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SARS-CoV-2 simulations go exascale to predict
dramatic spike opening and cryptic pockets across
the proteome

Maxwell I. Zimmerman'?, Justin R. Porter ®'2, Michael D. Ward'?, Sukrit Singh®'2, Neha Vithani'?,
Artur Meller'?, Upasana L. Mallimadugula'?, Catherine E. Kuhn'?, Jonathan H. Borowsky ©'?,
Rafal P. Wiewiora®4, Matthew F. D. Hurley®, Aoife M. Harbison®, Carl A. Fogarty ©¢,

Joseph E. Coffland’, Elisa Fadda®, Vincent A. Voelz®, John D. Chodera®#* and Gregory R. Bowman ®12

SARS-CoV-2 has intricate mechanisms for initiating infection, immune evasion/suppression and replication that depend on
the structure and dynamics of its constituent proteins. Many protein structures have been solved, but far less is known about
their relevant conformational changes. To address this challenge, over a million citizen scientists banded together through the
Folding@home distributed computing project to create the first exascale computer and simulate 0.1seconds of the viral pro-
teome. Our adaptive sampling simulations predict dramatic opening of the apo spike complex, far beyond that seen experimen-
tally, explaining and predicting the existence of ‘cryptic’ epitopes. Different spike variants modulate the probabilities of open
versus closed structures, balancing receptor binding and immune evasion. We also discover dramatic conformational changes
across the proteome, which reveal over 50 “cryptic’ pockets that expand targeting options for the design of antivirals. All data

and models are freely available online, providing a quantitative structural atlas.

threat to global human health and socioeconomic stability’.
With estimates of the basic reproduction number at ~3-4 and a
case fatality rate for COVID-19 ranging from ~0.1 to 12% (high tem-
poral variation), SARS-CoV-2/COVID-19 has spread quickly and
currently endangers the global population®™. As of 12 September
2020, there have been over 29 million confirmed cases and over
925,000 fatalities globally. Quarantines and social distancing are
effective at slowing the rate of transmission; however, they cause sub-
stantial social and economic disruption. Taken together, these facts
render it crucial that we find immediate therapeutic interventions.
A structural understanding of the SARS-CoV-2 proteins could
accelerate the discovery of new therapeutics by enabling the use of
rational design’. To this end, the structural biology community has
made heroic efforts to rapidly build models of SARS-CoV-2 proteins
and the complexes they form®'°. However, it is well established that
a protein’s function is dictated by the full range of conformations it
can access, many of which remain hidden to experimental meth-
ods. Mapping these conformations for SARS-CoV-2 proteins will
provide a clearer picture of how they enable the virus to perform
diverse functions such as infecting cells, evading a host’s immune
system and replicating. Such maps may also present new therapeu-
tic opportunities, such as cryptic pockets that are absent in experi-
mental snapshots but provide novel targets for drug discovery.
Molecular dynamics simulations have the ability to capture the
full ensemble of structures a protein adopts but require substan-
tial computational resources. Such simulations capture an all-atom

f ARS-CoV-2 is a novel coronavirus that poses an imminent

representation of the range of motions a protein undergoes. Modern
datasets often consist of a few microseconds of simulation for a sin-
gle protein, with a few noteworthy examples reaching millisecond
timescales'”'®. However, many important processes occur on slower
timescales. Moreover, simulating every protein that is relevant to
SARS-CoV-2 for biologically relevant timescales would require
computational resources on a massive scale.

To overcome this challenge, more than a million citizen scien-
tists from around the world have donated their computer resources
to simulate SARS-CoV-2 proteins. This massive collaboration was
enabled by the Folding@home distributed computing platform,
which has crossed the exascale computing barrier and is now the
world’s largest supercomputer. Using this resource, we constructed
quantitative maps of the structural ensembles of over two dozen
proteins and complexes that pertain to SARS-CoV-2 from milli-
seconds of simulation data generated for each system. Together, we
have run 0.1s of simulation. Our data uncover the mechanisms of
conformational changes that are essential for SARS-CoV-2s replica-
tion cycle and reveal a multitude of new therapeutic opportunities.
The data are supported by a variety of experimental observations
and are being made publicly available (https://covid.molssi.org/ and
https://osf.io/fs2yv/), in accordance with open science principles, to
accelerate the discovery of new therapeutics'**.

