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Bipartite projections have become a common way to measure spatial networks. They are now
used in many subfields of geography, and are among the most common ways to measure the
world city network, where intercity links are inferred from firm co-location patterns. Bipartite
projections are attractive because a network can be indirectly inferred from readily available
data. However, spatial bipartite projections are difficult to analyze because the links in these
networks are weighted, and larger weights do not necessarily indicate stronger or more impor-
tant connections. Methods for extracting the backbone of bipartite projections offer a solution
by using statistical models for identifying the links that have statistically significant weights.
In this paper, we introduce the open-source backbone R package, which implements several
backbone models, and demonstrate its key features by using it to measure a world city network.

Introduction

Spatial analysis and quantitative geography have a long
history of using network analysis (e.g., Haggett & Chorley,
1969; Neal, 2013b; Smith & Timberlake, 1995; Ter Wal &
Boschma, 2009). Although there are many ways to measure
spatial networks, bipartite projections have emerged as one
of the most widely used approaches. A bipartite projection
defines a network among a set of nodes (e.g., cities, coun-
tries) in which the strength of the connections between them
is measured using their number of shared attributes (e.g., the
number of firms located in two cities, the number of treaties
signed by two counties). This approach has become a de
facto method for measuring the world city network (Tay-
lor, 2001; Taylor & Derudder, 2016), but is also used in
other areas of geography at multiple geographic scales: at
the macro-scale bipartite projections measure networks of in-
ternational relations (e.g., Hafner-Burton, Kahler, & Mont-
gomery, 2009), at the micro-scale they measure neighbor-
hood social networks (e.g., Browning, Calder, Soller, Jack-
son, & Dirlam, 2017), and at a meta-scale they have been
used to study the structure of schools of thought in geogra-
phy (e.g., Peris, Meijers, & van Ham, 2018). Despite their
widespread adoption, using bipartite projections to measure
spatial networks is not always straightforward. In this paper,
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we introduce and demonstrate the open-source backbone R
package, which is a general-purpose set of commands for
constructing bipartite projections, focusing on its applica-
tions for spatial networks.

The paper is organized into four sections. In the first sec-
tion, we provide a brief introduction to bipartite projections,
reviewing their use in spatial analysis, noting key method-
ological challenges, and describing backbones as a solution.
In the second section, we introduce the backbone package,
providing an overview of its syntax and functions. In the
third section, we provide a replicable demonstration of the
backbone package in the context of spatial analysis, using
it to examine the world city network and identify the most
central cities. Finally, we conclude in the fourth section by
providing recommendations for using bipartite projections to
measure spatial networks.

Background
Introduction to bipartite networks and projections

A (unipartite) network is a collection of objects, called
nodes, and connections, called edges, between pairs of
nodes. It can be represented visually as a graph or sociogram,
where shapes represent nodes, which are connected by lines
representing edges. It can also be represented mathemati-
cally as a square matrix, where the rows and columns repre-
sent nodes, and the cells indicate whether (or how strong) the
edge is connecting the respective row and column nodes.

A bipartite network is a type of network composed of two
sets of nodes, which following Neal (2014a) we call agents
and artifacts, in which an edge can only connect an agent
to an artifact. Bipartite networks are often also called two-
mode networks because they contain two types of nodes, or


https://orcid.org/0000-0003-3076-4995
https://orcid.org/0000-0003-2457-9195
https://orcid.org/0000-0001-7700-6353

2 ZACHARY P. NEAL, RACHEL DOMAGALSKI, AND BRUCE SAGAN

affiliation networks because they describe how agents are af-
filiated with artifacts. They can be represented visually as a
graph or mathematically as a rectangular matrix B, where the
rows represent agents, the columns represent artifacts, and
cell B;; = 1 if agent i is connected to artifact j, and otherwise
is 0.

Projection
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Bipartite and bipartite projection networks

A bipartite network can be transformed into a unipartite
network via projection. The projection of a bipartite network
is computed as P = BB’, where B’ indicates the transpose of
B. So P is a symmetric square matrix, where the rows and
columns represent the agents in B and cell P;; contains the
number of artifacts shared by agents i and j for i # j. Cell
P;; contains the number of artifacts associated with agent i,
but in practice is ignored in analysis.'

Figure 1 illustrates a simple bipartite network (left) and
its projection (right), each represented as both a graph (top)
and matrix (bottom). The bipartite graph shows five agents
(squares) and their connections to four artifacts (circles),
while the bipartite matrix shows the pattern of agent-artifact
connections using Os and 1s. The row and column sums of
the bipartite matrix capture the total number of connections
of each agent and artifact, respectively. The bipartite projec-
tion graph shows these five agents connected to each other,
to the extent that they share artifacts. For example, A and B
are connected because they share artifact 1, while C and E
are connected twice (i.e., with an edge of weight 2) because
they share both artifact 3 and artifact 4. Notably, the fact that
C is associated with artifact 2 plays no role in the projection
because no other agent is associated with this artifact. The

bipartite projection matrix shows the number of shared arti-
facts for each pair of agents. Notably, the diagonal cells in
the projection matrix indicate each agent’s total number of
artifacts (e.g., C is associated with 4 artifacts in total), but
are not represented in the projection graph and are ignored in
subsequent network analysis.

Bipartite projection networks in spatial analysis

Bipartite projections appear in many contexts
(Vasques Filho & O’Neale, 2020), including spatial analysis,
where they can take two distinct forms depending on
whether the agents or artifacts are spatial entities (i.e.,
locations). In the locations-as-agents approach, a spatial
bipartite projection is a network of locations, such that a
pair of locations is connected to the extent that they share
artifacts. Calling it the “interlocking world city network
model,” this is the approach that Taylor (2001) proposed
and which launched a wave of research on world city
networks: major cities (the agents, which are locations) are
connected to the extent that they house branch offices of
the same advanced producer services firms (e.g., finance,
accounting, consulting; the artifacts). It rests on the logic
that offices of the same firm must communicate and interact
with one another, and therefore that when two cities have an
office of the same firm, there is likely interaction between
them. Spatial networks adopting the locations-as-agents
approach to measurement via bipartite projection are quite
common at multiple spatial scales, and have been used to
measure networks among urban locations connected by
twitter users (Poorthuis, 2018), bus routes (C. Liu & Duan,
2020), networks among cities connected by patents (Balland
& Rigby, 2017), banking syndicates (Pazitka, Wdjcik,
& Knight, 2019), networks among countries connected
by treaties (Hafner-Burton et al., 2009), trade (Straka,
Caldarelli, & Saracco, 2017), and corporate executives
(Heemskerk, Fennema, & Carroll, 2016).

