n
trials, where each trial has a specific probability for success [18,19]. To apply the
Poisson binomial distribution to compute P (G∗

ij ≥ Gij) we must first determine the

1Although [18] suggested using the Poisson binomial distribution in this case, their equation (6) for
computing the probability that two given primary nodes are connected to a given secondary node can
sometimes yield numbers great than 1. We provide a correct proof here.

June 29, 2021 5/20

https://doi.org/10.1371/journal.pone.0244363


Accepted for publication on 9 December 2020
https://doi.org/10.1371/journal.pone.0244363

independent probabilities P (B∗
ij = 1). There are several ways to determine P (B∗

ij = 1),
including simple equations such as (Ri ×Cj) \

∑︁
B where

∑︁
B is the sum of each entry

of the biadjacency matrix of B [15, 18]2, and predicted probabilities from binary
outcome models [12]. These older methods are available in the backbone package, but
here we introduce and describe the polytope method [20].

The polytope method revolves around creating a convex set. A subset C of Rn is
convex if for any a, b ∈ C, the line segment joining a and b is also in C. The convex hull
of a set points A ⊆ Rn, conv(A), is the smallest convex set containing A. When A is a
finite set, the convex hull of A is called the polytope generated by A.

Consider all m× n matrices in B(R) as vectors in Rmn, where B(R) is all zero-one
matrices with the same row and column sums as B. Let this set of vectors be A and
consider the convex hull of A. As matrices, we see that conv(A) is the set of matrices in
Rm×n with the same row and column sums as B(R), with all entries constrained
between 0 and 1.

From this set of matrices, we find the matrix Mmax that maximizes the entropy
function

H(M) =
∑︂
i,j

(︃
Mij ln

1

Mij
+ (1−Mij) ln

1

1−Mij

)︃
on conv(A). The function H is strictly concave and conv(A) is a convex set which
guarantees a unique solution to the maximization. The matrix Mmax is then used as a
matrix of probabilities where P (B∗

ij = 1) is equal to (Mmax)ij .
Once we have the matrix of probabilities Pij = P (B∗

ij = 1) we note that, since

G∗ = B∗B∗⊤,
G∗

ij = B∗
i1B

∗
j1 +B∗

i2B
∗
j2 + · · ·+B∗

inB
∗
jn.

Furthermore, since the probabilities are independent,

P (B∗
ikB

∗
jk = 1) = P (B∗

ik = 1)P (B∗
jk = 1) = PikPjk.

It follows that G∗
ij is Poisson binomial with parameters p1 = Pi1Pj1, . . . , pn = PinPjn.

Computing the exact cumulative distribution function for a Poisson binomial
distribution is difficult. However, the Poisson binomial distribution is well-approximated
by a refined normal distribution [19], which we use in the stochastic degree sequence
model.

Fixed Degree Sequence Model (FDSM)

The fixed degree sequence model constrains both the row and column sums in B∗ to be
equal to their values in B (i.e. both are fixed) [21]. The probability distribution that
describes (B∗B∗⊤)ij for all bipartite graphs B∗ ∈ B(R) is unknown, and thus an
approximate distribution is constructed via simulation:

1. Construct a bipartite graph B∗ that represents a random draw from B(R).

2. Project B∗ (i.e. compute B∗B∗⊤) to obtain a random weighted bipartite
projection G∗.

3. Repeat steps 1 and 2 N times to sample the space of possible G∗
ij .

The matrix multiplication required in step 2 is computationally expensive but
straightforward [22]. However, the random sampling of a B∗ from B(R) in step 1 is
more challenging. Several methods have been suggested, including Markov Swap

2Although this approach is simple, fast, and recommended by multiple authors, it can yield values
greater than 1. In practice, these values are often truncated to 1 for use as probabilities.
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methods [23] and Sequential Importance Sampling [24], but in the fixed degree sequence
model we use the curveball algorithm [25], which is one of the fastest algorithms that
has been proven to randomly sample [26, see also [27]].