To the exascale and beyond
Folding@home (http://foldingathome.org) is a community of
citizen scientists, researchers and tech organizations dedicated to
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Fig. 1| Summary of Folding@home's computational power. a, The growth of Folding@home in response to COVID-19. The cumulative number of users
is shown in blue and COVID-19 cases are shown in orange. b, Global distribution of Folding@home users. Each yellow dot represents a unique IP address
contributing to Folding@home. ¢, The processing speed of Folding@home and the next 10 fastest supercomputers in exaflops (one exaflop is 10 floating

point operations per second).

applying their collective computational and intellectual resources
to understand the role of proteins’ dynamics in their function and
dysfunction and to aid in the design of new proteins and thera-
peutics”. Folding@home enables anyone with a computer and an
Internet connection to contribute to biomedical research by vol-
unteering to run small chunks of simulation called ‘work units’
that are used to build maps of protein dynamics. The project has
provided insight into diverse topics ranging from protein folding
to signalling mechanisms®~** to the connection between pheno-
type and genotype” . Translational applications have included
new means to combat antimicrobial resistance, Ebola virus and
SETS virus®-.

In response to the COVID-19 pandemic, Folding@home quickly
pivoted to focus on SARS-CoV-2 and the host factors it interacts
with. Many people found the opportunity to take action alluring at
a time when they were otherwise feeling helpless. In less than three
months, the project grew from ~30,000 active devices to over a mil-
lion devices around the globe (Fig. 1a,b).

We conservatively estimate the peak performance of Folding@
home reached 1.01 exaflops. This performance was achieved at a
point when ~280,000 GPUs and 4.8 million CPU cores were per-
forming simulations. As explained in Methods, to be conservative
about our claims, we assume that each GPU/CPU has worse per-
formance than a card released before 2015. For reference, the aggre-
gate 1 exaflop performance we report for Folding@home is fivefold
greater than the peak performance of the world’s fastest traditional
supercomputer at the time, Summit (Fig. 1c). This performance is
also greater than the top 100 supercomputers combined. Prior to
Folding@home, the first exascale supercomputer was not scheduled
to come online until the end of 2021.

Extreme spike opening reveals cryptic epitopes
The spike complex (S) is a prominent vaccine target that is known
to undergo substantial conformational changes as part of its func-
tion'*'**!. Structurally, S is composed of three interlocking proteins,
with each chain having a cleavage site separating an S1 and S2 frag-
ment. S resides on the virion surface, where it waits to engage with an
angiotensin-converting enzyme 2 (ACE2) receptor on a host cell to
trigger infection*>”’. The fact that S is exposed on the virion surface
makes it an appealing vaccine target. However, it has a number of
effective defence strategies. First, S is decorated extensively with gly-
cans that aid in immune evasion by shielding potential antigens™*.
S also uses a conformational masking strategy, wherein it predomi-
nantly adopts a closed conformation (often called the down state)
that buries the receptor-binding domains (RBDs) to evade immune
surveillance mechanisms. To engage with ACE2, S must somehow
expose the conserved binding interface of the RBDs. Characterizing
the full range of S opening is important for understanding patho-
genesis and could provide insights into novel therapeutic options.
To capture S opening, we employed our goal-oriented adaptive
sampling algorithm, FAST, in conjunction with Folding@home. The
FAST method’*”’ iterates between running a batch of simulations,
building a map of conformational space called a Markov state model
(MSM)*** from all the data generated so far, ranking the conforma-
tional states of this MSM based on how likely starting a new simula-
tion from that state is to yield useful data and starting a new batch
of simulations from the top-ranked states. The ranking function is
designed to balance favouring structures with a desired geometric
feature (in this case, opening of S) and broad exploration of confor-
mational space. By balancing exploration-exploitation trade-offs,
FAST often captures conformational changes with orders of
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magnitude less simulation time than alternative methods. Broadly
distributed structures from our FAST simulations were then used as
starting points for extensive Folding@home simulations, totalling
over 1 millisecond of data for SARS-CoV-2 §, enabling us to obtain
a statistically sound final model.