In the locations-as-artifacts approach, a spatial bipartite
projection is a network of agents (often people or other social
actors), such that a pair of agents is connected to the extent
that they share locations. The locations-as-artifacts approach
is less common in geography because the spatial units play
only an instrumental role in the network, forging the links
between agents, but do not appear in the bipartite projection

'There are other ways to transform a dataset into a matrix
capturing the similarity among rows, including a Pearson correla-
tion coefficient, pairwise conditional probabilities (e.g., Hidalgo,
Klinger, Barabdsi, & Hausmann, 2007), and measures of interest-
ingness (e.g., Zweig & Kaufmann, 2011). However, bipartite pro-
jection typically refers to the transformation described by P = BB’
(Breiger, 1974). We restrict our focus to this bipartite projection
function, which is the most common approach and the only one
implemented in the backbone package.
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network itself. However, it is common in sociological re-
search, where the focus is on social networks emerging from
spatial interactions. For example, Browning et al. (2017) and
Xi, Calder, and Browning (2020) use this approach to mea-
sure and study the social network among households in Los
Angeles: households (the agents) are connected to the ex-
tent that they visit the same routine activity locations (e.g.,
school, work; the artifacts). This rests on the logic that
places offer opportunities for casual encounters which lead
to the formation of social bonds, and therefore when two
households frequent the same places, they are more likely
to interact with each other (Jacobs, 1961). Hidalgo et al.
(2007) adopted a similar locations-as-artifacts approach to
derive a ‘product space’ in which export products were con-
nected to the extent that they were exported by the same
countries. This follows the logic that “if [the production of]
two goods...require similar institutions, infrastructure, phys-
ical factors, technology, or some combination thereof, they
will tend to be produced [in the same location],” and there-
fore the spatial co-production of products indirectly captures
their production technology similarity (Hidalgo et al., 2007,
p. 484).

There is an important link between these two approaches.
When B is a bipartite network where the rows represent lo-
cations, then BB’ will yield a locations-as-agents bipartite
projection, while B'B will yield a locations-as-artifacts bi-
partite projection. Therefore, a single bipartite network can
be studied from both perspectives. For example, although
the world cities literature usually focuses on cities linked
by sharing firms, some have simultaneously examined a net-
work of firms linked by their co-location in cities (e.g., Neal,
2008; Van Meeteren, Neal, & Derudder, 2016). Similarly,
Straka et al. (2017) examined not only a network of coun-
tries linked by trading the same products, but also a network
of products that are traded by the same countries.

The key advantage to measuring spatial networks using
bipartite projections lies in the relative ease of data collec-
tion. For example, data about economic exchanges between
cities may not be available from official government sources,
and collecting such data directly is often impractical. How-
ever, data about where firms’ offices are located is readily
available, usually on the firms’ own websites. Accordingly,
bipartite projections offer a practical way for researchers to
indirectly approximate a city-level economic network. Simi-
larly, because social network analysis requires data from a
population (not a sample) and is sensitive to missingness,
it is often impractical to collect data on the social network
among residents of a large city. However, data about the
places residents visit or tweet about can be collected using
routine surveys, remote sensing, and digital trace measures.
Accordingly, bipartite projections also offer a practical way
for researchers to indirectly approximate social networks in
large geographic areas.

Challenges with bipartite projections

Although bipartite projections offer promise for measur-
ing spatial networks, they also present some significant chal-
lenges. Some of these challenges are conceptual or theoreti-
cal. For example, bipartite projection allows any rectangular
matrix of Os and 1s to be transformed into a symmetric square
matrix that resembles a network, but this does not necessarily
mean it can be interpreted and analyzed as a network (Derud-
der, 2020; Neal, 2020; Nordlund, 2004). The suitability of a
bipartite projection as an indirect approximation of a spatial
network hinges on the researcher’s ability to articulate a the-
ory about why the sharing of artifacts suggests a connection
between two locations, or about why the sharing of locations
suggests a connection between two agents, and a description
of the type of connection such a phenomenon represents. It is
important to emphasize that in the absence of such a theory,
bipartite projections are not appropriate for measuring spa-
tial networks. As a theoretical challenge, it is not resolvable
through the use of open-source software or indeed by any
methodological tools.

Determining whether or not using a bipartite projection
is an appropriate way to measure a spatial network is rarely
straightforward (Derudder, 2020; Neal, 2014b, 2020; Pazitka
et al., 2019). However, for the sake of clarity, consider two
contrasting cases. In the first case, a researcher collects data
in the form of a binary rectangular matrix where the rows are
countries, and the columns are colors. A cell in this matrix
contains a 1 if the country’s flag contains the respective color
(e.g. Busarea = 1 and Bysa green = 0). The researcher then
constructs a bipartite projection from these data and analyzes
it as a network. Although this exercise is mathematically
possible, it is unlikely that a network in which countries are
connected by shared flag colors has any real meaning; this
type of analysis should be avoided. In the second case, Tay-
lor (2001) collects data on firm locations in cities, then con-
structs a bipartite projection and analyzes it as a network in
which cities are connected to the extent that they share firms.
To justify this measurement approach he explicitly articu-
lates a theory, drawing on Sassen (1991), that multinational
firms share information through their global office networks
and therefore intra-firm office networks provide information
about flows between cities. Although other researchers may
disagree with this rationale (e.g., Pazitka et al., 2019), an ex-
plicit theory about the meaning of the network exists and can
be evaluated; this type of analysis is the essence of science
and should be pursued...with caution.

When a bipartite projection is a theoretically sound ap-
proach to measuring a spatial network, the researcher must
then confront several methodological challenges. A bipar-
tite projection “transforms the problem of analysing a bipar-
tite structure into the problem of analysing a weighted one,
which is not easier” (Latapy, Magnien, & Del Vecchio, 2008,
p. 34-35). As Figure 1 illustrates, all bipartite projections are
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weighted networks, where the weights capture the number
of artifacts shared by two agents. Although the analysis of
any weighted network can be complex (Newman, 2004), the
analysis of a weighted bipartite projection is particularly dif-
ficult because larger edge weights do not necessarily indicate
stronger or more important connections.

