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Abstract
Climate change is leading to alterations of the hydrologic cycle and sediment movement
within watersheds, but the details and impacts of these changes are indeterminate. To
reduce this uncertainty, many researchers create ensembles by averaging the projected
temperature and precipitation from multiple global climate model (GCM) ensemble
members before running these as forcing inputs through hydrologic models. There is
little research quantifying if these ensembled climate scenarios produce similar hydro-
logic model results to those based on individual ensemble members. We created multiple
sets of ensembled climate inputs for a pair of hydrologic and sediment yield models of
adjacent watersheds that drain to the Great Lakes. We then compared the hydrologic and
sediment results of the models forced by these ensembled climate scenarios with hydro-
logic ensembles created by running the individual climate ensemble members through the
same hydrologic models. We found that, in all cases, the streamflow and sediment yield
results are significantly different at the 5% confidence level and the ensembled climate
scenarios can lead to systematic negative biases. We also looked at three subset hydro-
logic ensembles: all 10 CMIP5 ensemble members from the CSIRO mk3.6 model; a
Representative ensemble with high, moderate, and low precipitation predictions; and a
Best Fit ensemble based on GCM performance relative to historic climate. We found that
the subset ensembles covered a large portion of the range of outputs for the whole set,
while producing mean annual streamflows within 5.5% of the full hydrologic ensemble
results and sediment yield and sediment discharge results within 12.2%.
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1 Introduction

Changes in climate, particularly precipitation and temperature, can cause a wide range of
impacts to our environment. Streamflow and sediment movement are particularly susceptible
to changes in both magnitude and timing of precipitation. They are also affected by differences
in temperature, although less directly. These changes to streamflow and sediment movement
through a watershed in turn impact infrastructure, agriculture, and ecosystems.

Many researchers have looked at the potential impacts of climate change on streamflow and
sediment, but most limit their modeling efforts to a handful of climate scenarios (e.g.,
Cherkauer and Sinha 2010; Johnson et al. 2015; O'Neal et al. 2005; Park et al. 2011; Serpa
et al. 2015; Verma et al. 2015). This can be problematic because research has shown there can
be a significant difference in streamflows, sediment yield from the landscape, and sediment
discharge across climate model ensemble members, even when they are driven by the same
forcing conditions (Dahl et al. 2018). One approach to reduce this variability while still
minimizing the number of simulations required is to create an ensemble of the climate inputs
(e.g., Cotterman et al. 2018; Neupane et al. 2015; Praskievicz 2016; Shrestha et al. 2012; van
Liew et al. 2012), with the implicit assumption that the mean behavior across models is
representative of the most likely future conditions.

Ensembled climate inputs are typically created by averaging the precipitation and temper-
ature for a given point in time and space across multiple climate ensemble members. This
single ensembled climate is then used as input for a hydrologic model to produce a streamflow
and sediment discharge projection (Fig. 1). This is in contrast to an ensembled hydrology
where the individual climate ensemble members are first downscaled and then run through the
hydrologic model separately before the results are averaged together. It is not clear from the
literature whether the streamflow and sediment transport resulting from a single, ensembled
climate are the same as an ensembled hydrology.

To address this question, we modeled two large, adjacent watersheds in the Great Lakes
region using the Soil and Water Assessment Tool (SWAT). We ran these models using both
individually downscaled climate model outputs and ensembles of these outputs. We then
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Fig. 1 In this article, we focus on two RCPs (4.5 and 8.5). Outputs associated with each pathway for multiple
climate models (with one or more ensemble members) from CMIP5 were used as inputs to our analysis. We
define ensembled climate scenarios as being an average of selected climate model ensemble members before they
are downscaled and run through a hydrologic model (dashed lines). Ensembled hydrology scenarios are ones
where the individual climate ensemble members are downscaled and run through the hydrologic model
separately before being averaged together (dotted lines)
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compared the streamflow, sediment yield, and sediment transport results to determine whether
a single climate ensemble run or a subset of the climate ensemble members can be used to
accurately represent the climate model effects of all of the available ensemble members.

2 Methods

2.1 Site description

The Maumee and St. Joseph River watersheds span the lower portion of Michigan, stretching
from Lake Erie to Lake Michigan (Fig. 2). The Maumee watershed covers 17,015 km2 and is
primarily agricultural (74.7% row crops and 5.2% pasture), according to the 2006 National
Land Cover Database (Fry et al. 2013). It drains portions of northeastern Indiana, southwestern
Michigan, and northwestern Ohio to Lake Erie at Toledo, Ohio. The mainstem of the Maumee
River has United States Geological Survey (USGS) flow gages at Defiance, Ohio
(#04192500), and further downstream at Waterville, Ohio (#04193500). The flow at
Waterville averaged 172.6 m3/s between 1990 and 2009 while the average annual suspended
sediment load was 1.2 million tonnes between 1990 and 2003.

The St. Joseph River watershed abuts the northwestern edge of the Maumee watershed and
extends westward to its outlet at St. Joseph, Michigan, on Lake Michigan. The St. Joseph
watershed is smaller (12,138 km2) and has a lower proportion of agriculture (49.3% row crops,
12.2% pasture) than the Maumee, but more than twice as much forest (23.8% versus 8.2%).

Fig. 2 The Maumee and St. Joseph River watersheds constitute a contiguous block of land between Lake Erie
and Lake Michigan, covering portions of Michigan, Ohio, and Indiana (modified from Dahl et al. (2018))
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The USGS gage at Niles, Michigan (#04101500), reported average flows of 113.6 m3/s
between 1990 and 2009. There is no long-term sediment gaging at Niles, but a relationship
between flows at the Niles gage and sediment moving downstream into St. Joseph Harbor was
developed by the USACE (2007). While this sediment-discharge relationship is not appropri-
ate for individual events, it showed good long-term agreement with both empirical values and
harbor dredging records (USACE 2007).

There are numerous dams throughout both the Maumee and St. Joseph River watersheds.
The dams in this region were typically built for small-scale hydropower or recreational
purposes and are operated as run-of-river (inflow equal to outflow). Figure 2 indicates the
location of dams with more than 1.2 million m3 of storage.

2.2 Soil and Water Assessment Tool models

We used individual SWAT models for each watershed based on 1 arc-second resolution
elevation data from the National Elevation Dataset, land use/land cover from the 2006 National
Land Cover Database (representative of our selected calibration and validation time periods),
and soil data from the Natural Resources Conservation Service’s Soil Survey Geographic
database. Information on dams included in the models was obtained from the National
Inventory of Dams maintained by the U.S. Army Corps of Engineers. The detailed develop-
ment and calibration of these models is described in Dahl et al. (2018). We ran the models
using downscaled climate model data for 2010–2099, with the first 5 years as a warm-up
period that was excluded from our analysis.

