
Performance Analysis of Scientific Computing
Workloads on General Purpose TEEs

Ayaz Akram
UC Davis

yazakram@ucdavis.edu

Anna Giannakou
LBNL

agiannakou@lbl.gov

Venkatesh Akella
UC Davis

akella@ucdavis.edu

Jason Lowe-Power
UC Davis

jlowepower@ucdavis.edu

Sean Peisert
LBNL & UC Davis

sppeisert@lbl.gov

Abstract—Scientific computing sometimes involves computa-
tion on sensitive data. Depending on the data and the execu-
tion environment, the HPC (high-performance computing) user
or data provider may require confidentiality and/or integrity
guarantees. To study the applicability of hardware-based trusted
execution environments (TEEs) to enable secure scientific com-
puting, we deeply analyze the performance impact of general
purpose TEEs, AMD SEV, and Intel SGX, for diverse HPC
benchmarks including traditional scientific computing, machine
learning, graph analytics, and emerging scientific computing
workloads. We observe three main findings: 1) SEV requires
careful memory placement on large scale NUMA machines (1×–
3.4× slowdown without and 1×–1.15× slowdown with NUMA
aware placement), 2) virtualization—a prerequisite for SEV—
results in performance degradation for workloads with irregular
memory accesses and large working sets (1×–4× slowdown
compared to native execution for graph applications) and 3) SGX
is inappropriate for HPC given its limited secure memory size
and inflexible programming model (1.2×–126× slowdown over
unsecure execution). Finally, we discuss forthcoming new TEE
designs and their potential impact on scientific computing.

Index Terms—HPC, Hardware Security, TEE, SGX, SEV.

I. INTRODUCTION AND BACKGROUND

High performance computing (HPC) operators provide the
computing hardware, storage, and networking infrastructure
to help researchers solve large-scale computational problems.
Increasingly, scientific computing involves data analysis, rather
than traditional modeling and simulation. The data being
analyzed is often provided by third parties to individual
researchers or the HPC center for use by multiple users. The
data may be fully open, or may be in some way sensitive e.g.,
subject to government regulations, considered proprietary, or
pertain to public privacy concerns. This paper analyzes the
performance impact of protecting this data with hardware-
based trusted execution environment (TEE) on AMD and Intel
based systems, one aspect of a larger secure system design [1].

The use of sensitive data at HPC centers raises security
concerns from both external threats (the user of compute
resources and the data provider might not trust other users
sharing the compute resources) and internal threats (the user
and the data provider might not trust the compute provider).
Data owners (or compute providers) have to make a tradeoff
between accepting the risk of hosting (or providing compute
for) the sensitive data and declining the service. Currently,
where secure HPC enclaves exist, such as those currently being
used for analysis of sensitive health-related data pertaining

Physical memory

Secure
app

Operating system
or hypervisor

TEE

Encrypted
data

Unsecured
data

Runtime
or OS

Normal
app

Normal
app

Data
provider

Data
scientist

Other
users

Open
data

Trusted Untrusted

Untrusted

Zone of trust

Compute provider

Fig. 1: Trusted execution environments and our threat model

to COVID-19 at universities and research institutes around
the world, trust required by data providers of the compute
facility, and liability to an organization for hosting such data
are both very high. Moreover, traditionally, the environments
created to protect sensitive data have significant usability
challenges. For example, processing sensitive health data re-
quires dramatically different environments compared to those
typically used in NSF high-performance computing facilities.
Processing capabilities are limited to only a handful of racks
and access requires virtual private networks (VPNs) and/or
remote desktops. These onerous usability requirements are
particularly cumbersome for the scientific community which
is mostly used to working in very open, collaborative, and
distributed environments.

The use of computing hardware supported by trusted ex-
ecution environments (TEEs), which provide confidentiality
and/or integrity guarantees for the sensitive data and compute,
can act as a first step to enable secure scientific computing
without severely impacting the usability of HPC systems by
providing equivalent or greater layers of protection with fewer
steps for the end-user. Data owners (or compute providers) are
not required to accept a tradeoff of increased risk and usability
(or openness) in a TEE-based secure computing environment.

Figure 1 shows how TEEs fit into the system architecture.
TEEs can be used to isolate data from other users and the
operating system or hypervisor that is controlled by the com-
pute provider. Examples include Intel’s SGX (Software Guard
Extension) [2], ARM’s TrustZone [3], AMD’s SEV (Secure
Encrypted Virtualization) [4], and emerging research platforms
like RISC-V’s Keystone [5]. In this paper, we investigate the
performance of traditional and emerging HPC applications on
TEEs based computing hardware. Researchers have evaluated
the performance of TEEs in the context of client and cloud
computing [6], [7]. However, to the best of our knowledge, a



detailed analysis of performance overhead of TEEs on realistic
HPC workloads has not been conducted in the past. The goal
of this paper is to fill that gap. More specifically, we evaluate
the performance of AMD’s SEV and Intel’s SGX platforms
for a range of different HPC applications including traditional
scientific computing (via the NAS Parallel Benchmarks [8]),
graph processing (via the GAP Benchmark Suite [9]), and
emerging potentially sensitive workloads, genetic analysis
(BLAST [10]), traffic simulation (Mobiliti [11]), hydrodynam-
ics stencil calculation (LULESH [12]), and a particle transport
simulation (Kripke [13]) on realistic datasets.

The main contributions of this work are in the form of three
major findings:

1) SEV can be used for secure scientific computing without
significant performance degradation for most workloads if it
is configured correctly. We found that when using the default
configuration of SEV, applications suffer some performance
degradation (up to 3.4×) from poor NUMA data placement
as all data resides on a single NUMA node. However, most of
this performance loss can be mitigated by simply configuring
the system to use NUMA interleaving.

2) Irregular workloads performance suffers due to virtu-
alization when running under SEV. SEV requires running
applications in a virtualized environment (e.g., QEMU), which
causes performance loss for highly-irregular workloads such as
graph analytics and workloads with many I/O operations. Fu-
ture architectures and systems should concentrate on reducing
this overhead to improve the performance of HPC applications
in secure environments.

3) SGX is inappropriate for scientific computing. We found
that running unmodified HPC applications under SGX results
in a significant performance degradation. We observed slow-
downs from 1.2× to 126× compared to unsecure execution.
This slowdown is mainly due to the limited secure memory
capacity (about 100 MB) and the fact that HPC applications
have large working sets and are difficult to partition into
secure and normal components. Secondly, the HPC workloads
under SGX exhibit poor multithreaded scaling (an important
characteristic of HPC workloads). Furthermore, we found that
the support for application development with SGX is also
limited, which makes it inadequate (or at least unsuitable) for
HPC environments, where domain scientists often rely on un-
modified off-the-shelf third-party libraries such as Tensorflow.