A standard solution to the challenge of analyzing a
weighted bipartite projection has been to transform it into
an unweighted network by applying a universal threshold:
edges with weights above the threshold are kept, while
weaker edges are discarded. However, this solution can
distort the structure of the network. First, it ensures that
“nodes with small [degree centrality] are systematically over-
looked,” yielding a network focused only on the agents that
are most well connected in the original bipartite network
(Serrano, Bogund, & Vespignani, 2009, p. 6484). This helps
explain why many studies of world city networks focus on
cities with strong connections such as New York and Lon-
don, while cities with weaker connections are ‘off the map’
(Robinson, 2002). Second, it ensures that “even a random
bipartite network — one that has no particular structure built
into it at all — will be highly clustered” (Watts, 2008, p. 128).
This helps explain why world city networks almost always
contain clusters or ‘cliques’ of cities (Derudder & Taylor,
2005). Finally, some network structures, such as open tri-
ads (e.g., a trade circuit) and stars (e.g., a hub-and-spoke
transportation arrangement) are not observable. This helps
explain why trade brokerage is rarely observed in city net-
works measured using bipartite projection (Neal, 2012), but
is readily observable in city networks measured using other
methods (Martinus, Sigler, lacopini, & Derudder, 2019).

Backbones of bipartite projections

To overcome these challenges, it is necessary to extract
the backbone of the weighted bipartite projection by using a
statistical test to identify the most important (i.e., statistically
significant) edges, which are preserved in an unweighted
backbone network. The statistical tests used by different
backbone models all aim to answer the same question: “Is the
weight of the edge between two agents stronger than would
be expected at random?” Answering this question involves
comparing an edge’s observed weight to the distribution of
weights it would have if some features of the original net-
work were preserved, but the network was otherwise random.

A large class of such backbone models already exist for
extracting the backbone of weighted networks that are not
the product of a bipartite projection (e.g., Dianati, 2016;
Serrano et al., 2009). Such natively-unipartite weighted net-
works arise frequently in spatial analysis, for example, in the
form of transportation networks where the weights of edges
directly capture flows from one location to another, and not
(as they would in a bipartite projection) the number of shared
artifacts. However, these models cannot be used for extract-

ing the backbone of bipartite projections because stronger
edges in a bipartite projection are not necessarily more im-
portant. Instead, it is necessary to use backbone extraction
models developed specifically for bipartite projections.

Three models for extracting the backbone of bipartite pro-
jections are implemented in the backbone package we in-
troduce below: the hypergeometric model (HM), the fixed
degree sequence model (FDSM), and the stochastic de-
gree sequence model (SDSM). The mathematical details of
these models are described by Domagalski, Neal, and Sagan
(2019), however they differ solely in how they define “at ran-
dom” when asking “Is the weight of the edge between two
agents stronger than would be expected at random?” Here,
we briefly sketch their definition of random and its implica-
tions for their scope of application.

The statistical test used by the HM to determine when an
edge weight is statistically significant controls for the row
sums of B (i.e., the number of artifacts associated with each
agent), but not for the column sums of B (i.e., the number
of agents associated with each artifact). It is most suitable
for application to cases where the column sums are (nearly)
equal, or is unimportant, and therefore do not need to be con-
trolled. In practice, this is likely to be rare in spatial data. For
example, there is substantial variation in the number of cities
(agents) in which different firms (artifacts) are located; some
firms are big and maintain locations in many cities, while
other firms and small and maintain locations in just a few
cities. This variation likely matters for making inferences
about which cities have economic interactions.

The statistical test used by the FDSM is more restrictive,
controlling for both the row and column sums of B (Zweig
& Kaufmann, 2011). The FDSM is more appropriate than
the HM for most spatial data because it is able to control
for variation in both these features of the data. However,
this additional control comes at a high computational cost;
the FDSM relies on a numerical simulation that can require
a significant and sometimes impractical amount of time to
extract the backbone of a large bipartite projection.

Finally, the statistical test used by the SDSM it approxi-
mately controls for both the row and column sums of B (Neal,
2014a). By approximately controlling for both features of
the data, the SDSM yield backbones that are similar to those
generated by FDSM, but does so more efficiently. Therefore,
the SDSM is often a reasonable choice for the extraction of
backbones from most bipartite projections, particularly when
the FDSM is computationally impractical.

Each of these backbone models has previously been used
to study spatial networks. Neal (2013a) used the HM to
study linkages formed in the world city network by a pro-
cess through which firms are sorted into cities. In contrast
to a conventional world city network dominated by global
financial capitals, he described a network structured by na-
tional institutions such as the US Federal Reserve banking
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system. Van Meeteren et al. (2016) used the SDSM to study
agglomeration patterns, finding that advanced producer ser-
vice firms agglomerate intra-nationally and pursue sector-
specific global location strategies. Finally Poorthuis (2018)
used the FDSM to identify neighborhoods as clusters of lo-
cations tagged by twitter users. Although backbone models
are increasingly widely used to approximate spatial networks
from bipartite projections, progress and transparency have
been limited by the lack of software that implements these
models.

The backbone package

The backbone package is an open-source collection of
commands for R that facilitates the analysis of bipartite pro-
jections (Domagalski et al., 2019; R Core Team, 2018). It
is freely available from the Comprehensive R Archive Net-
work (CRAN). To install, load, and verify the version of the
package, type:

> install.packages('"backbone") #install
> library(backbone) #load

> sessionInfo() #verify

R version 4.0.2 (2020-06-22)

other attached packages:

[1] backbone_1.2.2

This paper describes backbone v1.2.2 running in R
v4.0.2, and the example is intended for use with these or
newer versions. We present only the package’s primary func-
tions, with a focus on their application for spatial networks.
Details about these functions’ formal mathematical specifi-
cation are described by Domagalski et al. (2019) and com-
plete documentation of all commands available in the pack-
age is available by typing:

> ?backbone #for documentation
> vignette("backbone") #for an example

The backbone package is composed of three types of
functions. First, the universal () function constructs con-
ventional weighted bipartite projections, as well as sim-
ple backbones using a universal threshold. Second, the
hyperg(), sdsm(), and fdsm() functions derive probabil-
ity distributions that can be used to test the statistical sig-
nificance of edges in a weighted bipartite projection using
the hypergeometric, SDSM, and FDSM models, respectively.
Finally, the backbone.extract() function constructs a

backbone network that contains only the statistically signif-
icant edges. Each of these functions offer several optional
parameters to customize their output; we illustrate the most
commonly used options in the next section.

