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Abstract

What should researchers do when their baseline model is falsified? We recommend
reporting the set of parameters that are consistent with minimally non-falsified models.
We call this the falsification adaptive set (FAS). This set generalizes the standard base-
line estimand to account for possible falsification. Importantly, it does not require the
researcher to select or calibrate sensitivity parameters. In the classical linear IV model
with multiple instruments, we show that the FAS has a simple closed form expression
that only depends on a few 2SLS coefficients. We apply our results to an empirical
study of roads and trade. We show how the FAS complements traditional overiden-
tification tests by summarizing the variation in estimates obtained from alternative
non-falsified models.
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1 Introduction

Many models used in empirical research are falsifiable, in the sense that there exists a pop-
ulation distribution of the observable data which is inconsistent with the model. With finite
samples, researchers often use specification tests to check whether their baseline model is
falsified. Abstracting from sampling uncertainty, the population versions of such specifica-
tion tests have a persistent problem: What should researchers do when their baseline model
is falsified?

In this paper, we provide a constructive way for researchers to salvage a falsified baseline
model. To do this, we consider continuous relaxations of the baseline assumptions of concern.
By sufficiently weakening the assumptions, a falsified baseline model becomes non-falsified.
We define the falsification frontier as the set of smallest relaxations of the baseline model
which are not falsified. Our main recommendation is that researchers report estimates of
the identified set for the parameter of interest under the assumption that the true model
lies on this frontier. We call this the falsification adaptive set (FAS). This set collapses to
the baseline identified set or point estimand when the baseline model is not falsified. When
the baseline model is falsified, this set expands to include all parameter values consistent
with the data and a model which is relaxed just enough to make it non-falsified. Hence
the FAS generalizes the standard baseline estimand to account for possible falsification.
Importantly, researchers do not need to select or calibrate sensitivity parameters to compute
the falsification adaptive set. We formally define these concepts in section 2.

To illustrate this method, we study the classical constant coefficients linear model with
multiple instruments in section 3. We relax instrument exclusion by allowing the instru-
ments to have some direct effect on outcomes. We show that the FAS has a particularly
simple closed form expression, depending only on the value of a handful of 2SLS regression
coefficients. We then use our results in an empirical study of roads and trade in section 4.
We show that the FAS is an informative complement to traditional overidentification tests:
The FAS summarizes the range of estimates obtained from alternative models which are not
falsified by the data. Thus the FAS reflects the model uncertainty that arises from a falsified

baseline model.

Related Literature

Our paper builds on several large literatures. Manski and Pepper (2018) present identified

sets under relaxations of two assumptions, which can be used to construct a falsification



adaptive set in their model; see their table 2. Ramsahai (2012) studies a heterogeneous
treatment effect IV model with continuous relaxations of instrument exogeneity and infor-
mally notes that the model is not falsified if exogeneity is sufficiently relaxed. Machado,
Shaikh, and Vytlacil (2019) study a heterogeneous treatment effects IV model and formally
define what we call a falsification point. More recently, Andrews and Kwon (2019) introduce
a scalar slack parameter to define minimally non-falsified moment inequality models, which
do not nest our results.

Our technical results build on a large literature on sensitivity analysis in linear IV models,
including Fisher (1961), Angrist and Krueger (1994), Altonji, Elder, and Taber (2005), Small
(2007), Conley, Hansen, and Rossi (2012), Ashley (2009), Kraay (2012), Ashley and Parmeter
(2015), and van Kippersluis and Rietveld (2017, 2018). There is also a large literature on
falsification and sensitivity analysis in heterogeneous effect IV models. See Flores and Chen
(2018) and Swanson, Hernan, Miller, Robins, and Richardson (2018) for excellent surveys.

Several recent papers use local asymptotics to study sensitivity to misspecification. For
example, see Andrews, Gentzkow, and Shapiro (2017), Bonhomme and Weidner (2018), and
Armstrong and Kolesar (2019). This approach assumes the baseline model is approximately
correct, in the sense that the magnitude of model misspecification is similar to the magnitude
of sampling uncertainty. We focus on clearly falsified models, where it is known that the
model is not approximately correct. Hence we use a global approach, which does not rely on
linking the size of model misspecification to the size of sampling uncertainty. We compare

this local misspecification approach with ours in more detail at the end of section 4.

2 Salvaging Falsified Models

In this section we consider a general falsifiable model. We use this model to precisely define
the falsification frontier and falsification adaptive set. In section 3 we illustrate these general

concepts in the classical linear instrumental variable model.

2.1 Measuring the Extent of Falsification

Let W be a vector of observed random variables. Let F denote the set of all possible cdfs for
W. A model is a set of underlying parameters which generate the observed distribution Fy
and restrictions on those parameters. These parameters could be infinite dimensional. This
definition of a model suffices for our purposes. See section 2 of Matzkin (2007), for example,
for a more formal definition. A given model is falsifiable if there are some distributions Fy

which could not have been generated by the model. When the data follows one of these



population distributions, we say the model is falsified (equivalently, refuted). Let F; denote
the set of cdfs Fyy which falsify the model. Let F,¢ denote the set of cdfs Fy, which do not
falsify the model.

Suppose we begin with a falsifiable baseline model. Suppose this model has L assumptions
which we think might be false. For each assumption ¢ € {1,..., L}, we define a class of
assumptions indexed by a parameter d, such that the assumption is imposed for d, = 0,
the assumption is not imposed for J, equal to its maximum feasible value 6;***, and the
assumption is partially imposed for d, € (0,6;"*). Two common values of §*** are 1 and
+o00. These assumptions must be nested in the sense that for §, > d,, assumption J, is
weaker than assumption 9.

Consider the model which imposes assumptions 6 = (d1,...,d). Let F¢(d) denote the set
of joint distributions of the data which are not falsified by this model. In particular, F,¢(0y)
denotes the set of joint distributions of the data which are not falsified by the baseline model.
Since we assumed the baseline model is falsifiable, F,,¢(0y) is a strict subset of F. Suppose
further that the model which does not impose any of the L assumptions is not falsifiable.

Recall that Fy, denotes the observed distribution of the data. Suppose Fy ¢ Fue(0r), so

that the baseline model is falsified. Partition D = [0, 6]"*] x - -+ x [0, 67*] into two sets:
Dy = {5 €D Fy ¢ fnf((S)} and Do = {5 eD: Fy € .an(d)}

Dr is the set of all assumptions which are falsified. D, is the set of all assumptions which

are not falsified. For simplicity assume D,y is closed, which holds in our section 3 analysis.

Definition 1. The falsification frontier is the set
FF ={§ € D:§ € Dy and for any other §' < §, we have §' € Dy }

where ¢’ < § means that §, < o, for all ¢ € {1,..., L} and ¢/, < d,, for some m € {1,...,L}.

That is, the falsification frontier is the set of assumptions which are not falsified, but if
strengthened in any component, leads to a falsified model. When L = 1, the falsification
frontier is a singleton called the falsification point: For all 6 below that point, the model is
falsified while for all 6 above that point the model is not falsified.

2.2 The Falsification Adaptive Set

Let ©;(9) denote the identified set for a parameter of interest § € ©, given the model which

imposes the assumptions 0. When § € Dy, ¢ is below the falsification frontier. In this case,



the identified set ©;(J) is empty. When § € Dy, § is on or above the falsification frontier.
In this case, the identified set ©;(J) is nonempty.

Definition 2. Call

U ©:(9)

deFF

the falsification adaptive set.

The falsification adaptive set is the identified set for the parameter of interest when the
true model satisfies one of the assumptions on the falsification frontier. When the baseline
model is not falsified, this set collapses to ©;(0z), the baseline identified set (which may
be a singleton). This is what researchers typically report when their baseline model is not
falsified. When the baseline model is falsified, however, the falsification adaptive set expands
to account for uncertainty about which assumption along the frontier is true. Hence this set

generalizes the standard baseline estimand to account for possible falsification.

3 The Classical Linear Model with Multiple Instru-

ments

In this section we illustrate our method in the classical linear instrumental variable model.
While many kinds of falsifiable assumptions have been considered in the literature, we focus
on the classical case where variation from two or more instruments is used to falsify the

model.

3.1 Model and Identification

Let Y (z, 2) denote potential outcomes defined for values (z, z) € REFL. Assume
Y(z,2) =a'8+2v+U (1)

where [ is an unknown constant K-vector, v is an unknown constant L-vector, and U is
an unobserved random variable. Let X be an observed K-vector of endogenous variables.
Throughout we suppose X does not contain a constant. Hence U absorbs any nonzero
constant intercept. Let Z be an observed L-vector of potentially invalid instruments. We
observe the outcome Y = Y (X, Z). For simplicity we have omitted any additional known
exogenous covariates W in equation (1); they can be easily included via partialling out.
Equation (1) imposes homogeneous treatment effects. We also maintain the following

relevance and sufficient variation assumptions throughout this section.



Assumption A1l (Relevance). The L x K matrix cov(Z, X) has rank K.
Assumption A2 (Sufficient variation). The L x L matrix var(Z) is invertible.