Our SARS-CoV-2 S protein simulations predict extreme open-
ing of S and substantial conformational heterogeneity in the open
state (Fig. 2). Capturing opening of S is an impressive technical
feat. Other large-scale simulations have provided valuable insight
into aspects of S but were unable to capture this event, which is
essential for the initiation of infection®**>*. For example, Casalino
et al.* performed ~10 microseconds of simulation to show that one
of the glycans helps stabilize a partially open state, and Turon6va
et al.* performed 2.5microseconds of simulation that revealed
three hinges in the stalk. However, the shorter timescale of these
simulations prevented the authors from capturing the opening pro-
cess at all. With our milliseconds of sampling, we successfully*****!
captured this rare event for both glycosylated and unglycosylated
S and found that glycosylation slightly increases the population of
the open state, but the difference between glycosylated and ung-
lycosylated S is smaller than that between different spike variants
(Supplementary Fig. 1). The closed state is more probable than the
open state, explaining the experimental observation that full-length
S has a lower affinity for ACE2 than an isolated RBD*. Intriguingly,
we found that opening occurs only for a single RBD at a time, akin
to the up state observed in cryoEM structures”. Moreover, we pre-
dict that the scale of S opening is often substantially larger than has
been observed in experimental snapshots in the absence of binding
partners (Supplementary Fig. 2).

The dramatic opening we discovered predicts that antibodies, as
well as other therapeutics, can bind to regions of S that are deeply
buried and seemingly inaccessible in existing experimental snap-
shots®***_ Consistent with this prediction, the cryptic epitope
for the antibody CR3022 is buried in up and down cryoEM struc-
tures but is clearly exposed in our conformational ensemble (Fig.
2¢). Indeed, our ensemble captures the exposure of many known
epitopes, despite their occlusion in apo experimental snapshots
(Fig. 2d). Our models also provide a quantitative estimate of the
probability that different epitopes are exposed, are consistent with
experimental measures of dynamics and can be used to determine
the most suitable regions for the design of neutralizing antibodies.

Our results suggest that S binds ACE2 and many antibodies via
a conformational selection mechanism wherein S first opens and
then binds to its partners. Previous work based on examining the up
and down structures observed by cryoEM also proposed a role for
conformational selection, hypothesizing that an S RBD may bind
CR3022 by first adopting an up conformation and then twisting to
expose the cryptic epitope®. To test this hypothesis, we projected the
free-energy landscape and the highest-flux pathway for S opening
onto two order parameters: the angle of RBD opening and the twist
of the RBD (Supplementary Fig. 3). We found that the RBD simul-
taneously twists and peels off S as it transitions from the closed to
open conformation. Furthermore, the motion we observe predicts
the exposure of other epitopes that would not be exposed by the
mechanism proposed by Yuan et al.®. These additional epitopes have
now been corroborated by work on the binding sites of other anti-
bodies (Fig. 2d).

To understand the potential role of conformational masking
in determining the lethality and infectivity of different coronavi-
ruses, we also simulated the opening of S proteins from two related
viruses: SARS-CoV-1 and HCoV-NL63. These viruses were selected
because they also bind the ACE2 receptor but are associated with
different mortality rates. SARS-CoV-1 caused an outbreak in 2003
with a high case fatality rate but has not become a pandemic*. NL63
was discovered the following year and continues to spread around
the globe but is substantially less lethal than either SARS virus”.
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We hypothesized that phenotypic differences between coronavi-
ruses may be partially explained by changes to the S conformational
ensemble, particularly the probability of spike opening. Specifically,
we propose that mutations or other perturbations can increase the
S-ACE?2 affinity by increasing the probability that S adopts an open
conformation or by increasing the affinity between an exposed RBD
and ACE2. In contrast, the affinity of S for ACE2 (or antibodies that
bind cryptic epitopes) can be reduced by stabilizing the closed state
or decreasing the affinity between an exposed RBD and its binding
partner(s).