Using backbone to examine the World City Network

The backbone package is a general-purpose set of com-
mands designed to facilitate the analysis of bipartite projec-
tions. In the context of spatial analysis, it can be used for
research adopting a locations-as-agents approach, to infer
the spatial network among a set of locations from data on
their shared characteristics. However, it can also be used for
research adopting a locations-as-artifacts approach, to infer
a social network among a set of actors from data on their
shared locations. To illustrate backbone’s application in one
specific spatial analytic context, in this section we demon-
strate its use to examine the world city network and iden-
tify the most central cities in it. We selected this context
for illustration for two reasons. First, the topic of world city
networks has been the subject of many recent Geographical
Analysis articles (e.g., Derudder, 2020; X. Liu & Derud-
der, 2012; Neal, 2012, 2020; Taylor, 2001), some of which
are among the journal’s most highly cited (Franklin, 2020).
Second, the analyses can be easily replicated by readers be-
cause one widely-studied bipartite dataset concerning world
cities is publicly available. We intend the example analyses
presented below to serve as an illustration of the backbone
package, and not necessarily to make novel contributions to
the substantive literature on world city networks. These anal-
yses can be replicated by pasting the code below into R, how-
ever the complete replication R script and data are also avail-
able at https://osf.io/r2evn/.

Data

The Globalization and World Cities (GaWC) “Data Set
117 was originally collected in 2000, and records the extent
of 100 advanced producer services firms’ presence in each of
315 large cities (Taylor, Catalano, & Walker, 2002). These
data served as the foundation for one of the earliest and most
comprehensive empirical studies of the world city network
(Taylor, 2004), and as a template for a substantial body of
empirical research conducted by those associated with the
GaWC research network.

Formally, the data set takes the form of a rectangular
315 x 100 bipartite matrix B, in which B;; contains the ‘ser-
vice value’ of firm j’s presence in city i. The service values
are an ordinal scale intended to capture the importance or
extent of a firm’s presence in a city, and ranged from O (no
presence) to 5 (global headquarters), with a value of 2 repre-
senting an presence that provides “the ‘normal’ or ‘typical’
service level of the given firm in a city” (Taylor et al., 2002,
p. 2370). These publicly available data can be loaded into
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R directly from the GaWC website (as of 5 November 2020)
and converted to matrix form:

> B <- read.csv(file="https://www.lboro.ac.
uk/gawc/datasets/dall.csv",
header = TRUE,
row.names = 1)

> B <- as.matrix(B)

The backbone package is designed for use with binary bi-
partite data, so for this illustration we transform the original
ordinal B into a binary B’ such that

, 1 ifBl'jZ3
Ylo ifBj<2

This transformation can be achieved, and the cities that con-
tain no firms with a larger-than-typical presence can be ex-
cluded, by typing:

> B[B <= 2] <- O
> B[B >= 3] <- 1
> B <- B[rowSums(B) != 0,]

This transformation allows us to focus only on firms that
maintain a larger-than-typical presence in a given city, and
only on the 196 cities that contain at least one such firm.?
For convenience, we use B to refer to this binary matrix in
the remainder of this section.

Once the bipartite data has been loaded and transformed,
it is possible to examine some of its features. For example, it
is possible to look at the pattern of firms’ presence in cities.

> B[114:117,8:11]
Horwath KPMG Summit...Baker RSM

MELBOURNE 0 1 0 1
MEXICO CITY 0 1 o @
MIAMI 1 1 0 1
MILAN 0 0 0 1

This command shows the portion of B that includes the 114®
to 117" cities, and 8" to 11" firms. The output shows
that while the accounting firms of KPMG and RSM main-
tained offices in several of these cities, Horwath and Summit
International+Baker Tilley did not.

Two key characteristics of any bipartite data are the row
sums and column sums. In these data, the row sums indi-
cate the number of firms located in a city, while the column
sums indicate the number of cities in which a firm maintains
a presence.

> rowSums (B) ["AMSTERDAM"]
AMSTERDAM
29
> rowSums (B) ["NEW YORK"]
NEW YORK
74
> colSums(B) ["KPMG"]
KPMG
76
> colSums(B) ["HSBC"]
HSBC
43

For example, there are 74 firms that maintain a larger-than-
typical presence in New York, but only 29 firms that main-
tain a larger-than-typical presence in Amsterdam. Likewise,
KPMG maintains a larger-than-typical presence in 76 cities,
while HSBC maintains a larger-than-typical presence in only
43 cities. Figure 2 illustrates these values for all cities and
firms in these data. Specifically, Figure 2A shows that while
most cities contain fewer than 20 firms, some cities contain
many more firms. Similarly, Figure 2B shows that while
most firms maintain a presence fewer than 40 cities, some
firms maintain a presence of many more cities.

Weighted bipartite projections

The conventional “specification of the world city net-
work” used in GaWC research involves computing a
weighted bipartite projection P from the original bipartite
data B Taylor (2001).

> P <- B %*% t(B)

Following this specification, the cities are treated as agents
and the firms are treated as artifacts. The resulting square

>The transformation of the original valued bipartite data into
binary bipartite data means that the analyses reported below may
differ from those reported by researchers who do not apply such a
transformation (e.g., Taylor, 2004). Our goal in this section is to
illustrate the functionality of the backbone package, and not neces-
sarily to replicate any particular analysis. Neal (2017) described an
extension of one of the models in the backbone package for ordinal
bipartite data.
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The distribution of (A) row sums and (B) column sums
in the GaWC Dataset 11.

matrix P is treated as a weighted world city network in which
the strength of the connection between a pair of cities is mea-
sured by their number of co-located firms. For example, ex-
amining the matrix cell corresponding to the connection be-
tween Amsterdam and New York

> P["AMSTERDAM", "NEW YORK"]
[1] 26

indicates that 26 firms maintain a presence in both cities, and
might be interpreted as evidence that they interact economi-
cally.