Applying backbone to the US Senate

We illustrate the use of the R backbone package to extract the backbone of a network of
bill co-sponsorship relations among Senators in the 114th session of the United States
Senate. This context provides insight into how the backbone package works because
both prior research [2,28–31] and media accounts [32] of the current US political climate
provide us with a priori expectations about what structure a properly extracted
backbone should have. Specifically, given conditions of partisanship and polarization,
we should expect to see positive relationships form primarily between those in the same
political party, and accordingly a relatively large modularity statistic computed from a
partition of the network’s nodes by political party. In visualizations of the extracted
backbones, we depict Republican senators by red vertices, and both Democratic and
Independent senators by blue vertices.3 Vertices are labeled with Senators’ names,
political party affiliations, and states, however to ensure that the graph structure is
clear, these labels are only visible when the figure is viewed at 1600% magnification.
Although we discuss signed backbones in the text, for visual clarity we only provide
figures for binary backbones which contain positive edges. Positive relations of
collaboration between two Republicans are red, between two Democrats are blue, and
for all other pairs are purple. Replication data and code are available at
https://osf.io/myje5.

Data

The data consists of 100 senators and the 3589 bills that they have sponsored in the
114th session of Congress [33]4. This data takes the form of a bipartite graph B, where
the two independent sets of vertices are the senators (agents) and the bills (artifacts).
Each edge connects one senator to one bill. Specifically, Bij = 1 if senator i sponsored
bill j, and otherwise is 0. Below we examine the data set. Notice that the row names
correspond to each senator (including their party affiliation and the state they
represent) and the column names refer to the bill number.

set.seed(19)

library(backbone)

senate <- read.csv("S114.csv", row.names = 1, header = TRUE)

senate <- as.matrix(senate)

dim(senate)

## [1] 100 3589

senate[1:5, 1:5]

## sj9 sj8 sj7 sj6 sj5

## Alexander, L. (TN-R) 0 1 0 1 0

## Boxer, B. (CA-D) 0 0 0 0 1

3Sen. Bernie Sanders of Vermont and Sen. Angus King of Maine are both Independents, however
they hold left-leaning ideologies and caucus with the Democrats.

4We use “sponsor” to generically refer to all legislators who have signed onto a bill, and thus to
include both its initial sponsor and all subsequent co-sponsors.
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## Cantwell, M. (WA-D) 0 0 0 0 1

## Carper, T. (DE-D) 0 0 0 0 1

## Cochran, T. (MS-R) 0 1 0 1 0

A weighted graph G can be constructed from B via bipartite projection, where
G = BB⊤ and Gij contains the number of bills that both senator i and senator j
sponsored. Notice the graph is now 100 rows by 100 columns.

G <- senate%*%t(senate)

dim(G)

## [1] 100 100

G[1:5, 1:2]

## Alexander, L. (TN-R) Boxer, B. (CA-D)

## Alexander, L. (TN-R) 141 10

## Boxer, B. (CA-D) 10 303

## Cantwell, M. (WA-D) 15 82

## Carper, T. (DE-D) 12 55

## Cochran, T. (MS-R) 40 25

The projected graph G now indicates that Senator Lamar Alexander sponsored a
total of 141 bills in the 114th session. Among these 141 bills, 10 were co-sponsored with
Senator Barbara Boxer, and 15 were co-sponsored with Senator Maria Cantwell.

We can use the values of graph G to observe differences between those with similar
or dissimilar ideology. Below, we compare the number of bills co-sponsored by two
individuals with similar political ideology, Senators Cory Booker and Elizabeth Warren,
versus those with dissimilar ideology, Senators Ted Cruz and Bernie Sanders. The
results are consistent with the expectation that legislators sharing a similar ideology
engage in more co-sponsorships.