As expected, the propensities of the three S complexes to adopt
an open state and bind ACE2 are very different. Structures from
each ensemble were classified as competent to bind ACE2 if super-
imposing an ACE2-RBD structure on S did not result in any ste-
ric clashes between ACE2 and the rest of the S complex. We found
that SARS-CoV-1 has the highest population of conformations that
can bind to ACE2 without steric clashes, followed by SARS-CoV-2,
while opening of NL63 is sufficiently rare that we did not observe
ACE2-binding-competent conformations in our simulations (Fig.
2b). Interestingly, S proteins that are more likely to adopt struc-
tures that are competent to bind ACE2 are also more likely to adopt
highly open structures (Fig. 2c).

We also predict a number of interesting correlations between
the conformational masking, lethality and infectivity of different
coronaviruses. First, more deadly coronaviruses have S proteins
with less conformational masking. Second, there is an inverse cor-
relation between S opening and the affinity of an isolated RBD for
ACE2 (RBD-ACE?2 affinities of ~35nM, ~44nM and ~185nM for
HCoV-NL63, SARS-CoV-2 and SARS-CoV-1, respectively)**.

These observations suggest a trade-off wherein stabilizing the
closed spike enables immune evasion but hampers cell entry, requir-
ing a higher affinity between an exposed RBD and ACE2 to reliably
infect a host cell. We propose that the NL63 S complex is probably
best at evading immune detection but is not as infectious as the
SARS viruses because strong conformational masking reduces the
overall affinity for ACE2. In contrast, the SARS-CoV-1 S complex
adopts open conformations more readily but is also more readily
detected by immune surveillance mechanisms. Finally, SARS-CoV-2
balances conformational masking and the RBD-ACE2 affinity in a
manner that allows it to evade an immune response while maintain-
ing its ability to infect a host cell.

Our atomically detailed model of glycosylated S can facilitate
structure-based vaccine antigen design through identification of
regions minimally protected by conformational masking or the glycan
shield™. To identify these potential epitopes, we calculated the prob-
ability that each residue in S could be exposed to therapeutics (that is,
is not shielded by a glycan or buried by conformational masking), as
shown in Fig. 3a. Visualizing these values on the protein reveals a few
patches of protein surface that the glycan shielding leaves exposed
(Fig. 3b). However, another important factor when targeting an anti-
gen is picking a region with a conserved sequence to yield broader
and longer-lasting efficacy. Not surprisingly, many of the exposed
regions do not have a strongly conserved sequence. Promisingly,
though, we do find a conserved area with a larger degree of solvent
exposure (Fig. 3c). This region was recently found to be an effec-
tive site for neutralizing antibodies®'. Another possibility for antigen
design is to exploit the opening motion. A number of residues sur-
rounding the receptor-binding motif of the RBD show an increase in
exposure by ~30% in ACE2-binding-competent structures (Fig. 3c).
These regions are hotspots for neutralizing antibody binding”*>*,
which is consistent with immunoassays and cryoEM structures.

Cryptic pockets and functional dynamics are present
throughout the proteome

Every protein in SARS-CoV-2 remains a potential drug target. So,
to understand their roles in disease and help further the design of
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Fig. 2 | Structural characterization of spike opening and conformational masking for three spike homologues. a, An example structure of SARS-CoV-2
spike protein from our simulations that is fully compatible with receptor binding, as shown by superimposing ACE2 (grey). The three chains of the spike
protein are illustrated with a cartoon and transparent surface representation (orange, teal and purple), and glycans are shown as sticks (green). b, Three
spike homologues have very different probabilities of adopting ACE2-binding-competent conformations, likely modulating their affinities for both ACE2
and antibodies that engage the ACE2-binding interface. HCoV-NL63, SARS-CoV-1and SARS-CoV-2 are shown as light blue, orange and black, respectively.
¢, The probability distribution of the spike opening for each homologue. Opening is quantified in terms of how far the centre of mass of an RBD deviates
from its position in the closed (or down) state. The cryptic epitope for the antibody CR3022 (red) is only accessible to antibody binding in extremely open
conformations. d, Our simulations capture exposure of cryptic epitopes that are buried in the up and down cryoEM structures. The fraction of residues
within different epitopes that are exposed to a 0.5 nm radius probe for the down structure (blue), up structure (yellow), the ensemble average from our
simulations (green) and the maximum value we observe in our simulations (red). Epitopes are determined as the residues that contact the specified

antibody and are clustered by their binding location on the RBD".