II. THREAT MODEL

We assume that HPC system administrators are not trusted
and that host operating systems and hypervisors are not
trusted. However, the guest operating system of a virtual
machine which is owned by the user is trusted. We assume
very simple physical attacks are within scope, but that physical
attacks that are more time consuming, such as opening a
rack-mount HPC system and removing chips soldered on the
board, are less important at this time because there are other
means, such as video cameras pointed at the HPC systems,
to monitor and mitigate such attacks. We assume HPC users
themselves are trusted to not exfiltrate their own data, though

we do not trust them to not attack others. Also, we focus on
general-purpose computing hardware—FPGAs, GPUs, dedi-
cated ASICs are not considered in this paper, mainly because
no commercial TEEs yet exist for these hardware accelerators.

We assume that data providers trust the data users or that
some other means (e.g., differential privacy) will ensure the
sensitive data is not improperly exfiltrated by the scientific
application developers and users. Figure 1 shows how TEEs
fit into this threat model.

III. BACKGROUND AND PRIOR WORK

A. Trusted Execution Environments

Trusted Execution Environments in hardware, at minimum,
provide some degree of hardware-enforced separation from
other users and processes, and the ability of end users to
verify through cryptographic attestation that execution is tak-
ing place within the TEE. Some TEEs, including Intel’s Soft-
ware Guard Extensions (SGX) and AMD’s Secure Encrypted
Virtualization (SEV), also support encrypted memory. Both
SGX and SEV protect against malicious system administrators
and host operating systems. TEEs have their roots in earlier
cryptographic hardware functions, including Trusted Platform
Modules. In this work, we analyze the performance of AMD
SEV [4] and Intel SGX [2]. We exclude the other major com-
mercially available option ARM TrustZone [3] from this study
as existing TrustZone based TEEs mainly target embedded and
mobile devices, not general purpose compute devices.

B. Prior studies of TEE performance

There exist many prior studies on the performance impact
of TEEs which either focus on a single TEE or a comparison
of different TEEs [14]–[17]. These studies found that while
the SGX overhead can be significant it can be mitigated for
small or partition-able workloads and that the SEV overhead
is negligible for small workloads. However, these studies are
different from our work in three fundamental ways: (1) none of
these works focus on scientific/high-performance computing,
(2) they target micro-benchmarks or small benchmarks which
are usually single-threaded, (3) with reference to SEV, none
of these works evaluate large machines with multiple NUMA
nodes which are common in HPC environments.

There has also been prior work focused on improving
the software and hardware architecture of SGX to improve
performance [6], [18], [19]. We do not evaluate these research
proposals in this paper. Instead, we focus on the currently
available hardware technologies.

IV. METHODOLOGY

We picked traditional scientific computing workloads as
well as modern applications which fit the criteria of HPC
application domain.

A. Traditional HPC Benchmarks/Kernels (NPB)

We evaluate workloads traditionally used to benchmark
HPC systems i.e. NAS Parallel Benchmark suite (NPB) [8].
The NAS Parallel Benchmark suite, consisting of different



Pa
ck

ag
e

DRAM

6 core
die

6 core
die

6 core
die

6 core
die

DRAM

DRAM DRAM

(a) AMD EPYC 7401P (Naples)
Pa

ck
ag

e

8 core
die

8 core
die

8 core
die

8 core
die

I/O
die

8 core
die

8 core
die

8 core
die

8 core
die

DRAM DRAM

DRAM DRAM

Pa
ck

ag
e

8 core
die

8 core
die

8 core
die

8 core
die

I/O
die

8 core
die

8 core
die

8 core
die

8 core
die

DRAM DRAM

DRAM DRAM

(b) AMD EPYC 7702 (Rome)

Fig. 2: Details of the non-uniform memory architecture for the
two AMD systems evaluated in this paper.

kernels and pseudo applications, has been used to study HPC
systems for a long time and is still getting updates. These
benchmarks can be used with multiple input data sizes, thus
different class names. In this work, we used NPB Class C for
both SEV and SGX and NPB Class D for SEV only.

B. Modern and Emerging HPC Workloads

Apart from the traditional scientific computing ker-
nels/workloads, we also focus on workloads which character-
ize modern HPC usage. We selected a set of graph workloads
(GAPBS) [9] with an input of a graph of road networks in the
US. As a proxy for general machine learning training we used
a decision tree workload (LightGBM) [20] (characterized by
irregular memory accesses) which is trained using Microsoft’s
Learning to Rank (MSLR) data set. Finally, we used modern
HPC workloads as well, including Kripke [13] (a particle
transport simulation), LULESH [12] (a hydrodynamics simula-
tion), Mobiliti [11] (a transportation benchmark), and BLAST
[10] (a genomics workload). Kripke [13] is a highly scalable
code which acts as a proxy for 3D Sn (functional discrete-
ordinates) particle transport. Livermore Unstructured Lagrange
Explicit Shock Hydro (LULESH) [12] application solves a
simple yet “full-featured” hydrodynamics simulation problem.
Mobiliti [11] is a transportation system simulator (based
on parallel discrete event simulation), designed to work on
high performance computing systems. Basic Local Alignment
Search Tool (BLAST) [10] is a famous bio-informatics tool,
which is used to search sequence similarity of a given genome
sequence compared to an existing database. We specifically
use BLASTN in this work, which is a version of BLAST used
to search a nucleotide sequence against a nucleotide database.

C. Hardware Platforms Used

Table I shows the configurations of the hardware platforms
used for these experiments. For all of our evaluations, we
evaluate without hyperthreading by limiting the number of
threads to the number of cores on each platform. This allows
to isolate main causes of slowdown of trusted execution by
keeping things simple and reducing cache contention among
threads for workloads with large working set sizes.

We used three server class AMD machines. Figure 2 shows
the detailed NUMA configuration of the AMD EPYC 7401P
(Naples architecture, Figure 2a) and the AMD EPYC 7702
(Rome architecture, Figure 2b). The Naples-based system has

TABLE I: System Configurations. See Figure 2 for details on
the two EPYC systems.

Feature AMD SEV 1 AMD SEV 2 AMD SEV 3 Intel SGX
CPU EPYC 7401P EPYC 7702 EPYC 7402P Core i7-8700
Sockets 1 2 1 1
Cores 24 128 24 6
NUMA 4 Nodes 2 Nodes 1 Node 1 Node
RAM 64GB 1TB 64GB 32GB

24 CPU cores with 6 cores on each of four dies in a single
multi-chip module. Although this system is a single socket
platform, it has four NUMA nodes. A multi-chip module
package has characteristics similar to a multi-socket system in
terms of latency and bandwidth between separate dies. With its
four NUMA nodes the Naples-based system has high variation
in memory latency depending on if the data is in the local
NUMA node or one of the remote NUMA nodes.

We also evaluated a recent Rome-based system since this
design has a more uniform memory architecture. The Rome-
based system has 64 cores with 8 cores on each of 8 dies in a
multi-chip package, and it is a dual socket system for a total
of 128 cores. The Rome system has more chips per package,
but has a more uniform memory architecture since each die
is equidistant from the I/O die with the memory controllers.
In the Rome-based system we evaluated, there is only one
NUMA node per socket. However, we used a dual socket
system so our evaluations have two NUMA nodes. We also
used an EPYC 7402P (Rome architecture, with one socket)
system for validation of some results discussed in section V.

