

1

To appear in AIEDAM

2

FINAL DRAFT

3

Analysing Cognitive Processes of a Product/Service- 4 System Design Session Using Protocol Analysis

5 Tomohiko Sakao¹, John Gero² and Hajime Mizuyama³

6 ¹*Division of Environmental Technology and Management, Department of Management and
7 Engineering, Linköping University, Sweden*

8 ²*Department of Computer Science and School of Architecture, University of North Carolina
9 at Charlotte, NC, USA*

10 ³*Department of Industrial and Systems Engineering, Aoyama Gakuin University, Japan*

11 The corresponding author
12 Tomohiko Sakao

13 Division of Environmental Technology and Management, Department of Management and
14 Engineering, Linköping University, 58183 Linköping, Sweden tomohiko.sakao@liu.se
15

16 **Analysing Cognitive Processes of a Product/Service-**
17 **System Design Session Using Protocol Analysis**

18 Product/Service Systems (PSSs) are increasingly found in markets, and more resources are being
19 invested in PSS design. Despite the substantial research into PSS design, the current literature exhibits
20 an incomplete understanding of it as a cognitive activity. This article demonstrates that the methods used
21 to analyse product designers' cognitive behavior can be used to produce comparable and commensurable
22 results when analysing PSS designers. It also generates empirical grounding for the development of
23 hypotheses based on a cognitive study of a PSS design session in a laboratory environment using
24 protocol analysis. This study is a part of a larger project comparing PSS design with product design. The
25 results, which are based on the function-behaviour-structure coding scheme, show that PSS design, when
26 coded using this scheme, can be quantitatively compared with product design. Five hypotheses were
27 developed based on the results of the study of this design session concerning where and how designers
28 expend their cognitive design effort. These hypotheses can be used to design experiments that test them
29 and provide the grounding for a fuller understanding of PSS design.

30 **Key words:** product/service systems, design behaviour, design cognition, design process,
31 conceptual design

32 1. Introduction

33 Manufacturers in developed countries regard service activities as increasingly important (Baines,
34 Bigdeli et al. 2017, Meier, Roy et al. 2010). Some manufacturers earn more than half of their revenue
35 from services (e.g., aerospace by Rolls-Royce (2019)). Here, services include monitoring, inspection,
36 operation, maintenance, repair, upgrade, overhaul, take-back, training, and consultation. Further, some
37 manufacturers are even strategically shifting from being a “product seller” towards a “service provider”.
38 One reason is that they face intense competition from manufacturers selling lower-priced products.
39 Along with this trend, the product/service system (PSS) (Morelli 2003, Roy and Baxter 2009) is much
40 debated as a promising concept for a design object in academia as well as industry (Eisenbart, Gericke
41 et al. 2017, Brambila-Macias, Sakao et al. 2018). Many manufacturers are shifting towards service
42 provision while continuing to design and deliver products. A definition of a PSS is “tangible products
43 and intangible services designed and combined so that they jointly are capable of fulfilling specific
44 customer needs” (Tischner, Verkuijl et al. 2002).

45 According to the definition above, in designing PSSs, both services and products are addressed as part
46 of the design object, which has been often dominated by physical products in manufacturing industries.
47 Here, the design of the service may substantially impact the PSS design process (Hubka and Eder 1987,
48 Visser 2009). Considerable research effort has been expended to understand PSS design (Morelli 2003,
49 Bertoni 2013, Sakao and Mizuyama 2014) and to develop support for designers of PSSs (Alonso-
50 Rasgado, Thompson et al. 2004, Komoto and Tomiyama 2008, Medini and Boucher 2019). There are,
51 however, insufficient insights based on empirical research into how PSS design is carried out, and there
52 is only a handful of descriptive studies of the processes in the conceptual design of a PSS (Sakao,
53 Paulsson et al. 2011, Bertoni 2013, Sakao and Mizuyama 2014, Shimomura, Nemoto et al. 2015).
54 Compared to product design (Purcell and Gero 1998, Kannengiesser and Gero 2015, Hay, Duffy et al.
55 2017), an empirically-based understanding of PSS design processes is underdeveloped. Currently, it is
56 not possible to answer whether designing PSSs is different from designing products, and, if so, how it
57 is different based on empirical evidence. Even how to investigate and present differences is not available
58 in the literature.

59 Motivated by this gap in our knowledge, the research reported in this article aims to demonstrate that
60 the methods used to analyse the cognitive behavior of product designers can be used to produce
61 comparable and commensurable results when analysing PSS designers. The research adopts the
62 approach of an exploratory case study to do so. It analyses the design process of a PSS design case in a
63 laboratory environment in depth using protocol analysis (Ericsson and Simon 1993). The primary
64 outcome is formalized as a set of hypotheses to be tested by analysing multiple cases using the methods
65 articulated in this research.

66 The remainder of the article is structured as follows: Section 2 presents the knowledge gap in existing
67 research by reviewing key literature; Section 3 describes the purpose of this article, the research question
68 and the research focus; Section 4 describes the approach and research methods; Section 5 presents the
69 PSS design case; Section 6 shows the results of the analysis; Section 7 discusses the analysis to produce
70 hypotheses; and Section 8 concludes the article.

71 2. Research motivation based on literature analysis

72 2.1 Overview of PSS literature

73 For more than a decade, interest in the type of offering called a PSS has grown, especially in the
74 manufacturing industry, and, as a result, both theory and practice for the PSS design have evolved (Oliva
75 and Kallenberg 2003, Baines, Lightfoot et al. 2007, Sakao, Öhrwall Rönnbäck et al. 2013). Existing
76 literature about this integration of products and services suggests classifications, methods and strategies
77 for PSSs, but they tend to be generic in terms of insights provided (Tukker 2015). The rest of Section 2
78 analyses the literature on PSSs to derive their characteristics, which are substantially different from those
79 of products. It further analyses the literature on PSS design to show the incompleteness of its conceptual
80 design knowledge.

2.2 Characteristics of PSSs

Characteristics of PSSs based on a literature review from the perspective of information flows (Durugbo, Tiwari et al. 2011) are adopted here, and more characteristics are added from the design perspective, as seen in Table 1. There, the characteristics are identified, and their implications for the conceptual design of PSSs presented.

Table 1. Key PSS properties and characteristics and their implication on its conceptual design

Property	Characteristic	Implication for conceptual design of PSS
Open process systems	Human activities (Alonso-Rasgado and Thompson 2006) Heterogeneity (Regan 1963) Uncertainty (Erkoyuncu, Durugbo et al. 2011) System architecture System components System behaviour (INCOSE 2015) Inputs and outputs Processes and functions	Apply systems thinking (Baines, Lightfoot et al. 2007). Integrate the product and service views (Trevisan and Brissaud 2016). Analyse behaviour as a system. Consider uncertainty (Erkoyuncu, Durugbo et al. 2011).
Business model	Nature of business Value proposed (Sakao and Shimomura 2007) Customer orientation (Tukker and Tischner 2006) Performance of asset (Alonso-Rasgado, Thompson et al. 2004, Baines, Lightfoot et al. 2007) Available resources	Consider business model. Analyse customers (Sakao and Shimomura 2007). Include value proposition (Morelli 2003, Isaksson, Larsson et al. 2009). Consider system performance. Consider service personnel.
Social construct	Actors' roles and scenarios Technological and socio-cultural interactions (Morelli 2003) Relationship between customer and provider (Baines, Lightfoot et al. 2007)	Analyse actors' roles. Analyse scenarios. Apply co-creation process (Morelli 2003, Alonso-Rasgado, Thompson et al. 2004, Baines, Lightfoot et al. 2007, Smith 2013).

Note: The three properties are taken from (Durugbo, Tiwari et al. 2011), while the characteristics adopt those in (ibid.) and others added by the authors with references. The implication for PSS conceptual design comes from the authors' own elaboration.

The first property of a PSS is *open process systems*. This means that the PSS is a system with input and output flows in the following sense. Output flows are determined by processes and functions in the PSS, which involve human activities (Alonso-Rasgado and Thompson 2006) characterized by heterogeneity inherited from the generic characteristics of pure service (Regan 1963). The processes in PSSs also involve product behaviours that change over time due to, for example, deterioration. The service heterogeneity and the product change over time are both uncertain (Erkoyuncu, Durugbo et al. 2011). In addition, a PSS's architecture, as seen in Figure 1, is a system characterized by interdependency between product and service components (Meier, Roy et al. 2010) and thus the interaction between them (Komoto and Tomiyama 2008). A more complete description of system behaviour can be found in (INCOSE 2015).

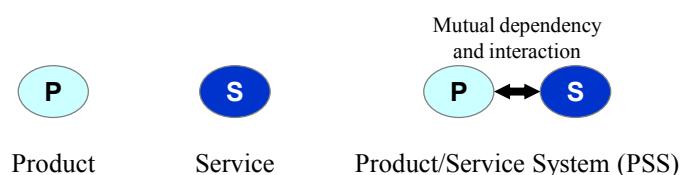


Figure 1. A PSS depicted with the interdependency between its product and service, in comparison with its product and service parts standing alone

The next property is *business model*, which takes into account the nature of the businesses involved in the product and service. The business model is often defined to include value as its crucial construct (Osterwalder, Pigneur et al. 2010, Mason and Spring 2011). Therefore, value is proposed as an important characteristic of PSSs (Sakao and Shimomura 2007). In addition, customer orientation is a PSS characteristic (Tukker and Tischner 2006). As customer value often lies in the performance of a PSS as well as its products and services instead of the ownership as such (Alonso-Rasgado, Thompson et al. 2004, Baines, Lightfoot et al. 2007), the performance of a system is relevant as well. The performance

109 depends on available resources such as service personnel, which are, therefore, a relevant characteristic.

110 The last PSS property is *social construct*, involving more actors in terms of roles and scenarios than in
111 a pure product. For instance, technological and socio-cultural interactions are relevant (Morelli 2003).
112 Further, Baines, Lightfoot et al. (2007) assert that the relationship between the customer and the provider
113 is an important characteristic of relevance.

114 **2.3 Characteristics of PSS design and previous research**

115 This section describes PSS design characteristics that are implied from the characteristics of PSSs in
116 Table 1, and key references that show research related to the characteristics of PSS design. The PSS
117 property of open process systems in Table 1 means that the conceptual design of a PSS requires
118 simultaneous and interacting product and service design (Meier, Roy et al. 2010) and, therefore, is
119 potentially more complex than that of its product or service parts alone. This implies the need for systems
120 thinking (Baines, Lightfoot et al. 2007). For designing a system, behaviour as a system needs to be
121 analysed. The behaviour of elements is relevant to design in general (Love 2000); however, the system
122 property of the PSS makes the behaviour as a system especially relevant in the conceptual design of
123 PSSs. Further, the uncertainty mentioned in Section 2.2 needs to be taken into account in conceptual
124 design.