antivirals, we unleashed the full power of Folding@home to simu-
late dozens of systems related to pathogenesis. While we are inter-
ested in all aspects of a protein’s functional dynamics, expanding the
number of antiviral targets is of immediate value. To this end, we
seeded Folding@home simulations from our FAST-pockets adap-
tive sampling to aid in the discovery of cryptic pockets. Out of 36
datasets, we briefly discuss 2 illustrative examples.

Non-structural protein number 5 (NSP5, also named the main
protease, 3CLP™, or as we will refer to it, MP®) is an essential pro-
tein in the life cycle of coronaviruses, cleaving polyprotein la into

functional proteins, and is a major target for the design of antivi-
rals'’. It is highly conserved between coronaviruses and shares 96%
sequence identity with SARS-CoV-1 Mre. It cleaves polyprotein la
at no fewer than 11 distinct sites, placing substantial evolutionary
constraint on its active site. MP® is only active as a dimer; however,
it exists in a monomer-dimer equilibrium with estimates of its dis-
sociation constant falling in the low uM range®’. Small molecules
targeting this protein to inhibit enzymatic activity by either alter-
ing its active site or favouring the inactive monomer state would be
promising broad-spectrum antiviral candidates™.
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Fig. 3 | Effects of glycan shielding and conformational masking on the accessibility of different parts of the spike to potential therapeutics. a, The
probability that a residue is exposed to potential therapeutics (P,,,..s), @s determined from our structural ensemble. Red indicates a high probability of
being exposed, and blue indicates a low probability of being exposed. b, Surface of the spike protein coloured by exposure probability. Exposed patches
are circled in orange. Red residues have a higher probability of being exposed, whereas blue residues have a lower probability of being exposed. Atoms
belonging to glycans are shown in green. ¢, Spike protein coloured by sequence conservation score. A conserved patch on the protein is circled in orange.
Red residues have higher conservation, whereas blue residues have lower conservation. d, The difference in the probability that each residue is exposed
between the ACE2-binding-competent conformations and the entire ensemble (AP,,,,..). Red residues have a higher probability of being exposed

upon opening, whereas blue residues have a lower probability of being exposed. Exposure data can be found online at https://osf.io/fs2yv/ under the

SARS-CoV-2 spike project in the analysis folder.

Our simulations predict two novel cryptic pockets on MP™ that
expand our current therapeutic options. These are shown in Fig.
4a, which projects states from our MSM onto the solvent exposure
of residues that make up the pockets. The first cryptic pocket is an
expansion of NSP5’s catalytic site. We predict that the loop bridging
domains IT and III is highly dynamic and can fully undock from the
rest of the protein. This motion may impact catalysis—for example,
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by sterically regulating substrate binding—and is similar to motions
we have observed previously for the enzyme B-lactamase*. Owing to
the pocket’s location, a small molecule bound in this pocket is likely
to prevent catalysis by obstructing polypeptide association with
catalytic residues. The second pocket is a large opening between
domains I/II and domain III. Located at the dimerization inter-
face, this pocket offers the possibility of finding small molecules or


https://osf.io/fs2yv/
http://www.nature.com/naturechemistry

ARTICLES NATURE CHEMISTRY

DI cryptic-pocket SASA (nm?)

175

150

125

100 +

0.035

0.030

0.025

0.020

uolireindod

0.015

0.010

0.005

0.030

0.025

0.020

0.015

uone|ndod

0.010

0.005

Fig. 4 | Examples of cryptic pockets and functionally relevant dynamics. a,b, Conformational ensemble of MP (monomeric) predicts cryptic pockets
near the active site (AS) and dimerization interface (DI). Conformational states (black circles) are projected onto the solvent-accessible surface areas
(SASASs) of residues surrounding either the active site or the dimerization interface. The starting structure for simulations (6Y2E) is shown as a red dot.
Representative structures are depicted by cartoons and transparent surfaces. Domains | and |l are coloured cyan and domain Ill is coloured grey. The