A1l implies the order condition L > K. When there is just one endogenous variable
(K = 1), Al only requires cov(X, Z;) # 0 for at least one instrument. Other instruments
may have zero correlation. In this case, these other instruments provide additional falsifying
power. We discuss this further below. If one instrument is an affine combination of the
others, A2 does not hold. In this case, just remove affinely dependent instruments until
var(Z) is invertible.

The classical model imposes two more assumptions:
Assumption A3 (Exogeneity). cov(Z,,U) =0 for all £ € {1,...,L}.
Assumption A4 (Exclusion). v, =0 forall £ € {1,...,L}.

A1-A4 imply that the coefficient vector (3 is point identified and equals the two stage least
squares (2SLS) estimand. Furthermore, these assumptions imply well known overidentifying
conditions. The following proposition gives these conditions when there is just a single

endogenous variable.

Proposition 1. Suppose K = 1. Suppose the joint distribution of (Y, X, Z) is known and
satisfies A1 and A2. Then the model (1) with A3 and A4 is not falsified if and only if

cov(Y, Zy,) cov(X, Zy) = cov(Y, Zy) cov(X, Z,,) (2)

for all m and ¢ in {1,..., L}.

When all instruments are relevant, so that cov(X, Z,) # 0 for all £ € {1,..., L}, equation

(2) can be written as
cov(Y, Zy)  cov(Y, Zy)

cov(X, Zy)  cov(X,Z,)

That is, the linear IV estimand must be the same for all instruments Z,. This result is the

basis for the classical test of overidentifying restrictions (Anderson and Rubin 1949, Sargan
1958, Hansen 1982). Suppose the distribution of (Y, X, Z) is such that the model is falsified.
This happens when at least one of our model assumptions fails: (a) homogeneous treatment
effects, (b) linearity in X, (c¢) instrument exogeneity, or (d) instrument exclusion.

Here we maintain the homogeneous treatment effects assumption. We consider models
with heterogeneous treatment effects in our working paper Masten and Poirier (2020). We

also maintain linearity of potential outcomes in x, which could include known functions



of covariates like quadratic terms. In principle our analysis can be extended to allow for
relaxations of this functional form assumption, but we leave this to future work.

We thus focus on failure of (c) instrument exogeneity or (d) instrument exclusion as
reasons for falsifying the baseline model. These are two different substantive assumptions.
Mathematically, however, the same technical analysis can be used to relax both assumptions.
For simplicity, here we formally maintain the exogeneity assumption A3 and focus on failure
of the exclusion assumption A4.

In general, it is difficult to define a meaningful and tractable class of relaxations of one’s
baseline assumptions. In the linear model, however, there is a natural way to relax the

exclusion restriction. Specifically, we use the following class of assumptions.

Assumption A4’ (Partial exclusion). There are known constants d, > 0 such that |v,| < &,
forall ¢ € {1,...,L}.

A4’ bounds the magnitude of the direct effect of each instrument on the outcome by
known constants. This kind of relaxation of the baseline instrumental variable assumptions
was previously considered by Small (2007) and Conley et al. (2012); also see Angrist and
Krueger (1994) and Bound, Jaeger, and Baker (1995). Although the instruments may have
a direct causal effect on outcomes, the model may nonetheless continue to be falsified for
sufficiently small values of the components in §. For sufficiently large values, however, the
model will not be falsified. To characterize the falsification frontier, we begin by deriving
the identified set for 5 as a function of ¢.

Theorem 1. Suppose A1-A3 and A4’ hold. Suppose the joint distribution of (Y, X, Z) is

known. Then
B(6) = {beR" : =5 <var(Z) ' (cov(Z,Y) — cov(Z, X)b) < 6} (3)

is the identified set for 8. Here the inequalities are component-wise. The model is falsified

if and only if this set is empty.

The identified set B(J) depends on the data via two terms:

Y =var(Z) tcov(Z,Y) and I =var(Z) 'cov(Z, X).
(Lx1) (LxK)

¥ is the reduced form regression of Y on Z. II is the first stage of X on Z. If we demeaned
(Y, X, Z) then we would have ¢ = E(ZZ")"'E(ZY) and Il = E(ZZ')"'E(ZX"). Theorem 1
shows that the identified set is the intersection of L pairs of parallel half-spaces in R*. When



§ = 0y, this identified set becomes the intersection of L hyperplanes in R¥. In this case, /3 is
point identified when cov(Z,Y) = cov(Z, X)b for a unique b € RX. If cov(Z,Y") # cov(Z, X)b
for all b € R¥, then the baseline model § = 0, is falsified.

Increasing the components of § leads to a weakly larger identified set. Furthermore, there
always exists a § with large enough components so that B(¢) is nonempty. We characterize
the set of such ¢ below. Before that, we show that the identified set can be written as simple

intersection bounds when there is a single endogenous variable.

Corollary 1. Suppose the assumptions of theorem 1 hold. Suppose K = 1. Then

B(6) = () Be(dr)

is the identified set for 3, where

) )
ﬂ——éﬂ+—é:| lfﬂ'g;éo

)
e |7Tg| e |7Tg|

Bi(d) = (R if 1o = 0 and 0 € [ty — Oy, 1g + (] (4)
0 ifﬂ'g:()ando¢[¢g—5@,¢g+55].

Here IT is an L-vector and 7y is its £th component.

To interpret this result, first consider an instrument Z, with a zero first stage coefficient,
m = 0. If Z, has a sufficiently strong relationship with the outcome, so that 1, £+ d, does
not contain zero, then the model is falsified. Furthermore, in this case falsification can be
solely attributed to the assumption that |y,| < J, for this specific £. This is similar to
what is sometimes called the ‘zero first stage test’ (for example, see Slichter 2014 and the
references therein). When this relationship with the outcome is sufficiently small, however,
Z,y unsurprisingly has no falsifying or identifying power for 5.

Next consider a relevant instrument Z,, so 7, # 0. To interpret corollary 1 in this case,

we use the following lemma.

Lemma 1. Suppose K = 1. Let X, = (Zy,.. . Zo-1, X, Zos1, ..., Z1). Let e; be the L x 1
vector of zeros with a one in the ¢th component. Suppose m, # 0. Suppose cov(Z, )’Q) is
invertible. Then

¢€ /

L = e cov(Z, X,) " eov(Z,Y).
Ty

This lemma shows that /7, is the population 2SLS coefficient on X using Z, as the

excluded instrument and using the remaining instruments Z_, as controls. Thus the identified



set B(9) is the intersection of intervals around these 2SLS coefficients using one relevant
instrument at a time and controlling for the rest.
Finally, consider the baseline case where § = 0;. Corollary 1 implies that B(0p) is

nonempty if and only if

Ym _ Ve

Tm, Ty
for any m,¢ € {1,..., L} with m,,,m # 0 and ¢; = 0 when 7; = 0. Moreover, in this case
B(0) is a singleton equal to this common value. In this case—when the baseline model is

not falsified—we also have
e cov(Y, Zy)

e cov(X, Zy)
for all £ € {1,...,L}. That is, ¥,/m, equals the population 2SLS coefficient on X using Z,
as an instrument and not including Z_, as controls. This equality of single instrument 2SLS
coefficients with and without controls for the other instruments is an alternative characteri-
zation of the classical overidentifying conditions from proposition 1. Note that, when these
overidentifying conditions do not hold, it can be shown that the baseline 25LS estimand is
not necessarily in the identified set B(d). Consequently, it will not necessarily be in the fal-
sification adaptive set that we describe below. Instead, as shown via corollary 1 and lemma
1, the identified set depends on the estimands 1y /m,, which use Z_, as controls to allow for

possible exclusion failures.

3.2 The Falsification Frontier

So far we have characterized the identified set for g given a fixed value of 9, the upper
bound on the violation of the exclusion restriction. We now consider the possibility that
this identified set is empty when 6 = Op, so that the baseline model is falsified. Our next
result characterizes the falsification frontier, the minimal set of ¢’s which lead to a non-empty
identified set. Here we focus on the single endogenous regressor case. We extend this result

to multiple endogenous regressors in the online appendix.

Proposition 2. Suppose A1-A3 hold. Suppose the joint distribution of (Y, X, Z) is known.
Suppose K = 1. Then the falsification frontier is the set

_ Lo s — _ T Ve
FF = {5 ERSg: 0=y —bmy|, £=1,...,L, b€ oy oin wz’e:1,1.?%§e;éo We] } . (5)
In the proof we show that this set satisfies our definition 1 of the falsification frontier.
Specifically: Any 6 € FF maps to a non-empty identified set, and strengthening any of the

assumptions for a given ¢ € FF leads to an empty identified set.



3.3 The Falsification Adaptive Set

Next we characterize the falsification adaptive set, which is the identified set for § under the
assumption that one of the points on the falsification frontier is true. Here we again focus
on the single endogenous regressor case. We generalize to multiple endogenous regressors in

the online appendix.