2.3 Climate data and downscaling

The Fifth Coupled Model Intercomparison Project (CMIP5) (Taylor et al. 2012) resulted in at
least 234 ensemble members from 37 different climate models. We selected Representative
Concentration Pathways (RCP) 4.5 (Masui et al. 2011) and 8.5 (Riahi et al. 2011) because they
were both required by the CMIP5 experimental design and therefore had the largest numbers
of available ensemble members. We retrieved bias-corrected, statistically downscaled versions
of the CMIP5 climate model ensemble members from a dataset created by the United States
Bureau of Reclamation and others (Brekke et al. 2013). The archive of downscaled CMIP5
model runs contains 70 complete runs of both RCP 4.5 and 8.5 with precipitation and
temperature available on a monthly basis for the North American Land Data Assimilation
(NLDAS) grid. We eliminated seven of the climate ensemble members (access1-3.1.rcp85,
fgoals-s2.2.rcp85, fgoals-s2.3.rcp85, noresm1-me.1.rcp85, access1-3.1.rcp45, fgoals-
s2.2.rcp45, and noresm1-me.1.rcp45) because they only had average tempertures available
and one (hadgem2-es.1.rcp45) because it was missing data from December 2099.

We created four separate climate ensembles for each selected RCP by averaging the
precipitation and temperature for all ensemble members at each time step and grid cell. The
first pair (RCP 4.5 and RCP 8.5) of climate ensembles used all of the available climate model
ensemble members. We then created a pair of climate ensembles based only on the 10
ensemble members submitted from the CSIRO mk3.6 model (Jeffrey et al. 2013), because
this submission had the most individual ensemble members of any model in the CMIP5. A
third pair of climate ensembles was then generated based on a representative subset of climate
model ensemble members in an attempt to create a parsimonious representation of the full
range of potential climate forcings. Finally, we created a fourth pair of climate ensembles
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based on the subset of climate model ensemble members that did the best job of matching the
historical climate of our study region.

To select climate ensemble members representative of the full range, we first totaled the
precipitation for each run both spatially (over the NLDAS grid cells centered on 40.1875° N to
42.4375° N and 86.4375° W to 83.0625° W) and temporally (from 2010 to 2099). The
ensemble members were then sorted based on the total precipitation and percentiles were
assigned to each run. We then selected one ensemble member each from the top and bottom
10% and three from the middle 20% of total precipitation, choosing the same ensemble
member from both RCP 4.5 and RCP 8.5 whenever possible. Additionally, we chose the
lowest and highest ranked ensemble members from the CSIRO-mk3-6-0 model, because this
submission had the largest number of ensemble members submitted to CMIP5. The selected
members of the Representative ensembles are all shown in Table 1.

The Best Fit ensemble represents the set of climate ensemble members that best matched
the historical climate of the study region. We determined this by comparing the total precip-
itation and average temperatures over the study region for each ensemble member for 1971–
1999 to measured data from NLDAS. We selected the climate ensemble members that were in
the most representative quartile for both precipitation and temperature (Supplementary
Table S1). Similar to the observation of Knutti et al. (2010), we found that few ensemble
members performed well for both temperature and precipitation, despite being bias-corrected
to long-term (1961–1990) average temperature and precipitation (Brekke et al. 2013).

We downscaled each selected scenario using the same methodology as Dahl et al. (2018),
which is based on the work of other researchers (Maurer and Hidalgo 2008; Wood et al. 2004).
This method takes the bias-corrected, spatially downscaled data provided by the United States
Bureau of Reclamation and disaggregates it spatially to individual gage locations and tempo-
rally to daily time steps.

2.4 Statistical analysis

We tested the differences between the hydrologic outputs of the ensembled climate and the
ensembled hydrology of the individual climate ensemble members using analysis of covari-
ance (ANCOVA). ANCOVA tests for differences in both the slope and y-intercept of
regression lines fit to the data. We centered the years by subtracting the mean to minimize
the effect of the large year values on the slope in the ANCOVA test. We did not quantitatively
test for normality and heteroscedasticity of the residuals because the sample sizes (n = 85) were
sufficient to minimize the impact of non-normality and heteroscedasticity due to the Central
Limit Theorem (Ghasemi and Zahediasl 2012; Helsel et al. 2020; Pek et al. 2018;

Table 1 Climate ensemble members selected for use in the Representative climate ensemble

RCP 4.5 RCP 8.5

Ensemble member Precipitation percentile Ensemble member Precipitation percentile

access1-0.1.rcp45 3% access1-0.1.rcp85 3%
ccsm4.4.rcp45 45% csiro-mk3-6-0.10.rcp85 43%
mpi-esm-lr.1.rcp45 51% mpi-esm-lr.1.rcp85 46%
csiro-mk3-6-0.7.rcp45 55% ccsm4.4.rcp85 47%
csiro-mk3-6-0.1.rcp45 99% csiro-mk3-6-0.1.rcp85 93%
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Supplementary Fig. S1). We chose to include any potential outliers, although the use of annual
averages tended to suppress these (Supplementary Fig. S2). We also tested each line for
monotonic trends using the Mann-Kendall test after using the bias-corrected, pre-whitening
outlined by Hamed (2009). We used a significance level of α = 0.05 for all tests. The p values
we present in the main body of this article are not adjusted for multiple comparison testing, but
we point out any differences with the results adjusted to limit the false discovery rate (FDR) to
no more than 5%. The adjusted p values for the ANCOVA tests, calculated after the method of
Benjamini and Yekutieli (2001), are provided in the Supplementary Material (Supplementary
Tables S2, S3, and S4).

3 Results and discussion

3.1 SWAT model validation

The SWAT model of the Maumee River watershed was previously calibrated to monthly flow
and sediment data for water years 1991–1999 (Dahl et al. 2018). The modeled streamflow has
a Nash-Sutcliffe efficiency (NSE) of 0.79 at the Waterville, Ohio, gage and 0.86 at the
Defiance, Ohio, gage for the validation time period of October 1987–December 1990 and
January 2000–September 2003. Over the same time period, the modeled sediment at
Waterville, Ohio, has a NSE of 0.48 and a % Bias of + 2.5%.

The St. Joseph River SWAT model was calibrated to calendar years 1990–1999 and
validated using 2000–2009. The monthly model streamflow at Niles, Michigan, has a NSE
of 0.72 for the validation time period. The modeled monthly sediment has a NSE of 0.29 and a
% Bias of + 10.5% for the validation time period relative to a sediment rating curve at Niles,
Michigan (Dahl et al. 2018).