G["Booker, C. (NJ-D)", "Warren, E. (MA-D)"]

## [1] 98

G["Cruz, T. (TX-R)", "Sanders, B. (VT-I)"]

## [1] 5

The differences in the number of bills co-sponsored prompts an important underlying
question: how many bills do two senators have to co-sponsor before we would be
justified in concluding they are political collaborators? Similarly, how few bills do they
have to co-sponsor before we would be justified in concluding they are political
opponents? These questions are what the backbone package seeks to answer.

Extracting a universal threshold backbone: universal( )

The simplest approach to backbone extraction applies a single threshold T to all edges.
A threshold value of 0 indicates that as long as a pair of vertices are affiliated with at
least one of the same artifacts (i.e. they have a nonzero edge weight), their relationship
should be counted. However, this can lead to extremely dense and uninformative
networks, as we will show with our example data. In any case, if using a single

June 29, 2021 8/20

https://doi.org/10.1371/journal.pone.0244363


Accepted for publication on 9 December 2020
https://doi.org/10.1371/journal.pone.0244363

Alexander, L. (TN−R)

Boxer, B. (CA−D)

Cantwell, M. (WA−D)

Carper, T. (DE−D)

Cochran, T. (MS−R)

Collins, S. (ME−R)

Cornyn, J. (TX−R)

Crapo, M. (ID−R)

Durbin, R. (IL−D)

Enzi, M. (WY−R)

Feinstein, D. (CA−D)

Graham, L. (SC−R)

Grassley, C. (IA−R)

Hatch, O. (UT−R)

Inhofe, J. (OK−R)

Leahy, P. (VT−D)

McCain, J. (AZ−R)

McConnell, M. (KY−R)

Mikulski, B. (MD−D)

Murkowski, L. (AK−R)

Murray, P. (WA−D)

Nelson, B. (FL−D)

Reed, J. (RI−D)

Reid, H. (NV−D)

Roberts, P. (KS−R)

Schumer, C. (NY−D)

Sessions, J. (AL−R)

Shelby, R. (AL−R)

Stabenow, D. (MI−D)

Wyden, R. (OR−D)

Baldwin, T. (WI−D)

Blunt, R. (MO−R)

Boozman, J. (AR−R)

Brown, S. (OH−D)

Burr, R. (NC−R)

Capito, S. (WV−R)

Cardin, B. (MD−D)

Flake, J. (AZ−R)

Isakson, J. (GA−R)

Kirk, M. (IL−R)

Markey, E. (MA−D)

Menéndez, R. (NJ−D)

Moran, J. (KS−R)

Portman, R. (OH−R)

Sanders, B. (VT−I)

Toomey, P. (PA−R)

Udall, T. (NM−D)

Vitter, D. (LA−R)

Wicker, R. (MS−R)

Thune, J. (SD−R)

Coats, D. (IN−R)

Murphy, C. (CT−D)

Hirono, M. (HI−D)

Donnelly, J. (IN−D)

Heller, D. (NV−R)

Gillibrand, K. (NY−D)

Klobuchar, A. (MN−D)

McCaskill, C. (MO−D)

Tester, J. (MT−D)

Casey, R. (PA−D)

Whitehouse, S. (RI−D)

Corker, B. (TN−R)

Barrasso, J. (WY−R)

Cassidy, B. (LA−R)

Heinrich, M. (NM−D)

Peters, G. (MI−D)

Warner, M. (VA−D)

Risch, J. (ID−R)

Shaheen, J. (NH−D)

Merkley, J. (OR−D)

Bennet, M. (CO−D)

Franken, A. (MN−D)

Coons, C. (DE−D)

Manchin, J. (WV−D)

Gardner, C. (CO−R)

Lankford, J. (OK−R)

Scott, T. (SC−R)

Blumenthal, R. (CT−D)

Rubio, M. (FL−R)

Paul, R. (KY−R)

Ayotte, K. (NH−R)

Hoeven, J. (ND−R)

Lee, M. (UT−R)