Theorem 2. Suppose A1-A3 hold. Suppose the joint distribution of (Y, X, Z) is known.
Suppose K = 1. Then

U B(9) = [ min ﬂ, max Ye (6)
SeFF l=1,....L:m¢#0 Ty {=1,....L:mp#0 Ty

is the falsification adaptive set.

We first sketch the proof of this result and then discuss its implications. It follows from
two main steps: First, the identified set B(9) is a singleton for any § € FF (see lemma 2 in
the appendix). Second, each of these singleton sets corresponds to an element in the interval
on the right hand side of equation (6) (follows using proposition 2). Thus we obtain the
entire interval by taking the union of all these singletons.

Our main recommendation is that researchers report estimates of the falsification adaptive
set. Theorem 2 shows that, in the classical linear model we consider here, this set has an
exceptionally simple form. Most importantly, no §’s appear on the right hand side of equation
(6). This implies that we can obtain the falsification adaptive set without pre-computing the
falsification frontier or selecting any sensitivity parameters. Furthermore, it is very simple
to compute, since it just requires running L different 2SLS regressions.

In this model, we can also immediately see how this set adapts to falsification of the base-
line model. When the baseline model is not false, ¢, /7, = ¥;/m, for all m,¢ € {1,... L}
with nonzero m,, and m,. In this case, the falsification adaptive set collapses to the single-
ton equal to the common value. This is the same point estimand researchers would usually
present when their baseline model is not falsified. As the baseline model becomes more fal-
sified, the values of ,/m become more different, and the falsification adaptive set expands.

Thus the size of this set reflects the severity of baseline falsification.

3.4 Estimation and Inference

In finite samples, researchers can present sample analog estimates of the falsification adaptive

set, along with corresponding confidence sets. Our characterization of the FAS in equation

10



(6) requires that we first screen for irrelevant instruments. It is not clear how to best do
this. We present a first pass approach, but leave a detailed analysis to future work.
Let {Y;, X;, Z;}?, be an iid sample from the distribution of (Y, X, Z). Let

Lag={le{l,....,L}: 7, #0}
be the set of indices corresponding to relevant instruments. Estimate this set by
La={te{l,....L}: F,>C,)}.

Fy is the first stage F-statistic when considering Z, as an instrument and Z_, as controls. C),
is a cutoff that diverges as the sample size grows. The assumptions in proposition 3 below
ensure that Erel is consistent for L..
Let /b\g be an estimator of v,/m,, the 2SLS coefficient on X using Z, as the excluded
instrument and Z_, as controls. We estimate the falsification adaptive set by
FAS = [mln gg, mgxgg} .
teLiy  (ELral

We use this estimator in our empirical analysis of section 4. The following result gives

conditions under which this estimator is consistent for the FAS.
Proposition 3. For all £ € {1,..., L} suppose
1. /b\g EiN Y/ me when 7, # 0.
2. F, % x? when 1, = 0.
3. Fy/n 2y k, when 7, = 0, where ky, > 0 is some positive constant.
4. As n — oo, C,, — oo and C,, = o(n).

Let FAS denote the interval in equation (6). Let dgy denote the Hausdorff distance. Then
dgr(FAS, FAS) 2 0.

Assumptions 1-3 hold under standard assumptions on random sampling, existence of
moments, and the existence of consistent variance estimators used within F,. Assumption
4 requires that C,, grows slowly enough to ensure that relevant instruments are kept in Erel
with probability approaching one. In our empirical analysis we choose C;, = 10 as our default
cutoff, although we sometimes consider other cutoffs, or a sequence of cutoffs. Inference can

be done by using a version of the delta method discussed in Fang and Santos (2019), noting

11



that the min and max are directionally differentiable mappings. We leave a detailed analysis

of both the choice of the cutoff and procedures for inference to future work.

4 Empirical Application: Roads and Trade

In this section we apply our results from section 3 to the empirical analysis of roads and trade
by Duranton, Morrow, and Turner (2014). They consider a dataset of 66 regions (‘cities’)
in the United States. Their treatment variable is the log number of kilometers of interstate
highways within a city in 2007. This variable directly affects the cost of leaving a city, and
therefore the cost of exporting from a city: It is easier to export from a city with many
kilometers of interstate highways passing through it. Their outcome variable is a measure of
how much that city exports. They consider two different ways of measuring exports: Weight
(in tons) and value (in dollars). We focus on the weight measure for brevity. They begin
by estimating a gravity equation relating the weight of a city’s exports to other cities with
the highway distance between those cities, both measured in 2007. This equation includes
a fixed effect for the exporting city. The estimate of this fixed effect is their main outcome
variable. They call this variable the “propensity to export weight.” Thus their main goal is
to estimate the causal effect of within city highways on the propensity to export weight.
We cannot learn this causal effect by simply regressing the propensity to export weight on
within city highways since there is a classic simultaneity problem. We expect that building
highways within the city will boost exports. But high export cities may also build more high-
ways to facilitate their existing exports. The authors solve this problem by instrumenting for

the number of kilometers of within city highways. They consider three different instruments:

1. Railroads: The log number of kilometers of railroads in the city in 1898.

2. Exploration: A measure of the quantity of historical exploration routes that passed

through the city.

3. Plan: The log number of kilometers of highway in the city, according to a planned
highway construction map approved by the federal government in 1947. Baum-Snow

(2007) had previously used this instrument, and provides a detailed history.

The authors raise concerns about validity of all three instruments. Although they address
these concerns with various controls, these controls may still not perfectly fix failures of

exogeneity, exclusion, or both. Hence the authors lean on overidentification, stating that

“Using different instruments, for which threats to validity differ, allows for infor-

mative over-identification tests.” (page 700)
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Table 1: Baseline 2SLS results for Duranton et al. (2014): The effect of highways on export
weight. Non-highlighted parts reproduce results from their paper. Highlighted parts are new.
Panel A reproduces columns 1-4 of their table 5. It also shows the estimated falsification
adaptive set. Panel B uses only two of their instruments, controlling for the other. See text
for discussion.

Dependent variable: Export weight

(1) ) ®3) (4)

Panel A. Plan, exploration, and railroads used as instruments

log highway km 1.13 0.57 0.47 0.39

(0.14) (0.16) (0.14) (0.12)

log employment 0.52 0.69 0.47

(0.11) (0.39) (0.33)

Market access (export) -0.45 -0.65 -0.63

(0.14) (0.14) (0.11)

log 1920 population -0.38 -0.29

(0.25) (0.23)

log 1950 population 1.00 0.65

(0.39) (0.38)

log 2000 population -0.74 -0.20

(0.48) (0.45)

log % manuf. emp. 0.64

(0.12)

First stage F' stat. 97.5 90.3 80 84.8

Overid. p-value 0.10 0.043 0.15 0.31
FAS [0.49, 0.86] [-0.32,0.28] [-0.26,0.31]  [0.18, 0.42]

Panel B. Plan and exploration used as instruments, controlling for railroads

log highway km 0.79 0.17 0.21 0.23
(0.24) (0.20) (0.15) (0.14)
log 1898 railroad km 0.33 0.33 0.25 0.16
(0.15) (0.12) (0.12) (0.10)
First stage F' stat. 61.1 65.4 77.8 82.2
Overid. p-value 0.64 0.51 0.48 0.72

Notes: 66 observations per column. All specifications include a constant. Het-
eroskedasticity robust standard errors in parentheses.

With this motivation, we next present the results.

Results

First consider table 1. In this and all other tables, the non-highlighted parts reproduce
results from the original paper. The highlighted parts are new computations which we have
added. Panel A reproduces columns 14 of table 5 in Duranton et al. (2014). These are their
main results. In particular, they are interested in the coefficient on log highway km, the log
number of highway kilometers within the city. This coefficient represents their estimate of

the causal effect of roads on trade. Here it is estimated by 2SLS, using railroads, exploration,

13



Table 2: The effect of controlling for unused instruments. Non-highlighted parts reproduce
results from their paper. Highlighted parts are new. All columns have employment, market
access, and past populations as controls. Columns 4-6 also have manufacturing share of
employment as controls. Compare to table 6 of Duranton et al. (2014).

(1) (2) 3) (4) (5) (6)

Plan Railroads  Exploration Plan Railroads Exploration

Panel A. Without controlling for other instruments

log highway km 0.49 0.83 0.12 0.38 0.64 0.34
(0.15) (0.25) (0.31) (0.13) (0.22) (0.19)

log % manuf. emp. 0.64 0.60 0.65
(0.12) (0.13) (0.13)

First stage F' stat. 141 45.2 14.8 130 40.8 23.8

Panel B. Controlling for other instruments

log highway km 0.31 4.09 -0.26 0.18 3.65 0.42
(0.22) (4.09) (0.71) (0.21) (4.16) (0.52)
log % manuf. emp. 0.63 0.36 0.61
(0.12) (0.38) (0.12)
log 1898 railroad km 0.21 0.24 0.18 0.16
(0.12) (0.11) (0.11) (0.11)
log 1528-1850 exploration  -0.053 -0.40 0.025 -0.32
(0.077) (0.36) (0.065) (0.40)
log 1947 highway km -2.09 0.32 -1.90 -0.13
(2.50) (0.46) (2.48) (0.36)
First stage F' stat. 59.6 1.54 29.1 54.8 1.27 27
FAS for this specification [-0.26, 0.31] [0.18, 0.42]

Notes: 66 observations per column. All specifications include a constant. Heteroskedasticity robust
standard errors in parentheses.

and plan as instruments. At the 10% level, the standard test of overidentifying restrictions
passes in the two longest specifications, fails in the second specification, and marginally
passes in the first specification. Also note that these specifications do not include all of the
additional controls the authors consider; they include those in separate analyses, which we
discuss later (our table 3).