3.2 Streamflow

The mean annual streamflow based on the ensembled climate for the full set of GCM outputs
and that from the ensembled hydrology for the same input data are shown in Fig. 3. This figure
also shows the range of all of the individual climate ensemble members. The streamflow for
the ensembled climate is significantly different from the ensembled hydrology for the Maumee
and St. Joseph Rivers under both RCP 4.5 and RCP 8.5 at the 5% level of confidence.
Supplementary Table S2 provides both F-statistics and p values for the ANCOVA tests. These
significant differences are all based on the y-intercept and not slope, indicating a constant,
systematic, negative bias induced by the ensembled climate. This parallel, non-divergent
behavior is observable in plots of the streamflow (Fig. 3, Supplementary Fig. S1). This is true
even after controlling the FDR to no more than 5% (Supplementary Table S2). The ensembled
climate produces a mean annual streamflow that is 16.2 to 17.7 m3/s (12.1 to 13.0%) lower
than the ensembled hydrology for the Maumee River and 7.1 to 8.2 m3/s (5.2 to 6.1%) for the
St. Joseph River (Table 2).

The Maumee River streamflow from the ensembled hydrology has statistically significant
upward trends for both RCP 4.5 (τ = 0.258, p < 0.001) and RCP 8.5 (τ = 0.514, p < 0.001).
The ensembled climate streamflow trend is also significant for both RCP 4.5 (τ = 0.168, p =
0.024) and RCP 8.5 (τ = 0.363, p < 0.001). While all of the trends are statistically significant,
the difference in p values demonstrates that the choice of ensembling methodology can affect
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the detection of projected trends. None of the St. Joseph River streamflows had statistically
significant streamflow trends. This disparity is likely due to the difference in land use between
the two watersheds. The Maumee has a much higher proportion of agriculture and, as noted by
Dahl et al. (2018), this leads to a feedback effect on streamflow under a warming climate. As
the climate warms, crops mature and are harvested earlier in the year by the model, reducing
the late season transpiration and allowing greater runoff. Increasing crop yields have been
noted as a potential effect of climate change (Pryor et al. 2014).

Fig. 3 The mean annual flow of all the climate ensemble members is greater than the mean annual flow of the
ensembled climate run through the same hydrologic model. This is true for both the Maumee (top) and St. Joseph
Rivers (bottom) and regardless of RCP. The red shaded area represents the full range of the individual climate
runs used to create the ensembled hydrology

Table 2 The ensembled climate streamflow is consistently biased lower than from the ensembled hydrology,
regardless of the choice of ensemble members

Ensemble Method Maumee mean annual
streamflow (m3/s)

St. Joseph mean annual
streamflow (m3/s)RCP

All members 4.5 Hydrology 134.0 136.7
Climate 117.8 129.7

8.5 Hydrology 136.8 134.7
Climate 119.1 126.4

CSIRO mk3.6 4.5 Hydrology 140.9 143.2
Climate 125.9 136.4

8.5 Hydrology 139.9 139.8
Climate 124.3 132.6

Representative 4.5 Hydrology 136.8 138.0
Climate 123.5 131.6

8.5 Hydrology 133.4 130.7
Climate 121.8 124.2

Best Fit 4.5 Hydrology 134.7 134.8
Climate 121.1 128.5

8.5 Hydrology 143.2 137.5
Climate 128.0 130.1
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The difference between the negative bias of the ensembled climate relative to the
ensembled hydrology is likely due to the combination of the nonlinear hydrologic processes
and a loss of the precipitation signal. Knutti et al. (2010) noted this effect in GCMs and
showed that the distribution of precipitation in multi-model ensembles is narrower than any of
the individual runs because the differences from average are not co-located in space or time.
When the precipitation and temperature differences are translated through the hydrologic
model, this effect can be magnified.

3.3 Sediment yield

The annual sediment yield produced by the ensembled climate and ensembled hydrology for
all GCM outputs is significantly different (p < 0.05) for both the St. Joseph and Maumee
Rivers (Fig. 4; Supplementary Table S5). None of the slopes is significantly different between
the two ensembling methods, indicating that the difference between the two manifests as a
consistent bias, with the ensembled climate resulting in mean annual sediment, yields 900 to
952 kilotonnes (12.4–14.0%) lower in the Maumee and 8.6 to 10.1 kilotonnes (10.8–11.2%)
lower in the St. Joseph. The difference in intercepts remains significant even after controlling
the FDR to no more than 5% (Supplementary Table S3).

All of the ensembled sediment yields except the RCP 4.5 Best Fit ensembled hydrology in
the St. Joseph watershed have statistically significant, upward trends with p values less than
0.02. The ensembled climate results in consistently lower sediment yields than the ensembled
hydrology. It is interesting to note that both watersheds show large increases in sediment yield
towards the end of the century under RCP 8.5. These increases may be the result of earlier crop
harvest leaving behind bare ground for longer periods of the year. Dahl et al. (2018) note that
while the model leaves the field fallow, farmers faced with a changing climate may instead
choose to plant two crops per year or crops with a longer time to maturity.

 

Fig. 4 The mean amount of sediment delivered to the river each year has statistically significant differences
between the ensembled climate and ensembled hydrology approaches. The red shaded area represents the full
range of the individual climate runs
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3.4 Sediment discharge

We report the sediment discharge as the amount of sediment exiting the mouth of the river
(Fig. 5). The ensembled climate and ensembled hydrology for all climate ensemble members
produce statistically different sediment discharges (p < 0.05) for all watershed and RCP
combinations, based on the intercept (Supplementary Table S4). This is true even after
controlling the FDR to no more than 5% (Supplementary Table S4). The total annual sediment
discharge at the mouth of the St. Joseph River is 1.6 to 1.7 (~ 18.7%) kilotonnes lower for the
ensembled climate than the ensembled hydrology.