The forthcoming supercomputers Frontier and El Capitan
are based on AMD microarchitecture [21], though these will
likely be based on a future microarchitecture (e.g., Zen 3
or Zen 4). The specific memory architecture of these future
devices are currently unknown publicly, but it is likely that
they will support multiple sockets and thus will have at least
as much non-uniformity as the Rome-based system. Google’s
confidential cloud computing initiative also relies on AMD
SEV for trusted execution support [22].

We use a desktop-class processor with 6 cores and a single
NUMA node to perform Intel SGX experiments, as there did
not exist a server-class Intel processor with the support of
SGX at the time of performing SGX experiments in this paper.
Recently, Intel SGX is made available in one of the Intel
Xeon parts (Xeon E3). However, the size of secure memory
(doubled to be 256MB in total) is still significantly smaller
than the working set of most of the workloads studied in this
paper (only ep has a working set smaller than 256MB) and
the conclusions drawn in this work (discussed in section V)
should still hold true.

D. Software Tools/Frameworks

To execute unmodified applications under SGX, we make
use of SCONE [23] framework container. Programs are com-
piled statically and linked against a modified standard C
library in SCONE. SCONE runtime also makes use of threads
outside the enclave to perform asynchronous execution of



system calls. We evaluated other SGX interfaces and picked
SCONE as it provided the most complete support for unmod-
ified applications. These other SGX programming interfaces
are discussed in section V (Finding 4.4). Rewriting HPC
applications for SGX’s programming model, by partitioning
them into secure and un-secure components, is arduous but
not impossible. However, in this work we focus on the use
case of unmodified HPC applications. Also, the overhead of
containerization like SCONE has been shown to be low. The
original work [23] introducing SCONE showed that it has
a 0.6–1.22× throughput compared to native execution for
services like Apache, Redis, NGINX, and Memcached [23].
We also tested the performance of NAS parallel benchmarks in
the “simulation mode” of SCONE. This mode uses all of the
SCONE interfaces, but does not enable SGX. We found that
the geometric mean of slowdown compared to native execution
is 1.19×, which is insignificant compared to the slowdown of
trusted execution (with SGX) in SCONE as shown in section V
(Finding 4). Finally, we observed the performance of two
memory intensive micro-benchmarks, partitioned into secure
and un-secure parts directly using Intel SGX SDK, and found
those numbers to be in line with our observations with SCONE
as discussed in section V (Finding 4).

For SEV, we make use of the AMD provided scripts to
set-up the SEV enabled host machine and the guest virtual
machine (VM) managed by QEMU. We also evaluated using
Kata [24] which is a containerized interface to the hardware
virtualization support in Linux. However, we found that Kata’s
support for SEV was too preliminary to get consistent results.
Kata or other virtualized container interfaces may provide an
even simpler programming interface to SEV in the future, but
they will likely have the same performance characteristics as
QEMU since they both use hardware support for virtualization.
When running with QEMU, we assign all of the host cores to
the guest and allocate enough memory on the guest to fit the
entire resident memory of the application. Moreover, we do not
include the guest boot-up/initialization time when calculating
the workload slowdown.

The documentation and scripts required to set-up and run
the experiments discussed in this work are available publicly.1

V. UNDERSTANDING THE PERFORMANCE OF TEES

In this section, we will present our findings on the perfor-
mance impact of TEEs for scientific computing workloads and
the reasons for the observed slowdowns. We make following
main findings:

1) When the user configures the NUMA allocation policy
correctly, SEV has small overhead for most workloads.

2) SEV relies on QEMU and hardware virtualization,
which causes significant performance degradation for
some irregular workloads, I/O intensive workloads, and
workloads with high thread contention.

3) SEV initialization is slow and depends on the memory
footprint of the application.

1https://github.com/lbnl-cybersecurity/tee-hpc

4) SGX has high performance overhead mostly due to its
limited secure memory capacity and partially due to par-
allel scalability limitations and programming challenges.

A. Finding 1: SEV can be used for secure scientific com-
puting without significant performance degradation for most
workloads if it is configured correctly.

SEV requires nested page tables and is only available when
running in a VM (virtual machine). Therefore, we compare
three different cases: native (un-secure), QEMU (virtualized,
but also no security gaurantees), and QEMU+SEV which
provides security from the hypervisor and other users.2

Figures 3 and 4 show the performance of the NAS Par-
allel Benchmarks for the C and D class inputs relative to
the “native” execution without any security guarantees. The
solid bars on these figures show the performance of three
cases: native execution, “QEMU” which is a KVM-based
hypervisor running a virtual machine with the benchmark,
and “QEMU+SEV” which has the SEV security extensions
enabled (all relative to the performance of native execution).
This shows that SEV results in significant performance degra-
dation (shown in green solid bars) compared to the virtualized
QEMU execution when default system configuration is used.

In this section, we will discuss how most of these slow-
downs can be eliminated through careful NUMA data place-
ment. We also present data from two different generations of
AMD platforms to further investigate the overheads of SEV.

Finding 1.1: Enabling SEV causes performance degrada-
tion beyond virtualization overheads.

Although there is some overhead from virtualization for
the NAS Parallel Benchmarks as shown in the orange bars
of Figures 3 and 4, there is significantly more performance
overhead when enabling SEV (green bars, up to 3× slowdown
over the native execution).

Finding 1.2: SEV overhead is because of NUMA placement.
The reason QEMU+SEV suffers more performance over-

head than QEMU is that when an SEV enabled virtual machine
(VM) is launched, the memory pages allocated to the guest
RAM are pinned by the hypervisor (QEMU) using mlock
syscall. As a result, all data for the application is allocated
on a single NUMA node and multi-threaded processes which
expect performance improvements from running on large
NUMA systems suffer from performance degradation under
SEV. QEMU without SEV does not have this restriction.

Why SEV requires locking pages to physical addresses?:
Figure 5 shows details of how SEV is implemented. This
figure shows both the interaction with the nested page table
translation used for hardware virtualization acceleration and
the memory encryption engine. First, this figure shows how
the guest virtual address is translated through a nested page
table since it must translate first into the guest physical address
space then into the host physical address space. Importantly,

2The initial implementation of SEV has many security vulnerabilities [25]–
[27]. However, more recent implementations (e.g., Rome) fix many of the
published vulnerabilities but still have similar performance characteristics to
the systems we evaluate.



Fig. 3: Performance impact of SEV for NPB C Class on AMD Naples (24 Threads). The SEV performance overhead is mainly
because of default NUMA memory allocation, most of which goes away with interleaved NUMA allocation.

Fig. 4: Performance impact of SEV for NPB D Class on AMD Naples (24 Threads).

plain text
cache block

guest key

encryption engine
memory controller

cipher text
cache block

physical address tweak

In DRAM
In on-chip

caches

Unmodified application
Guest virtual
address space

Guest physical
address space

Host virtual
address space

Host physical
address space

0
x1

2
3
4
0
0
0
0

0
x8

0
0
0
A
B
C
D

0
0
0
0

0
xA

B
C
D

0
0
0
0 0
x8

0
0
0
6
7
8
9
0
0
0
0

0
x6

7
8
9
0
0
0
0

c-bit

Guest
page table

Host
page table

c-bit

guest key

phys addr

encr

Fig. 5: Details of SEV encryption implementation.