loop of domain Ill, which covers the active-site residues and is seen to be highly dynamic, is coloured red. ¢,d, The conformational ensemble from our
simulations of nucleoproteins is similar to the distribution of structures seen experimentally. Conformational states are projected onto the distance and
angle between the positive finger and a nearby loop. Angles 6 were calculated between vectors that point along each red segment in d, and distances d
were calculated between their centres of mass. Cluster centres are represented as black circles, the starting structure for simulations (6VYO) is shown as
a red dot and NMR structures are shown as solid blue dots. Representative structures are shown as cartoons.

peptides that favour the inactive monomer state. We repeated these
calculations and found that the discovery of cryptic pockets is
robust to the choice of force field (Supplementary Fig. 4).

In addition to cryptic pockets, our data capture many poten-
tially functionally relevant motions within the SARS-CoV-2 pro-
teome. We illustrate this with the SARS-CoV-2 nucleoprotein. The
nucleoprotein is a multifunctional protein responsible for major
life-cycle events such as viral packaging, transcription and physi-
cally linking RNA to the envelope®”**. As such, we expect the pro-
tein to accomplish these goals through a highly dynamic and rich
conformational ensemble, akin to context-dependent regulatory
modules observed in Ebola virus nucleoprotein®>*. Investigating
the RNA-binding domain, we predict both cryptic pockets and an
incredibly dynamic beta-hairpin, referred to as a ‘positive finger’,
that hosts the RNA-binding site (Fig. 4c,d). The conformational
heterogeneity of the positive finger we observe is consistent with
a structural ensemble determined using solution-state NMR spec-
troscopy®'. Our simulations also capture numerous states of the
putative RNA-binding pose, where the positive finger curls up to
form a cradle for RNA. These states can provide a structural basis
for the design of small molecules that would compete with RNA
binding, preventing viral assembly.

The data we present in this paper represent the single largest
collection of all-atom simulations. Table 1 is a comprehensive list
of the systems we have simulated. Systems span various oligo-
merization states, include important complexes and include rep-
resentation from multiple coronaviruses. We also include human
proteins that are targets for supportive therapies and preventative
treatments. To accelerate the discovery of new therapeutics and
promote open science, our MSMs and structures of cryptic pock-
ets are available online (https://covid.molssi.org/ and https://osf.
io/fs2yv/). For each system analysed, we provide a detailed Markov
model and relevant analysis. For cryptic pockets, we provide two
directories, ‘model’ and ‘cryptic_pockets; as well as a README.
dat that details all hyperparameters used for model construction.
The model directory contains the following files: full_centers.xtc
(GROMACS binary of cluster centres), populations.npy (numpy
binary file of equilibrium populations), prot_masses.pdb (PDB
topology file), tcounts.npy (numpy binary of the transition count
matrix) and tprobs.npy (numpy binary of the transition prob-
ability matrix). For each cryptic pocket X’ that we characterize,
there exist cryptic_pockets/pocketX_resis.dat and cryptic_pock-
ets/pocketX_rankings.dat files, which detail the residues that
are present in the cryptic pocket and present a list of states with
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Table 1| Summary of protein systems we have simulated on Folding@home, organized by viral strain

System name Oligomerization Initial structure Residues Atomsin Aggregate Cryptic pockets
system simulation time (ps) discovered