Johnson, R. (WI−R)

Schatz, B. (HI−D)

Cotton, T. (AR−R)

Warren, E. (MA−D)

King, A. (ME−I)

Daines, S. (MT−R)

Heitkamp, H. (ND−D)

Fischer, D. (NE−R)
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Fig 1. The positive backbone of the US Senate co-sponsorship network with edges
retained between two senators if they sponsored at least 1 bill together.

threshold value T is desired, this can be done in the backbone package by using the
universal() function. This function allows the user to extract an unweighted
backbone by selecting a single threshold T , or extract a signed backbone by selecting
upper and lower thresholds T+ and T−.

Using the senate data set, we use the universal() function to compute a
backbone with a single threshold of 0. Thus if two senators have co-sponsored one or
more bills, there will be an edge between them. Notice that our backbone graph is
represented by a square adjacency matrix with 0-1 entries.

universal bb1 <- universal(senate, upper = 0, bipartite = TRUE)

universal bb1$backbone[1:5, 1:2]

## Alexander, L. (TN-R) Boxer, B. (CA-D)

## Alexander, L. (TN-R) 0 1

## Boxer, B. (CA-D) 1 0

## Cantwell, M. (WA-D) 1 1

## Carper, T. (DE-D) 1 1

## Cochran, T. (MS-R) 1 1

This universal threshold backbone requires approximately 0.01 seconds to extract.5

Plotting this backbone using the igraph package [34] reveals that it is extremely dense
as only 1 pair of senators out of the total 4950 unique pairs have not sponsored at least
one bill together (see fig. 1). Accordingly, this universal threshold backbone is
uninformative about the underlying structure of the network. Moreover, partitioning
this backbone into two groups by political party yields a modularity near zero, which
indicates that this backbone does not reflect the partisan polarization known to exist in
the US Senate.

5All running times are reported from a 2.3 Ghz Quad-Core Intel Core i7, however running times are
machine-dependent.
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Fig 2. The positive backbone of the US Senate co-sponsorship network with edges
retained between two senators if they sponsored more bills together than one standard
deviation above the mean.

To create a signed backbone, we can apply both an upper and lower threshold value.
The following code will return a backbone where the positive edges indicate two
senators co-sponsored more than 1 standard deviation above the mean number of
co-sponsored bills and negative edges indicate two senators co-sponsored less than 1
standard deviation below the mean number of co-sponsored bills. The graph of the
positive edges of this backbone can be seen in fig. 2.

universal bb2 <- universal(senate, upper = function(x) mean(x)+sd(x),

+ lower = function(x) mean(x)-sd(x), bipartite = TRUE)

This universal threshold backbone requires approximately 0.01 seconds to extract.
The resulting graph in fig. 2 is much less dense than when using an upper threshold of 0.
Additionally, the polarized structure of the Senate by political party is visible, and is
confirmed by a larger modularity (M = 0.277). However, it still does not necessarily
reveal the underlying structure of the network among legislators. In this case, “the
application of a threshold to the global weight distribution...belittles nodes with a small
[degree],” resulting in a backbone that preserves edges only among legislators who
sponsor many bills, and treating legislators who sponsor few bills as isolates [35, p.
6484]. To obtain meaningfully sparse graphs that do not ignore the multi-scalar
character of node degrees we must allow the threshold to vary for different edges. To
improve our backbone results, we move to methods of bipartite projection backbones
that rely on a distinct threshold value for each pair of vertices.

Extracting a null model backbone: backbone.extract( )

Instead of using a universal threshold to determine a backbone, the backbone package
permits using a model that is based on a statistical test, such as the hypergeometric
model, stochastic degree sequence model, or fixed degree sequence model. To use these
methods in backbone, one first calls to a null model function (hyperg(), sdsm(), or
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fdsm()) which finds the probability of observing an edge with the observed weight in a
corresponding null model, returning an object of class ‘backbone.’ This object is then
supplied to backbone.extract(), which performs the hypothesis test for a given
significance value and returns a backbone graph. The user can input bipartite graph
objects of class ‘matrix’, ‘sparseMatrix’, ‘Matrix’, ‘igraph’, ‘network’, and ‘edgelist’ (a
matrix of two columns), and can choose the type of backbone returned by specifying the
desired class in backbone.extract().