Many analyses of the world city network focus on cities’
degree centrality, or what is sometimes called a city’s “global
network centrality” (GNC). This value measures a city’s to-
tal number or strength of connections in the network, and is
interpreted as an indicator of a city’s status or importance in
the network.

> sort(rowSums(P), decreasing = TRUE)[1:5]
LONDON NEW YORK PARIS HONG KONG SINGAPORE
1496 1403 1043 1032 913

In these data, London and New York have the greatest cen-
trality, occupying the top tier of the urban hierarchy as what
GaWC research calls Alpha++ cities (Beaverstock, Smith, &
Taylor, 1999). They are followed by a second tier of Alpha+
cities that include Paris, Hong Kong, and Singapore. This
approach appears to successfully identify what nearly any
scholar of globalization would regard as the cities “used by
global capital as basing points in the spatial organization and
articulation of production and markets” (Friedmann, 1986, p.
71).

However, these values and this weighted spatial network
are less informative than they might seem. The centrality val-
ues derived from this network are almost perfectly correlated
with the number of firms located in each city (i.e. the row
sums of B).

> cor(rowSums(P), rowSums(B))
[1] 0.9767704

The high correlation indicates that this approach to identi-
fying central cities in a world city network is actually just
identifying cities that contain many firms. This occurs be-
cause measuring a world city network using a weighted bi-
partite projection of firm locations guarantees that cities with
many firms will have stronger connections and larger central-
ity values (Neal, 2012). If world city researchers were simply
interested in finding cities with many firms, there are much
simpler ways achieve this (e.g., counting a city’s number of
firms).

The backbone of the world city network

In practice, world city researchers are interested in some-
thing more nuanced: studying cities that are central in a
network of economic interactions. The challenge is that
although firm co-location may provide information about
which cities interact economically, firm co-location is not the
same as economic interaction. The backbone package can
be used to make inferences about which cities are engaged
in economic interaction based on firm co-location patterns.
Specifically, it can be used to estimate whether the number
of firms co-located in two cities is large enough to warrant
concluding that the two cities are engaged in meaningful eco-
nomic interaction. The backbone of the world city network is
a binary network in which pairs of cities are connected only
if their number of co-located firms suggests they are engaged
in meaningful economic interaction, and therefore provides
a simplified and potentially more focused depiction of the
world city network. The backbone package offers four ways
to make such inferences and extract this backbone.

Using universal thresholds

The universal() function offers the simplest approach
to extracting the backbone of the world city network by ap-
plying a single researcher-specified threshold value to all city
pairs. Given a threshold T, any pair of cities with more than
T co-located firms is defined as connected in the network.
For example, choosing T = 0 implies that any number of
firm co-locations is interpreted as evidence of economic in-
teraction between a pair of cities. Extracting the backbone
using a threshold of 0 is achieved by typing:
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> universal® <- universal(B, upper = 0,
bipartite = TRUE)

This command extracts the backbone from an input dataset B,
which is a bipartite matrix (i.e., bipartite = TRUE), by ap-
plying an upper threshold of O (i.e., upper = 0), and stores
itin a new matrix universal®. Once extracted, it is possible
to examine the features of this universal threshold backbone:

> table(universal®$backbone)
0 1
21506 16910
> mean(universal®$backbone)
[1] 0.4401812
> sort(rowSums (universal®$backbone),
decreasing = TRUE)[1:5]
LONDON NEW YORK PARIS HONG KONG LOS ANGELES

191 185 175 171 171
> cor (rowSums (universal®$backbone),
rowSums (B))

[1] 0.7407175

Unlike the weighted bipartite projection, the backbone is a
binary network; pairs of cities either are (N = 16910) or
are not (N = 21506) connected. A backbone extracted using
T = 0 is quite dense (44% of possible inter-city connections
are present) because it treats even small numbers of firm co-
locations as evidence of economic interaction between cities.
As a result, the most central cities are still obviously large
cities that contain many firms, and indeed, cities’ centrality
in this network remains highly correlated (r = 0.74) with
their total number of firms.

A sparser network containing fewer inter-city connections
can be obtained using a higher (i.e. more stringent) thresh-
old that retains only particularly strong connections (e.g.,
Derudder & Taylor, 2005). For example, the universal ()
function can be used to extract a backbone where T = 25,
and therefore only cities with more than 25 co-located firms
are counted as connected:

> universal25 <- universal(B, upper = 25,
bipartite = TRUE)
> mean(universal25$backbone)
[1] 0.001665973
> sort(rowSums(universal25$backbone),
decreasing = TRUE) [1:5]

LONDON NEW YORK HONG KONG PARIS CHICAGO

15 12 5 5 3
> cor (rowSums (universal25$backbone),
rowSums (B))

[1] 0.8381523

This more stringent universal threshold is indeed much less
dense (only 0.16% of possible edges are present). However,
it still remains focused on the largest cities, whose centrality
is highly correlated (r = 0.84) with the total number of firms.

Both of these approaches involve an arbitrarily-selected
threshold, however the universal () function can also be
used to apply a universal threshold that is based on charac-
teristics of the weighted bipartite projection P. For example,
it is possible to extract a backbone in which cities are con-
nected if they have more than two standard deviations above
the average number of co-located firms.

> universal.meansd <- universal(B, upper =
function(x)mean(x)+2*sd(x),
bipartite = TRUE)

> mean(universal .meansd$backbone)

[1] 0.03092461

> sort(rowSums (universal .meansd$backbone),

decreasing = TRUE)[1:5]
LONDON NEW YORK HONG KONG PARIS SINGAPORE

64 61 51 49 42
> cor(rowSums (universal.meansd$backbone),
rowSums (B))

[1] 0.9655334

This backbone is also lower density (3% of possible edges
are present), but once again it focuses only on large cities,
whose centrality is nearly identical to their total number of
firms (r = 0.97).