We add the estimated falsification adaptive set to these baseline results. This is the last
row of panel A. There are two things to notice: First, except for the last specification, none
of the 2SLS estimates are within the estimated FAS. This is not surprising since it can be
shown that the baseline 2SLS estimand does not need to be inside the FAS. Second, the
estimated FAS magnitudes are all generally smaller than the 2SLS point estimates.

To better understand how we computed the estimated FAS, and how to interpret it, next
consider table 2. Columns 1-3 include the same baseline controls as column 3 in table 1 while
columns 4-6 include the same baseline controls as column 4 in table 1. The only difference

is that we no longer use all three variables (plan, railroads, exploration) as instruments.
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Instead, in panel A, we use only one of these variables as an instrument and we ignore the
other two variables. Panel A reproduces columns 4-6 from table 6 in Duranton et al. (2014).
The authors used these results as their main robustness check. They argue that the three
estimates 0.38, 0.64, and 0.34 from columns 4-6, panel A, table 2 are consistent with their
baseline estimates of 0.47 and 0.39 from columns 3 and 4, panel A, table 1.

However, omitting an invalid instrument can lead to omitted variable bias. In this appli-
cation we are concerned that some of the instruments may be invalid. Thus the alternative
models of interest are those where one of the instruments is valid but the others are not.
When computing results in these alternative models, the invalid instruments should be in-
cluded as controls (see lemma 1). Panel B shows these results. Here we use one instrument
while controlling for the other two. For example, in column 1 we use plan as an instrument
and control for railroads and exploration.

For brevity, here we only describe the results in columns 4-6. These results use the
full baseline specification. Consider column 5, panel B. This result uses railroads as an
instrument, controlling for plan and highway. Unlike the uncontrolled result from panel
A, railroads is a very weak instrument. Hence we ignore the result using railroads alone,
as discussed in section 3.4. Next consider column 4. Here we use plan as the instrument,
controlling for the other two. Despite these controls, plan is still a strong instrument. The
estimated effect 0.18 is roughly half as large as the estimate from panel A, 0.38. It is also no
longer statistically significant at any conventional level. Next consider column 6. Here we
use exploration as the instrument, controlling for the other two. Exploration continues to
be a strong instrument with these controls. The estimated effect 0.42 in panel B is similar
to the effect from panel A, 0.34. It is no longer statistically significant, however.

Putting these coefficient estimates together gives us the estimated FAS, [0.18,0.42]. The
endpoints of this set correspond to point estimates from alternative models which maintain
validity of only one instrument at a time. The interior of this set corresponds to alternative
models which relax validity of all instruments at once, but just enough to avoid falsification.

In panel B of table 2 we found that railroads is a weak instrument when controlling for
the other two, and hence it yields the largest point estimates. Given this finding, one may
also wonder how removing railroads as an instrument affects the baseline analysis. This is
shown in panel B of table 1. All of the coefficients on log highway km are smaller, to the

point that they are no longer statistically significant for all but the shortest specification.
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Table 3:  The effect of controlling for unused instruments, continued. Non-highlighted
parts reproduce results from their paper. Highlighted parts are new. This table extends the
analysis of table 2 to consider specifications with additional control variables. Columns 1-3
reproduce the results in appendix table 6 of Duranton et al. (2014). Columns 4-6 just add
controls for the other instruments.

Without other IV controls With other IV controls
1) (2) 3) (4) 5) (6)
Added variable Plan Railroads  Exploration Plan Railroads  Exploration FAS
Wat log highway km 0.34 0.66 0.24 0.13 3.96 0.30 [0.13, 0.30]
ater (0.16) (0.26) (0.29) (0.21) (4.56) (0.49)
F stat. 126 25.3 10.9 67.6 1.17 26.2
Slope 0.39 0.57 0.46 0.20 3.86 0.66 [0.20, 0.66]
P (0.14)  (0.20) (0.19) (0.21)  (5.86) (0.50)
133 44.5 22.6 60.3 0.65 25.6
Census 0.32 0.62 0.36 -0.012 3.68 0.40 [-0.012, 0.40]
regions (0.14) (0.12) (0.20) (0.24) (3.24) (0.64)
122 58.3 22.6 39.4 1.59 10.7
Percent 0.29 0.56 0.41 0.013 3.64 0.78 [0.013, 0.78]
college (0.13) (0.23) (0.18) (0.19) (4.13) (0.49)
116 36.6 29.5 47.9 1.16 25.2
Income 0.35 0.63 0.35 0.079 3.42 0.54 [0.079, 0.54]
per capita (0.14) (0.22) (0.18) (0.21) (3.42) (0.47)
123 36.8 26.4 47.8 1.70 24.9
Percent 0.41 0.59 0.49 0.22 2.71 0.75 [0.22, 0.75]
wholesale (0.12) (0.21) (0.12) (0.19) (3.29) (0.49)
136 39.3 23.2 54.4 1.38 25.4
Traff 0.42 1.00 0.34 0.23 5.57 0.40 [0.23, 0.40]
rate (0.18) (0.52) (0.23) (0.25) (9.60) (0.51)
79 13.4 44.6 44.3 0.43 26
All 0.39 0.73 0.58 0.18 2.43 0.69 [0.18, 0.69]
(0.18) (0.35) (0.28) (0.26) (3.01) (0.67)
52.6 19.9 15.5 32.1 0.88 6.53

Notes: 66 observations per column. All specifications include a constant. Heteroskedasticity robust standard errors in
parentheses.

Moreover, the standard overidentification tests now all easily pass. (Note that these tests are
only comparing results using plan and exploration as instruments.) However, the coefficients
on railroads are statistically significant for all but the fourth column. This suggests that
the full baseline model using all three instruments could be rejected, and also explains the
source of the relatively small overidentification test p-values in panel A.

Thus far we have focused on the baseline results, which do not include all of the possible
control variables that the authors discuss. Table 3 shows results with their additional con-
trols. We begin with the full set of baseline control variables, as used in column 4 of table

1. We then add just one control. Each row corresponds to a different control. The last row
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shows the results that add all controls at once. Unlike the main baseline result, column 4 of
table 1, here we only use one instrument at a time. Columns 1-3 use a single instrument,
without controlling for the other two. These results reproduce appendix table 6 of Duranton
et al. (2014). Based on these results, the authors argue that

“None of our main results is affected by these controls, even when we use our

instruments individually.” (page 708)

They also argue that using one instrument at a time is an “even more demanding exercise”
than examining the effect of additional controls when using all three instruments (not shown
here; see their appendix table 5). As we’ve discussed, however, omitting the invalid instru-
ments may cause omitted variable bias. So in columns 4-6, we replicate columns 1-3, except
now controlling for the other two instruments.

There are three main differences between the results with the instrument controls and
those without. First, the railroads instrument is again very weak, leading to large coefficients.
This informs our understanding of the results from columns 1-3, since there we observed that
the coefficients in column 2 are always larger than those in columns 1 and 3, and are often
substantially larger. Second, none of the results are statistically significant at conventional
levels. Finally, the coefficients using plan as the instrument all become smaller once the
other instruments are controlled for (column 4 versus column 1), while the coefficients using
exploration as the instrument all become larger once the other instruments are controlled for
(column 6 versus column 3). Thus, ignoring the results using railroads, the overall range of
point estimates is larger. This is reflected in the estimated falsification adaptive sets, which
are presented in the final column.

Overall, there are two main conclusions from our analysis: First, the evidence suggests
that the railroads instrument is the most questionable, and should be used only as a control.
Thus the estimates in panel B of table 1 are arguably the most appropriate baseline results.
Second, there is substantially more uncertainty in the magnitude of the causal effect of roads
on trade than suggested by the original results of Duranton et al. (2014). This is reflected in
the various estimated falsification adaptive sets we present. In particular, the estimated FAS
for the longest specification is [0.18,0.69]; see table 3. Moreover, accounting for sampling
uncertainty would only increase this range. That said, these results do not change the
overall qualitative conclusions of the paper: All points in the estimated FAS for the longest

specification are still positive, suggesting that the number of within city highways appears
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to positively affect propensity to export weight.