125 To cope with these characteristics, research modelling PSSs has been reported for developing computer-
126 aided design (CAD) software for PSSs (Sakao, Shimomura et al. 2009) as well as a computer tool for
127 PSS engineering with UML (unified modelling language) (Medini and Boucher 2019). In particular,
128 functions in design have been researched with comparisons, including PSSs and products (Erden,
129 Komoto et al. 2008, Eisenbart, Gericke et al. 2013). A computer tool to analyse the behaviour of PSSs
130 has been put forward using lifecycle simulation (Komoto and Tomiyama 2008). In addition, a tool to
131 address uncertainty in cost for the design and delivery of PSSs has been proposed (Erkoyuncu, Durugbo
132 et al. 2011). Further, a method to address failures in PSS design has been suggested (Kimita, Sakao et
133 al. 2018) by extending the failure mode and effect analysis for product design (Stamatis 1995).

134 PSS design is expected to consider a business model, Table 1. More particularly, PSS conceptual design
135 will involve value propositions for various actors, including customers (Morelli 2003), and thus
136 analysing the actors is crucial (Sakao and Shimomura 2007). Further, the performance of a system and
137 availability of service personnel should be considered.

138 Research on business model development for PSSs is reviewed in Boehm and Thomas (2013),
139 Lewandowski (2016), Qu, Yu et al. (2016), and a design process model for PSSs, including a value
140 proposition, has been proposed by Morelli (2003). The PSS design process proposed by Alonso-Rasgado,
141 Thompson et al. (2004) also incorporates business model aspects such as markets, partnerships, and
142 agreements. In addition, applied research addressing business models on PSS design in the context of
143 sustainability has been reported, e.g., in Calabrese, Forte et al. (2018). Analysing customers for PSSs
144 using the Persona concept has been proposed (Sakao and Shimomura 2007). Further, a method to
145 appropriately select human resources for PSSs has been proposed (Shimomura, Kimita et al. 2013).

146 The social construct property means the need to analyse more actors' roles and scenarios and implies
147 that co-creation between customers and a provider may be particularly useful in PSS design. The
148 relevance of co-creation in PSS design is confirmed with the practical case of Rolls-Royce (Smith
149 2013)¹. In general, this implies the importance of addressing the contexts in industry practice, where
150 PSS design is performed (Sakao 2019).

151 The design object model for PSS by Maussang, Zwolinski et al. (2009) and the PSS design process

¹ Smith (2013) provides results of a longitudinal study of, among other things, how the performance-based contract with aircraft engines was developed, offered, signed and renewed individually with the US Navy. This co-creation process was supported by improving maintenance quality and performance reliability that met the US Navy's expectations of Rolls-Royce,

152 model by Morelli (2003) consider the social construct and incorporate interaction between different
153 actors, such as customers and a provider. Co-creation is centred in the integrative PSS design approach
154 consisting of exploration, creation, prototype and testing, and planning implementation by Costa,
155 Patrício et al. (2018). A PSS design framework that includes a context-sensitivity analysis tool that uses
156 feedback from sensors and humans to produce useful information for designers has been proposed
157 (Mourtzis, Fotia et al. 2018).

158 The brief review in Section 2.3 above is organized according to the three major PSS characteristics
159 explained in Section 2.2 and in line with the five facets of PSS design (Sakao and Neramballi 2020),
160 which were synthesized from multiple previous review articles. Facet 1, Development and integration
161 of system elements, and Facet 2, Examination of the balance of the integration, are implied by the
162 systems thinking in PSS design; see the implications from the open process systems property in Table
163 1. Facet 3, Value propositions, and Facet 4, Functionality-oriented designing, are covered in the business
164 model property in Table 1. Facet 5, Identification of relevant actors along the lifecycle of PSSs, is
165 implied by the social construct property in Table 1. Therefore, this concise review is considered to cover
166 most of the major PSS design characteristics in the literature.

167 **2.4 Gap in the literature on the PSS design process**

168 Previous research can be classified into prescriptive and descriptive studies. The prescriptive models
169 and methods intended to be used for supporting PSS design have been developed largely based on
170 reasoning using existing design theories and methods for product or service design (Alonso-Rasgado,
171 Thompson et al. 2004, Sakao, Shimomura et al. 2009, Kimita, Sakao et al. 2018). On the other hand,
172 descriptive studies mostly report insights on PSS design at the macro level, e.g., design stages and gates.
173 For example, Morelli (2003) described a PSS design process in an industrial environment as an iterative
174 sequence of phases in which problems generate solutions, which, in turn, redefine new problems.
175 Regarding the micro level, e.g., individual designer's actions and information addressed, there is a small
176 but growing body of literature with empirical results of actual PSS design processes in laboratory
177 environments. For instance, Sakao and colleagues (Sakao, Paulsson et al. 2011, Sakao and Mizuyama
178 2014) carried out protocol analysis of a PSS design and showed that lifecycle activity is a central notion
179 addressed within the design case. A protocol analysis of PSS-design sessions was performed to
180 investigate the effects of a specific feature in CAD software (Bertoni 2013). This earlier research gives
181 some indication of the characteristics of PSS design processes; however, none of them answers whether
182 PSS design is different from product design at the micro level, and, if so, what are the differences. Even
183 how to investigate and present differences is not available in the literature.

184 **3. Purpose, goal and research focus**

185 The purpose of this article is to provide foundations for adding to the understanding of PSS design by
186 generating empirical grounding for the development of hypotheses. The goal is to demonstrate that the
187 methods used to analyse the cognitive behavior of product designers can be used to produce comparable
188 and commensurable results when analysing PSS designers. The research reported in this article focuses
189 on conceptual redesign in PSS design for the following reasons. First, conceptual design is less well
190 understood than other aspects of design and requires further research. Second, conceptual design in PSS
191 design, where a realization structure for a purpose is not necessarily fixed as a product or service, is
192 peculiar to PSS design (Sakao and Lindahl 2015). Once each realization structure is determined as either
193 a product or service, design will then be more like that of a pure product or service, about which more
194 insights are available. Thus, it is more useful to research conceptual design in PSS design. The primary
195 research question is as follows:

196 *Which ontologies and metrics are useful to compare the conceptual design of PSSs with that of products?*

197 **4. Method**

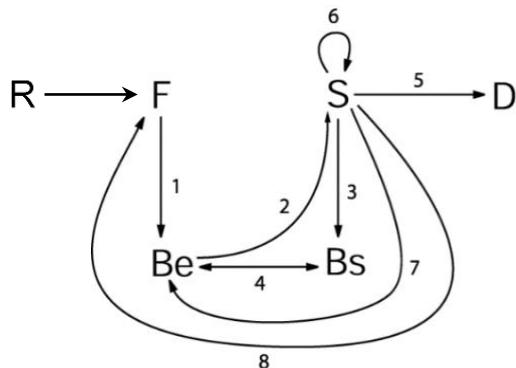
198 **4.1 Motivation for choice of the approach and method**

199 The research question is abstract, and thus the approach of an exploratory case study (Yin 2006) is
200 adopted to ensure a methodological fit. Although the use of case studies does not produce statistically

201 significant results, it provides an opportunity to explore and study an event as it actually occurs (ibid.),
202 and the result is expected to help fill the identified knowledge gap. In addition, a case study is useful in
203 formulating a hypothesis by using such approaches as pattern matching, explanation building,
204 addressing rival explanations, and using a logic model (Teegavarapu, Summers et al. 2008). Case studies
205 have been conducted in engineering design research to gain insight into design processes that cannot
206 necessarily be obtained in other ways (Ahmed 2007, Breslin and Buchanan 2008).

207 Adopting an industry case study as the research method for this research may not be satisfactory for PSS
208 design, because such a case in industry is often affected by issues from pragmatic aspect such as non-
209 optimal organizational settings and thereby does not exploit its full potential (Matschewsky, Kambanou
210 et al. 2018). Such circumstances create a critical disadvantage for using an industry case study for this
211 research and, therefore, a laboratory case study was used. This choice reduces multiple confounding
212 variables found in the industrial practice of PSS design (Matschewsky, Kambanou et al. 2018). A design
213 case in a laboratory environment has the potential to directly generate the information we need about
214 PSS design. Interaction with other actors than designers (e.g., customers) is not addressed in this study.
215 However, most of the implications for the conceptual design of a PSS in Table 1 are addressed.

216 This research adopts protocol analysis as the method to provide empirically-based quantitative evidence
217 and rich qualitative information. Protocol analysis is a rigorous methodology for eliciting verbal reports
218 of thought sequences as a valid source of data on thinking. It is a well-developed, validated method for
219 the acquisition of data on thinking (Ericsson and Simon 1993, van Someren, Bardard et al. 1994). It has
220 been used extensively in design research to assist in the development of the understanding of the
221 cognitive behaviour of designers, including exploratory studies (e.g., hypothesis generation) (Atman
222 and Bursic 1996, Kan, Bilda et al. 2007, Kan and Gero 2018) and hypothesis testing (Mc Neill, Gero et
223 al. 1998, Christensen and Schunn 2007, Kannengiesser and Gero 2015). There have also been recent
224 reviews with insights from protocol studies about methodological aspects (Dinar, Shah et al. 2015) and
225 processes in conceptual design (Hay, Duffy et al. 2017). Using both quantitative and qualitative
226 information is complementary since the interpretation of statistical analyses may be enhanced by a
227 qualitative narrative account (Robson 2002).


228 Protocol analysis involves the following activities (Kan and Gero 2017):

- 229 • videoing of participants,
- 230 • transcription of verbalizations,
- 231 • segmentation and coding of transcription,
- 232 • arbitration of coding, and
- 233 • statistical analysis of coded protocol.

234 **4.2 FBS (function-behaviour-structure) ontology**

235 **4.2.1 Overview**

236 In carrying out a protocol study, this research makes use of a method for determining and describing
237 design cognition, based on the function–behaviour–structure (FBS) ontology (Gero 1990). This is a
238 design ontology that is independent of the design task, the designer's experience and the design
239 environment, and hence produces commensurable results from different experiments (Gero 2010, Jiang
240 2012, Gero and Kannengiesser 2014, Song 2014, Kan and Gero 2017). It is, therefore, suitable for use
241 in comparing PSS design with product design. The FBS ontology provides a uniform framework for
242 classifying cognitive design issues and cognitive design processes, as depicted in Figure 2, and includes
243 higher-level semantics in its representation. Higher-level semantics, such as problem space and solution
244 space, can be derived directly from the FBS representation. The design issues are *requirements* (R),
245 *function* (F), *expected behaviour* (Be), *structure behaviour* (Bs), *structure* (S) and *documents* (D). The
246 processes are in the ascending order of the numbers in Figure 2: *formulation* (R→F→Be), *synthesis* (Be
247 →S), *analysis* (S→Bs), *evaluation* (Be→ Bs or Bs→ Be), *documentation* (S→D), *reformulation 1* (S→
248 S), *reformulation 2* (S→Be), and *reformulation 3* (S→F). The rationale of the issues and processes are
249 found in (Gero 1990).