These examples illustrate that backbones extracted using a
universal threshold and the universal () function will tend
to focus on cities that contain many firms, which is not partic-
ularly illuminating. This occurs because the universal thresh-
old approach to backbone extraction does not take into ac-
count variations in the number of firms located in each city.
By not controlling for these variations (which are substan-
tial in these data; see figure 2A) when deciding whether two
cities are connected, it privileges cities that contain many
firms. In these data, because there are large variations in
the number of firms located in each city that must be con-
trolled for, a universal threshold backbone is not appropri-
ate. More generally, universal threshold backbones and the
universal() function are appropriate only when there is
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limited variation in the row sums of B.

Using the hypergeometric model (HM)

In contrast to the universal threshold approach, the hyper-
geometric model does control for variations in the number of
firms located in each city (i.e. the row sums of B). It does
so by using a unique threshold for each pair of cities in the
network, rather than simply applying the same threshold to
every pair. Extracting a backbone using the hypergeometric
model involves two steps.

> hyper <- hyperg(B)

> hyperbb <- backbone.extract Chyper,
alpha = 0.1,
signed = FALSE)

The hyperg() function estimates an HM probability dis-
tribution like the one shown in Figure 3, for each pair of cities
in the network, storing the results in a backbone-class object
called hyper3. The backbone.extract() function uses
these distributions to identify statistically significant edges,
storing the resulting backbone network in a matrix called
hyperbb. The signed = FALSE option indicates that the
backbone should only contain edges that are statistically sig-
nificantly stronger than would be expected at random. The
significance tests used by the backbone package are two-
tailed, so for the backbones which focus only on strong
edges (i.e. those in the upper tail of the distribution), the
alpha = 0.1 option ensures that the tests use the conven-
tional @ = 0.05 (i.e. 0.1 /2) as the threshold for statistical
significance.

Before examining the entire HM backbone, consider how
the HM works for a single city-pair: Amsterdam and New
York. We know that Amsterdam and New York have 26 co-
located firms. The HM is designed to test whether this value
is statistically significant controlling for the number of firms
in each city. The green curve in Figure 3 shows the number
of firms that would be co-located in Amsterdam and New
York if all firms located in cities randomly, but the number
of firms in each city did not change. The 26 co-located firms
actually observed in Amsterdam and New York is in the up-
per tail of this distribution, which indicates that it is much
larger than would be expected at random (i.e. it is statisti-
cally significant). Therefore, the HM backbone includes a
link between Amsterdam and New York.

Examining the backbone extracted using HM highlights

how it differs from the weighted projection and universal
threshold backbones in several ways.

' \ \ ' | \ \ '
14 17 20 23 26 29 32 35
Number of firms shared by Amsterdam & New York
Figure 3

Null weight distributions generated using the backbone
package on from the GaWC Dataset 11

> mean Chyperbb)

[1] 0.09225323

> sort (rowSums Chyperbb),
decreasing = TRUE)[1:5]

INDIANAPOLIS PORTLAND MELBOURNE

60 54 52
LYON AUCKLAND
49 44

> cor (rowSums Chyperbb), rowSums(B))
[1] 0.3039028

First, it is less dense than the 7 = 0 backbone, but denser
than the 25-threshold or mean-threshold backbones, contain-
ing 9.2% of possible edges. That is, this model does reduce
the complexity of the original network, but still preserves
many intercity connections. Second, and perhaps more no-
tably, because the HM controls for the number of firms in
each city when deciding which intercity connections to keep,
it does not simply focus on cities that are large and contain
many firms. Indeed, while the most central cities are major fi-

3These probability distributions are generated by backbone in
the background as mathematical objects, but are not displayed in
graphical form.
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nancial centers, they are not the obvious ones typically high-
lighted in world cities research. Moreover, cities’ centrality
and total firm count are only modestly correlated (r = 0.30),
indicating that cities’ centrality in this network provides in-
formation that is unique from what could have been learned
from simply counting their number of firms.

Although the HM does control for the number of firms in
each city (i.e. the row sums of B), it does not control for
the number of cities where each firm maintains a presence
(i.e. the column sums of B). However, there is substantial
variation in the number of cities where each firm maintains a
presence (see Figure 2B), and not controlling for this vari-
ation can distort decisions about whether a particular city
pair’s number of co-located firms is significant. For exam-
ple, if Firm X maintains a presence in every city, then ob-
serving that it is co-located in Amsterdam and New York is
trivial. In contrast, if Firm Y maintains a presence in only
two cities then observing that it is co-located in Amsterdam
and New York is quite noteworthy. Because these data con-
tain not only large variations in the number of firms in each
city (see figure 2A) but also large variations in the number of
cities where each firm maintains a presence (see figure 2B),
the HM is not appropriate. More generally, a HM backbone
and the hyperg () function are appropriate only when there
is variation in the row sums of B, but limited variation in the
column sums of B.

Using the fixed degree sequence model (FDSM)

In contrast to the hypergeometric model, the fixed degree
sequence model controls for variations in both the number
of firms located in each city (i.e. the row sums of B) and
the number of cities where each firm maintains a presence
(i.e. the column sums of B). Extracting a backbone using the
fixed degree sequence model also involves two steps.

> set.seed(5) #optional
> fdsm <- fdsm(B, trials = 10000,
progress = TRUE)
> fdsmbb <- backbone.extract(fdsm,
alpha = 0.1,
signed = FALSE)

The first line is not required, but will ensure that read-
ers’ FDSM results, which are generated via simulation, will
match what is reported below. The fdsm() function esti-
mates a FDSM probability distribution for each edge in the
network, but unlike the hyperg() function above, allows
some options. FDSM distributions cannot be computed ex-
actly, and therefore must be derived via numerical simula-
tion. The trials = 10000 option specifies the number of
simulations to perform; more simulations will yield more

precisely estimated distributions, but will also take longer.
The progress = TRUE option displays a progress bar while
the simulations run. The backbone.extract() function
works similarly: it takes the resulting £dsm object and creates
a backbone network called £dsmbb in which connections be-
tween cities are present if they are statistically significantly
strong using a two-tailed @ = 0.1 test.

Again, before examining the entire FDSM backbone, con-
sider how the FDSM determines whether the number of co-
located firms is statistically significant for a single city-pair.
The red curve in Figure 3 shows the number of firms that
would be co-located in Amsterdam and New York if all firms
located in cities randomly, but the number of firms in each
city did not change and the number of cities where each firm
maintains a presence did not change. Notably the FDSM dis-
tribution is both narrower than, and to the right of, the HM
distribution. These differences arise because HM and FDSM
control for different characteristics of the data. The 26 co-
located firms actually observed in Amsterdam and New York
is in the middle of the FDSM distribution, which indicates
that this value is about what might be expected even under
random conditions (i.e. not statistically significant). There-
fore, the FDSM backbone does not include a link between
Amsterdam and New York.