The sediment discharge for the Maumee is the one variable we examined where the
ensembled climate is greater than the ensembled hydrology. The total annual sediment
discharge at the mouth of the Maumee River is 118.5 to 155.4 kilotonnes (8.1 to 10.8%)
higher for the ensembled climate but 1.6 to 1.7 kilotonnes (~ 18.7%) lower at the mouth of
the St. Joseph River. This difference between watersheds is likely due to the presence of
reservoirs and the different predominant grain sizes. While all of the reservoirs in the
SWAT models are treated as run-of-river, sediment can still settle out in them because of
the slower velocities and the physical barrier of the dam. SWAT simulates this settling as a
function of the incoming and equilibrium sediment concentrations in the reservoir and the
predominant grain size. The median grain size (d50) differs between the St. Joseph and
Maumee watersheds and this leads to a large difference in the equilibrium sediment
concentration. In the Maumee model, the d50 is 0.041 mm (coarse silt) and the equilibrium
sediment concentration is 1135 mg/l. Changing these parameters to match those of the St.
Joseph model reservoirs (d50 = 0.265 mm or fine sand; equilibrium sediment concentra-
tion = 335 mg/l) causes more sediment to settle out in the reservoirs due to the lower
equilibrium concentration and greatly reduces the difference between the Maumee River
sediment flux calculations for the ensembled climate and ensembled hydrology results
(Supplementary Fig. S3). The importance of dams for sediment movement through the

Fig. 5 Sediment discharge differs between the climate and hydrologic ensembling methods. The direction of this
difference varies between the watersheds and depends on the reservoir sediment properties
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Maumee watershed has been previously established. Alighalehbabakhani et al. (2017)
found that Independence Dam, the second most downstream dam on the mainstem of the
Maumee, had the highest sediment accumulation of the 12 dams they studied across the
Great Lakes and their modeling results suggest that the reservoir behind this dam may
already be filled with sediment.

3.5 Effect of ensemble member choice

We created an ensembled climate and ensembled hydrology based on the 10 members for the
CSIRO mk3.6 model (Fig. 6). The resulting ensembled mean annual flows are significantly
(p < 0.05) different in their y-intercepts, but not their slopes (Supplementary Table S2). The
ensembled climate results in consistently lower flows than the ensembled hydrology, with
decreases in the Maumee of 15 to 15.7 m3/s (10.6–11.2%) and 6.8 to 7.2 m3/s (4.8 to 5.2%) in
the St. Joseph (Table 2). All of the Maumee River ensembles and the RCP 4.5 St. Joseph River
ensembles have statistically significant increasing trends. The CSIRO mk3.6 ensemble results
for sediment yield (Supplementary Fig. S4, Supplementary Table S3) and sediment discharge
(Supplementary Fig. S5, Supplementary Table S4) are similar to those for the ensembles based
on the entire range of available climate ensemble members.

The range of streamflows for the 10 ensemble members from the CSIRO mk3.6 model
spans most of the range of all the climate ensemble members (Fig. 6). While each ensemble
member is from the same global climate model, they were initialized at different times from the
control run (Jeffrey et al. 2013), producing significant variability over the duration of the
climate change run. Earlier work found that the intermodel variability is the largest source of
uncertainty in climate change ensemble members (Giorgi and Francisco 2000a, b), but the
wide range of streamflow and sediment results produced by the CSIRO mk3.6 ensemble
members indicates that it may no longer be the case for modern GCMs.

The Representative ensembled climate streamflow is significantly different from the Rep-
resentative ensembled hydrology across both models and RCPs (Fig. 7, Supplementary

 
 

Fig. 6 The ten ensemble members from the CSIRO mk3.6 model have almost as large a range as all the available
climate ensemble members
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Table S2). This difference is due to the y-intercept and there is no statistically significant
difference in slope. After controlling the FDR to no more than 5%, all of the intercepts for the
Maumee River remain significant, but not those of the St. Joseph River (Supplementary
Table S2). The ensembled climate results in streamflows that are 11.6 to 13.3 m3/s (8.7–
9.7%) lower in the Maumee and 6.4 to 6.5 m3/s (4.75–5.0%) lower in the St. Joseph than the
ensembled hydrology (Table 2). Both ensembling methods for the Representative climate
ensemble members have statistically significant increasing trends for the Maumee River under
RCP8.5. The St. Joseph River only has a statistically significant trend for the RCP 8.5
ensembled climate. Even though we selected the ensemble members to be representative,
there are very different patterns of statistically significant trends between this method and the
ensembles made up of the full suite of climate ensemble members. The impacts of ensembling
using representative climate ensemble members on sediment yield and sediment discharge can
be seen in Supplementary Fig. S6 and Supplementary Fig. S7, respectively. The ANCOVA
results are available in Supplementary Table S3 and Supplementary Table S4.

The Best Fit ensembles were similar to the Representative ensembles (Fig. 8). Again, the
streamflow associated with the ensembled climate was lower than the ensembled hydrology
and significantly different in intercept but not in slope (Table 2, Supplementary Table S2).
After controlling the FDR to no more than 5%, the intercepts for the Maumee River remain
significant, but only the intercept for RCP 8.5 is significant in the St. Joseph River
(Supplementary Table S2). The ensembled climate mean annual streamflow was 13.6 to
15.3 m3/s (10.1–10.7%) lower in the Maumee and 6.3 to 7.4 m3/s (4.7–5.4%) lower in the
St. Joseph than the streamflow for the ensembled hydrology. In spite of these ensemble
members being among the best at matching the historic climate, they still account for some
of the most extreme streamflows in the all model ensembles and cover a large portion of the
range of results. This is not surprising because GCMs that perform well for historic climate can
produce divergent outputs under future climate scenarios (Knutti et al. 2010). The impacts of
ensembling using the Best Fit climate ensemble members on sediment yield and sediment
discharge can be seen in Supplementary Figs. S8 and S9, respectively.

Fig. 7 The ensemble of a small number of representative climate model ensemble members does not capture the
full range of variability and suffers from the same bias between ensembled climate and ensembled hydrology
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These results clearly show that the ensembled climate and ensembled hydrology do not
produce the same results. Since many studies have limited computational resources, there are
likely to be questions about which, if any, of the ensemble subsets (e.g., CSIRO mk3.6,
Representative, or Best Fit) should be used. When we compare the results for the three
ensemble subsets presented here to the results from the full set of ensemble members, the
mean streamflows are all within 5% (Table 3). The mean Representative ensemble streamflow,
sediment yield, and sediment discharge are all within 3% of the ensembled hydrology for the
full set of GCM outputs. Based on these results, we suggest that researchers looking to mimic
the full range of ensemble members with a limited subset should consider something akin to
our Representative ensemble where a limited subset of high, average, and low precipitation
scenarios are combined.