250

251 Figure 2. The FBS ontology with its consequential ontology of design processes, labelled 1 through 8 (Gero
 252 1990, Gero and Kannengiesser 2004)

253 **4.2.2 Interpretation and use of FBS scheme**

254 A match between the design issues in the FBS scheme and frequently addressed dimensions in PSS
 255 design is shown in Table 2. There is no commonly agreed-upon set of dimensions for PSS as a design
 256 object, so the dimensions by Müller, Kebir et al. (2009) are adopted as a base. The dimensions, which
 257 are intended to represent the design rationale, are needs, values, deliverables, life cycle activities, actors,
 258 core product, peripheral product, payment model, and contract (*ibid.*). These dimensions are a set of
 259 mutually exclusive elements of a design object, and they are suitable as a support when applying the
 260 FBS ontology to the PSS design context. Note that they are different in nature from the characteristics
 261 and properties used in Table 1 (Durugbo, Tiwari et al. 2011).

262 This matching is used as a basis for the protocol analysis, where the designers' utterances are segmented
 263 and coded using the FBS design issues. For example, as shown in Table 2, an utterance is coded as
 264 Expected Behaviour (Be) or Structure Behaviour (Bs) when it concerns a lifecycle activity such as
 265 repairing a faulty part of a core product of a PSS in question or behaviour of a product such as
 266 deterioration of a core product's quality, depending on whether it refers to expectations or performance.
 267 Table 2 also shows how the FBS design issues are applied in the product design context. High
 268 commonality is found between PSSs and product design, while several items are found only in PSS
 269 design. This is a consequence of the enlarged design object in the case of PSS design, as depicted in
 270 Figure 1. The results from an FBS-coded protocol can be measured in multiple ways to provide
 271 foundations for comparing PSS design with product design. This research uses the following quantitative
 272 measures:

- 273 • Tabular statistics: this produces the statistical distributions of the system levels (see Section 4.2.3),
 274 the design issues and the design processes, and thus provides quantitative measurements of where
 275 designers' cognitive design effort is expended. This can be visualized with cumulative graphs (see
 276 Section 4.2.4).
- 277 • Problem-solution index: this is a macro measure that describes whether the designers are spending
 278 more of their cognitive design effort on the problem or the solution across time during the design
 279 session (see Section 4.2.5).

280

281

282 Table 2. FBS design issues applied in the PSS and product design contexts

FBS design issue	Explanation	PSS design context	Product design context
Requirement (R)	What is required by the client	Needs stated by the client	Needs stated by the client
Function (F)	What it is for	Client's needs as interpreted by the designers and those added by the designers	Client's needs as interpreted by the designers and those added by the designers

		Values	Values
Expected Behaviour (Be)	What it is expected to do	Lifecycle activities Product's behaviour	Product's behaviour
Structure (S)	What it is	Core product Peripheral product Actors Contract elements (in documents) Payment model	Product
Structure Behaviour (Bs)	What it does	Lifecycle activities Product's behaviour	Product's behaviour
Document (D)	What it is documented as	Contract Sketches Deliverables (e.g., service manual)	Sketches Models

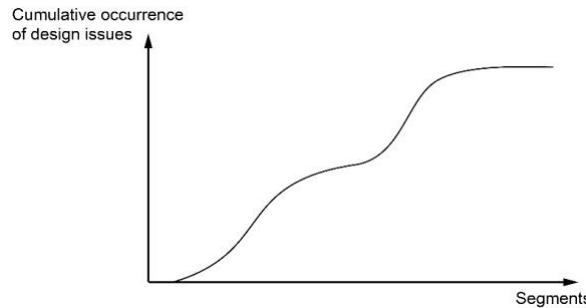
283

284 **4.2.3 System levels in PSSs and products for an FBS design issue**

285 A PSS is a kind of system and is composed of products and services. As system design concerns the
 286 system or component levels, PSS design concerns the level of the whole PSS or the level of products or
 287 services in a segment in a design episode. A product is also a system, and previous research using
 288 protocol analysis adopted the system level for analysing the cognitive behaviour: the levels of a product
 289 are differentiated between the whole system and the subsystems of the whole product ((Mc Neill, Gero
 290 et al. 1998, Song, Becker et al. 2016)). In the case of the PSS, the subsystems are either products or
 291 services. These levels are applicable to any design issue in the FBS scheme, as shown in Table 3.

292

293 Table 3. Explanation of the system level of a PSS for a design issue


System level of PSS	Explanation	System level of product
PSS (Product/Service System)	Mainly concerning the PSS as a whole	System: an integral whole
Product	Mainly concerning products in the PSS	Subsystem: details of the subsystem
Service	Mainly concerning services in the PSS	Subsystem: details of the subsystem

294

295 **4.2.4 Cumulative occurrences, graphs and their shapes**

296 The cumulative occurrence (C) of design issue (x) at segment (n) is $C_x = \sum_{i=1}^n x_i$, where (x_i) equals 1
 297 if segment (i) is coded as (x) and 0 if segment (i) is not coded as (x). Plotting the results of this equation
 298 on a graph with the segments (n) on the horizontal axis and the cumulative occurrence (C) on the vertical
 299 axis produces a visualisation of the cumulative occurrence of the design issues.

300 Figure 2 shows a general representation of such a graph, where a curve with its shape shows
 301 characteristics of the occurrences over segments ordered by time. Similar to C_x , the cumulative
 302 occurrence (C) of syntactic design process (y) is $C_y = \sum_{i=1}^{n-1} y_i$, where (y_i) equals 1 if the transition from
 303 segment (i) to segment ($i+1$) is coded as (y) and 0 if it is not coded as (y).

304

305 Figure 3. Graphical representation of the cumulative occurrence of design issues in a design protocol

306 Note: the X-axis refers to the number of segments and not to time, although there is a strong correlation between
307 them (Kan and Gero 2017).

308 **4.2.5 Problem-Solution index**

309 The problem-solution index (P-S index), whether for design issues or design processes, is a measurement
310 that characterizes the overall cognitive style of a designer or design team. It is determined by calculating
311 the ratio of the sum of the occurrences of the design issues or design processes concerned with the
312 problem space to the sum of those related to the solution space, as shown in Equations (1) and (2). The
313 cumulative occurrences of the problem-related issues found on the left-hand side of Figure 2 are C_R for
314 Requirement, C_F for Function, and C_{Be} for Expected Behaviour. Those of the solution-related issues on
315 the right are C_{Be} for Structure Behaviour and C_S for Structure. C_D for Document is not counted here,
316 because the D design issue has not been categorized as belonging to either the problem or the solution
317 space. The problem-related processes are formulation ($F \rightarrow Be$) referring to C_1 , reformulation 2 ($S \rightarrow Be$)
318 C_7 and reformulation 3 ($S \rightarrow F$) C_8 . The solution-related processes are synthesis ($Be \rightarrow S$) C_2 , analysis (S
319 $\rightarrow Bs$) C_3 , evaluation ($Be - Bs$) C_4 and reformulation 1 ($S \rightarrow S$) C_6 . The process documentation ($S \rightarrow D$)
320 C_5 is not coded using information that allows it to be placed into either category and is hence not used
321 in the calculation of the P-S index. P-S indexes with a single value facilitate comparisons across multiple
322 sessions and sessions involving different situations.

323
$$P-S \text{ index (cognitive issues)} = \frac{\sum(\text{Problem-related issues})}{\sum(\text{Solution-related issues})} = \frac{C_R + C_F + C_{Be}}{C_{Bs} + C_S} \quad (1)$$

324
$$P-S \text{ index (syntactic cognitive processes)} = \frac{\sum(\text{Problem-related syntactic processes})}{\sum(\text{Solution-related syntactic processes})} = \frac{C_1 + C_7 + C_8}{C_2 + C_3 + C_4 + C_6} \quad (2)$$

325 When the P-S index = 1, the cognitive design effort is equally divided between problem and solution.
326 For values of P-S index < 1, more cognitive design effort is expended on the solution than the problem,
327 and for values of P-S index > 1, more cognitive design effort is expended on the problem than the solution.

328 **5. PSS design case**

329 The study's target design was a conceptual redesign, which was chosen from PSSs provided by
330 manufacturers and on the existing market. This selected PSS was provided by a manufacturer that
331 develops, manufactures and delivers drilling equipment with its related services such as training, spare
332 parts delivery, maintenance, repair and overhaul, for the construction industry. It could be regarded as a
333 typical PSS provided by manufacturing companies, where such redesign is a more common design
334 activity than designing a completely new product.

335 The task of this design was to improve, at a conceptual level, the existing PSS provided by the company,
336 and the reason why a conceptual level was set as an endpoint is the research's focus on conceptual design.
337 In addition, the designers were asked to represent the improvement options with the dimensions in Table
338 1 to describe a PSS (Müller, Kebir et al. 2009). This task, with information about the current PSS offering,
339 was given to a group of three designers and was required to be conducted within approximately one
340 hour. More information about the design task and the information provided to the designers can be found
341 in Appendices A and B, respectively.

342 The three designers were graduate students from a master's course majoring in mechanical engineering.
343 Each had basic knowledge about PSSs in addition to knowledge in mechanical engineering. The
344 language was Japanese, the mother tongue of the three designers. A poster-sized paper with post-its and
345 pens was used to describe and share information. In addition, a whiteboard and pens were used for
346 complementary communication. They were asked to and collaborated in developing improvement
347 options together. The audio and video recording equipment consisted of two video cameras with mobile
348 microphones to provide a suitable sound recording.

349 The fact that the design session was performed by graduate students in a master's of engineering
350 program might have influenced the results. As Stempfle and Badke-Schaub (2002) point out, although
351 generalizations from student teams to design teams in industry must be drawn with caution, some insight
352 is expected to be gained into basic thinking processes which are not contaminated by restrictive or
353 unpredictable factors which occur in a field setting. Therefore, the choice of designers is not deemed as
354 a critical problem.

355 The design session produced nine distinguishable ideas for improving the PSS. These were all effective
356 solutions with respect to the information given to the designers. Thus, the given design session can be
357 regarded as successful.

358 **6. Results of analysing the design session**

359 **6.1 Coding**

360 The design session was transcribed and translated into English. Then, the transcription was segmented
361 and coded by two independent coders with experience in design protocol coding. The results of each
362 coder's segmentation and coding were compared and arbitrated. When the two coders were unable to
363 arbitrate to an agreement, a third more experienced coder was consulted for a final decision. The episode
364 resulted in 242 FBS-coded segments. The average of the two coder's agreement with the final arbitrated
365 coding was 83%, which is above the threshold for reliability (75%). We used this measure rather than
366 Cohen's kappa as each coder's agreement was measured against the arbitrated version, not against the
367 other coder.