SARS-CoV-2
NSP3 (macrodomain ‘X") Monomer 6WO02 167 23,907 10,906 —
NSP3 (papain-like protease 2, PL2P*) Monomer 3E9S? 306 97,285 731 2
NSP5 (main protease, MP®©, 3CLP°) Monomer 6Y2E 306 64,791 6,405 2
NSP5 (main protease, MP®©, 3CLP°) Dimer 6Y2E 612 77,331 2,902 2
NSP7 Monomer SlF22E 79 20,094 3,722 3
NSP8 Monomer 2AHM? 191 156,282 1,776 3
NSP9 Dimer 6W4BP 226 49,885 8,939 2
NSP10 Monomer 6W4H® 131 29,560 6,141 2
NSP12 (polymerase) Monomer 6NUR? 891 186,622 3,330 3
NSP13 (helicase) Monomer 6JYT 596 129,368 3,407 3
NSP14 Monomer 5C8s? 527 216,380 2,384 2
NSP15 Monomer 6VWW 347 67,345 3,674 4
NSP15 Hexamer 6VWW 2,082 230,339 4,270 =
NSP16 Monomer 6W4HP 298 45,672 2,382 5
Nucleoprotein (RBD) Monomer 6VYO 173 29125 9,493
Nucleoprotein dimerization domain Monomer 6YUNP n8 34,905 6,782 —
Nucleoprotein dimerization domain Dimer 6YUNP 236 72,733 1,458 2
Spike Trimer 6VXX© 3,363 442,881 1,109 —
NSP7/NSP8/NSP12 Trimer complex ~ 6NUR? 1,184 215,694 1,686 =
NSP10/NSP14 Dimer complex 5C8S? 688 226,672 689 3
NSP10/NSP16 Dimer complex ~ 6W4H® 429 63,752 3,463

SARS-CoV-1
NSP3 (macrodomain ‘X") Monomer 2FAV 172 33117 659 —
NSP9 Dimer 1Qz8® 226 49,599 7,763 —
NSP15 Monomer 2H85 345 67,345 4,734 —
NSP15 Hexamer 2H85 2,070 230,339 1130 —
Nucleoprotein RBD Monomer 20FZ 174 29125 4,088 —
Nucleoprotein dimerization domain Monomer 2GIB 370 34,905 1,626 —
Nucleoprotein dimerization domain Dimer 2GIB 740 72,733 4,221 —
Spike Trimer 5X58¢ 3,261 375,851 741 —
NSP10/NSP16 Dimer complex ~ 6W4H? 425 69,589 518 —

Human
IL6 Monomer TALU 166 26,855 1,593
IL6-R Monomer IN26 299 149,764 196 5
ACE2 Monomer 6LZG 596 75,787 664

MERS
NSP13 Monomer S5WWP 596 121134 719 —
NSP10/NSP16 Dimer complex ~ 6W4H? 424 69,127 518 —

HCoV-NL63
Spike Trimer 5SZS¢ 3,606 453,348 651 =

2Structural model was generated from a homologous sequence using Swiss model®®. "Missing residues were modelled using Swiss model®’. “Missing residues were modelled using CHARMM-GUI%*¢7,

Discussion

To tackle a global threat, the Folding@home community has cre-
ated one of the largest computational resources in the world. Over
a million citizen scientists have pooled their computer resources
to help understand and combat COVID-19, generating more than

cryptic pockets ranked from most open to most closed. Other
contemporary works are already building on these data, provid-
ing new insight into multiple systems (for example, NSP16, spike
protein and nucleoprotein) and making new connections with

experiments™ >,
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0.1seconds of simulation data. The colossal scale of these simula-
tions has helped to characterize crucial stages of infection. We
predict that spike proteins have a strong trade-off between mak-
ing ACE2-binding interfaces accessible to infiltrate cells and con-
formationally masking epitopes to subvert immune responses.
SARS-CoV-2 represents a more optimal trade-off than related
coronaviruses, which may explain its success in spreading glob-
ally. Our simulations also provide an atomically detailed roadmap
for designing vaccines and antivirals. For example, we have made a
comprehensive atlas and repository of cryptic pockets hosted online
to accelerate the development of novel therapeutics. Many groups
are already using our data, including the COVID Moonshot®, an
international collaboration between multiple computational and
experimental groups working to develop a patent-free inhibitor of
the main protease.

Beyond SARS-CoV-2, we expect this work to aid in a better
understanding of the roles of proteins in the Coronaviridae fam-
ily. Coronaviruses are not new—indeed, they have been around for
millennia—yet many of their proteins are still poorly understood.
Because climate change has made zoonotic transmission events
more commonplace, it is imperative that we continue to perform
basic research on these viruses to better protect us from future
pandemics. For each protein system in Table 1, an extraordinary
amount of sampling has led to the generation of a quantitative map
of its conformational landscape. There is still much to learn about
coronavirus function, and these conformational ensembles contain
a wealth of information to pull from.