Comparing the subset ensembles to the full ensemble raises some philosophical questions
about what the correct ensemble is. A common assumption in climate change studies is that
climate models that predict the past well will continue to do so in the future. This is far from
certain, because climate models that agree on historical conditions often diverge for future
predictions (Knutti et al. 2010; Pierce et al. 2009). The Reliability Ensemble Averaging (REA)
technique (Giorgi and Mearns 2002) attempts to address this by assigning weights based on

Fig. 8 The Best Fit ensemble, based on the climate model ensemble members that most closely match historical
climate results, is still susceptible to differences between ensembled hydrology and ensembled climate

Table 3 The difference from the mean ensembled hydrology for all GCM outputs shows that the three different
subset ensembles all produce similar results to the full set of ensembles

Streamflow Sediment yield Sediment discharge

RCP Maumee St. Joseph Maumee St. Joseph Maumee St. Joseph
CSIRO mk3.6 4.5 +5.2% +4.7% +9.5% +11.3% +3.9% +12.2%

8.5 +2.3% +3.8% +5.0% +7.5% +3.4% +7.8%
Representative 4.5 +2.1% +1.0% +2.1% +2.5% +1.9% +1.9%

8.5 −2.5% −2.9% +0.8% +0.0% −1.3% −0.8%
Best Fit 4.5 +0.5% −1.4% +1.1% −0.9% +0.5% −2.0%

8.5 +4.7% +2.1% +7.0% +2.8% +2.3% +3.3%
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both historical accuracy and how close they are to the mean of all future model predictions.
The REA method reduces the weight of outliers, implicitly assuming that they are much less
likely to occur and may be the product of a flawed model. In contrast, our Representative
ensemble equally weights all of the ensemble members based solely on historical accuracy.

There are numerous other methods published in the literature for selecting subset ensem-
bles. Karmalkar et al. (2019) provides an example of how to select a limited subset that still
includes inter-model variability. Ross and Najjar (2019) go a step further by comparing
multiple subset methods that have varying goals and testing them for sensitivity to ensemble
size. Their recommended method, KKZ, required at least 5 to 11 members to capture 75% of
the variability of the full ensemble, similar to our 5-member Representative ensemble. We
suggest that if the purpose of a study is to look at the potential range of hydrologic and
sediment impacts that may occur, a Representative ensemble is a good surrogate for the full
range of climate ensemble members.

4 Conclusions

The use of an ensembled climate scenario as the input to a hydrologic model biases the result
relative to the ensembled hydrologic output based on the individual climate ensemble members,
producing results that are significantly different (p < 0.05). This is most likely due to the loss of
the precipitation signal that is offset temporally and spatially in the individual ensemble
members. When possible, ensembling should be done using the outputs of hydrological models
rather than their inputs. Avoiding or acknowledging the potential for biasing the results will
help scientists and policymakers formulate better responses to the changing climate.

It is often necessary to use an ensembled climate or a limited number of climate runs due to
computational limitations or time constraints, but it is important to do so in an informed
manner. Here, we have confirmed that it is possible to capture a significant amount of the
range of all climate ensemble members using a limited number (5–10) of members. Selection
of the ensemble members to encompass the full range of temperature and precipitation can
result in a parsimonious ensemble that produces mean annual hydrologic and sediment model
results similar to the full suite of potential ensemble members. While the selection of the
particular ensemble members has been the subject of a number of recent articles, it deserves
further study and should consider whether the goal is to achieve a consistent mean or account
for the likely range of future scenarios.

Supplementary Information The online version contains supplementary material available at https://doi.org/
10.1007/s10584-021-03011-5.

Acknowledgments We thank Sherry Martin for valuable insight and feedback. We acknowledge the World
Climate Research Programme’s Working Group on Coupled Modeling, which is responsible for CMIP; we thank
the climate modeling groups for producing and making their model output available. For CMIP, the U.S.
Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating
support and led development of software infrastructure in partnership with the Global Organization for Earth
System Science Portals.

Page 13 of 15Climatic Change (2021) 165: 8 8

https://doi.org/10.1007/s10584-021-03011-5
https://doi.org/10.1007/s10584-021-03011-5


Authors’ contributions Conceptualization, T.A.D., A.D.K., and D.W.H.; methodology, T.A.D.; investigation,
T.A.D.; formal analysis, T.A.D.; supervision, A.D.K. and D.W.H.; visualization, T.A.D.; writing—original draft,
T.A.D.; writing—reviewing and editing, T.A.D., A.D.K., and D.W.H..

Funding Portions of this work were funded by a U.S. Army Corps of Engineers (USACE) Institute of Water
Resources (IWR) Responses to Climate Change Pilot Project, USDA NIFA Grants 2015-68007-23133 and
2018-67003-27406, and a Food Energy and Water supplement to the KBS LTER project, NSF grant #1637653.
Any opinions, findings, conclusions, or recommendations expressed in this material are those of the authors and
do not necessarily reflect the views of the USACE, the National Science Foundation, or the USDA NIFA.

Data availability Model files and results are archived at the U.S. Army Engineer Research & Development
Center (DOI: 10.21079/11681/39760).

Declarations

Conflict of interest The authors declare no conflict of interest.

Code availability Code used to ensemble and downscale inputs are digitally archived at the U.S. Army
Engineer Research and Development Center (DOI: 10.21079/11681/39760).

References

Alighalehbabakhani F, Miller CJ, Baskaran M, Selegean JP, Barkach JH, Dahl T, Abkenar SMS (2017)
Forecasting the remaining reservoir capacity in the Laurentian Great Lakes watershed. J Hydrol 555:926–
937. https://doi.org/10.1016/j.jhydrol.2017.10.052

Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency.
Ann Stat 29:1165–1188

Brekke L, Thrasher BL, Maurer EP, Pruitt T (2013) Downscaled CMIP3 and CMIP5 climate and hydrology
projections: release of downscaled CMIP5 climate projections, comparison with preceding information, and
summary of user needs. U.S. Department of the Interior, Bureau of Reclamation,

Cherkauer KA, Sinha T (2010) Hydrologic impacts of projected future climate change in the Lake Michigan
region. J Great Lakes Res 36:33–50. https://doi.org/10.1016/j.jglr.2009.11.012

Cotterman KA, Kendall AD, Basso B, Hyndman DW (2018) Groundwater depletion and climate change: future
prospects of crop production in the Central High Plains Aquifer. Clim Chang 146:187–200. https://doi.org/
10.1007/s10584-017-1947-7

Dahl TA, Kendall AD, Hyndman DW (2018) Impacts of projected climate change on sediment yield and
dredging costs. Hydrol Process 32:1223–1234. https://doi.org/10.1002/hyp.11486

Fry JA et al (2013) Completion of the 2006 National Land Cover Database for the conterminous United States.
Photogramm Eng Remote Sens 130:294–304

Ghasemi A, Zahediasl S (2012) Normality tests for statistical analysis: a guide for non-statisticians. Int J
Endocrinol Metab 10:486–489. https://doi.org/10.5812/ijem.3505

Giorgi F, Francisco R (2000a) Evaluating uncertainties in the prediction of regional climate change. Geophys Res
Lett 27:1295–1298. https://doi.org/10.1029/1999gl011016