368 **6.2 Narrative description**

369 In the design session, the implications for the conceptual design of a PSS based on the PSS properties
370 and characteristics (shown in the right-hand column of Table 1) were observed. In the part of the protocol
371 shown in Table 4, reducing the machine downtime and the cost of the whole PSS as well as enhancing
372 user safety are raised as purposes of the PSS. This part of the protocol gives relevance to the implications
373 of PSS design derived from the literature analysis, including value proposition (e.g., reducing downtime
374 and cost and enhancing safety), considering performance (e.g., drilling time), considering service
375 personnel (e.g., operators), considering uncertainty (e.g., accidents and varied skill levels of operators),
376 analysing behaviour as a system (e.g., machine breakdowns that will take up much time for the operator
377 and the customer), and analysing scenarios (e.g., an insurance cost will be incurred should an operator
378 get injured).

379 In another part of the protocol shown in Table 5, the roles of service personnel and an expected purchase
380 mechanism are discussed, which are related to actors and the business model, and thereby how a deeper
381 understanding of the PSS receiver is obtained. This part of the protocol also gives relevance to the
382 implications of PSS design, that is analysing customers (e.g., end users), analysing actors' roles (e.g.,
383 the service supplier's support role for the PSS receiver), and analysing the business model (e.g., rental
384 or purchase). All the conceptual design implications of a PSS in Table 1 were observed except the co-
385 creation process between the customer and provider, which was beyond the scope of this laboratory
386 setting. The rest of Section 6 shows quantitative results using the measurement techniques outlined in
387 Sections 4.2.3, 4.2.4 and 4.2.5.

388 Table 4. A part of the protocol showing observed implications for the conceptual design of a PSS (1)

Segment number	Designer	Utterance	Design issue	Observed implication on conceptual design
204	RK	...somehow reducing this downtime, and then safety.	F	Include value proposition
205			F	Include value proposition
206		This one is...Cost and	F	Include value proposition
207	RK	"More drilling time." The red circles here.	Be	Consider performance
208	RK	Besides the red circles, the issues are the safety issue and operators with low skills.	Be	Consider service personnel
209		Those... two issues, can be solved... how to reduce downtimes.	Be	Consider performance
210	RK	How to assure safety. (points) MK:/ What is safety... I think safety basically involves sudden accidents. RK:/ Yeah.	Be	Consider uncertainty ²
211	MK	Therefore, depending on that...well what then? Essentially, breakdowns take up a lot of time. (points)	Bs	Analyse behaviour as a system
212	MK	And, if an operator is injured,	Be	Consider service personnel Consider uncertainty
213		the insurance costs are quite high.	Bs	Analyse behaviour as a system ³ Analyse scenarios
214	MK	That also means there is a considerable amount of variation involved, so it's only related to reducing costs	Bs	Consider uncertainty
215	MK	Well, using the machinery... the machinery	S	
216		is clearly dangerous.	Bs	Analyse behaviour as a system

389

390 Table 5. A part of the protocol showing observed implications for the conceptual design of a PSS (2)

Segment number	Designer	Utterance	Design issue	Observed implication on conceptual design
17	KK	Yes. Was it about variation? Somehow, I don't think they were doing that at all. RK:/ Yes KK:/ So... RK:/ That would be one. KK:/ That's one.	F	Analyse customers
18	KK	Somehow, I think this one is a case peculiar to the site, with [the service supplier].	Bs	Analyse behaviour as a system
19	KK	[The PSS receiver]	S	
20		really relies on [the service supplier].	F	Analyse actors' roles
21	KK	Then actually.... One of the things is how can the equipment be purchased...	Be	Analyse business model
22	KK	Uh, was it renting? Renting, hmm. The premise was a little different, but. RK:/ Yeah. KK:/ Well..., so...	Be	Analyse business model

391

392 6.3 Design Issue distribution

393 The distribution of each design issue's occurrence for the entire episode is shown in Table 6. Bs (33.9%)
 394 and Be (27.3%) are the two highest occurring issues. The two issues together represent behaviour and
 395 account for more than 60% of the total cognitive design effort. These are followed by S (14.0%) and F
 396 (13.2%). Their differences to Be and Bs are large; S and F each are only approximately one-half of Be.

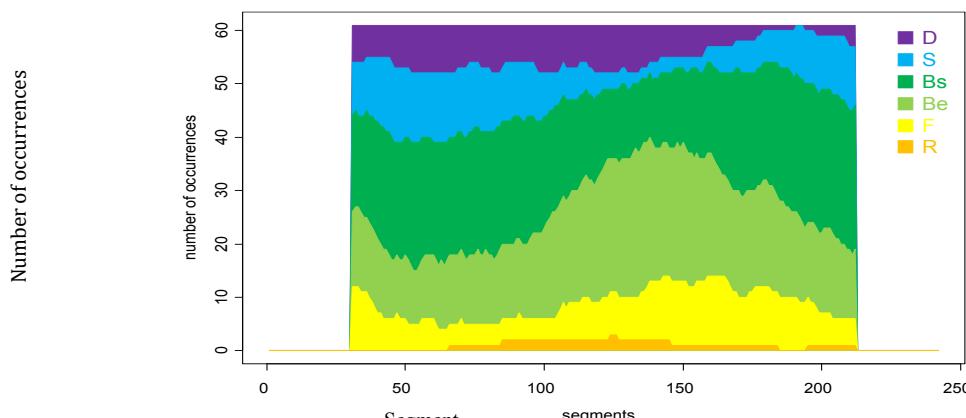
² Sudden accidents are discussed in association with safety, which implies that the uncertainty of future events during the delivery of the PSS is considered.

³ The thread from Segment 212 concerns uncertainty and analyses its effect, which implies that the designers analyse behaviour as a system rather than propose value.

397 These are followed by D (9.9%). The P-S issue index for the entire design session was 0.88, meaning
 398 that across the design session more cognitive design effort is expended on the solution than the problem,
 399 as explained in Section 4.2.5.

400 Table 6. Issue distribution [%] and P-S issue index

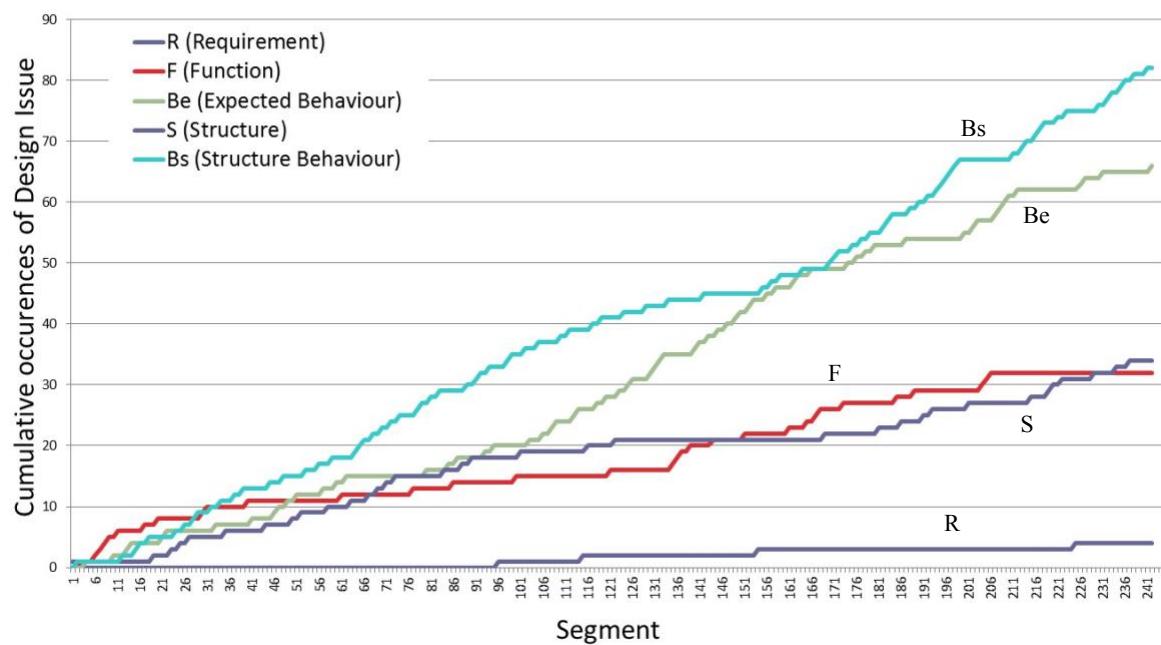
Requirement (R)	1.7
Function (F)	13.2
Expected Behaviour (Be)	27.3
Behaviour derived from Structure (Bs)	33.9
Structure (S)	14.0
Description (D)	9.9
P-S Issue Index	0.88


401
 402 The distributions of the system levels based on Section 4.2.3 for the entire episode for this case are
 403 shown in Table 7. Only Behaviour is analysed here because it covers over 60% of all cognitive activity
 404 (see Table 6). This shows that different levels are addressed in the design episode. In Behaviour as a
 405 total (both Be and Bs), Service received the highest distribution (48.6%), followed by PSS (41.9%),
 406 while Product received a much smaller portion (9.5%). Interestingly, Be of PSS was discussed (45.5%)
 407 more than Bs of PSS (37.8%), while Bs of both Product and Service (11.0% and 51.2%, respectively)
 408 were discussed more than Be (7.6% and 47.0%, respectively).

409 Table 7. Distributions [%] of the system levels within Behaviour

	Be	Bs	Be and Bs
PSS	45.5	37.8	41.9
Product	7.6	11.0	9.5
Service	47.0	51.2	48.6
Total	100.0	100.0	100.0

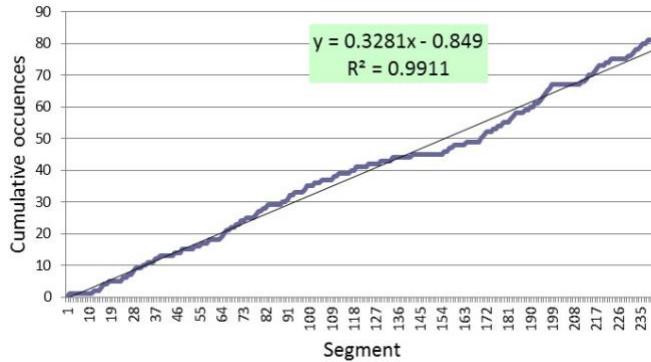
410 Note: the distributions for “Be and Bs” are the cumulative weighted average of the distributions of Be and Bs.


411 The moving average moves chronologically across the design session of each design issue with a
 412 window of 61 segments, corresponding to a quarter of the entire session, as shown in Figure 4. The
 413 graph begins and ends with the 30th and 212th segments, respectively, as a moving average is plotted at
 414 the mid-point of its window. Figure 4 shows that the cognitive design effort for the design issues varies
 415 substantially over time and provides a graphical basis for a qualitative interpretation of the temporal
 416 results. Figure 4 shows the high percentages for both Bs and Be can be seen with the transition over
 417 segments. More cognitive design effort was expended on Be after the middle of the session than at any
 418 other time. The cognitive design effort expended on Bs is more in the earlier and later parts of the design
 419 session. S is addressed more in the early and final parts, similar to Bs. F is also addressed in the early
 420 and later parts, but this later part occurred earlier than the final part of S.