(a) SEV Default Allocation

(b) No SEV Default Allocation

Fig. 6: Memory allocation over time using default policy.

the “c-bit” or encrypted bit is removed from the guest physical
address by hardware and replaced after the host page table
translates the address to the host physical address space. By
removing and replacing the c-bit, the hypervisor is unaware
of which pages are encrypted or not.

Second, SEV must guarantee that two identical plaintext
pages present at different physical addresses in the memory
will have different cipher texts to protect against cipher text
block move attacks. To make this possible, SEV uses a
physical-address based tweak algorithm [25], [26] as shown
in Figure 5 with the physical address of the cache block
influencing the cipher text via an xor-encrypt-xor tweak [28].
Since the host-physical address is used to determine the cipher-
text of a page, the hypervisor cannot move a page between two
physical addresses once it is allocated to the secure VM.

This limitation causes two performance issues when using
SEV. First, all data pages for the guest are pinned in physical
memory by the hypervisor [29]. In fact, because the default
NUMA policy on Linux is “first-touch”, all memory is al-
located on a single NUMA node, which causes performance
degradation for many of the scalable workloads evaluated in
this work. Second, SEV-based guests can under-utilize the
memory resources since they do not use on-demand paging.

Figures 6a and 6b visualize the memory allocation process
when using QEMU and QEMU+SEV. These figures show
the memory allocation over time on different NUMA nodes
on a system with four NUMA nodes when a VM with 16
GB memory is launched to run (for example) sp benchmark.
Figure 6a shows that under SEV all data is allocated at the
time of the VM launch on a single NUMA node as opposed
to the non-SEV case (Figure 6b) which follows on-demand
paging scheme and spreads the data across all four nodes.

For additional evidence, we conducted an initial study
on a single-socket AMD Rome based system (AMD EPYC
7402P, 24 core system, similar to Figure 2b but with a single



(a) SEV Interleaved Allocation

(b) No SEV Interleaved Allocation

Fig. 7: Memory allocation over time using an interleave policy.

package and four core dies) using NPB D class workloads.
This system has a uniform memory architecture, and that is
why the slowdowns due to NUMA placement issues (observed
previously) do not exist in this case as shown in Figure 11.

Thus, we conclude the SEV-specific overhead is due to the
NUMA allocation policy.

Finding 1.3: Explicit interleaving of data across NUMA
nodes using numactl recovers most of the performance loss.

To mitigate the observed slowdown, we explicitly allocate
memory pages across NUMA nodes rather than using the
default NUMA memory allocation policy in the Linux kernel.
We use numactl to allocate memory pages across NUMA
nodes when the VM is launched under SEV. A visualization
of the memory allocation using interleaved NUMA allocation
policy is shown in Figure 7a. Under SEV, an equal amount of
memory (4 GB on each node) is allocated across all nodes.

We observe that the interleaved memory allocation across all
NUMA nodes results in significant performance improvements
for SEV. In fact, the performance differences between QEMU
and QEMU+SEV shrink as shown in Figure 3 and 4 when
enabling NUMA interleaving (hatched bars). This is in contrast
to prior work which evaluated server-based applications and
found that using a single NUMA node results in the best
performance for virtualized workloads [30]. Importantly, we
also observe that for native execution the interleaved allocation
results in better performance compared to the default alloca-
tion for most of the cases (prominent examples are Kripke,
Mobiliti, and cc from GAPBS)

In addition to the HPC kernels in the NAS Parallel Bench-
marks, we also studied modern HPC workloads. Figure 8a
shows the execution time for native, QEMU and QEMU+SEV
cases for GAPBS workloads when executed using a road
network graph. Similar to NPB, NUMA interleaving reduces
the difference between QEMU+SEV and SEV. Similar trends
are found for other HPC workloads as shown in Figure 8b.

However, there are still some cases where QEMU and

QEMU+SEV experience performance degradation compared
to the native (unsecure) baseline. These differences can be
attributed to virtualization overhead as discussed in Finding 2.

Finding 1.4: NUMA placement still matters on new plat-
forms with more uniform memory architecture.

As discussed in Section IV, we studied the performance
of these benchmarks on another modern server class AMD
machine EPYC 7702 (Rome architecture), which contains
two NUMA nodes instead of four (see Figure 2). Figure 9,
Figure 10a and Figure 10b show the relative performance
of native, QEMU, and QEMU+SEV for the Rome system.
Similar to the Naples system, there are significant overheads
when using SEV unless the data is explicitly interleaved
between NUMA nodes. Thus, even for systems that have more
“uniformity” in their memory architecture, data placement is
important for performance when using SEV.

Finding 1 summary: When enabling SEV, there are addi-
tional overheads beyond just the virtualization platform over-
heads. These overheads are caused by the memory allocation
restrictions of the SEV technology and persist even on the
most recent architectures. However, we can overcome these
SEV-specific overheads by explicitly interleaving data between
NUMA nodes when the virtual machine is initialized.

B. Finding 2: The remaining SEV performance differences
are due to virtualization overheads.

We find that in some cases there is performance degradation
of the QEMU+SEV system compared to the baseline native ex-
ecution even after applying our NUMA interleaving configura-
tion change. These slowdowns come from the use of hardware
virtualization and QEMU. For example, in Figure 10a, sssp
with QEMU+SEV shows considerable slowdown compared to
Native-default case irrespective of memory allocation policy
(default or interleaved) on AMD Rome architecture. As visible
in the Figure 10a, the performance of QEMU+SEV and
QEMU match, indicating that the main cause of this slowdown
is virtualization itself, not the SEV extension.

We observed that, when run with 128 threads (as in Fig-
ure 10a), sssp shows much higher number of kvm exits per
second caused by the PAUSE instruction in comparison to the
case when it is run with a smaller number of threads (e.g., 32).
The PAUSE instruction is used to implement spinlocks and
can cause KVM exits (i.e., a usermode to hypervisor switch)
which has a higher latency than a normal context switch. In
fact, when executed with only 32 threads, the virtualization
slowdown of sssp improves to 1.7× (in contrast to 4× in
Figure 10a). Similarly, the QEMU overhead for bfs reduces
to 1.6× with 32 execution threads in contrast to 2.6× with
128 execution threads (Ding et al. made similar findings [31]).
Thus, when using QEMU or QEMU+SEV it is important
to use the appropriate number of execution threads for your
workload and workloads with highly contended locks may
result in significant performance degradation.

In Figure 8b, BLASTN also shows slowdown by virtual-
ization on AMD Naples architecture. The nucleotide database
which is used by BLASTN is approximately 245GB in size



(a) GAPBS (road network) (b) Real world HPC workloads

Fig. 8: Performance impact of SEV for GAPBS and other real world HPC workloads on AMD Naples (24 Threads). Interleaved
NUMA allocation works for graph and other HPC workloads as well except BLASTN which shows high overhead mainly
because of virtualized disk I/O operations.