Giorgi F, Francisco R (2000b) Uncertainties in regional climate change prediction: a regional analysis of
ensemble simulations with the HADCM2 coupled AOGCM Climate Dynamics 16:169-182 doi:https://
doi.org/10.1007/pl00013733

Giorgi F, Mearns LO (2002) Calculation of average, uncertainty range, and reliability of regional climate changes
from AOGCM simulations via the “reliability ensemble averaging”(REA) method. J Clim 15:1141–1158

Hamed KH (2009) Enhancing the effectiveness of prewhitening in trend analysis of hydrologic data. J Hydrol
368:143–155. https://doi.org/10.1016/j.jhydrol.2009.01.040

Helsel DR, Hirsch RM, Ryberg KR, Archfield SA, Gilroy EJ (2020) Statistical methods in water resources.
Reston, VA doi:https://doi.org/10.3133/tm4A3

Jeffrey S et al. (2013) Australia’s CMIP5 submission using the CSIRO Mk3. 6 model Aust Meteor Oceanogr J
63:1-13

Climatic Change (2021) 165: 88 Page 14 of 15

https://doi.org/10.1016/j.jhydrol.2017.10.052
https://doi.org/10.1016/j.jglr.2009.11.012
https://doi.org/10.1007/s10584-017-1947-7
https://doi.org/10.1007/s10584-017-1947-7
https://doi.org/10.1002/hyp.11486
https://doi.org/10.5812/ijem.3505
https://doi.org/10.1029/1999gl011016
https://doi.org/10.1007/pl00013733
https://doi.org/10.1007/pl00013733
https://doi.org/10.1016/j.jhydrol.2009.01.040
https://doi.org/10.3133/tm4A3


Johnson T et al (2015) Modeling streamflow and water quality sensitivity to climate change and urban
development in 20 US watersheds. J Am Water Resour Assoc 51:1321–1341. https://doi.org/10.1111/
1752-1688.12308

Karmalkar AV, Thibeault JM, Bryan AM, Seth A (2019) Identifying credible and diverse GCMs for regional
climate change studies—case study: Northeastern United States. Clim Chang 154:367–386

Knutti R, Furrer R, Tebaldi C, Cermak J, Meehl GA (2010) Challenges in Combining Projections from Multiple
Climate Models J Clim 23:2739–2758 doi:https://doi.org/10.1175/2009jcli3361.1

Masui T et al (2011) An emission pathway for stabilization at 6 Wm(−2) radiative forcing. Clim Chang 109:59–
76. https://doi.org/10.1007/s10584-011-0150-5

Maurer EP, Hidalgo HG (2008) Utility of daily vs. monthly large-scale climate data: an intercomparison of two
statistical downscaling methods. Hydrol Earth Syst Sci 12:551–563

Neupane RP, White JD, Alexander SE (2015) Projected hydrologic changes in monsoon-dominated Himalaya
Mountain basins with changing climate and deforestation. J Hydrol 525:216–230. https://doi.org/10.1016/j.
jhydrol.2015.03.048

O'Neal MR, Nearing MA, Vining RC, Southworth J, Pfeifer RA (2005) Climate change impacts on soil erosion
in Midwest United States with changes in crop management. Catena 61:165–184. https://doi.org/10.1016/j.
catena.2005.03.003

Park JY et al (2011) Assessment of Future Climate Change Impacts on Water Quantity and Quality for a
Mountainous Dam Watershed Using SWAT. Trans ASABE 54:1725–1737

Pek J, Wong O, Wong ACM (2018) How to Address Non-normality: A Taxonomy of Approaches, Reviewed,
and Illustrated. Front Psychol 9:2140. https://doi.org/10.3389/fpsyg.2018.02104

Pierce DW, Barnett TP, Santer BD, Gleckler PJ (2009) Selecting global climate models for regional climate
change studies. Proc Natl Acad Sci 106:8441–8446

Praskievicz S (2016) Impacts of projected climate changes on streamflow and sediment transport for three
snowmelt-dominated rivers in the interior Pacific Northwest. River Res Appl 32:4–17. https://doi.org/10.
1002/rra.2841

Pryor SC et al. (2014) Ch. 18: Midwest. In: Melillo JM, Richmond TC, Yohe GW (eds) Climate Change Impacts
in the United States: The Third National Climate Assessment. U.S. Global Change Research Program, pp
418-440. doi:https://doi.org/10.7930/J0J1012N

Riahi K et al (2011) RCP 8.5-A scenario of comparatively high greenhouse gas emissions. Clim Chang 109:33–
57. https://doi.org/10.1007/s10584-011-0149-y

Ross AC, Najjar RG (2019) Evaluation of methods for selecting climate models to simulate future hydrological
change. Clim Chang 157:407–428

Serpa D et al (2015) Impacts of climate and land use changes on the hydrological and erosion processes of two
contrasting Mediterranean catchments. Sci Total Environ 538:64–77. https://doi.org/10.1016/j.scitotenv.
2015.08.033

Shrestha RR, Dibike YB, Prowse TD (2012) Modelling of climate-induced hydrologic changes in the Lake
Winnipeg watershed. J Great Lakes Res 38:83–94. https://doi.org/10.1016/j.jglr.2011.02.004

Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull AmMeteorol
Soc 93:485–498. https://doi.org/10.1175/bams-d-11-00094.1

USACE (2007) St. Joseph River sediment transport modeling study. Detroit, MI
van Liew MW, Feng S, Pathak TB (2012) Climate change impacts on streamflow, water quality, and best

management practices for the Shell and Logan Creek watersheds in Nebraska, USA. J Agric Biol Eng 5:13–
34

Verma S, Bhattarai R, Bosch NS, Cooke RC, Kalita PK, Markus M (2015) Climate change impacts on flow,
sediment and nutrient export in a Great Lakes watershed using SWAT. Clean-Soil Air Water 43:1464–1474.
https://doi.org/10.1002/clen.201400724

Wood AW, Leung LR, Sridhar V, Lettenmaier DP (2004) Hydrologic implications of dynamical and statistical
approaches to downscaling climate model outputs. Clim Chang 62:189–216. https://doi.org/10.1023/B:
CLIM.0000013685.99609.9e

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Page 15 of 15Climatic Change (2021) 165: 8 8

https://doi.org/10.1111/1752-1688.12308
https://doi.org/10.1111/1752-1688.12308
https://doi.org/10.1175/2009jcli3361.1
https://doi.org/10.1007/s10584-011-0150-5
https://doi.org/10.1016/j.jhydrol.2015.03.048
https://doi.org/10.1016/j.jhydrol.2015.03.048
https://doi.org/10.1016/j.catena.2005.03.003
https://doi.org/10.1016/j.catena.2005.03.003
https://doi.org/10.3389/fpsyg.2018.02104
https://doi.org/10.1002/rra.2841
https://doi.org/10.1002/rra.2841
https://doi.org/10.7930/J0J1012N
https://doi.org/10.1007/s10584-011-0149-y
https://doi.org/10.1016/j.scitotenv.2015.08.033
https://doi.org/10.1016/j.scitotenv.2015.08.033
https://doi.org/10.1016/j.jglr.2011.02.004
https://doi.org/10.1175/bams-d-11-00094.1
https://doi.org/10.1002/clen.201400724
https://doi.org/10.1023/B:CLIM.0000013685.99609.9e
https://doi.org/10.1023/B:CLIM.0000013685.99609.9e


Supplementary Material 
Dahl et al. (2021). Climate and Hydrologic Ensembling Lead to Differing Streamflow and 
Sediment Yield Predictions. 