421
 422 Figure 4. Moving average of cognitive design effort expended on design issues (window of 61 segments)

423 When examining the source data through its segments, the protocol’s cumulative occurrence of design

424 issues is shown graphically in Figure 5. The values of the graphs at segment 242, i.e., the final points of
 425 the episode, correspond to the values in Table 6 and show that Behaviour derived from Structure (Bs)
 426 occurred in the highest number of segments. The graphs' shapes in Figure 5 provide for a qualitative
 427 understanding of the transition of cognitive design effort over time. In each graph, the part with the
 428 higher slope indicates that the issue is addressed more frequently. The design issues are different in terms
 429 of which parts of the design session the issues are addressed more, as represented by the different shapes
 430 and slopes. For instance, the high effort expended on Be found "after the middle" (as described above)
 431 of the session in Figure 4 can be seen between the 100th and 165th segments in Figure 5. The reason for
 432 the lag between the middle and 100th segment lies in the different ways of measurement; an envelope
 433 containing 61 segments is used in Figure 4. In addition, an increase of effort in F followed by that in S
 434 can be seen between the 160th and 230th segments in Figure 5.



435

436

Figure 5. Cumulative cognitive design effort expended on design issues

437 In order to quantify the shape of each graph, a linear approximation was conducted for each design
 438 issue's cumulative effort across the session. Figure 6 shows, as an example, the result for design issue
 439 Bs. The coefficient of determination was calculated as 0.9911 in this case and indicates a high linearity.
 440 The coefficients for the design issues are shown in Table 8. The linearity of Bs, Be, and F is sufficiently
 441 high, with the threshold for linearity for R₂ being 0.95. Those for D and S are very close to the threshold
 442 for linearity. Only R clearly fails to meet the threshold for linearity. This means that the design issues
 443 Bs, Be, and F can be regarded as being constantly focused on during the design session.

444

445 Figure 6. Result of linear approximation of the cumulation of design issue Bs

446 Table 8. Coefficients of determination from linear approximations of the cumulative occurrences of each design
447 issue

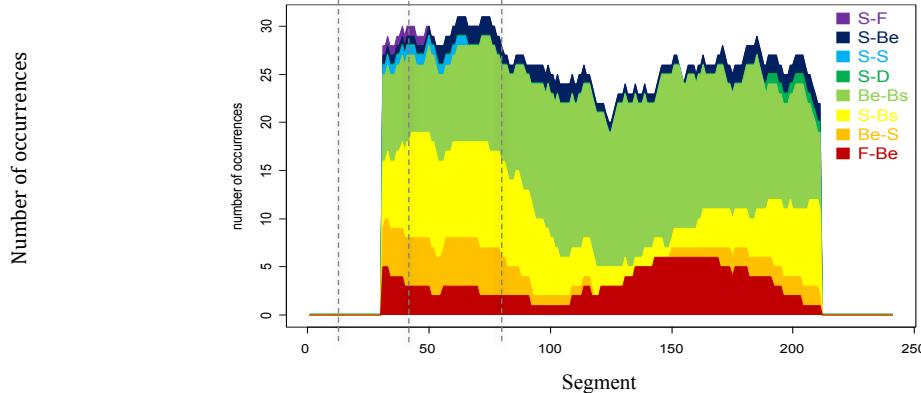
Requirement (R)	0.9057
Function (F)	0.9649
Expected Behaviour (Be)	0.9832
Behaviour derived from Structure (Bs)	0.9911
Structure (S)	0.9462
Description (D)	0.9472

448

449 6.4 Syntactic design process distribution

450 The distribution of each syntactic process, aggregated for the entire episode, is shown in Table 9. The
451 percentage of each process is a ratio of its occurrence over those of the eight processes, with the sum of
452 all the eight percentages being 100%. Note that “Be – Bs” (4. Evaluation) is a bidirectional process
453 unlike the others, which are uni-directional as indicated by “→”.

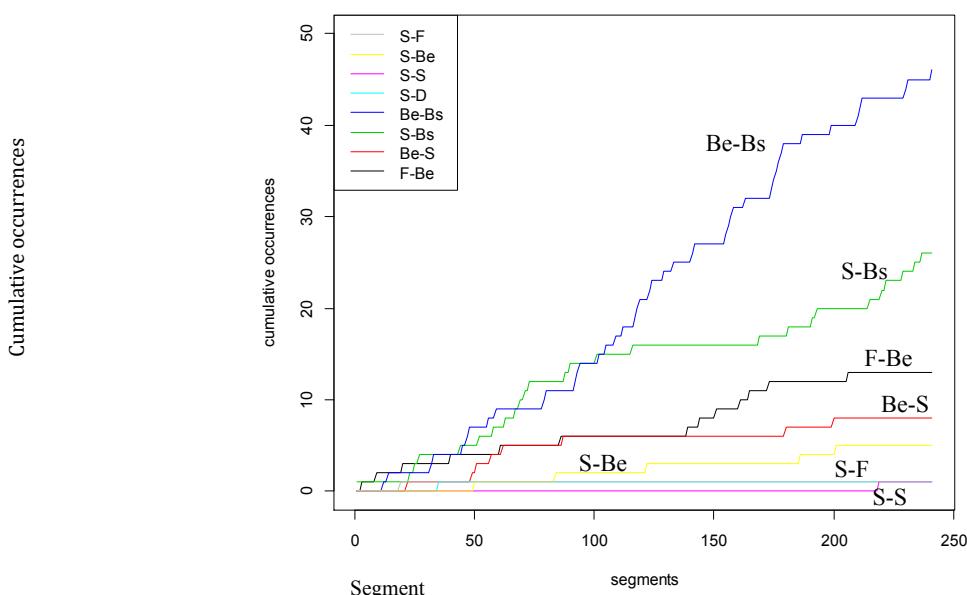
454 Table 9. Syntactic process distribution [%] and P-S Process Index


1: Formulation (F→Be)	12.9
2: Synthesis (Be→S)	7.9
3: Analysis (S→Bs)	25.7
4: Evaluation (Be – Bs)	45.5
5: Documentation (S→D)	1.0
6: Reformulation 1 (S→S)	1.0
7: Reformulation 2 (S→Be)	5.0
8: Reformulation 3 (S→F)	1.0
P-S Process Index	0.24

455

456 Evaluation, referring to the comparison process between Be and Bs, occurred with by far the highest
457 frequency (45.5%) of all the processes. Since Be and Bs sit in the problem space and solution space,
458 respectively, this shows the high frequency of transition between these two spaces. Considering this,
459 one could infer that evaluation is a characterizing process of PSS design based on this design session’s
460 result.

461 The second highest frequency is that of analysis, referring to the process from S to Bs (25.7%). The total
462 of the frequencies of these top two, evaluation and analysis, is 71.2%, and one can say these are the
463 dominant processes. Analysis is followed by formulation, referring to the process from F to Be (12.9%).
464 The top three distributions of evaluation, analysis, and formulation indicate that behaviour is the
465 dominant design issue within the syntactic processes and that the behaviour is at the end point of the
466 processes rather than the starting point.


467 Figure 7 shows the moving averages of each syntactic process, with a window of 61 segments. The
 468 reason why the total number of occurrences per each window is not always 61 is that these eight syntactic
 469 processes are not collectively exhaustive. For instance, the transitions from F to S occurred but are not
 470 counted as a formal syntactic design process. The F to S process is based on learning through experience
 471 rather than design reasoning (Kannengiesser and Gero 2019).

472
 473 Figure 7. Moving average of cognitive design effort expended on syntactic processes (window of 61 segments)
 474 The majority of syntactic processes change over time, and the whole session could be divided into four
 475 phases across time, shown by three dotted lines in Figure 7. From the beginning to approximately the
 476 90th segment, the major syntactic processes are F→Be (Formulation), Be→S (Synthesis), S→Bs
 477 (Analysis), and Be – Bs (Evaluation). After this and up to approximately the 120th segment, Be – Bs
 478 (Evaluation) and S→Bs (Analysis) are dominant. Then, up to the 160th segment, Be – Bs (Evaluation)
 479 and F→Be (Formulation) are dominant. In the last phase, the dominant processes are Be – Bs
 480 (Evaluation) and S→Bs (Analysis).

481 Interestingly, Be – Bs (Evaluation) occurred substantially throughout the session, though the second and
 482 third phases include more occurrences. Except for Be – Bs (Evaluation), the whole session could be
 483 understood in this way: The first phase is occupied with F→Be (Formulation), Be→S (Synthesis), and
 484 S→Bs (Analysis); the second with S→Bs (Analysis); the third with F→Be (Formulation); and the fourth
 485 with Be→Be (Evaluation) and S→Bs (Analysis).

486 Shifting to a more microscopic view of syntactic processes' occurrences, Figure 8 shows the cumulative
 487 occurrences of each syntactic process on the vertical axis. The values of the graphs at segment 241
 488 correspond to Table 9, showing, e.g., that Be – Bs occurred with the highest number. From the shapes
 489 of the graphs the following steeper slopes are observed: Be – Bs (Evaluation) from the 92nd to 145th and
 490 from the 155th to 178th; S → Bs (Analysis) from the 50th to 75th and from the 220th to 240th; F→Be
 491 (Formulation) from the 140th to 165th; and Be→S (Synthesis) from the 45th to 65th. These observations
 492 are a set of the processes' most frequent occurrences within narrower windows and give a different view
 493 from that in Figure 7 because of the difference in granularity.

494

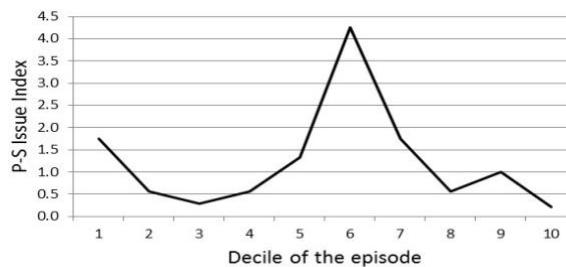
495

Figure 8. Cumulative cognitive design effort expended on processes

496

6.5 Problem-Solution index series

497


498

499

500

501

The Problem-Solution issue index for the entire session is 0.88, as shown in Table 6. The P-S issue indexes from session deciles are found to vary over time, as shown in Figure 9. The maximum is 4.25 in the sixth decile, while the minimum is 0.22 in the tenth decile. The deciles with the index greater than 1 are the first, fifth, sixth, and seventh deciles. This means that the problem space is focused on more than the solution space in those deciles.

502

503

Figure 9. P-S index in deciles over the design session

504

505

506

507

508

509

The sixth decile has by far the highest P-S Index, as indicated in Figure 9. This corresponds to a window right after the middle in Figure 4, where Be has its peak and F is also discussed. In addition, it coincides with the third phase in Figure 7, where F→Be and Be – Bs are dominant syntactic processes. Also, the index increases from the third to the sixth decile, while it decreases from the sixth to the eighth decile. It means that in this design session, the space addressed shifts from the solution to the problem towards the sixth decile and then shifts back to the solution.