Fig. 9: Performance impact of SEV for NPB D Class on AMD Rome (128 Threads)

(a) GAPBS (road network) (b) Real world HPC workloads

Fig. 10: Performance impact of SEV for GAPBS and other real world HPC workloads on AMD Rome (128 Threads). NUMA
placement still matters on platforms with more uniform memory architecture. Two examples where main cause of overhead is
virtualization are bfs and sssp.

Fig. 11: NPB D Class on AMD EPYC 7402P (24 Threads)

(much larger than the memory size of 64 GB on our AMD
Naples system), which leads to many disk I/O operations and
thus slowdown under virtualization. On the other hand, when
the same workload is executed on AMD Rome system (which
has 1 TB of memory), there is not any noticeable virtualization
overhead as shown in Figure 10b since the workload can fit
in the available system memory.

There is significant prior work quantifying the impact of
virtualization on the performance of HPC workloads [31]–
[33]. These prior works mostly focus on overheads from TLB
misses and nested page table walks. Similarly, our results
show the virtualization overheads grow as the working set

of the applications grow and are worse for workloads with
irregular access patterns (e.g., graph workloads). Prior work
has shown you can reduce this overhead by using huge pages
or through changes to the hardware (e.g., Virtualized Direct
Segments [33]). Additionally, the work of Ding et al. [31]
presents possible strategies to mitigate the virtualization slow-
down caused by multithreaded application scaling.

C. Finding 3: SEV initialization is slow and depends on the
memory footprint of the VM. Note: all previous data ignores
the VM initialization time.

We find that the time taken to initialize the workload
is significant when using QEMU and increases when using
QEMU+SEV. When using QEMU or QEMU+SEV, before
running the workload the virtual machine guest operating
system must complete the boot process. For QEMU this
bootup time takes about one minute for our workloads.

However, when enabling QEMU+SEV, this boot time in-
creases due to the hypervisor having to initialize the memory
before handing it over to the guest OS. As shown in Figure 12,



Fig. 12: Performance of VM boot (relative to QEMU-8GB)

SEV can cause a slowdown (relative to QEMU-8 GB) of
1.1×–1.47× depending on the size of the VM memory (from
8 GB to 48 GB). In addition to the memory initialization,
QEMU+SEV also needs extra time for key management when
launching a guest with QEMU+SEV. However, we believe
that the main source of SEV slowdown is the fact that the
entire VM memory has to be allocated at once in case of
QEMU+SEV in contrast to on-demand allocation in case
of QEMU (as discussed in section V-A), as evident by the
increase in slowdown as the VM memory size is increased.
This can specially become a bottleneck for the use cases where
the user intend to launch their jobs in a new VM each time
(e.g., when using Kata containers [24]).

D. Finding 4: SGX is inappropriate for unmodified scientfic
computing applications.

We find a number of reasons that SGX is not an appropriate
technology for securing HPC workloads. A primary design
goal of SGX is to enable a small trusted compute base, and
SGX was not designed to support large scale workloads. We
find that running HPC workloads under SGX causes a (1×–
126×) slowdown (mostly due to its limited secure memory
capacity), workloads exhibit poor thread scalability under
SGX, and it is difficult to adapt HPC code to work under
the SGX programming model.

Finding 4.1: Workloads with working sets larger than about
100 MB suffer large performance degradation under SGX.
Figure 13a shows the slowdown of HPC workloads under SGX
compared to an un-secure baseline. For this experiment, we ran
NPB with the “class C” inputs (blue in Figure 13a). We were
limited to using the class C inputs, as most class D inputs were
too large to run on the desktop systems that support SGX.
However, we believe that running larger inputs under SGX
would show at least as much performance overhead as the
smaller inputs. We also show the relative performance of graph
workloads and other modern HPC workloads in Figure 13a).
We were not able to run BLASTN workload with SGX due
its dependencies (discussed more in Finding 4.4).

Most of the performance degradation shown in Figure 13a
can be explained by the overhead of moving data from un-
secure memory into secure memory. SGX has a limited amount
of secure memory, about 100 MB. Thus, any workload with
a working set larger than 100 MB must use the secure
memory as an enclave page cache (EPC). The EPC is managed
by the SGX driver in software and has similar behavior to
OS swapping and moving pages between normal and secure
memory is a high latency event.

Figure 13b shows the number of EPC faults per million
instructions for each of the workloads. This figure shows that
most of the slowdown in Figure 13a can be explained by the
EPC fault rate. The workloads with the highest rate of moving
data between secure memory and normal memory (e.g., cg
from NPB, Mobiliti, and Kripke) show very high slowdown.
On the other hand, ep from NPB shows little performance
overhead with SGX because it has a very small working set
size (about 28 MB) which fits in the EPC and does not require
data movement between secure and normal memory spaces.

Finding 4.2: In some cases, SGX slowdown can be caused
by system calls. Applications under SGX exit the enclave
to process a system call. This can become a problem for
workloads with a large number of system calls. In the stud-
ied HPC workloads, the only case where we found system
calls to be the dominant source of performance overhead is
sssp benchmark from GAPBS. As shown in Figure 13b, the
slowdown for sssp does not correlate with EPC fault rate.
sssp shows significantly higher number of enclave exits (and
system calls) and is the main contributor to its performance
overhead compared to the un-secure execution. Most of these
system calls were write and futex calls, which are needed due
to the benchmark printing progress to the terminal. The futex
calls are used for synchronization (of multiple threads) before
printing the status messages using write calls. The effect on
slowdown because of futex system calls can be understood
by the difference in the observed slowdown for six thread
execution (126×) and single thread execution (20×), which
does not need any synchronization.

Finding 4.3: Workloads exhibit poor multithreaded scaling
under SGX. Another factor that aggravates the slowdowns
under SGX is explained with the help of Figure 14, which
shows the workload performance when increasing the number
of threads. Figure 14a shows that cg only achieves a speedup
of 1.4× with six threads when using SGX compared to about
4× speedup normally. We hypothesize that the handling of
EPC faults by the SGX kernel driver becomes the serializing
factor because all logical processors executing an enclave’s
code are required to exit the enclave whenever an EPC page
is deallocated [2]. Similar behavior is exhibited by most of
the other workloads with high resident memory size. On the
other hand, workloads with working set sizes that fit in the
EPC (e.g., ep) scale under SGX as they would under normal
execution as shown in Figure 14b.

Finding 4.4: SGX’s programming model is a poor fit for
HPC applications. Intel distributes an official SDK [34] for
SGX which requires users to re-write their application and
divide it into two pieces, secure code and non-secure code.
Due to the complex nature of HPC codes, dependencies on
external libraries, and frequent use of legacy codes (including a
non-trivial number of them written in Fortran), we investigated
several alternative interfaces to SGX which reduce the burden
on the programmer.