The backbone extracted using FDSM is noticeably differ-
ent from all the other networks.

> mean(fdsmbb)
[1] 0.02243857
> sort (rowSums (f£dsmbb) ,

decreasing = TRUE)[1:5]
KANSAS CITY CHARLOTTE INDIANAPOLIS

24 21 20

RICHMOND GRENOBLE

20 19
> cor (rowSums (fdsmbb), rowSums(B))
[1] -0.0291214

First, it has a very low density, containing only 2.2% of
possible edges. Second, the cities with the highest centrality
are medium-sized regional centers. Moreover, cities’ central-
ity and total firm count are uncorrelated (r = —0.03), indicat-
ing that the FDSM backbone is detecting interaction patterns
unrelated to a city’s number of firms.

The original bipartite firm location data are known to con-
tain substantial variation in both number of firms in each
city (see figure 2A) but also large variations in the number
of cities where each firm maintains a presence (see figure
2B). Because the FDSM controls for variation in these two
characteristics, it is an appropriate model to use for back-
bone extraction in this case. Using it yields a world city net-
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work backbone that contains only those intercity links that
are not simply the product of these characteristics. That is,
the FDSM backbone allows world city researchers to look
beyond these characteristics to identify pairs of cities with
unexpectedly-large numbers of firm co-locations, which are
potentially indicative of unexpectedly-strong economic inter-
action. More generally, the FDSM and fdsm() function are
appropriate when there is variation in both the row sums of
B and the column sums of B, which is likely to occur in most
empirical bipartite data. However, although FDSM may of-
ten be the most suitable model for many empirical data, its
simulation-based approach can be impractically slow when
applied to bipartite data containing many agents and artifacts.

Using the stochastic degree sequence model (SDSM)

The stochastic degree sequence model offers a fast ap-
proximation of the FDSM by approximately controlling for
variations in both the number of firms located in each city
(i.e. the row sums of B) and the number of cities where
each firm maintains a presence (i.e. the column sums of B).
Extracting a backbone using the stochastic degree sequence
model involves two steps.

> sdsm <- sdsm(B)

> sdsmbb <- backbone.extract(sdsm,
alpha = 0.2,
signed = FALSE,
narrative = TRUE)

The sdsm() function estimates the SDSM probabil-
ity distribution for each edge in the network.  The
backbone.extract() function is supplied the resulting
sdsm object. In this example, we use @ = 0.2 rather than
a = 0.1 for reasons that we illustrate below. Finally, we also
include the narrative = TRUE option, which can be used
when extracting HM and FDSM backbones also. This option
generates sample narrative text to be used in a manuscript’s
methods section:

From a bipartite graph containing 196
agents and 100 artifacts, we obtained

the weighted bipartite projection, then
extracted its binary backbone using

the backbone package (Domagalski, Neal,

& Sagan, 2020). Edges were retained

in the backbone if their weights were
statistically significant (alpha = 0.2)
by comparison to a null Stochastic Degree
Sequence Model (Neal, 2014).

Domagalski, R., Neal, Z. P., and Sagan,
B. (2020). backbone: An R Package for
Backbone Extraction of Weighted Graphs.
arXiv:1912.12779 [cs.SI]

Neal, Z. P. (2014). The backbone of
bipartite projections: Inferring
relationships from co-authorship,
co-sponsorship, co-attendance and other
co-behaviors. Social Networks, 39, 84-97.
https://doi.org/10.1016/j.socnet.2014.06.001

Again, before examining the entire SDSM backbone, con-
sider how it determines whether the number of co-located
firms is statistically significant for a single city-pair. The blue
curve in Figure 3 shows the number of firms that would be
co-located in Amsterdam and New York if all firms located
in cities randomly, but on average the number of firms in
each city did not change and on average the number of cities
where each firm maintains a presence did not change. The
SDSM distribution is wider and flatter than the FDSM distri-
bution, but has nearly the same midpoint. These differences
arise because the SDSM distribution is an approximation of
the more targeted FDSM distribution. As an approximation
with a wider distribution, the SDSM is less statistically pow-
erful, therefore we use a more liberal threshold of statistical
significance so that it will more closely mirror the FDSM.
The 26 co-located firms actually observed in Amsterdam and
New York is in the middle of the SDSM distribution, which
indicates that this value is about what might be expected even
under random conditions (i.e. not statistically significant).
Therefore, the SDSM backbone does not include a link be-
tween Amsterdam and New York.

Because the SDSM backbone is an approximation of the
FDSM backbone, the two share many features in common.

> mean(sdsmbb)
[1] 0.01973136
> sort (rowSums (sdsmbb),
decreasing = TRUE)[1:5]
KANSAS CITY CHARLOTTE RICHMOND INDIANAPOLIS
24 21 20 18
BORDEAUX
17
> cor (rowSums (sdsmbb), rowSums(B))
[1] -0.1062661
> cor(as.vector(fdsmbb),as.vector(sdsmbb))
[1] 0.9301515

Like the FDSM, the SDSM backbone is a sparse network,
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in which medium-sized regional centers are the most central
cities, and cities’ centrality and total firm count are uncor-
related (r = —0.11). Importantly, the pattern of intercity
links in the SDSM and FDSM backbones are highly corre-
lated (r = 0.93).

These results highlight that the SDSM offers a close ap-
proximation of the FDSM. In different ways, both control
for the number of firms located in each city (i.e. the row
sums of B) and the number of cities where each firm main-
tains a presence (i.e. the column sums of B), however as
an approximation the SDSM does so more quickly. For ex-
ample, extracting a FDSM backbone from these data on a
2.3 GhZ processor requires approximately 4 minutes, while
extracting an SDSM backbone requires less than one sec-
ond. Therefore, the factors guiding a choice between SDSM
and FDSM backbones are not methodological, but practical
(how large is the data?) and theoretical (how strict should the
controls be?). When the data are small and/or strict control
is desired, FDSM is more appropriate, wile when the data
are large and/or less strict control is suitable, SDSM is more
appropriate.