510

7. Discussion

511

7.1 Comparability and commensurability of PSS and product design

512

513

514

515

516

The results obtained from analysing these PSS designers in Sections 6.3, 6.4, and 6.5 show that the methods used to analyse the cognitive behavior of product designers can be used to produce comparable and commensurable results between PSS and product design. The methods adopt the FBS ontology and the metrics such as design issue distributions and design process distributions, answering the research question in the positive. The comparability is based on the method described in Section 4, including the

517 matching between PSS and product design, as shown by Tables 2 and 3. The commensurability is
518 demonstrated further in Sections 7.2 and 7.3.

519 **7.2 Design issues**

520 Design issues are investigated based on results from the PSS design episode (Sections 6.2 and 6.3) and
521 from analysing characteristics of PSSs and PSS design (Sections 2.2 and 2.3) to demonstrate the
522 commensurability and formulate hypotheses. From Table 6, the dominance of behaviour (Be and Bs) is
523 in contrast to the dominance of Structure in studies of designing products (Yu, Gu et al. 2015). The
524 percentage of Be and Bs in total is calculated based on Table 6 as follows:

525
$$Be + Bs = 27.3 + 33.9 = 61.2.$$

526 This means Behaviour was addressed for 61.2% of all the design issues. This originates partly from the
527 discussion of behaviour as a system and performance of products and services (as shown in Section 6.2
528 with observation of the partial protocol of Tables 4 and 5). In addition, the high linearity of the
529 cumulative occurrence of Bs (with an $R^2 = 0.9911$ in Figure 6) and that of Be (with an $R^2 = 0.9832$ in
530 Table 8) indicates that behaviour was discussed constantly during the entire process. Other design issues,
531 such as S (14.0%) and F (13.2%), received some, but much less, cognitive design effort. This means the
532 designers were not uniquely focused on behaviour but a mixture of behaviour, structure, and function,
533 with behaviour dominating.

534 The results of the analysis in Sections 2.2 and 2.3, Table 1, theoretically show the relevance of *behaviour*
535 as a design issue in the conceptual design of a PSS: *behaviour* as a system with various types of
536 uncertainty is expected to be analysed substantially due to the PSS's property of being an open process
537 system. In addition, the performance of products and services is expected to be analysed due to the PSS's
538 property of being a business model. Therefore, cognitive effort spent on behaviour in a PSS design was
539 expected.

540 The reasoning shown above, based on the analysis of this design session and the literature on PSS, leads
541 to the following hypothesis, Hypothesis 1 (H1):

542 *H1. In the conceptual design of a PSS, the behaviour of the design is the dominant design issue.*

543 The degree of dominance of behaviour found in this PSS design episode is uncommon in product design.
544 PSS design and product design are compared in Table 10 utilizing the same FBS coding scheme (Jiang,
545 Gero et al. 2014), which resulted from a conceptual product design by mechanical design majors and
546 product design by industrial design majors. Be and Bs in total in product design received 35.4% (15.6%
547 + 19.8%) and 41.8% (13.5% + 28.3%) in the two studies shown in Table 10. They are substantially lower
548 than the 61.2% in this PSS design session.

549
550 Table 10. Design issue distributions [%] from multiple studies of product design as compared to this study (of PSS
551 design)

Study	Ref.	R	F	Be	Bs	S	D
Conceptual PSS design by this study		1.7	13.2	27.3	33.9	14.0	9.9
Conceptual product design by mechanical design major	(Jiang, Gero et al. 2014)	1.1	12.1	15.6	19.8	31.2	20.1
Product design by mechanical design major	(Jiang, Gero et al. 2014)	1.8	11.4	13.5	28.3	28.0	16.9

552
553 The cognitive effort spent on S (14.0%) in this PSS design session is substantially lower than in product
554 design. In addition, the analysis of characteristics of PSSs and PSS design (Sections 2.2 and 2.3) does
555 not sufficiently explain the difference specifically for structure. Based on the reasoning above, the
556 following hypothesis, Hypothesis 2 (H2) is formulated:

557 *H2. More effort is spent on behaviour in the design of PSSs than in the design of products alone.*

558 Examining the results in Table 7, the system level (the PSS as a whole) and the component level
559 (products or services within the PSS) are both addressed substantially in Behaviour: 41.9% for the
560 system level and 48.1% for the component level (Be and Bs in total). This accords with the literature
561 analysis in Table 1, which indicates that systems thinking is expected to be applied in PSS design. In
562 this study, analysis in terms of the levels was performed only for Behaviour, and this leads to the
563 following hypothesis, Hypothesis 3 (H3):

564 *H3. In the conceptual design of a PSS, substantial effort is spent on the behaviour of the PSS as a system
565 as well as its products and its services.*

566 Using the Problem-Solution issue index in the FBS scheme, design issues are discussed further here. As
567 described in Section 4.2.5, where this index is greater than 1, the problem space is focussed on more
568 than the solution space, and the reverse applies when the index is less than 1. The P-S index from the
569 entire episode is 0.88, as shown in Table 6. However, looking at the temporal distribution of the P-S
570 index, Figure 9, at four of the ten deciles of the episode, the P-S issue index exceeds 1 in this design
571 session.

572 In product design, the P-S issue index is substantially lower than that in PSS design found by this study,
573 according to (Jiang, Gero et al. 2014). From Table 10, the P-S index for the two studies of product design
574 is calculated as follows:

575
$$(1.1+12.1+15.6) / (19.8+31.2) = 28.8 / 51.0 = 0.56$$

576 and

577
$$(1.8+11.4+13.5) / (28.3+28.0) = 26.7 / 56.3 = 0.47.$$

578 The problem space is expected to be discussed in PSS design partly due to its business model property
579 (see Table 1): a customer is to be analysed to define the value proposed. Further, according to Alonso-
580 Rasgado et al. (2004), a PSS customer aims to obtain a functional performance to be expected in the
581 customer's own settings, i.e., the customer's purposes and does not necessarily appreciate the hardware
582 as such (i.e., a partial solution). The literature points out the importance of addressing purposes and
583 expectations rather than only solutions. These support how PSS design tends to spend more cognitive
584 design effort on purposes and expectations, which are closely linked to value. The literature referred to
585 in this paragraph states that the problem space becomes more relevant in the conceptual design of a PSS,
586 as compared to that of product design. This is borne out in the results of this PSS design session.

587 In sum, the PSS design case exhibited parts with a higher P-S issue index, where the expected roles of
588 service personnel, the expected scenarios of product usage, and the purpose of the PSS receiver were
589 discussed. This discussion is expected to occur more frequently according to the PSS design theory as
590 compared to product design and is, therefore, considered reproducible in other PSS design. This
591 reasoning leads to the following hypothesis, Hypothesis 4 (H4):

592 *H4. The conceptual design of a PSS produces a higher Problem-Solution index than that for product
593 design.*

594 **7.3 Design processes**

595 Distributions of the syntactic processes of the FBS scheme from this session are shown in Table 9. The
596 distributions of analysis and evaluation from the entire episode were calculated as 25.7% and 45.5%,
597 respectively, i.e., about 70% for both. Examples of analysis and evaluation are shown in Table 4, where
598 they are concerned with the system as a whole. PSS design and product design are compared in Table
599 11 (Jiang 2012, Jiang, Gero et al. 2014). Analysis and evaluation in total in product design received
600 30.5% (15.4% + 15.1%) and 25.5% (15.0% + 10.5%) in the two studies shown in Table 11, which are
601 substantially lower than in the PSS design. On the other hand, documentation (S→D), reformulation 1
602 (S→S), and reformulation 3 (S→F) in the PSS design received substantially lower distributions than in
603 the two studies of product design.

604

605 Table 11. Syntactic process distribution [%] from multiple studies of product design as compared to this study (of
 606 PSS design)

Study	Ref.	F→Be	Be→S	S→Bs	Be-Bs	S→D	S→S	S→Be	S→F
Conceptual PSS design by mechanical engineering major	this study	12.9	7.9	25.7	45.5	1.0	1.0	5.0	1.0
Conceptual product design by mechanical design major	(Jiang, Gero et al. 2014)	6.2	6.1	15.4	15.1	20.6	17.9	2.4	10.5
Product design by mechanical design major	(Jiang, Gero et al. 2014)	5.9	6.3	15.0	10.5	20.3	27.3	3.4	6.7

607

608 In the literature on the PSS design processes, analysis as a system, performance, and customers are
 609 raised as important issues, as shown in Table 1. In design, in general, analysis of a design solution is
 610 regularly followed by evaluation. Evaluation is carried out against the expectation for a solution and is
 611 thus an activity to reason about a design solution and a design problem to be solved (Pahl and Beitz
 612 1996). Reasoning between the solution and problem spaces, which corresponds to evaluation, is also
 613 implied to be substantial in PSS design by Morelli (2003): he asserted the importance of an iteration
 614 between problems and solutions. Komoto and Tomiyama (2008) state that PSS design involves finding
 615 a mapping between activities in a service environment and value. From this and the results of this
 616 explorative case study, hypothesis 5 (H5) is generated:

617 *H5. In the conceptual design of a PSS, analysis and evaluation are the dominant processes.*

618 **8. Conclusion and future work**

619 Product/Service Systems (PSSs) have received steadily increasing interest by practitioners, especially
 620 among manufacturing companies integrating services with products to combat low-priced product
 621 manufacturers. After analysing the literature about PSSs, their characteristics and properties as
 622 compared to physical products were derived, and their implications for PSS conceptual design were
 623 derived. Descriptive knowledge about differences between designing PSSs and products at the micro
 624 level is, however, underdeveloped: even how to investigate and present the differences is not available
 625 in the literature. Motivated by this gap and the need for insights for the differences between PSS and
 626 product design, this article aims to provide foundations for adding to the understanding of PSS
 627 conceptual design. A PSS design case in a controlled environment was analysed and compared with
 628 product design using the same coding scheme to meet this aim, and five hypotheses were created.

629 Attention should be paid to several conditions for this PSS design case analysed: the task was performed
 630 in a controlled environment without interacting actors other than designers. In addition, the designers
 631 were students majoring in mechanical engineering. Since the results are based on a single case, these
 632 conditions might have influenced the results. However, the product design used as a reference was
 633 performed with the same conditions in order to produce commensurability. Driven by the five
 634 hypotheses developed from the results of this study, further research to analyse more PSS design sessions
 635 and compare them with product design is needed to generalize the insights into PSS design obtained in
 636 this study.

637 The measurement and calculation techniques adopted in this research are shown to effectively produce
 638 quantitative results about PSS design in a commensurable way with product design. This article has
 639 demonstrated the successful use of a method for determining and describing design cognition, based on
 640 protocol analysis utilizing the FBS coding scheme for PSS design. The techniques and the method can
 641 be re-used for further research addressing a larger number of design cases to derive statistically
 642 significant knowledge.