There are multiple third party solutions to run un-
modified applications under SGX including SCONE [23],
Graphene [35], Haven [36] and Asylo [37]. We did initial



bt cg ep is sp ua bc bf
s cc pr

ss
sp tc

Kr
ip

ke
LU

LE
SH

Lig
ht

GB
M

M
ob

ilit
i

gm
ea

n

0
25
50
75

Sl
ow

do
wn 12

6

NPB (Class C)
GAPBS (road)
Modern-HPC

(a) Relative performance running under SGX compared to native execution.

bt cg ep is sp ua bc bf
s cc pr

ss
sp tc

Kr
ip

ke
LU

LE
SH

Lig
ht

GB
M

M
ob

ilit
i

gm
ea

n

0

200

EP
C 

Fa
ul

ts
 (P

M
I)

33
6

41
2

36
0

NPB (Class C)
GAPBS (road)
Modern-HPC

(b) EPC fault rate (per million instructions) when running under SGX

Fig. 13: Performance impact of SGX and its relation to EPC (Enclave Page Cache) faults

2 4 6
Number of Threads

2

4

Sp
ee

d-
up

SGX
Normal

(a) cg

2 4 6
Number of Threads

2

4

6

Sp
ee

d-
up

SGX
Normal

(b) ep

Fig. 14: Impact of multiple execution threads

experiments with both Graphene and SCONE as they were
the best supported third party solutions at the time we ran our
experiments. SCONE provides containerized environment and
is easier to set-up and has a better support of running diverse
workloads without any modifications, so we used SCONE
for our experiments. Although we only evaluated SCONE, all
SGX programming interfaces have similar limitations due to
SGX’s design which limits the TCB. Graphene [35] is not
as convenient to use as SCONE and Google Asylo’s [37]
recently added support to run unmodified applications still
lags behind SCONE in terms of the number of supported use-
cases. Open Enclave SDK [38] is another SDK to build enclave
applications and does not support unmodified applications.

We found that even with SCONE, which promises to run
unmodified applications with SGX, it is fundamentally difficult
to use SGX to run HPC applications. In order to keep the
library OS simple, SCONE makes use of the musl libc library,
instead of more traditional C library glibc, along-with some
containerized services using the Linux Kernel Library (LKL).
The use of musl libc instead of glibc means many applica-
tions are not portable to SCONE (e.g., BLASTN failed to
compile inside SCONE and many common frameworks such
as TensorFlow require glibc instead of musl libc). Moreover,
SCONE does not support some system calls like fork, exec
and clone mainly due to its user space threading model and
the architectural limitations of SGX [23] which further limits
its applicability to scalable applications.

Finding 4 summary: The current implementation of Intel’s
SGX limits the secure memory size which severely affects the
performance of any workload that has a working set that does

not fit in this cache. Additionally, there is currently no stable
support to run unmodified workloads under SGX. The limited
EPC capacity and application partitioning are a fundamental
design constraints of SGX. Thus, we conclude that SGX is
unsuitable for secure execution of HPC applications. In Sec-
tion VII, we discuss possible future SGX implementations and
how they may improve performance for some HPC workloads.

VI. DISCUSSION

A. Beyond Single Node

Scientific computing workloads often scale across multiple
machines (nodes). In this work, we only focus on a single
node to isolate the performance impact of hardware TEEs. To
understand the impact of communicating between TEEs on
multiple nodes, we conducted a preliminary investigation of a
multi-node system with support of SEV on CloudLab [39].

Current HPC systems mostly rely on high performance
transport protocols like RDMA for communication among
multiple nodes. However, RDMA does not provide any secure
communication support although there is a recent research pro-
posal for secure RDMA [40]. Therefore, we instead evaluated
TCP for communication among machines using OSU MPI
microbenchmarks. For point-to-point bandwidth benchmarks,
we observed a 2× reduction in bandwidth of when comparing
QEMU to QEMU+SEV, but the latency remains the same
(approximately 1000 µs) for both QEMU and QEMU+SEV
(ranging from 1 byte to 2MB packet sizes).

However, in this simple benchmark, the communication
between nodes is insecure as there is no support for encrypted
communication between multiple nodes in SEV automatically.
A naive solution to make this communication secure is to
use a VPN. We experimented with OpenVPN and found the
slowdown of VPN based secure communication to be large.
For example, for above microbenchmarks, the bandwidth
number drops over 10× and latency increases by almost 20×.

Therefore, we conclude that there is a need to develop
more performant architectures to enable TEEs across multiple
nodes in a distributed memory. There are some existing
software based solutions to enable encrypted communication
across nodes, but they might not be sufficient for scien-
tific computing scale workloads. For example, SCONE [23]



provides a network shield which transparently protects the
communication among multiple nodes (each with its SGX
hardware). Asylo [37] (open-source framework for developing
enclave applications) allows enclave based applications to be
scaled across multiple machines using gRPCs (google remote
procedure calls), while being agnostic to TEE implementation.

B. Observations on Security of TEEs

Although the focus of this paper is the performance analysis
of TEEs for secure HPC, we provide a brief security analysis
of TEEs discussed in this paper. SGX provides integrity guar-
antees while SEV lacks such support. However, the weaker
guarantees of SEV (lack of integrity) are considered to be
adequate by Google’s confidential cloud computing initiative,
and these guarantees are becoming stronger. AMD has in-
troduced SEV-ES [41] that adds encryption of guest register
state to provide additional protection against VM state related
attacks, and SEV-SNP [41] provides integrity checks. These
are encouraging developments from the security perspective,
as they address some of the vulnerabilities and limitations of
SEV. It should be noted that SEV-SNP [41] does not provide
integrity guarantees using Merkle tree like data structures (as
SGX does). Therefore, it is more scalable and can support
larger secure memory sizes. Additionally, it seems Intel is also
moving in the direction of full memory encryption and virtual
machine-based trusted execution environments like AMD’s
SEV with total memory encryption (TME) and multi-key total
memory encryption (MKTME) technologies [42], [43].

Finally, in this paper we have focused on just one aspect
of the entire secure application workflow which may include
other steps as well in addition to running it inside an SEV
or SGX enclave. However, we believe that the execution of
the workload itself in a secure enclave is the most important
factor for performance analysis.

C. TEEs in Heterogeneous Systems

As computer systems become more heterogeneous and
employ different hardware accelerators to optimize for specific
applications, the attack vector expand in size. Thus, it is
important to expand TEEs across all processing elements of
such systems. We touch some aspects of heterogeneity i.e.
through the use of NUMA systems in this paper. However,
arguably the more interesting aspects of heterogeneity (ac-
celerator based systems) are not in the scope of this paper.
Research on TEEs in accelerator based systems is still at
very early stage. Examples of research works to enable trusted
execution in accelerator based systems include: Graviton [44]
and HETEE [45]. Graviton [44] provides trusted execution ca-
pabilities on GPUs by providing isolation to sensitive kernels
from other code executing on GPUs and the host. HETEE [45]
relies on a centralized controller to manage trusted execution
on all computing units including GPUs and accelerators.
However, there is still a need to investigate what new features
need to be added to existing practical TEE solutions to enable
trusted execution in accelerator based systems.