The backbone.extract() function allows the user to input the backbone class
object and obtain either a signed or positive backbone. The backbone.extract()
function has five arguments: matrix, signed, alpha, class, narrative, and fwer.
The matrix argument takes a backbone object generated by hyperg(), sdsm(), or
fdsm() and returns a backbone graph of class = class using a two-tailed significance
test with significance value α = alpha. If the signed parameter is set to TRUE then a
signed backbone is returned, if it is set to FALSE then a positive backbone is returned. If
the narrative parameter is set to TRUE then suggested narrative text for a manuscript,
including possible citations, is displayed.

Extracting the backbone of a bipartite projection involves conducting an
independent statistical test on ℓ = m(m− 1)/2 edges in the projection, where m is the
number of vertices in the bipartite projection. Because each of these tests is
independent, this can inflate the familywise error rate beyond the desired alpha. The
fwer parameter offers two ways to correct for this: the classical Bonferroni correction is
applied when fwer = ‘bonferroni’, and the more powerful Holm-Bonferroni
correction is applied when fwer = ‘holm’ [36].

Hypergeometric backbone: hyperg( )

To apply the hypergeometric distribution to a bipartite graph, one uses the hyperg()
function. The hyperg() function returns a backbone class object that contains: a
positive matrix with (i, j) entry equal to the probability that G∗

ij is equal to or above
the corresponding entry in G, and a negative matrix with (i, j) entry equal to the
probability that G∗

ij is equal to or below the corresponding entry in G, and a summary

data frame with includes the name of the model, number of rows and columns in the
adjacency matrix of the input graph, skew of the row and columns, and running time of
the model.

hyperg probs <- hyperg(senate)

## Finding the distribution using hypergeometric distribution

hyperg bb <- backbone.extract(hyperg probs, alpha = .01)

The hypergeometric backbone requires approximately 0.02 seconds to extract. We
can now examine how this method has changed the appearance of our network, focusing
only on the positive edges of the signed backbone in fig. 3. We can see that the
hypergeometric function has reduced the density of our network and that we begin to
see some of the two party structure that is inherent in the United States Senate. The
known polarized structure is also apparent, which is reflected in this network’s
modularity (M = 0.215).

Specifically, for our example, the hypergeometric function will fix the number of bills
that each senator sponsors, while allowing each bill to be sponsored by a varying
number of senators. The function will compute the probability of each senator
sponsoring at least (or at most) the observed number of bills when the bills which they
sponsor were chosen randomly.
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Fig 3. The positive backbone of the US Senate co-sponsorship network under the
hypergeometric model.

The stochastic degree sequence model: sdsm( )

The sdsm() function returns a backbone object containing the same objects as
hyperg(): matrices positive and negative containing probabilities under the
stochastic degree sequence model, as well as a summary data frame.

In the context of the senate co-sponsorship matrix, the stochastic degree sequence
model will compare our observed values to a distribution where each senator sponsors
roughly the same number of bills, and each bill is sponsored by roughly the same
number of people.

Here we use the polytope model, the default in backbone v1.2.2, to compute the
probabilities for the Poisson binomial distribution.6

sdsm <- sdsm(senate)

## Finding the distribution using SDSM with polytope model.

sdsm bb <- backbone.extract(sdsm, narrative = TRUE, alpha = .01)

## Suggested manuscript text and citations:

From a bipartite graph containing 100 agents and 3589 artifacts, we

obtained the weighted bipartite projection, then extracted its signed

backbone using the backbone package (Domagalski, Neal, & Sagan, 2020).