643 A number of promising future works are envisioned, building upon this research. First, analysing more
 644 PSS design sessions, as stated above, is needed to enable statistical significance for generalizing insights.
 645 Second, different types of PSS design are of interest to be researched: e.g., new design involving use-

646 oriented or result-oriented service (Tukker 2004). Third, analysing design sessions by different types of
647 designers, such as experienced practitioners, is needed. Fourth, different compositions of a designing
648 group are important to be analysed: e.g., a heterogenous setting where individual designers of the
649 provider possess different expertise or roles as well as one with both the customer and the provider
650 potentially involving co-creation processes. Fifth, an evaluation of the effects of PSS design methods
651 and tools on PSS design processes is needed. Comparisons with an earlier work on product design
652 (Kannengiesser and Gero 2017) would be valuable.

653 **Acknowledgements**

654 The company that provided this research with the PSS case and the three anonymous reviewers are much
655 appreciated.

656 **Financial support**

657 This research is supported in part by grants from the US National Science Foundation (J.G. grant
658 numbers EEC-1463873 and CMMI-1762415). Any opinions, findings, and conclusions or
659 recommendations expressed in this material are those of the authors and do not necessarily reflect the
660 views of the National Science Foundation. This research is also supported in part by the Mistra REES
661 (Resource-Efficient and Effective Solutions) program funded by Mistra (The Swedish Foundation for
662 Strategic Environmental Research) (T.S. grant number DIA 2014/16).

663 **References**

664 Ahmed, S. (2007). An industrial case study: identification of competencies of design engineers.
665 *Journal of Mechanical Design* 129(7), 709-716.

666 Alonso-Rasgado, T. and G. Thompson (2006). A rapid design process for Total Care Product creation.
667 *Journal of Engineering Design* 17(6), 509 - 531.

668 Alonso-Rasgado, T., G. Thompson and B. Elfstrom (2004). The design of functional (total care)
669 products. *Journal of Engineering Design* 15(6), 515-540.

670 Atman, C. J. and K. M. Bursic (1996). Teaching Engineering Design: Can Reading a Textbook Make a
671 Difference? *Research in Engineering Design* 8, 240-250.

672 Baines, T. S., A. Z. Bigdeli, O. F. Bustinza and K. Ridgway (2017). Servitization: Revisiting the State-
673 of-the-art and Research Priorities. *International Journal of Operations & Production Management*
674 37(2), 256-278.

675 Baines, T. S., H. W. Lightfoot, S. Evans, A. Neely, R. Greenough, J. Peppard, R. Roy, E. Shehab, A.
676 Braganza, A. Tiwari, J. R. Alcock, J. P. Angus, M. Bastl, A. Cousens, P. Irving, M. Johnson, J.
677 Kingston, H. Lockett, V. Martinez, P. Michele, D. Tranfield, I. M. Walton and H. Wilson (2007).
678 State-of-the-art in product-service systems. *Proceedings of the Institution of Mechanical Engineers
- B* 221, 1543-1552.

679 Bertoni, A. (2013). Analyzing Product-Service Systems conceptual design: The effect of colorcoded
680 3D representation. *Design Studies* 34, 763-793.

681 Boehm, M. and O. Thomas (2013). Looking beyond the rim of one's teacup: A multidisciplinary
682 literature review of Product-Service Systems in Information Systems, Business Management, and
683 Engineering & Design. *Journal of Cleaner Production* 51, 245-260.

684 Brambila-Macias, S., T. Sakao and C. Kowalkowski (2018). Bridging the Gap between Engineering
685 Design and Marketing: Insights for Research and Practice in Product/Service System Design.
686 *Design Science* 4.

687 Breslin, M. and R. Buchanan (2008). On the case study method of research. *Design Issues* 24(1), 36-
688 40.

689 Calabrese, A., G. Forte and N. L. Chiron (2018). Fostering sustainability-oriented service innovation
690 (SOSI) through business model renewal: The SOSI tool. *Journal of Cleaner Production* 201, 783-
691 791.

692 Christensen, B. T. and C. D. Schunn (2007). The relationship of analogical distance to analogical
693 function and preinventive structure: The case of engineering design. *Memory & Cognition* 35(1),
694 29-38.

695

696 Costa, N., L. Patrício, N. Morelli and C. L. Magee (2018). Bringing Service Design to manufacturing
697 companies: Integrating PSS and Service Design approaches. *Design Studies* 55, 112-145.
698 Dinar, M., J. J. Shah, J. Cagan, L. Leifer, J. Linsey, S. M. Smith and N. Vargas Hernandez (2015).
699 Empirical Studies of Designer Thinking: Past, Present, and Future. *Journal of Mechanical Design*
700 137(2), 1-13.
701 Durugbo, C., A. Tiwari and J. R. Alcock (2011). A review of information flow diagrammatic models
702 for product-service systems. *The International Journal of Advanced Manufacturing Technolgy* 52,
703 1193-1208.
704 Eisenbart, B., K. Gericke and L. T. M. Blessing (2013). An analysis of functional modeling approaches
705 across disciplines. *Artificial Intelligence for Engineering Design, Analysis and Manufacturing* 27,
706 281-289.
707 Eisenbart, B., K. Gericke and L. T. M. Blessing (2017). Taking a look at the utilisation of function
708 models in interdisciplinary design: insights from ten engineering companies. *Research in*
709 *Engineering Design* 28(3), 299-331.
710 Erden, M. S., H. Komoto, T. J. van Beek, V. D'Amelio, E. Echavarria and T. Tomiyama (2008). A
711 review of function modeling: Approaches and applications. *22Artificial Intelligence for*
712 *Engineering Design Analysis and Manufacturing*(147-169).
713 Ericsson, K. A. and H. A. Simon (1993). *Protocol Analysis Verbal Reports as Data*. Cambridge, MA,
714 MIT Press.
715 Erkoyuncu, J. A., C. Durugbo, E. Shehab, R. Roy, R. Parker, A. Gath and D. Howell (2011).
716 Uncertainty driven service cost estimation for decision support at the bidding stage. *International*
717 *Journal of Production Research* 51(19), 5771-5788.
718 Gero, J. S. (1990). Design Prototypes: A Knowledge Representation Schema for Design. *AI Magazine*
719 11(4), 26-36.
720 Gero, J. S. (2010). Generalizing design cognition research. DTRS8: Interpreting Design Thinking,
721 DAB documents, Sydney.
722 Gero, J. S. and U. Kannengiesser (2004). The situated function-behaviour-structure framework.
723 *Design Studies* 25, 373-391.
724 Gero, J. S. and U. Kannengiesser (2014). The Function-Behaviour-Structure ontology of design. *An*
725 *Anthology of Theories and Models of Design*. A. Chakrabarti and L. Blessing, Springer: 263-283.
726 Hay, L., A. H. B. Duffy, C. McTeague, L. M. Pidgeon, T. Vuletic and M. Grealy (2017). A systematic
727 review of protocol studies on conceptual design cognition: Design as search and exploration.
728 *Design Science* 3, 1-36.
729 Hubka, V. and W. E. Eder (1987). A scientific approach to engineering design. *Design Studies* 8(3),
730 123-137.
731 INCOSE (2015). *Systems Engineering Handbook: A Guide for System Life Cycle Processes and*
732 *Activities*, International Council on Systems Engineering.
733 Isaksson, O., T. C. Larsson and A. Öhrwall Rönnbäck (2009). Development of product-service
734 systems: challenges and opportunities for the manufacturing firm. *Journal of Engineering Design*
735 20(4), 329 – 348.
736 Jiang, H. (2012). Understanding Senior Design Students' Product Conceptual Design Activities. PhD
737 Thesis, National University of Singapore.
738 Jiang, H., J. S. Gero and C. C. Yen (2014). Exploring designing styles using Problem-Solution
739 indexes. *Design Computing and Cognition'12*. J. S. Gero, Springer: 85-101.
740 Kan, J. W. T., Z. Bilda and J. S. Gero (2007). Comparing entropy measures of idea links in design
741 protocols: Linkography entropy measurement and analysis of differently conditioned design
742 sessions. *Artificial Intelligence for Engineering Design, Analysis and Manufacturing* 21, 367-377.
743 Kan, J. W. T. and J. S. Gero (2018). Characterizing innovative processes in design spaces through
744 measuring the information entropy of empirical data from protocol studies. *Artificial Intelligence*
745 *for Engineering Design, Analysis and Manufacturing* 32(1), 32-43.
746 Kan, W. T. and J. S. Gero (2017). *Quantitative Methods for Studying Design Protocols*. Dordrecht,
747 Springer.
748 Kannengiesser, U. and J. S. Gero (2015). Is Designing Independent of Domain? Comparing Models of
749 Engineering, Software and Service Design. *Research in Engineering Design* 26, 253-275.

750 Kannengiesser, U. and J. S. Gero (2017). Can Pahl and Beitz' systematic approach be a predictive
751 model of designing? *Design Science* 3, e24.

752 Kannengiesser, U. and J. S. Gero (2019). Design thinking, fast and slow: A framework for
753 Kahneman's dual-system theory in design. *Design Science* 5, e10.

754 Kimita, K., T. Sakao and Y. Shimomura (2018). A failure analysis method for designing highly reliable
755 product-service systems. *Research in Engineering Design* 29(2), 143-160.

756 Komoto, H. and T. Tomiyama (2008). Integration of a service CAD and a life cycle simulator. *CIRP*
757 *Annals - Manufacturing Technology* 57(1), 9-12.

758 Lewandowski, M. (2016). Designing the Business Models for Circular Economy-Towards the
759 Conceptual Framework. *Sustainability* 8(1).

760 Love, T. (2000). Philosophy of design: a metatheoretical structure for design theory. *Design Studies*
761 21, 293-313.

762 Mason, K. and M. Spring (2011). The sites and practices of business models. *Industrial Marketing*
763 *Management* 40, 1032-1041.

764 Matschewsky, J., M. L. Kambanou and T. Sakao (2018). Designing and providing integrated
765 product-service systems – challenges, opportunities and solutions resulting from prescriptive
766 approaches in two industrial companies. *International Journal of Production Research* 56(6), 2150-
767 2168.

768 Maussang, N., P. Zwolinski and D. Brissaud (2009). Product-service system design methodology:
769 from the PSS architecture design to the products specifications. *Journal of Engineering Design*
770 20(4), 349-366.

771 Mc Neill, T., J. S. Gero and J. Warren (1998). Understanding conceptual electronic design using
772 protocol analysis. *Research in Engineering Design* 10(3), 129-140.

773 Medini, K. and X. Boucher (2019). Specifying a modelling language for PSS Engineering – A
774 development method and an operational tool. *Computers in Industry* 57(8-9), 787-796.

775 Meier, H., R. Roy and G. Seliger (2010). Industrial Product-Service Systems - IPS². *CIRP Annals -*
776 *Manufacturing Technology* 59(2), 607-627.

777 Morelli, N. (2003). Product-service systems, a perspective shift for designers: A case study: the design
778 of a telecentre. *Design Studies* 24(1), 73-99.