D. Research Avenues

Next, we discuss few research avenues for software frame-
work developers and computer architects to enable secure HPC
using TEEs.

Security requirements of HPC workloads can be diverse.
At the same time, the HPC platforms can be heterogeneous
possibly composed of nodes from multiple vendors e.g., Intel
and AMD, thus making both SGX and SEV available in
the same environment. Therefore, we propose the idea of an
intelligent job schedulers which can allocate applications to
an appropriate node depending on their sensitivity and the
expected slowdown from the secure environment (which can
be predicted using pre-trained models).

Partitioning HPC applications into secure and non-secure
parts can be difficult as they often rely on various third-party
libraries. The support of automated application partitioning
into secure and non-secure parts can help in mitigating the
performance slowdowns by keeping the secure memory foot-
print to the minimum.

The limited secure memory size (as in SGX) is an issue
that can have a severe impact on the performance of trusted
execution of HPC workloads. Apart from exploring the ideas
to design the more optimized integrity trees (which would en-
able larger secure memory sizes), techniques like prefetching
(of sensitive pages into secure memory) can be adapted to
overcome the performance slowdowns caused by EPC faults.

VII. CONCLUSION

In this paper, we studied the performance impact of two
TEEs (SEV and SGX) for secure execution of scientific
computing workloads. We showed that while Intel’s SGX
causes significant performance degradation for unmodified
HPC workloads, when configured correctly AMD’s SEV tech-
nology can provide protection against the most important
HPC threats with minor performance overhead. Although there
is no hardware available with Intel’s MKTME technology,
we believe the performance characteristics will be similar to
the QEMU+SEV performance presented in this paper since
these two technologies have closely related designs. The new
developments in AMD SEV (SEV-ES [41] and SEV-SNP [41])
do not change the fact that pages are still pinned to a given
NUMA node, so the issues discussed in section V still remain.

So, we believe, architectural innovations are necessary to
mitigate the overheads reported in section V. Specifically,
we are planning to harness the ideas in direct segments
and coalesced TLBs [33], [46] to mitigate the overhead of
virtualization in SEV. To reduce the overhead of SGX we are
exploring opportunities for more intelligent page prefetching
and eviction by learning the memory access pattens of appli-
cations and implementing it in hardware as part of the TCB.

ACKNOWLEDGEMENT

This work was supported by the Director, Office of Science,
Office of Advanced Scientific Computing Research, of the
U.S. Department of Energy under Contract No. DE-AC02-
05CH11231 and the National Science Foundation under Grant



No. CNS1850566. Any opinions, findings, conclusions, or
recommendations expressed in this material are those of the
authors and do not necessarily reflect those of the sponsors of
this work. We would also like to thank anonymous reviewers,
Marc Orr, and members of Davis Computer Architecture
Research Group (DArchR) for their valuable feedback.

REFERENCES

[1] S. Peisert, “Security in high-performance computing environments,”
Communications of the ACM, vol. 60, no. 9, pp. 72–80, 2017.

[2] V. Costan and S. Devadas, “Intel SGX Explained,” Cryptology ePrint
Archive, 2016, https://eprint.iacr.org/2016/086.

[3] T. Alves and D. Felton, “TrustZone: Integrated Hardware and Software
Security,” Information Quarterly, pp. 18–24, 2004.

[4] D. Kaplan, J. Powell, and T. Woller, “AMD MEMORY ENCRYPTION,”
2016, white paper.

[5] D. Lee, D. Kohlbrenner, S. Shinde, K. Asanović, and D. Song, “Key-
stone: An open framework for architecting trusted execution environ-
ments,” in European Conference on Computer Systems, 2020, pp. 1–16.

[6] O. Weisse, V. Bertacco, and T. Austin, “Regaining Lost Cycles with
HotCalls: A Fast Interface for SGX Secure Enclaves,” in International
Symposium on Computer Architecture, 2017, pp. 81–93.

[7] A. T. Gjerdrum, R. Pettersen, H. D. Johansen, and D. Johansen,
“Performance of Trusted Computing in Cloud Infrastructures with Intel
SGX,” in International Conference on Cloud Computing and Services
Science, 2017, pp. 668–675.

[8] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,
L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S.
Schreiber et al., “The NAS Parallel Benchmarks,” The International
Journal of Supercomputing Applications, vol. 5, no. 3, pp. 63–73, 1991.

[9] S. Beamer, K. Asanović, and D. Patterson, “The GAP Benchmark Suite,”
arXiv preprint arXiv:1508.03619, 2015.

[10] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman,
“Basic Local Alignment Search Tool,” Journal of molecular biology,
vol. 215, no. 3, pp. 403–410, 1990.

[11] C. Chan, B. Wang, J. Bachan, and J. Macfarlane, “Mobiliti: Scalable
Transportation Simulation Using High-Performance Parallel Comput-
ing,” in IEEE International Conference on Intelligent Transportation
Systems, 2018, pp. 634–641.

[12] “Hydrodynamics Challenge Problem, Lawrence Livermore National
Laboratory,” Tech. Rep. LLNL-TR-490254.

[13] A. J. Kunen, T. S. Bailey, and P. N. Brown, “KRIPKE - A Massively Par-
allel Transport Mini-App,” Lawrence Livermore National Lab (LLNL),
Livermore, CA, Tech. Rep., 2015.

[14] S. Mofrad, F. Zhang, S. Lu, and W. Shi, “A Comparison Study of Intel
SGX and AMD Memory Encryption Technology,” in 7th International
Workshop on Hardware and Architectural Support for Security and
Privacy, 2018, pp. 1–8.

[15] T. Dinh Ngoc, B. Bui, S. Bitchebe, A. Tchana, V. Schiavoni, P. Felber,
and D. Hagimont, “Everything You Should Know About Intel SGX
Performance on Virtualized Systems,” Proceedings of the ACM on
Measurement and Analysis of Computing Systems, pp. 1–21, 2019.

[16] C. Göttel, R. Pires, I. Rocha, S. Vaucher, P. Felber, M. Pasin, and V. Schi-
avoni, “Security, Performance and Energy Trade-offs of Hardware-
Assisted Memory Protection Mechanisms,” in IEEE 37th Symposium
on Reliable Distributed Systems. IEEE, 2018, pp. 133–142.

[17] S. Brenner, M. Behlendorf, and R. Kapitza, “Trusted Execution, and the
Impact of Security on Performance,” in Proceedings of the 3rd Workshop
on System Software for Trusted Execution, SysTEX, 2018, pp. 28–33.

[18] M. Taassori, A. Shafiee, and R. Balasubramonian, “VAULT: Reduc-
ing Paging Overheads in SGX with Efficient Integrity Verification
Structures,” in Proceedings of the 23rd ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, Williamsburg, VA, Mar. 2018, pp. 665–678.

[19] M. Orenbach, P. Lifshits, M. Minkin, and M. Silberstein, “Eleos:
ExitLess OS Services for SGX Enclaves,” in Proceedings of the 12th
ACM European Conference on Computer Systems, 2017, pp. 238–253.