Edges were retained in the backbone if their weights were statistically

significant (alpha = 0.01) by comparison to a null Stochastic Degree

Sequence Model (Neal, 2014).

6Although the polytope model is the default in backbone v1.2.2, as faster and more accurate models
are identified, future versions of backbone may use a different default.
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Fig 4. The positive backbone of the US Senate co-sponsorship network under the
stochastic degree sequence model.
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The SDSM backbone requires approximately 45 seconds to extract using the
polytope model. We are able to see more of the partisan structure that is suggested to
be present in the US Senate in fig. 4, and this visualization provides more information
than the extremely dense graph found using a universal threshold. Moreover, the known
polarized structure of the US Senate is particularly evident, and confirmed by the much
larger modularity (M = 0.471).

The fixed degree sequence model: fdsm( )

The fixed degree sequence model first constructs a random bipartite graph B∗ that
preserves both degree sequences using the curveball algorithm [14]. This bipartite graph
B∗ is then projected to obtain a random weighted bipartite projection G∗ = B∗B∗⊤.
These two steps are repeated a number of times to sample the space of possible G∗

ij . At
each iteration, we compare Gij to the value of G∗

ij and keep a record of how often it was
above, below, or equal to the generated value. The fdsm() function returns a backbone
object containing a matrix object positive of the proportion of times G∗

ij is equal to or
above the corresponding entry in G, and a matrix object negative containing the
proportion of times G∗

ij is equal to or below the corresponding entry in G, and a
summary data frame as in hyperg() and sdsm().

The function can also save each value of G∗
ij for a given i, j. This is useful for

visualizing an example of the empirical null edge weight distribution generated by the
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Fig 5. A histogram of the expected co-sponsorships between Senators Cory Booker and
Elizabeth Warren under the fixed degree sequence model (1000 samples). A positive
edge between Booker and Warren would be preserved in the FDSM backbone because
their actual number of co-sponsorships (98) is statistically significantly larger.

model. The values i, j correspond to the row and column indices of a cell in the
projected matrix and can be input as either numeric values or a string containing the
row names. These values are returned in the list dyad values.

Using the fixed degree sequence model on the senate data set will allow us to
compare our observed values to a distribution where each senator sponsors the exact
same number of bills and each bill is sponsored by the exact same number of people.
We can find the backbone using the fixed degree sequence model as follows:

fdsm <- fdsm(senate, trials = 1000, dyad = c("Booker, C. (NJ-D)",

+ "Warren, E. (MA-D)"))

## Approximating the distribution using Curveball FDSM

## Estimated time to complete is 81 secs

hist(fdsm$dyad values, freq = FALSE, xlab = "Number of Co-Sponsorships")

lines(density(fdsm$dyad values))
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Fig 6. The positive backbone of the US Senate co-sponsorship network under the fixed
degree sequence model.

The dyad values output is a list of the G∗
ij values for each of the 1000 trials, where

i = “Booker, C. (NJ-D)” and j = “Warren, E. (MA-D)”. These values correspond to
the number of bills Senators Booker and Warren would be expected to co-sponsor when
we create a random bipartite graph with the curveball algorithm where: (a) the number
of bills sponsored by Senator Booker, by Senator Warren, and all other Senators was
fixed, and (b) the number of senators sponsoring each bill was fixed. We can compare
their actual number of co-sponsorships, 98, to what is generated under our null model.
We can view a histogram of the expected co-sponsorships generated in each of the 1000
trials in fig. 5.

To extract the backbone, we supply the backbone.extract() function with the
proportion matrices positive and negative.

fdsm bb <- backbone.extract(fdsm, alpha = 0.01, signed = TRUE)

The FDSM backbone, based on 1000 Monte Carlo samples, requires approximately
81 seconds to extract. Using the fixed degree sequence model allows us to see more of
the partisan structure we assume to be present in the United States Senate in fig. 6.
This expected partisan structure is confirmed by the backbone’s high modularity
(M = 0.468).