Discussion

Bipartite projections offer a way to indirectly measure
spatial networks using data that is often relatively easy to
obtain. For this reason, bipartite projections are now among
the most common ways to measure the world city network
(Taylor & Derudder, 2016), and are frequently used to mea-
sure other spatial networks at the global (e.g., Hafner-Burton
et al., 2009; Heemskerk et al., 2016; Straka et al., 2017) and
local (Browning et al., 2017; Xi et al., 2020) scales, as well
as to study the structure of geography as a discipline (Peris
et al., 2018). It is often helpful to focus on the backbone of
bipartite projections, which preserve only the most impor-
tant connections between nodes. Multiple backbone mod-
els have already been used for spatial analysis (e.g., Neal,
2013a; Poorthuis, 2018; Van Meeteren et al., 2016), however
a lack of software implementing these models has limited
their use. In this paper, we have introduced the backbone
package for R, which is an open-source set of commands
for extracting the backbone of bipartite projections, and have
demonstrated its use for spatial analysis by applying it to data
on firms’ locations in cities to understand the world city net-
work. We conclude by offering some recommendations for
using backbone for spatial analysis, commenting on its limi-
tations, and identifying future directions for similar software
development.

When using bipartite projections to measure spatial net-
works, whether with the backbone package or with other
tools, the most important requirement is to have a theory.
The backbone package will transform almost any data into
something that resembles a network, so it is essential that
this transformation be grounded in a theory about why shar-

ing artifacts (e.g., firms, treaties, activity spaces) provides
information about interaction and specifically what kind of
interaction it provides information about. The theory may be
contested or may turn out to be wrong (after all, the purpose
of science is to identify wrong theories), but it should at least
be explicitly stated.

Even after offering an explicit theory about the suit-
ability of a bipartite projection for network measurement,
researchers have many degrees of freedom when using
backbone to measure spatial networks with bipartite pro-
jections. Although methodological research on these top-
ics is ongoing, Figure 4 offers a preliminary guide to select-
ing among multiple backbone extraction models. Universal
threshold backbones are appropriate when the bipartite data
lacks any meaningful variation in the row and column sums,
for example, if different cities did not contain different num-
bers of firms and different firms did not maintain a presence
in different numbers of cities. When a universal threshold
backbone is used, it is still necessary to choose the particular
threshold value based on theory: how many shared artifacts
(e.g. co-located firms) does theory suggest matters when it
comes to agents (e.g. cities) interacting? Hypergeometric
model (HM) backbones are suitable when there is variation
in the row sums, but no meaningful variation in the column
sums. Finally, fixed and stochastic degree sequence model
(FDSM and SDSM) backbones are suitable when there is
meaningful variation in both the row and column sums, with
the SDSM offering a practical approximation when the data
is large and computational time is a consideration.

There are a number of future directions for research on
the extraction of backbones from bipartite projections. First,
to date there have been limited attempts to formally validate
these backbone models, that is, to determine which back-
bone model (if any) yields the “correct” network. Formal
validation is challenging because it requires both spatial bi-
partite data to which backbone can be applied, and an inde-
pendently measured “true” spatial network against which the
resulting backbone can be compared. Preliminary work has
attempted to validate bipartite projections as a measurement
of world city networks by comparing them to airline traffic
networks (Taylor, Derudder, & Witlox, 2007), banking net-
works (Pazitka et al., 2019), and alternative backbone models
(Neal, 2014b), but a more general validation of spatial bipar-
tite projections is needed. Second, models for the extraction
of backbones from bipartite projections exist only for binary
bipartite data, and for projections generated via matrix mul-
tiplication (i.e., P = BB’). However, binary data is some-
times valued; for example, the original GaWC Dataset 11
contains information not only about the presence or absence
of firms in cities, but also the size of their presence on a 0
to 5 scale. Likewise, bipartite projections can be generated
using mathematical functions including pairwise conditional
probabilities (Hidalgo et al., 2007) and measures of interest-
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network (e.g. Disparity Filter)
What form does my B
network data take? [ weighted
bipartite
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Abipartite bipartite data
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bipartite projection is a suitable No - or use another
way to measure the network of measurement
interest? approach
Yes
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4
Use a
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Use a Fixed
Is the bipartite data large? Is No | Degree Sequence
computing time a consideration? Model (FDSM)
backbone

Yes

y

Use a Stochastic Degree
Sequence Model (SDSM)
backbone

Figure 4
Decision tree for measuring spatial networks using
backbones of bipartite projections

ingness (Zweig & Kaufmann, 2011). The development of
new backbone extraction models that can accomodate these
cases is necessary (see Neal, 2017)). The backbone package
offers a useful methodological tool for pursuing both lines of
inquiry.

There are also a number of future directions for software
development for the extraction of weighted network back-
bones. First, the backbone package currently only allows
the extraction of backbones from weighted bipartite projec-
tions, but not from other types of weighted networks. How-
ever, geographers and spatial analysts often study weighted
networks that are not bipartite projections, for example,
transportation networks where edge weights convey capac-
ity or volume. Therefore, future versions of backbone
would benefit from implementing some of the already ex-
isting methods for extracting the spatial backbone from such
non-projection weighted networks (e.g., Dai, Derudder, &
Liu, 2018; Dianati, 2016; Serrano et al., 2009). Second, al-

though the backbone package implements several different
backbone models, the selection of a particular model is left to
the user. However, as Figure 4 illustrates, model selection is
driven by several features of the data itself. Therefore, future
versions of backbone could automate the model selection
process, thereby simplifying its use.

The measurement and analysis of spatial networks has
become a core part of the spatial analysts’ toolbox, along-
side such other techniques as gravity models and GIS. Mea-
suring spatial networks using bipartite projections has be-
come increasingly common at both local and global spatial
scales, and is a de facto approach for measuring the world
city network. However, the analysis of bipartite projections
requires special care because stronger links in these networks
do not necessarily indicate more important connections. The
backbone package for R is an open-source set of commands
that facilitates the analysis of any bipartite projection. Al-
though it is a general-purpose package that can be applied
to any bipartite data, in this paper we have demonstrated its
particular utility in the context of spatial networks, using the
world city network as an illustrative example.
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