[20] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y.
Liu, “LightGBM: A Highly Efficient Gradient Boosting Decision Tree,”
in Proceedings of Advances in Neural Information Processing Systems,
Long Beach, CA, Dec. 2017, pp. 3146–3154.

[21] https://www.amd.com/en/products/exascale-era.

[22] https://cloud.google.com/blog/products/identity-security/
expanding-google-clouds-confidential-computing-portfolio.

[23] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe,
J. Lind, D. Muthukumaran, D. O’keeffe, M. L. Stillwell et al., “SCONE:
Secure Linux Containers with Intel SGX,” in Proceedings of the 12th
USENIX Symposium on Operating Systems Design and Implementation,
2016, pp. 689–703.

[24] “Kata Containers,” Available: https://katacontainers.io/.
[25] Z.-H. Du, Z. Ying, Z. Ma, Y. Mai, P. Wang, J. Liu, and J. Fang, “Secure

Encrypted Virtualization is Unsecure,” arXiv preprint arXiv:1712.05090.
[26] L. Wilke, J. Wichelmann, M. Morbitzer, and T. Eisenbarth, “SEVurity:

No Security Without Integrity - Breaking Integrity-Free Memory En-
cryption with Minimal Assumptions,” in IEEE Symposium on Security
and Privacy (SP), 2020, pp. 1431–1444.

[27] M. Morbitzer, M. Huber, J. Horsch, and S. Wessel, “Severed: Subvert-
ing AMD’s Virtual Machine Encryption,” in Proceedings of the 11th
European Workshop on Systems Security, 2018, pp. 1–6.

[28] P. Rogaway, “Efficient Instantiations of Tweakable Blockciphers and
Refinements to Modes OCB and PMAC,” in Advances in Cryptology -
ASIACRYPT 2004. Springer Berlin Heidelberg, 2004, pp. 16–31.

[29] D. Kaplan, “AMD x86 Memory Encryption Technologies,” in Linux
Security Summit, 2017.

[30] U. Kamio and Y. Kinoshita, “KVM/QEMU tuning of NUMA and
Memory,” in Open Infrastructure Summit, 2017.

[31] X. Ding, P. B. Gibbons, and M. A. Kozuch, “A Hidden Cost of
Virtualization when Scaling Multicore Applications,” in 5th USENIX
Workshop on Hot Topics in Cloud Computing, 2013.

[32] A. Gupta, L. V. Kale, F. Gioachin, V. March, C. H. Suen, B.-S. Lee,
P. Faraboschi, R. Kaufmann, and D. Milojicic, “The Who, What, Why,
and How of High Performance Computing in the Cloud,” in IEEE 5th
International Conference on Cloud Computing Technology and Science,
2013, pp. 306–314.

[33] J. Gandhi, A. Basu, M. D. Hill, and M. M. Swift, “Efficient Memory
Virtualization: Reducing Dimensionality of Nested Page Walks,” in 47th
International Symposium on Microarchitecture, 2014, pp. 178–189.

[34] https://software.intel.com/en-us/sgx/sdk.
[35] C.-C. Tsai, D. E. Porter, and M. Vij, “Graphene-SGX: A Practical

Library OS for Unmodified Applications on SGX,” in USENIX Annual
Technical Conference (ATC), 2017.

[36] A. Baumann, M. Peinado, and G. Hunt, “Shielding Applications from an
Untrusted Cloud with Haven,” ACM Transactions on Computer Systems
(TOCS), vol. 33, no. 3, p. 8, 2015.

[37] “Asylo,” Available: https://asylo.dev/.
[38] “Open Enclave SDK,” Available: https://openenclave.io/sdk/.
[39] D. Duplyakin, R. Ricci, A. Maricq, G. Wong, J. Duerig, E. Eide,

L. Stoller, M. Hibler, D. Johnson, K. Webb, A. Akella, K. Wang,
G. Ricart, L. Landweber, C. Elliott, M. Zink, E. Cecchet, S. Kar, and
P. Mishra, “The design and operation of CloudLab,” in Proceedings of
the USENIX Annual Technical Conference (ATC), Jul. 2019, pp. 1–14.

[40] K. Taranov, B. Rothenberger, A. Perrig, and T. Hoefler, “sRDMA–
Efficient NIC-based Authentication and Encryption for Remote Direct
Memory Access,” in USENIX ATC, 2020, pp. 691–704.

[41] https://developer.amd.com/sev/.
[42] https://arstechnica.com/gadgets/2020/02/

intel-promises-full-memory-encryption-in-upcoming-cpus/.
[43] “Intel Architecture Memory Encryption Technologies Specification,”

Intel Corporation, Tech. Rep. Rev. 1.2, April 2019.
[44] S. Volos, K. Vaswani, and R. Bruno, “Graviton: Trusted execution

environments on GPUs,” in 13th USENIX Symposium on Operating
Systems Design and Implementatio (OSDI 18), 2018, pp. 681–696.

[45] J. Zhu, R. Hou, X. Wang, W. Wang, J. Cao, B. Zhao, Z. Wang, Y. Zhang,
J. Ying, L. Zhang, and D. Meng, “Enabling Rack-scale Confidential
Computing Using Heterogeneous Trusted Execution Environment,” in
IEEE Symposium on Security and Privacy (SP), 2020, pp. 991–1006.

[46] N. Kunati and M. M. Swift, “Implementation of Direct Segments on
a RISC-V Processor,” Proceedings of Second Workshop on Computer
Architecture Research with RISC-V, 2018.

https://eprint.iacr.org/2016/086
https://www.amd.com/en/products/exascale-era
https://cloud.google.com/blog/products/identity-security/expanding-google-clouds-confidential-computing-portfolio
https://cloud.google.com/blog/products/identity-security/expanding-google-clouds-confidential-computing-portfolio
https://katacontainers.io/
https://software.intel.com/en-us/sgx/sdk
https://asylo.dev/
https://openenclave.io/sdk/
https://developer.amd.com/sev/
https://arstechnica.com/gadgets/2020/02/intel-promises-full-memory-encryption-in-upcoming-cpus/
https://arstechnica.com/gadgets/2020/02/intel-promises-full-memory-encryption-in-upcoming-cpus/

	Introduction and Background
	Threat model
	Background and Prior Work
	Trusted Execution Environments
	Prior studies of TEE performance

	Methodology
	Traditional HPC Benchmarks/Kernels (NPB)
	Modern and Emerging HPC Workloads
	Hardware Platforms Used
	Software Tools/Frameworks

	Understanding the Performance of TEEs
	Finding 1: SEV can be used for secure scientific computing without significant performance degradation for most workloads if it is configured correctly.
	Finding 2: The remaining SEV performance differences are due to virtualization overheads.
	Finding 3: SEV initialization is slow and depends on the memory footprint of the VM. Note: all previous data ignores the VM initialization time.
	Finding 4: SGX is inappropriate for scientfic computing applications.

	Discussion
	Beyond Single Node
	Observations on Security of TEEs
	TEEs in Heterogeneous Systems
	Research Avenues

	Conclusion
	References