Backbone model comparison and selection

As the above examples illustrate, the backbone package can be used to extract several
different backbones using different backbone models. Table 1 compares the five
backbones extracted above, in terms of running time, modularity, and structural
similarity (expressed as a Pearson correlation coefficient).

The universal and hypergeometric backbones are very fast to extract because they
rely only on arithmetic and straightforward parametric distributions. In contrast, the
FDSM is relatively slow because it must empirically approximate edge weight
probability distributions using Monte Carlo methods and repeated matrix
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Backbone model Timea Modularityb Pearson correlation
Universal (T = 0) 0.01 -0.005 —
Universal (T = M + SD) 0.01 0.277 0.01 —
Hypergeometric 0.02 0.215 0.14 0.47 —
SDSM 45 0.471 -0.01 0.51 0.71 —
FDSM (1000 samples) 81 0.468 -0.00 0.50 0.73 0.96 —
a In seconds, using a 2.3 Ghz Quad-Core Intel Core i7. b Based on a partition by political party affiliation.

Table 1. Comparison of US Senate backbones.

multiplication. The SDSM occupies a middle-ground in computational complexity
because, while it does not require costly Monte Carlo methods or repeated matrix
multiplication, it does involve estimation of cellwise probabilities and a more complex
parametric distribution (i.e. Poisson-Binomial).

Accuracy of these backbones is difficult to assess directly, however because the US
Senate is known to be polarized along political party lines, the magnitude of the
backbone’s modularity when partitioned by political party provides an indicator of the
extent to which each backbone reproduces this known structure. A universal threshold
backbone where T = 0 fails to capture this polarized structure at all, while a universal
threshold backbone where T = M + SD and a hypergeometric backbone begin to
capture this structure. However, the SDSM and FDSM backbones are best able to
reproduce the known partisan polarization in the US Senate.

Examining the Pearson correlation coefficient computed on the vectorized adjacency
matrices of these backbones quantifies their pairwise structural similarity. The universal
threshold backbone where T = 0 is minimally correlated with any other backbone,
reflecting the fact that its very dense structure is unlike the other sparser backbones.
The universal threshold backbone where T = M + SD shares some edges in common
with backbones generated using HM, SDSM, and FDSM (r = 0.47− 0.51), and the
hypergeometric backbone is even more similar to those generated by SDSM and FDSM
(r = 0.71− 0.73). Notably, the SDSM and FDSM backbones are nearly identical
(r = 0.96).

Collectively, these comparisons suggest that SDSM performs best in the US Senate
example: it accurately reproduces the known polarized structure, but more quickly than
FDSM. However, specific characteristics of the bipartite data should guide backbone
extraction model selection in other contexts. First, because it imposes no controls on
any characteristics of the data, the universal threshold model is suitable only when the
row sums of the bipartite matrix exhibit limited variation or this variation is not
theoretically meaningful and the column sums of the bipartite matrix exhibit limited
variation or this variation is not theoretically meaningful. These conditions are unlikely
to occur in practice, however in cases where the universal threshold model is
appropriate, the threshold value should be chosen based on theory. Second, because it
imposes controls on the row sums only, the hypergeometric model is suitable when the
row sums of the bipartite matrix exhibit meaningful variation, but the column sums do
not. Finally, because they impose controls on both the row and column sums, the
stochastic degree sequence model and fixed degree sequence model are suitable when both
the row sums and the column sums of the bipartite matrix exhibit meaningful variation.
This is likely to be the most common case for most empirical bipartite data.