Comparison with the Andrews et al. (2017) approach

In this subsection we compare our approach with that of Andrews et al. (2017). They study
general moment equality models, while we focus on the linear IV model. For the linear IV
model, in their example 4 they study the sensitivity of the 2SLS estimator to violations of
exclusion or exogeneity of the same magnitude as the sampling uncertainty (proportional to
1/4/n). Under such data generating processes, and as in Conley et al. (2012), they show
that the 2SLS estimator is consistent, but asymptotically biased. The asymptotic bias has
the form A~y where 7 is a vector of sensitivity parameters and A is a matrix that is point
identified from the data. Andrews et al. (2017) recommend that authors report estimates of
A, which allows readers to select a v and compute their own local asymptotic bias correction
for the 2SLS estimator.

Our empirical application has a single endogenous variable, log highway km. We are
primarily interested in its coefficient. For a given choice of v, it can be shown that the local
asymptotic bias in the 2SLS estimate of this coefficient is a1y, + - - - + a7y, where
cov(Zy, XM

e ™

var(XpﬁZ‘g)

Ay =

Here W is the vector of the included exogenous control variables, X,eq is the predicted value
of the endogenous variable from the first stage regression of X on (1, 7, W), and X;Z‘é is the
residual from the linear regression of X,,eq on (1,W). Thus the relevant elements a, of the
matrix A are simply the coefficients on X.q in a linear regression of Z; on (1, Xpeq, W) for
each ¢ = 1,..., L. In addition to reporting the elements of A, Andrews et al. (2017) also
recommend comparing their magnitudes. As they note, this can be difficult because the units
of this matrix depend on the units of the moments themselves. In our case, this means that
the instrument ¢ with the largest value of |a,| is not necessarily the most important for the
local asymptotic bias—it depends on the units of each Z,. To address this, we standardize
the instruments as described below.

Table 4 shows the empirical results. Here we focus on the four main baseline specifi-
cations, as reported in table 1. Panel A reports estimates of a,/stddev(Z,) for each of the
three instruments. We see that plan has the largest value of the three instruments. Given
equation (7) above, this means that plan has the largest correlation with the predicted treat-
ment, after controlling for covariates. This is consistent with what we reported in table 2,
where plan had the largest first stage F-statistic conditional on the other two instruments.

Note, however, that railroads and exploration both have roughly the same values in panel
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B. This suggests that they are equally important for the asymptotic bias of the 2SLS esti-
mator. In contrast, our analysis in table 2 suggested that, unlike exploration, railroads is a
conditionally very weak instrument, and should possibly not be relied on.

In panel B we consider two possible choices of the local sensitivity parameters: v, =
+1/stddev(Z;). These choices can be interpreted as saying that if Z, increases by one
standard deviation, then the direct effect of Z, on outcomes is £1/4/n. For these choices,
the magnitude of the estimated asymptotic bias is quite large, leading to bias corrected 2SLS
estimators which are both positive and negative for the main specification (column 4). This
sensitivity analysis thus suggests that even the main qualitative results of Duranton et al.
(2014) are not robust to violations of exclusion of that magnitude. In contrast, the estimated
FAS for the main specification (column 4 of table 1) still contains only positive numbers,
suggesting that the qualitative results of Duranton et al. (2014) are robust to exclusion

violations that are sufficiently large to explain falsification of the baseline model.

Table 4: Analysis of the local sensitivity of the 2SLS estimator for the four baseline specifi-
cations in table 1.

Dependent variable: Export weight

) (2) ®3) (4)

Panel A. Estimates of ay/stddev(Zy), the standardized elements of the matrix A

Plan 1.80 2.36 2.46 2.46
Railroads 1.44 1.73 1.49 1.45
Exploration 1.09 1.48 1.55 1.41

Panel B. Point estimates of the coefficient on log highway km

Baseline 2SLS 1.13 0.57 0.47 0.39
Bias (v, = 1/stddev(Z;)) 0.53 0.69 0.68 0.69
Bias corrected 2SLS (v, = 1/stddev(Zy)) 0.60 -0.11 -0.21 -0.30
Bias corrected 2SLS (v, = —1/stddev(Zy)) 1.67 1.26 1.14 1.08

Notes: m = 66 observations per column. 1/y/n = 0.12. In panel B, Bias is an estimate of
(a1y1 + -+ +aryr)/Vn.

Overall, this discussion highlights two key practical differences between our analysis and
that of Andrews et al. (2017). First, their approach is estimator specific: Different estimators
of the same parameter can lead to different conclusions about sensitivity. Thus our com-
parisons of the relative sensitivity of exclusion violations for each of the three instruments
above could change if we used an estimator other than 2SLS. In contrast, our approach is
a population level identification analysis that does not depend on a specific choice of base-
line estimator. Second, their approach ultimately requires researchers—either authors or
readers—to choose the sensitivity parameter . In contrast, our approach can be thought
of as leveraging falsification of the baseline model to automatically calibrate the parameter

v, by considering the minimal relaxations that make the instruments consistent with each
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other.

5 Conclusion

In this paper we suggested a constructive answer to the question “What should researchers
do when their baseline model is falsified?” We recommend reporting estimates of the set
of parameters that are consistent with minimally non-falsified models. We call this the
falsification adaptive set (FAS) because it generalizes the standard baseline estimand to
account for possible falsification. We illustrated this recommendation in the classical linear
instrumental variable model with multiple instruments. We showed that the FAS has a
particularly simple closed form expression, depending only on the value of a handful of
2SLS regression coefficients. Finally, we showed how to use our results in practice. There we
discussed the importance of controlling for the possibly invalid instruments when considering
alternative models. Overall, we showed that the FAS is an informative complement to
traditional overidentification test p-values: It directly summarizes the range of estimates

corresponding to non-falsified alternative models.
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A Proofs for section 3

Proof of proposition 1. Note that we assumed A1-A2 hold since they depend on observables
only. Suppose equation (2) holds for all m, ¢ € {1,..., L}. We will construct a joint distribu-
tion (Y, X, Z, U ) and a parameter B consistent with the data, equation (1), and assumptions
A3-A4.
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By the relevance assumption A1, there exists an ¢ such that cov(X, Z,) # 0. Let 5 =
cov(Y, Zy)/ cov(X, Z;). Let U =Y — Xf3. For every m € {1,...,L},

cov(U, Zn) = cov(Y, Zp) — cov(X, Zu)

cov(Y, Zy,)
— cov(Y, Zy) — cov(X, Zp) T 28
cov(Y, Zy) — cov( >COV(X, 7
_cov(Y, Zy,) cov(X, Z;) — cov(Y, Zy) cov(X, Zyn)
B cov(X, Zy)

=0.

Thus A3 holds. A4 holds by definition of U. Thus the model is not falsified.

Next suppose the model is not falsified. Then there exists a joint distribution of (Y, X, Z, U)
and a value /3 consistent with the model assumptions, equation (1), and the data. By A3-A4,
we have

cov(Y, Zy) = Beov(X, Zy) (8)

for all ¢ € {1,...,L}. Suppose 5 = 0. Then cov(Y, Z,) = 0 for all £, and hence equation (2)
holds for all m,¢ € {1,...,L}.
Suppose 8 # 0. Then multiplying equation (8) for ¢ by equation (8) for m gives

cov(Y, Zy) x (Beov(X, Z,,)) = (Beov(X, Zy)) x cov(Y, Zp,).

Divide by f to see that equation (2) holds for all m,¢ € {1,..., L}. ]

Proof of theorem 1. First we show that any value of § consistent with the model must lie in

B(9). By the outcome equation (1) and the instrument exogeneity A3,
cov(Z,Y) =cov(Z, X)B + var(Z)y.

By A2,
v = var(Z) H(cov(Z,Y) — cov(Z, X) ).

Since —0 < v < ¢ (component-wise) by A4’ we have § € B(9d).
Next we show that B() is sharp. Let b € B(d). Define

v = var(Z) Ycov(Z,Y) — cov(Z, X)b).
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Then ~ satisfies A4’ by definition of B(¢§). Next, define U=Y — X'b— Z'~. Then

cov(Z,U) = cov(Z,Y) — cov(Z, X )b — var(Z)y
=cov(Z,Y) — cov(Z, X)b — var(Z) var(Z) *(cov(Z,Y) — cov(Z, X)b)
=0.

Thus A3 holds. Hence B(9) is sharp. That the model is falsified if and only if this set is
empty follows by the definition of the (sharp) identified set. O

Proof of corollary 1. Write the identified set from theorem 1 as

Bo)={beR:—-0<¢—br <4}
:{beRiwg—éngﬂ'ggngL(Sg, Ezl,,L}

Equation (4) follows immediately by considering the cases my = 0, my < 0, and m > 0

separately. O

Proof of lemma 1. Without loss of generality, let £ = 1. The result for £ # 1 can be obtained
by permuting the components of the vector Z. Then X = (X, Zy,...,7Z1). Hence

cov(Z. %) = (COV(Zl,X) COV(Zl,Z_1)> '

cov(Z_1,X)  var(Z_y)

By block matrix inversion, the first row of cov(Z, X;)~! is

el cov(Z, X)) =
(cov(Zy, X) — cov(Zy, Z_1) var(Z_1) "  cov(Z_1, X))~
—(cov(Zy, X) — cov(Zy, Z_1)var(Z_1) L eov(Z_1, X))t eov(Zy, Z_y) var(Z_;) 7!