779 Mourtzis, D., S. Fotia, E. Vlachou and A. Koutoupes (2018). A Lean PSS design and evaluation
780 framework supported by KPI monitoring and context sensitivity tools. *International Journal of*
781 *Advanced Manufacturing Technology*, 94(5-8), 1623-1637.

782 Müller, P., N. Kebir, R. Stark and L. Blessing (2009). PSS Layer Method - Application to Microenergy
783 Systems. *Introduction to Product/Service-System Design*. T. Sakao and M. Lindahl. London,
784 Springer: 3-30.

785 Oliva, R. and R. Kallenberg (2003). Managing the transition from products to services. *International*
786 *Journal of Service Industry Management* 14(2), 160-172.

787 Osterwalder, A., Y. Pigneur and A. Smith (2010). *Business Model Generation*. Hoboken, NJ, John
788 Wiley & Sons, Inc.

789 Pahl, G. and W. Beitz (1996). *Engineering Design: A Systematic Approach*. London, Springer-Verlag.

790 Purcell, T. and J. S. Gero (1998). Drawings and the design process: A review of protocol studies in
791 design and other disciplines and related research in cognitive psychology. *Design Studies* 19(4),
792 389-430.

793 Qu, M., S. Yu, D. Chen, J. Chu and B. Tian (2016). State-of-the-art of design, evaluation, and
794 operation methodologies in product service systems. *Computers in Industry* 77, 1-14.

795 Regan, W. J. (1963). The Service Revolution. *Journal of Marketing* 47(July), 57-62.

796 Robson, C. (2002). *Real World Research - A resource for social scientists and practitioner-*
797 *researchers*. Malden, MA., Blackwell.

798 Rolls-Royce (2019). Rolls-Royce Holdings PLC Annual Report 2018. London, Rolls-Royce.

799 Roy, R. and D. Baxter (2009). Special Issue - Product-Service Systems. *Journal of Engineering*
800 *Design* 20(4), 327 – 431.

801 Sakao, T. (2019). Research Series Review for Transdisciplinarity Assessment—Validation with
802 Sustainable Consumption and Production Research. *Sustainability* 11(19).

803 Sakao, T. and M. Lindahl (2015). A method to improve integrated product service offerings based on

804 life cycle costing. *CIRP Annals - Manufacturing Technology* 64(1), 33-36.

805 Sakao, T. and H. Mizuyama (2014). Understanding of a Product/Service System Design: a Holistic
806 Approach to Support Design for Remanufacturing. *Journal of Remanufacturing* 4, 1-24.

807 Sakao, T. and A. Neramballi (2020). A product/service-system design schema: Application to big data
808 analytics. *Sustainability* 12.

809 Sakao, T., S. Paulsson and H. Mizuyama (2011). Inside a PSS Design Process: Insights through
810 Protocol Analysis. International Conference on Engineering Design, Copenhagen.

811 Sakao, T. and Y. Shimomura (2007). Service Engineering: A Novel Engineering Discipline for
812 Producers to Increase Value Combining Service and Product. *Journal of Cleaner Production* 15(6),
813 590-604.

814 Sakao, T., Y. Shimomura, E. Sundin and M. Comstock (2009). Modeling Design Objects in CAD
815 System for Service/Product Engineering. *Computer-Aided Design* 41(3), 197-213.

816 Sakao, T., A. Öhrwall Rönnbäck and G. Ölundh Sandström (2013). Uncovering Benefits and Risks of
817 Integrated Product Service Offerings – Using a Case of Technology Encapsulation. *Journal of
818 Systems Science and Systems Engineering* 22(4), 421 - 439.

819 Shimomura, Y., K. Kimita, T. Tateyama, F. Akasaka and Y. Nemoto (2013). A method for human
820 resource evaluation to realise high-quality PSSs. *CIRP Annals - Manufacturing Technology* 62(1),
821 471-474.

822 Shimomura, Y., Y. Nemoto and K. Kimita (2015). A method for analysing conceptual design process
823 of product-service systems. *CIRP Annals - Manufacturing Technology*.

824 Smith, D. J. (2013). Power-by-the-hour: the role of technology in reshaping business strategy at Rolls-
825 Royce. *Technology Analysis & Strategic Management* 25(8), 987-1007.

826 Song, T. (2014). Expert Vs. Novice: Problem Decomposition/Recomposition in Engineering Design.
827 PhD Thesis, Utah State University.

828 Song, T., K. Becker, J. Gero, S. DeBerard, O. Lawanto and E. Reeve (2016). Problem Decomposition
829 and Recomposition in Engineering Design: A Comparison of Design Behavior Between
830 Professional Engineers, Engineering Seniors, and Engineering Freshmen. *Journal of Technology
831 Education* 27(2), 37-56.

832 Stamatis, D. H. (1995). *Failure Mode and Effect Analysis: FMEA from Theory to Execution*.
833 Milwaukee, WI, ASQC Quality Press.

834 Stempfle, J. and P. Badke-Schaub (2002). Thinking in design teams - an analysis of team
835 communication. *Design Studies* 23(5), 473-496.

836 Teegavarapu, S., J. D. Summers and G. M. Mocko (2008). Case study method for design research: A
837 Justification. ASME 2008 International Design Engineering Technical Conferences & Computers
838 and Information in Engineering Conference, New York, ASME.

839 Tischner, U., M. Verkuijl and A. Tukker (2002). First Draft PSS Review. Cologne, Econcept.

840 Trevisan, L. and D. Brissaud (2016). Engineering models to support product-service system integrated
841 design. *CIRP Journal of Manufacturing Science & Technology* 15, 3-18.

842 Tukker, A. (2004). Eight Types of Product-Service System: Eight Ways to Sustainability? Experiences
843 from Suspronet. *Business Strategy and the Environment* 13, 246 – 260.

844 Tukker, A. (2015). Product services for a resource-efficient and circular economy - a review. *Journal
845 of Cleaner Production* 97, 76–91.

846 Tukker, A. and U. Tischner, Eds. (2006). New Business for Old Europe. Sheffield, Greenleaf
847 Publishing.

848 van Someren, M. W., Y. F. Bardard and J. A. C. Sandberh (1994). *The Think Aloud Method: A
849 Practical Guide to Modelling Cognitive Processes*. London, Academic Press.

850 Visser, W. (2009). Design: one, but in different forms. *Design Studies* 30, 187-223.

851 Yin, R. K. (2006). *Case Study Methods. Handbook of Complementary Methods in Education and
852 Research*. Mahwah, NJ, Erlbaum.

853 Yu, R., N. Gu, M. Ostwald and J. S. Gero (2015). Empirical support for problem–solution coevolution
854 in a parametric design environment. *Artificial Intelligence for Engineering Design, Analysis and
855 Manufacturing* 29(1), 33-44.

856 **Appendix A. Design brief for the PSS design session**

857 **Concerned company**

858 This design is carried out for the company who develops, manufactures and delivers drilling equipment
859 for, e.g., the construction business. The firm is named Company Alpha based in Sweden. Training, spare
860 parts delivery and MRO (maintenance, repair and overhaul) are part of the company's service portfolio.

861 **Client**

862 The PSS receiver is a general construction company named Company Beta who makes tunnels for roads
863 in mountains is the client of Company Alpha. Beta's client is the government (Ministry of Land,
864 Infrastructure, Transport and Tourism) in Japan. Beta's suppliers include two service suppliers,
865 Company Gamma and Company Delta, providing construction services at the tunnel site.

866 **Design background**

867 In much of the manufacturing industry today, numerous companies' business offerings are a combination
868 of physical products and services. Service here includes operation, maintenance, repair, upgrade, take-
869 back, and consultation. Manufacturers especially in developed countries today regard services as crucial.
870 The motivation of Company Alpha to provide PSSs is to create higher value for its customers/users.
871 Company Alpha sees potential to improve their PSSs.

872 **Design object**

873 The object addressed was one of the major PSSs (Product/Service Systems: a marketable set of products
874 and services capable of jointly fulfilling a user's needs) and provided by Company Alpha. Instead of
875 selling a physical product alone, i.e. a drilling machine, Company Alpha also delivers warranty of quality,
876 original spare parts in time, early information on the next MRO activity, grease and oil of adequate
877 quality, cleaning equipment, and a service binder. Lifecycle activities are early fault detection, MRO
878 prognostics and execution including scheduling, transport of spares to the field and take back of rotatable
879 and broken parts.

880 **Design task and deliverable**

881 A redesign task of the existing PSS by Company Alpha was to be completed in a group working in a
882 cooperative manner. The deliverable was requested in a form of rational improvement options of this
883 PSS and represent them on the provided PSS dimensions.

884 **Benchmark**

885 No information was given to the designers.

886 **Budget**

887 No constraint was given to the designers.

888

889 **Appendix B. Information provided to designers prior to the session**

890 The designers were provided opportunities to study the existing PSS through materials such as brochures
891 from Company Alpha explaining the overall information about the products and services and by visiting
892 a real tunnel construction site located in Japan. This site was observed by the designers, where the same
893 core product, Figure B1, and some of the services (spare parts delivery as shown in Figure B2) of the
894 PSS were provided by Company Alpha. Staffs of Company Alpha gave additional information about the
895 products and services to the designers at the site.

897 Figure B1. The drilling machine in use at a tunnel construction site

900 Figure B2. The spare parts at a tunnel construction

902 **Author biographies**

903 **Tomohiko Sakao** has been a professor at the Department of Management and Engineering, Linköping
904 University, Sweden, since 2007. His research interests include Ecodesign (Environmentally Conscious
905 Design) and Integrated Product Service Engineering. He has been Associate Editor for Ecodesign and
906 Product-Service Systems for the Journal of Cleaner Production since 2014. He has published in the
907 Journal of Cleaner Production, CIRP Annals – Manufacturing Technology, Research in Engineering
908 Design, Design Science, IEEE Expert, Computers and Industrial Engineering, the International Journal
909 of Production Research, and The Journal of Industrial Ecology, among others.

910 **John S. Gero** is a research professor in computer science and architecture at the University of North
911 Carolina, Charlotte. He has authored or edited 54 books and over 700 papers and book chapters in the
912 fields of design science, design computing, artificial intelligence, design cognition and design
913 neurocognition. His research has received over 23,000 citations. He has been a Visiting Professor of
914 architecture, civil engineering, cognitive science, computer science, design and computation and
915 mechanical engineering in the USA, UK, France and Switzerland. He is Chair of the conference series
916 *Design Computing and Cognition* and Co-Editor-in-Chief of the journal *Design Science*.

917 **Hajime Mizuyama** is a professor in the Department of Industrial and Systems Engineering, Aoyama
918 Gakuin University, Japan. He earned a Doctor of Engineering Degree from Kyoto University in 1999 in
919 the field of Manufacturing System Engineering, and his current research interests include human and
920 social computation, collective intelligence, crowdsourcing, prediction markets, CSCW (computer-
921 supported cooperative work), group decision making and learning, serious gaming and gamification,
922 among others.