 

Supplementary Table S1. Climate ensemble members selected for the best fit climate ensemble were chosen 
based on being in the most accurate quartile for both total precipitation and average temperature over the 
period 1971-1999. 

RCP 4.5 RCP 8.5 

Ensemble Member Precip. % Temp. % Ensemble Member Precip. % Temp. % 

noresm1-m.1.rcp45 6% 15% noresm1-m.1.rcp85 6% 16% 

miroc-esm-chem.1.rcp45 8% 23% miroc-esm-chem.1.rcp85 8% 23% 

hadgem2-es.2.rcp45 13% 7% hadgem2-es.2.rcp85 11% 7% 

mri-cgcm3.1.rcp45 17% 8% mri-cgcm3.1.rcp85 15% 9% 

ccsm4.2.rcp45 25% 21% ccsm4.2.rcp85 23% 21% 

      miroc5.1.rcp85 24% 10% 

 



 
Supplementary Figure S1. This figure shows Maumee River streamflow simulated using ensembled 
hydrology (dark blue) and ensembled climate (light blue) for All Ensemble Members (left column) and for the 
CSIRO mk3.6 subset (right column) for illustrative purposes. The top row demonstrates that both the 
modeled streamflow (solid lines) and regression (dashed) lines are qualitatively parallel.  The histograms of 
mean annual flow data (2nd row) and residual flow data after the ANCOVA regression (3rd row) are similar to 
normal distributions with the same mean and standard deviation (dotted lines), as predicted by the Central 
Limit Theorem (CLT).  Plotting the residual flow data (4th row) shows no obvious trends in variance, 
indicating homescedasticity. These plots demonstrate that it is reasonable to apply the CLT for the mean 
annual hydrologic variables used in this study. 



 

Supplementary Figure S2. Few outliers are present in the data and we decided to include all of them in the 
analysis. Shown here are boxplots of the Maumee River mean annual flow for the same sets of ensembles 
presented in Supplementary Figure S1.  Only one outlier is indicated.   



Supplementary Table S2. ANCOVA tests for streamflow show that the ensembled climate is significantly (p < 
0.05, in bold) different from the ensembled hydrology in all cases, based on the intercept.  After controlling 
the FDR to less than 5%, all of the Maumee intercepts remain significant (padj < 0.05, in bold).  Five of the 
eight St. Joseph intercepts also remain significant (differences italicized).  None of the slopes are significantly 
different. 

    Maumee St. Joe 

    ANCOVA ANCOVA 

  RCP Slope Intercept Slope Intercept 

All Members 

4.5 
F(1, 166) = 0.36 F(1, 167) = 167.54 F(1, 166) = 0.50 F(1, 167) = 46.44 

p = 0.550 p < 0.001 p = 0.479 p < 0.001 

8.5 
F(1, 166) = 3.58 F(1, 167) = 149.82 F(1, 166) = 1.27 F(1, 167) = 105.46 

p = 0.060 p < 0.001 p = 0.261 p < 0.001 

CSIRO mk3.6 

4.5 
F(1, 166) = 0.07 F(1, 167) = 30.41 F(1, 166) = 0.03 F(1, 167) = 9.16 

p = 0.792 p < 0.001 p = 0.855 p = 0.003 

8.5 
F(1, 166) = 0.05 F(1, 167) = 32.35 F(1, 166) = 0.05 F(1, 167) = 10.45 

p = 0.822 p < 0.001 p = 0.829 p < 0.001 

Representative 

4.5 
F(1, 166) = 0.03 F(1, 167) = 13.50 F(1, 166) = 0.06 F(1, 167) = 5.04 

p = 0.873 p < 0.001 p = 0.810 p = 0.026 

8.5 
F(1, 166) = 0.30 F(1, 167) = 11.20 F(1, 166) = 0.66 F(1, 167) = 6.58 

p = 0.583 p = 0.001 p = 0.416 p = 0.001 

Best Fit 

4.5 
F(1, 166) = 0.00 F(1, 167) = 18.75 F(1, 166) = 0.07 F(1, 167) = 6.28 

p = 0.985 p < 0.001 p = 0.797 p = 0.013 

8.5 
F(1, 166) = 0.23 F(1, 167) = 23.13 F(1, 166) = 0.23 F(1, 167) = 9.38 

p = 0.635 p < 0.001 p = 0.629 p < 0.001 

  



Supplementary Table S3. ANCOVA tests on the mean annual sediment yield demonstrate that the ensembled 
climate is significantly (p < 0.05, in bold) than the ensembled hydrology in intercept but not slope, for all 
cases. After controlling the FDR to less than 5%, all of the Maumee intercepts remain significant (padj < 0.05, 
in bold).  Seven of the eight St. Joseph intercepts also remain significant (difference italicized).  

    Maumee St. Joe 

    ANCOVA ANCOVA 

  RCP Slope Intercept Slope Intercept 

All Members 

4.5 
F(1, 166) = 0.35 F(1, 167) = 115.92 F(1, 166) = 1.42 F(1, 167) = 54.89 

p = 0.556 p < 0.001 p = 0.234 p < 0.001 

8.5 
F(1, 166) = 1.12 F(1, 167) = 97.40 F(1, 166) = 2.78 F(1, 167) = 47.77 

p = 0.292 p < 0.001 p = 0.097 p < 0.001 

CSIRO mk3.6 

4.5 
F(1, 166) = 0.05 F(1, 167) = 29.21 F(1, 166) = 0.65 F(1, 167) = 15.97 

p = 0.830 p < 0.001 p = 0.420 p < 0.001 

8.5 
F(1, 166) = 0.01 F(1, 167) = 28.74 F(1, 166) = 0.49 F(1, 167) = 14.54 

p = 0.933 p < 0.001 p = 0.486 p < 0.001 

Representative 

4.5 
F(1, 166) = 0.05 F(1, 167) = 16.98 F(1, 166) = 0.06 F(1, 167) = 7.34 

p = 0.831 p < 0.001 p = 0.799 p = 0.007 

8.5 
F(1, 166) = 0.45 F(1, 167) = 10.24 F(1, 166) = 0.29 F(1, 167) = 3.85 

p = 0.505 p = 0.002 p = 0.590 p = 0.002 

Best Fit 

4.5 
F(1, 166) = 0.01 F(1, 167) = 30.26 F(1, 166) = 0.00 F(1, 167) = 15.92 

p = 0.944 p < 0.001 p = 0.996 p < 0.001 

8.5 
F(1, 166) = 0.05 F(1, 167) = 20.94 F(1, 166) = 0.78 F(1, 167) = 12.79 

p = 0.822 p < 0.001 p = 0.380 p < 0.001 

 