Let Z, = Z, — cov(Zy, Z_1)var(Z_1)"*Z_; be the population residual from a regression of
Zion Z_q. Then

cov(Z1,Y) — cov(Zy, Z_q)var(Z_1) L cov(Z_1,Y)
cov(Zy, X) —cov(Zy, Z_q)var(Z_1) L cov(Z_1, X)

_ COV(Zl,Y)/COV(Zl,X)
var(Z;) var(Z;)
_ N

7T1‘

e} cov(Z, X1) " cov(Z,Y) =
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The last line follows by the partitioned regression formula. ]

We use the following lemma in the proofs of proposition 2 and theorem 2. It says that

the identified set for /3 is a singleton at any point ¢ in the set FF defined in equation (5).

Lemma 2. Suppose A1-A3 hold. Suppose K = 1. Let

be [ min ﬂ max ﬂ} )

(=1, Limy#0 Ty €=1,...,Limy#0 Ty
Define 6(b) = (|11 — bmi], ..., | — brr|). Then B(5(b)) = {b}.

Proof of lemma 2. We have

Be®) = [) [ﬂ _ e = bw|7 Ye o |the — bwq

i |7Tg| i |7Tg|

0=1,...,L:mp#£0
Lo ke
ZZ]. ..... L:wé Zbﬂ'bﬂ'g;ﬁﬂ ﬂ-é 7T£ 7r,€ 7T£

n(on e

=1,...,L:pp<bmy,m#0 H )

:( N [b2ﬂ—b]>ﬂ< N {Qﬂ—bb}>
l=1,..., L:py>bmy,mp#0 e l=1,..., L:py<bmy,mp#0 e
= {b}.

The first line follows by equation (4) and the definition of 4(b). The remaining lines follow

by considering two cases so that we can eliminate the absolute values. ]

Proof of proposition 2. Let FF denote the true falsification frontier from definition 1. Let

FE8ues = {5ER§0 10p = | —bmy|, £=1,...,L, b€ min ﬂ max W]}

£=1,...,L:mp#0 Ty T p=1,..., L:mp#0 Ty

We will show FF = FF&"**, We split the proof in three parts. The first two parts together
show that FF&"** C FF. The third part shows that FF&"* D FF.

1. We first show that if § € FF#"** then the identified set B(9) is not empty. This follows

immediately from lemma 2.

2. We next show that ¢’ < ¢ for 6 € FF®"** implies that B(J') is empty. So let §' < o
where 6 € FF&"* and ¢’ > 0. Consider two cases.
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(a) First suppose d, < d; for some ¢ such that m, = 0. By the definition of FF&"**
d¢ = |te|. Note that 6, > §, > 0 implies 1oy # 0. If ¢, > 0 then by — 0, > 0. So
0 ¢ [¢e — 0), ¢ + 0;]. Hence By(d;) = 0 by equation (4). The case for ¢, < 0 is

similar. Thus in this case we must have B(¢") = 0.

(b) Next suppose 0, < d; for some ¢ such that 7, # 0. ¢ < ¢ implies that B(’) C
B(9). By lemma 2, B(d) = {b*} for some value b*. Thus it suffices to show that
b* ¢ B(0'). That will imply that B(6") = 0.

To show that b* ¢ B(¢') it suffices to show that b* ¢ B,(d") for some ¢, since B(d’)
is the intersection of these sets over all ¢’s, by corollary 1. From that corollary we

have

e 6 v
Clme ml e )

If b* < fy/me, then b* = 1y/me — 8¢/|me| < o/ 7 — 6y/|me|. Therefore, b* ¢ By(d').
The case where b* > 1)y/m, is analogous. Hence b* ¢ B(d’).

By(d")

Steps 1 and 2 together imply that FF®"** C FF.

3. Finally, we show that FF&"* D FF. We show the contrapositive: 0 ¢ FF&"* implies
that ¢ ¢ FF. So let § ¢ FF#"**. Denote

brin = min — and bax =  max  —

There are two cases to consider.

(a) Suppose B(8) C [bmin, bmax)- If B(d) = 0 then § ¢ FF. So we can assume B(d) # 0.
We'll show that we can find a ¢ < § such that B(§') # 0, and hence 6 ¢ FF.
Let b € B(8) C [buin, buas]. First, 5(8) € FFE and § ¢ FF imply that
d # 0(b'). Since b’ € B(6), 0,(b') = |1pg — b'mg| < & for all £. Thus §(V') < J. Next,
B(6(b)) = {b'} # 0 by lemma 2. So if we let 0’ = 6(V') then we have ' < ¢ and
B(d") # 0. So § ¢ FF by definition of the falsification frontier.

(b) Suppose B(6) contains an element b ¢ [byin, buax]. Suppose b > byay. Let ' =
O(bmax) € FFE By § ¢ FF&S § £ §. If £ is such that 7, = 0, then
8y = || = |¢e — bry| < 9§y by definition of b € By(d,). If ¢ is such that m, # 0,
then

52 - |¢€ - bmaxﬂ-f| = |7Té| (bmax - W/W) < |7Té| (b - ¢€/7W) S 54
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by b > byax. So 6’ < 6. Together with § # &', we have &' < 4. Also, B(') =
{bmax} # 0 by lemma 2. So 6 ¢ FF by definition of the falsification frontier. A

similar argument applies if instead we have b < byy,.

Proof of theorem 2. We have

| BO) = U B((b))

deFF . P
€ be [mlnz:1 ,,,,, Limp#0 ?ﬁymaxlzl ,,,,, Limp#0 %]

= U {b}

s P P
be[mmz:1 ..... Limg#0 ,Tf,maxezl ..... Limg#0 ?ﬁ]

_ [ . (% W}
— min — max — .

{=1,...,L:m¢#0 Ty T o=1,..., L:mp#0 Ty

The first equality follows by the characterization of the falsification frontier in proposition

2. The second equality follows by lemma 2. ]

Proof of proposition 3. 1t suffices to show that

min by min /7,
feﬂrd £> ge['rel
max by max g/ my
L€ Lo LELyer

We have

P (mln ?)\g = min /gg> 2 ]P)(Erel = Erel)

tefq  lelwa
:IP( N {F<Cin {ngcn}>

L:mp=0 L:mp7#0

=P < ﬂ {C;ng < 1} N ﬂ {n_ng - n_IC’n Z 0}) .

L:mp=0 L #0

This probability converges to 1 as n — oo. To see that, use assumptions 24 to get
CAE1(m = 0) = C,'0,(1) = 0,(1), which is < 1 with probability approaching 1. Simi-
larly, n ' Fy1 (7, # 0) — n~'C,1(m, # 0) = ko + 0,(1) — o(1), which is > 0 with probability

o~

approaching 1. Thus min, 7 by = minge, /b\g + 0,(1). By consistency of /b\g for ¢ € L

rel

(assumption 1) and continuity of the minimum function, minge,. , by = minges., ¢¢/m. The

same analysis applies to the maximum. O
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In this appendix we extend our analysis of the linear instrumental variable model to allow

for multiple endogenous variables.

A The FF and FAS for Multiple Endogenous Variables

Theorem 1 characterizes the identified set for the vector of coefficients on the endogenous
variables, as a function of the exclusion restriction relaxation. Our subsequent character-
izations of the falsification frontier and the falsification adaptive set, however, restricted
attention to the case with just one endogenous variable—see proposition 2 and theorem 2.
In this section, we extend these two results to the general case with K > 1 endogenous
variables. These results can also be used if, for example, a single endogenous variable has
interactions with covariates or if the outcome equation is nonlinear in this variable.

In this general case we assume all instruments are relevant for simplicity. To state our
new assumption, we consider submatrices of IT. Let £ C {1,...,L}. Let Il be the |£| x K
submatrix of II formed by removing all rows ¢ ¢ L. Let 7, denote the ¢th row of the matrix

IT. We strengthen and generalize assumption Al as follows.
Assumption A1’ (Relevance). The following hold:
1. For all £L C {1,...,L} with |£| = K, II; has full rank.

2. For all £ C {1,...,L} such that || = K + 1, {m, : £ € L} are affinely independent.
That is, for all £ ={l1,...,lk1},

1 1 ... 1
71'51 71'32 7TgK+1
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has full rank.

A1.1" implies that any set £ of K instruments uniquely define the coefficients 3255 = Hzlz/z[;,
where 9, equals the subvector of ¢ after removing all components ¢ ¢ L. [#' is the
population 2SLS coefficient on X using Z, as excluded instruments and Z_, as controls.
Here we partition Z = (Z., Z_.) based on the indices in L.

A1.2" means that there does not exist a hyperplane that passes through all of the
vectors. It is equivalent to linear independence of (7, — my,..., T — 7).

For |£] = K + 1, let

Pr = conv({BR : L€ L}).

This is the convex hull of K + 1 just-identified 2SLS estimands in R¥. We show that the

falsification frontier and the falsification adaptive set can be constructed from Py.