As the comparisons in Table 1 illustrate, the SDSM may be regarded as a fast
approximation of the FDSM. Its speed derives from the fact that it only approximately
controls for row and column sums, while FDSM exactly controls for row and column
sums. Therefore, the choice between SDSM and FDSM depends on two related practical
considerations. First, it depends on the size of the data: except for relatively small
bipartite data, FDSM will often be impractically slow. Second, it depends on the
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desired precision of the p-values quantifying each edge’s statistical significance, which
for FDSM are constrained by the number of Monte Carlo samples to 1/samples. This
can be problematic when the familywise error rate is controlled using a Bonferroni or
Holm-Bonferroni correction because these corrections require high-precision p-values.
For example, in the Senate network there are 4950 edges that must be tested during
backbone extraction, and thus 4950 independent statistical tests. To achieve statistical
significance at a familywise error rate of 0.05 via a Bonferroni correlation, an edge’s
statistical significance must be p < 0.00001. Achieving this level of precision among
p-values using FDSM would require drawing at least 100,000 Monte Carlo samples.
Therefore, if a specific familywise error rate is desired, FDSM will be impractically slow
even for relatively small bipartite data. For these reasons, while further research is
needed to determine the quality of SDSM’s approximation of FDSM, SDSM will often
be a suitable backbone extraction model choice.

Discussion

We have presented four methods – universal threshold, HM, SDSM, and FDSM – for
identifying significant links in a weighted bipartite projection, and thus for extracting its
binary or signed backbone. We have also introduced and demonstrated the R backbone

package, which implements these methods in a common framework facilitating their use.
Together, the methods and package offer ways for researchers to reduce the structural
artifacts (e.g., excessive density and clustering) and complexity of bipartite projections,
making them easier to analyze and visualize. This is likely to be most useful in cases
where the researcher is interested in an unobserved unipartite network that is not
simply a bipartite projection of something (e.g., a social network), but that can be
inferred (even with some error) from observed bipartite data (e.g., co-behaviors).

There are two important cases where backbone is not appropriate and should not be
used. First, if the research question can be answered by directly analyzing the original
bipartite graph, or the central message can be communicated by visualizing the original
bipartite graph, then it is not necessary and indeed may be misleading to examine a
bipartite projection or its backbone. In these cases, researchers should instead use tools
designed for the analysis of bipartite networks, including for example bipartite
extensions of ERGM [37] and SIENA [38]. Second, it is possible to obtain a weighted
(via projection) or unweighted (via backbone) square symmetric matrix from any
bipartite data, however this does not imply that the matrix can be meaningfully
analyzed as a network. Treating a square symmetric matrix obtained via projection or
backbone extraction as a network requires an explicit conceptual rationale for why the
sharing of artifacts by a pair of agents provides information about those agents’
relationship with each other, and a description of what kind of relationship this is. In
some cases, the rationale may be simple and straightforward: social events and other
venues offer opportunities for people to meet and interact, so observing two people
attending many of the same events may indirectly provide information about the
possibility of a social relationship between them [1]. In other cases – for example,
psychological networks in which clinical symptoms (the ‘agents’) are linked because they
co-occur in patients (the ‘artifacts’) [39] – the rationale is less obvious [40,41].

Even when backbones of bipartite projections are used in appropriate ways, there
remain a number of open questions that should guide future research in this area and
future development of the backbone package. First, although the backbone package
implements four methods for extracting the backbone of bipartite projections, we know
little about how the backbones generated by these methods differ from one another. We
have briefly explored a comparison of the backbones generated by these methods in the
context of the US Senate, but more formal comparisons and empirical comparisons in
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other contexts are necessary. Second, to the extent that these methods are intended to
provide insight into an unobserved but underlying unipartite network, we know little
about which backbone extraction methods do so most accurately. Future research
should develop methods for establishing the validity of these backbone methods, for
example, by comparing extracted backbones to ground-truth unipartite networks. While
these remain open questions, the availability of the backbone package makes it possible
to begin answering them, and also provides a platform for implementing methods and
exploring similar questions in the more general case of extracting the backbone of
non-projection weighted graphs.

Data Availability statement

The data and code necessary to replicate the examples in this paper are available at
https://osf.io/myje5/.
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