  



Supplementary Table S4. ANCOVA tests on the mean total annual sediment discharge show that the 
ensembled climate is significantly (p < 0.05, in bold) different from the ensembled hydrology for all cases.  
This difference manifests in the intercepts but not the slopes.  After controlling the FDR to less than 5%, all 
of the intercepts remain significant (padj < 0.05, in bold). 

    Maumee St. Joe 

    ANCOVA ANCOVA 

  RCP Slope Intercept Slope Intercept 

All Members 

4.5 
F(1, 166) = 0.63 F(1, 167) = 144.50 F(1, 166) = 0.43 F(1, 167) = 106.43 

p = 0.427 p < 0.001 p = 0.513 p < 0.001 

8.5 
F(1, 166) = 0.16 F(1, 167) = 88.15 F(1, 166) = 2.38 F(1, 167) = 79.06 

p = 0.690 p < 0.001 p = 0.125 p < 0.001 

CSIRO mk3.6 

4.5 
F(1, 166) = 0.05 F(1, 167) = 46.61 F(1, 166) = 0.38 F(1, 167) = 36.40 

p = 0.832 p < 0.001 p = 0.536 p < 0.001 

8.5 
F(1, 166) = 0.09 F(1, 167) = 23.65 F(1, 166) = 0.09 F(1, 167) = 31.93 

p = 0.770 p < 0.001 p = 0.769 p < 0.001 

Representative 

4.5 
F(1, 166) = 0.10 F(1, 167) = 9.79 F(1, 166) = 0.00 F(1, 167) = 19.56 

p = 0.754 p = 0.002 p = 0.976 p < 0.001 

8.5 
F(1, 166) = 1.48 F(1, 167) = 15.97 F(1, 166) = 0.44 F(1, 167) = 10.09 

p = 0.225 p < 0.001 p = 0.509 p < 0.001 

Best Fit 

4.5 
F(1, 166) = 0.93 F(1, 167) = 17.61 F(1, 166) = 0.64 F(1, 167) = 29.65 

p = 0.338 p < 0.001 p = 0.426 p < 0.001 

8.5 
F(1, 166) = 2.65 F(1, 167) = 15.02 F(1, 166) = 0.60 F(1, 167) = 27.12 

p = 0.105 p < 0.001 p = 0.440 p < 0.001 

 

  



 

 

Supplementary Figure S3. The reservoir sediment processes play an important role in sediment discharge, 
particularly under climate change.  Increasing the reservoir sediment d50 and reducing the normal 
concentration for the Maumee model to match those used for the St. Joseph River reservoirs causes the 
ensembled hydrology and ensembled climate to approach each other. 

 

Supplementary Figure S4. Sediment yields based on climate inputs from the CSIRO mk3.6 global climate 
model. 



 

Supplementary Figure S5. Sediment discharge based on climate inputs from the CSIRO mk3.6 global climate 
model. 



 

Supplementary Figure S6. Sediment yields based on climate inputs from a representative selection of 
available climate ensemble members. 



 

Supplementary Figure S7. Sediment discharge based on climate inputs from a representative selection of 
available climate ensemble members. 



 

Supplementary Figure S8. Sediment yields based on climate inputs from the best fit climate ensemble 
members. 



 

Supplementary Figure S9. Sediment discharge based on climate inputs from the best fit climate ensemble 
members. 

  



Supplementary Table S5. The ensembled climate sediment yield is consistently biased lower than the 
ensembled hydrology, regardless of the choice of ensemble members. 

    

Ensemble Method 

Maumee  
Total Annual Sediment 
Yield (tonnes) 

St. Joseph 
Total Annual Sediment 
Yield (tonnes)   RCP 

All Members 

4.5 
Hydrology  6,434,215   80,081  

Climate  5,534,487   71,464  

8.5 
Hydrology  7,699,588   90,527  

Climate  6,747,477   80,397  

CSIRO mk3.6 

4.5 
Hydrology  7,044,665   89,116  

Climate  6,214,455   81,784  

8.5 
Hydrology  8,085,969   97,351  

Climate  7,250,606   88,792  

Representative 

4.5 
Hydrology  6,570,391   82,052  

Climate  5,865,431   76,019  

8.5 
Hydrology  7,757,722   90,552  

Climate  7,113,726   85,084  

Best Fit 

4.5 
Hydrology  6,506,819   79,372  

Climate  5,749,773   72,359  

8.5 
Hydrology  8,239,787   93,046  

Climate  7,372,572   84,225  

  



Supplementary Table S6. The ensembled climate sediment discharge is consistently biased lower than the 
ensembled hydrology for the St. Joseph River, regardless of the choice of ensemble members.  This difference 
is reversed for the Maumee River, where the ensembled hydrology produces lower annual sediment 
discharges than the ensembled climate. 

    

Ensemble Method 

Maumee  
Total Annual Sediment 
Discharge (tonnes) 

St. Joseph 
Total Annual Sediment 
Discharge (tonnes)   RCP 

All Members 

4.5 
Hydrology  1,433,531   8,519  

Climate  1,588,889   6,929  

8.5 
Hydrology  1,454,865   9,312  

Climate  1,573,345   7,568  

CSIRO mk3.6 

4.5 
Hydrology  1,488,785   9,556  

Climate  1,637,137   8,095  

8.5 
Hydrology  1,503,671   10,034  

Climate  1,614,038   8,499  

Representative 

4.5 
Hydrology  1,461,130   8,685  

Climate  1,545,479   7,464  

8.5 
Hydrology  1,436,010   9,239  

Climate  1,537,315   8,178  

Best Fit 

4.5 
Hydrology  1,440,338   8,350  

Climate  1,542,808   7,133  

8.5 
Hydrology  1,487,714   9,619  

Climate  1,573,732   8,046  
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