Proposition S1. Suppose Al’, A2, and A3 hold. Suppose the joint distribution of (Y, X, Z)

is known. Then the falsification frontier is the set
FF={0eRLy: 6=y —mb|, be Pr, LCA{L,...,L}, |[L]|=K+1}.

Theorem S1. Suppose Al’,; A2, and A3 hold. Suppose the joint distribution of (Y, X, Z) is

known. Let
P = U Pe.

LC{1,..,L}:|L]=K+1

Then P is the falsification adaptive set.

Like the K = 1 case (theorem 2), P can be computed by running a variety of 2SLS
regressions. Unlike that case, however, P is generally not convex, even though each P,
is convex. Nonetheless, we are often only interested in linear functionals of the coefficient
vector 3. For example, we often care about just one component of 5. The following corollary
shows that the falsification adaptive set for a linear functional of 5 again has a simple form.
For this result, let

FAS* = conv ({879 : L C{1,...,L},|L]| = K }) (S1)

denote the convex hull of the set of all just-identified 2SLS estimands.

Corollary S1. Suppose A1l’, A2, and A3 hold. Suppose the joint distribution of (Y, X, Z) is

known. Then FAS* contains the falsification adaptive set for 3. Moreover, for any o € R¥



Figure 1: Example with K = 2 endogenous variables. Left: L = 3 instruments. Right:
L = 4 instruments. In both plots, the falsification adaptive set for (/31, fs) is the shaded
region. In the right plot, the falsification adaptive set for [3; is shown as the projection onto
the first component.

the falsification adaptive set for o/ is

min o gErs max o/ fFS

LC{l, Lyic=k 7 el Ly o=k

This result shows that the FAS characterized in theorem S1 is contained in the simpler
set FAS™. It also shows that we can simply cycle through all possible just identified models,
compute the corresponding 2SLS estimand, take the convex hull, and project it onto one
component to get the FAS for that component.

To illustrate these results, consider the two endogenous variables (K = 2) and three
instruments (L = 3) case. Hence we have L = K + 1. Consider the left plot in figure 1.
This plot shows possible values (by,by) of the coefficients on X. The exclusion restriction
from instrument ¢ imposes a single linear constraint ¢, = m;b. These constraints are simply
lines in R%. Since there are three instruments, there are three constraints. When these
three lines do not intersect at a common point, the baseline model is falsified. This case is
shown in the figure. Suppose we drop the exclusion restriction for instrument ¢. Then two
linear constraints remain, S is point identified, and it equals the intersection point ﬁffgs S0}
Repeating this for ¢ € {1,2,3} and taking the convex hull yields the falsification adaptive
set, which is shown as the shaded triangular region.

The right plot in figure 1 illustrates the L > K + 1 case. Here we have K = 2 and
L = 4. There are 6 different just-identified 2SLS estimands. The falsification adaptive set is



no longer convex. Nonetheless, the projection of the convex hull of all just-identified 2SLS
estimands onto the first component gives the falsification adaptive set for 5;. Moreover, this
projection can be computed by simply taking the largest and smallest values of §; among

the just-identified 2SLS estimands, as shown in corollary S1.

B Proofs for section A

We next present a sequence of lemmas that lead to the proofs of the results in section A. Here
we omit proofs of some of the more straightforward lemmas, but full proofs are available in
appendix K of Masten and Poirier (2020).

We begin by showing a basic geometric fact about the set FAS* when L = K + 1. Here

and elsewhere we use the notation 3% = ﬁfi‘“ L

Lemma S1. Suppose Al’; A2, and A3 hold. Suppose L = K + 1. Then exactly one of the
following holds:

1. g% = %8 for all 0,0 € {1,...,L}.
2. TS £ by for all £ € {1,... L},

The next lemma shows that, when L = K + 1 and FAS* is not a singleton, we can write

any element of RF as a weighted sum of our just-identified 2SLS estimands.

Lemma S2. Suppose Al’, A2, and A3 hold. Suppose L = K + 1. Assume that FAS”
is not a singleton. Then for any b € RX there exist weights wy(b),...,wr(b) such that

S we(b) =1 and
L

b= wi(b)ss.

=1
Define 6,(b) = |1, — mb| for all ¢ = 1,..., L. Let 6(b) = (01(b),...,dL(b)). We next show
that, in the L = K + 1 case, the identified set for /5 is a singleton for § = §(b), and b € FAS™.

Lemma S3. Suppose Al’, A2, and A3 hold. Suppose L = K + 1. Let b € FAS*. Then
B(3(b)) = {b}.

Proof of lemma S3. By lemma S1, there are two cases to consider: FAS™ is either a singleton

or a nondegenerate simplex in R¥.

Case 1. Suppose FAS® = {b} is a singleton. By the definition of FAS*, this implies
that b = B2 for any £ C {1,..., L} with |£] = K. Tt also implies §(b) = 07. Therefore

B(0.) = ﬂle By(0) = ﬂqux (ﬂeec Bé(o)) = {b} by ﬂeec By(0) = {b}.

4



Case 2. Suppose FAS* is not a singleton. Then 7,8%} # 1, for all £ € {1,...,L}. We

prove equality of sets by showing that both directions of set inclusion hold.

Step 1 (D). First we show that B(d(b)) D {b}. By definition of &,(-), 1y — mb €
[—d¢(D), 0¢(b)] for all £. Thus, by the characterization of B(-) in theorem 1, b € B(d(b)).

Step 2 (C). Next we show that B(d(b)) C {b}. First suppose §(b) = 0. In this case
the baseline model is not falsified and FAS™ is a singleton. This is a contradiction. So we
must have d,(b) > 0 for some /.

We will show that any element b* # b is not in B(4(b)). The set FAS* is a polytope.
Consider its alternative half-space representation. The half-spaces correspond to one side of

the hyperplanes B,(0). Formally, write

L
FAS* = (\{b € R" : ¢ — mjb < 0}. (S2)

=1
We assume without loss of generality that all L inequalities go in the same direction. This is
because 1y — 7T21~) > 0 can be rewritten as —, — (—7?2?)) < 0, which is equivalent to replacing
instrument Z, with —Z,. Neither the estimands 32 nor the set FAS* are affected by these
sign normalizations.

Noting that B(d) is an intersection of half spaces and evaluating it at §(b) gives

Bs(b) = {b € RE . —§y(b) < by — b < Mb)}
= (ﬂ{é € RN gy — mb > —|uy — wzb|}> N (ﬂ{é € RN ghy — mpb < b — w2b|}>
— P,(b) N Pa(b).

To complete this proof, it suffices to show b* ¢ Py (b). By lemma S2, any element in R
can be written as a linear combination of the L different just-identified 2SLS estimands. In

particular, we can write b* in this way:

L

- Z Wg(b*)ﬂzsgm

(=1

where w,(b*) are weights that sum to one, 31, we(b*) = 1.

Since b € FAS*, ¢y — m;b < 0 for all ¢. This follows directly from our half-space represen-



tation of FAS*. Thus —|¢, — mb| = ¢y — m,b for all ¢. Hence

L

L
Pu(b) = (b € R : o — mb > —[uo — mibl} = ({0 € R¥ = m(b — b) < 0}.

=1 (=1
So b* € Py(b) if and only if 7y (b* — b) < 0 for all £. Focus on just one ¢ for a moment. Then

L

T (0" = b) = Z(ws(b*) — ws(b))m B2

= Z ws(b%) — ws(b))vhe + (we(b*) — we(b))m B2
s#£L
= (o = mB2) Y (w,(07) — wy(b)):

s#£L

The first line follows from lemma S2. The second follows from v, = 7% when s # /
by the definition of these 2SLS estimands. The third follows from the difference in weights
summing to zero.

Next notice that 1, — m,8%® < 0. This follows from %} € FAS*, the half-space
representation of FAS*, and since FAS* is a nondegenerate simplex. Suppose by way of
contradiction that b* € Py(b). Then 7(b* —b) < 0 for all £. We've just seen that this implies
> sze(ws(b) —ws(b)) > 0 for all £. But now we have

0= (wy(b") = wy(b)) = Y (wy(b") — w, (b)) + (we(b*) — we(b)).
s=1 s#L

Thus w,(b*) —we(b) = > . (ws(b) —ws(b")) < 0 for all £. Since wy(b*) — w,(b) sums to zero,
wye(b*) = wy(b) for all £. This implies b* = b, a contradiction. Thus b* ¢ P;(b). O

Lemma S4. Suppose A1, A2, and A3 hold. Suppose L > K + 1. Let b € P. Then
B(0(b)) = {b}.

Proof of lemma S4. We prove set equality by showing that both directions of set inclusion

hold as in the proof of lemma S1.
Step 1 (2). The proof of this step from lemma S3 applies without modification.

Step 2 (C). Since b € P there is some £ C {1,...,L} with |£| = K + 1 such that

be Pr. Let
= ﬂ By(6)

lel
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By lemma S3, B.(d(b)) = {b}. By definition, B.(d) 2 B(d). Thus B(4(b)) C {b}. O

The following variation on Farkas’ lemma (for example, corollary 22.3.1 on page 200 of

Rockafellar 1970; Border 2019 provides an extensive discussion) is helpful.

Lemma S5 (Variation on Farkas’ Lemma). Let zy, ..., z, € RE. Then 0x ¢ conv({zy,...,z,})

if and only if there exists a p € RX such that p'z; >0 foralli=1,...,n.

The next two technical lemmas are used in the proof of lemma S8, which is then used in

the proof of lemma S9.

Lemma S6. Suppose A1’ holds. Suppose L = K + 1. Suppose FAS™ is not a singleton.
Then 1, — 7)b = wy(b) (e — 7)B%}S) for all £ = 1,..., L.

Lemma S7. Suppose Al’ holds. Suppose L = K + 1. Suppose FAS* is not a singleton.

Without loss of generality (see equation (S2) and the surrounding discussion), write

L
FAS* = ({b € R" : ¢, — mjb < 0}.

=1
Then there are no b € R such that ¢y — b >0 forall £ =1,..., L.

Lemma S8. Suppose Al’, A2, and A3 hold. Suppose L = K + 1. Then there exists a
normalization of the hyperplanes {b € RX : m,b = ¢y} with ¢y > 0 and such that

O € conv({m,: ¢ =1,...,L}) = O € conv({B*}°: ¢ =1,...,L}).

Lemma S9. Suppose Al’, A2, and A3 hold. Suppose L > K + 1. Let b ¢ P. Then there
exists a ¢’ < 0(b) such that B(d") # 0.

Proof of lemma S9. Without loss of generality, suppose b = Ox. This follows since we can
simply translate our coordinate system so that the origin is at b. Put differently, we map all
x € RE to z — b. Throughout this proof, we also use a normalization from lemma S8 where
e > 0 for all £. Next, there are two cases to consider.

Case 1. Suppose 0,(b) = |tpp — mb| = ¢, > 0 for all £. Since b ¢ P, b ¢ P, =
conv({BA7) : € € L}) for any £ with [£] = K + 1. Since b = Ok, lemma S8 implies that
Or ¢ conv({m, : £ € L}). This holds for any set £ such that |£| = K + 1. This implies that
O ¢ conv({my : £ =1,...,L}). To see this, assume Ox € conv({m, : £ = 1,...,L}). By
Caratheodory’s theorem, (e.g., chapter 17 of Rockafellar 1970) Oy is then in the convex hull
of a (K +1)-element subset of {m,: £ =1,..., L}, That is, Ox € conv({m : £ € L}) for some
L with |£] = K + 1. This is a contradiction.



Since O ¢ conv({m;: £ =1,...,L}), lemma S5 implies that there exists a vector b such
that 7)b > 0 for all £ = 1,..., L. Define b(¢) = b+ eb. Since v, > 0 and m,b > 0 for all ,
there exists an € > 0 such that ¢, — 57?213 > 0 for all /. This implies that

0 < [t — mb(E)| = [t — m(ED)| = de(b) — Emyb < de(b)

by 6¢(b) = 1y and by 0 < gm,b < 1)y for all .

Let 6y = [1p¢ — myb(€)|. We have shown that ¢’ < §(b). Finally, by our characterization of
B(-) and the definition of ¢, we have b(g) € B(¢"). Hence B(d") # 0.

Case 2. Suppose §,(b) = 0 for some ¢’s. There can be at most K — 1 such indices, since
otherwise we would have b € P. Let L, denote the set of these indices. Since b = O and
0¢(b) =0, 1y, = 0 for ¢ € Ly. In this case, consider the subspace

{beRE:0=1lb, (€ Ly}

This is a linear subspace of dimension at least 1 (by |£o| > 0) and at most K — 1 (as noted
earlier). Within this subspace, we can look at the remaining indices {1,..., L} \ L£y. We
have d,(b) > 0 for all of these indices. By restricting attention to this subspace we can thus

immediately apply the analysis of case 1. ]

For the next two lemmas, let
FFe™s = {6 e Ry, : 6y = |y — mb|,{=1,...,L,b e P}

and let FF denote the true falsification frontier from definition 1.
Lemma S10. Suppose Al’, A2, and A3 hold. Suppose L > K + 1. Then FF&" C FF.

Proof of lemma S10. Recall the definition 6,(b) = |ty — m;b|. Let 6 € FF&'*. Then, by
definition, there is a b € P such that d,(b) = 0, for all £. Thus B(d) = {b} by lemma S4.
Let ¢ < 6(b). Then there is some index ¢ such that 0 < 0, < §¢(b). So by —mb & [—d,, )]
and hence b ¢ By(¢'). This implies that b ¢ B(d"). But since B(d") C B(d) = {b}, we must
have B(¢') = (). Hence, by the definition of the falsification frontier, FF&"** C FF. O

Lemma S11. Suppose Al’, A2, and A3 hold. Suppose L > K + 1. Then FF&"* D FF.
Proof of lemma S11. We will show the contrapositive: ¢ ¢ FF&"** implies § ¢ FF. Let

0 ¢ FF8"* There are two cases to consider.

Case 1. Suppose 0 is such that B(d) contains an element b ¢ P. By lemma S9 there
exists 0/ < 0(b) with B(d") # 0. Moreover, §(b) < § by the characterization of B(d) in
theorem 1. Thus 0 ¢ FF by the definition of the falsification frontier.
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Case 2. Suppose ¢ is such that B(6) € P. If B(d) = ), then § ¢ FF by definition.
Therefore we let B(d) # (0. Let ¥ be any element of B(d). Let ¢ = §(b'). By ¥ € P,
0" € FF#" and by § ¢ FF&"* § £ §. Also, by V/ € B(d) we have §, = |1y — m;b'| < &, for
all £. Together these imply ¢ < . Moreover, we have B(8') = B(§(V')) = {b'} # 0 by lemma
S4. Thus ¢ ¢ FF, by definition of the falsification frontier.

All values of § must fall in one of these two cases. Therefore FF&"* O FF. O
Proof of proposition S1. This follows directly from lemmas S10 and S11. [

Proof of theorem S1. We have
U 86) = JB60) = Jiby =P
SEFF beP beP

by proposition S1 and lemma S4. O]

To prove corollary S1, we use the following definition: Let P be a K x K idempotent
matrix. Define the linear operator p : RX — R¥ by p(a) = Pa. p is called a projection. For
A C RE | define the projection of the set A as proj(A) = {p(a) € RX : a € A}.

We use the following lemma in the proof of the corollary.
Lemma S12. proj(conv(A)) = conv(proj(A)).

Proof of corollary S1. The first part of this result states that P C FAS*. To see this, let
b € P. Then b € P, for some set of indices £ with |£| = K + 1. But if b is a convex

combination of {ﬁ%S\L{S@} : £ € L}, then it is also a convex combination of the larger set of

elements {82 : S C {1,...,L},|S| = K}. Hence b € FAS*.
To prove the second part, consider projections defined by the K x K matrix
/
P=(a 0c - 0x)

where o € R¥. For any set A C R¥ let [A]; = {a; € R: a = (ay,...,ax) € RE}. Since
P maps the 2,..., K components of any vector a € R¥ to zero, it suffices to show that
[proj(P)]1 = [proj(FAS*)]; where

FAS* — : ! 02SLS ! 22SLS . S3
oA = [ i 5

We have
proj(FAS*) = proj(conv(P)) = conv({Pﬁ%SLs LCA{L,...,L},|L| = K})
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by lemma S12. Using the specific form of the projection P now gives equation (S3).

Similarly,

proj(P) =

U

LC{1,...L}:|L)=K+1

U

LC{1,...,.L}:|L]=K+1

proj (conv({ﬁﬁ\{g}

conv (proj ({/BL\{Z

2SLS

rer)))

}:KEE})).

2SLS

The first line follows by commutativity of projections and unions. The second from lemma

S12. Hence

[proj(P)ly =

U

LC{1,...,.L}:|L|=K+1

: /! 22SLS ! 32SLS
{Igg? @By max a 5&\{@}} :

Thus we see that the first component of proj(P) is a union of closed intervals. If £ and £’

differ by at most one element, then the intervals

lel

{min a'ﬁ%s\%{sé}, max o B%iL{Sg}] and [min o/ﬂ%?ﬁ?z},

el

! Q2SLS
max o 50\{@}}

have non-empty intersection. Their union is therefore a closed interval. Because we take the

union over all L C{1,...,L}:|L]| = K +1,

2SLS ! 22SLS

: /
{ggz{t LN O cnw}] and

., L) such that

|

we can find a sequence (L1, ..

E

! Q2SLS
max «
€Ln+1 ﬁ£n+1\{£}

: ! 22SLS
min «
Lty e

overlap for n =1,..., N — 1 and such that Ufj:l L,=A{1,...,L}. Thus

U

LC{1,...L}:|L|=K+1

Putting everything together yields [proj(P)]; = [proj(FAS*)]; as desired.
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