While we have aggressively targeted research on SARS-CoV-2,
Folding@home is a general platform for running molecular dynam-
ics simulations at scale. Before the COVID-19 pandemic, Folding@
home was already generating datasets that were orders of magnitude
greater than some of those generated by conventional means. With
our explosive growth, our compute power has increased by around
100-fold. Our work here highlights the incredible utility this com-
pute power has to enable rapid understanding of health and disease,
providing a rich source of structural data for accelerating the design
of therapeutics. With the continued support of the citizen scientists
that have made this work possible, we have the opportunity to make
a profound impact on other global health crises such as cancer, neu-
rodegenerative diseases and antibiotic resistance.

Online content

Any methods, additional references, Nature Research report-
ing summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of
author contributions and competing interests; and statements of
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Methods

System preparation. All simulations were prepared using Gromacs 2020 (ref.

). Initial structures were placed in a dodecahedral box that extends 1.0nm
beyond the protein in any dimension. Systems were then solvated and energy was
minimized with a steepest descents algorithm until the maximum force fell below
100kJ mol~' nm~!, using a step size of 0.01 nm and a cut-off distance of 1.2nm

for the neighbour list, Coulomb interactions and van der Waals interactions. The
AMBERO3 force field was used for all systems except spike protein with glycans,
which used CHARMM36 (refs. ®*7°). We chose to use the AMBERO3 force field for
the discovery of cryptic pockets since we have had extensive success experimentally
confirming predictions based on simulations using this force field on other
systems’'. We have also found that AMBERO3 gives comparable results to other
force fields, given sufficient sampling’. Furthermore, we found that discovery of
cryptic pockets on NSP5 is robust to the choice of force field (Supplementary Fig.
4). All simulations were performed with explicit TIP3P solvent™.

Systems were then equilibrated for 1.0 ns, where all bonds were constrained
with the LINCS algorithm and virtual sites were used to allow a 4 fs time step’*.
Cut-offs of 1.1 nm were used for the neighbour list with 0.9 for Coulomb and
van der Waals interactions. The particle mesh Ewald method was employed for
treatment of long-range interactions with a Fourier spacing of 0.12 nm. The Verlet
cut-off scheme was used for the neighbour list. The stochastic velocity rescaling
(v-rescale) thermostat was used to hold the temperature at 300K (ref. ”°).

Adaptive sampling simulations. The FAST algorithm was employed for each
protein in Table 1 to enhance conformational sampling and quickly explore
dominant motions. The procedure for FAST simulations is as follows: (1) run
initial simulations, (2) build MSM, (3) rank states based on FAST ranking, (4)
restart simulations from the top ranked states and (5) repeat steps 24 until
ranking is optimized. For each system, MSMs were generated after each round of
sampling using a k-centres clustering algorithm based on the root-mean-square
deviation between select atoms. Clustering continued until the maximum distance
of a frame to a cluster centre fell within a predefined cut-off. In addition to the
FAST ranking, a similarity penalty was added to promote conformational diversity
in starting structures, as has been described previously™. The code used to run
FAST simulations can be found online (https://github.com/bowman-lab/fast).

FAST-distance simulations of all spike proteins were run at 310K on the
Microsoft Azure cloud computing platform. The FAST-distance ranking favoured
states with greater RBD openings using a set of distances between atoms. Each
round of sampling was performed with 22 independent simulations that were
40ns in length (0.88 pis aggregate sampling per round), where the number of
rounds totalled 13 (11.44 ps), 22 (19.36 ps) and 17 (14.96 ps) for SARS-CoV-1,
SARS-CoV-2 and HCoV-NL63, respectively.

For all other proteins, FAST-pocket simulations were run at 300K for six
rounds, with 10 simulations per round, where each simulation was 40ns in
length (2.4 ps aggregate simulation). The FAST-pocket ranking function favoured
restarting simulations from states with large pocket openings. Pocket volumes were
calculated using the LIGSITE algorithm””.

Folding@home simulations. For each adaptive sampling run, a conformationally
diverse set of structures was selected to be run on Folding@home. Structures
came from the final k-centres clustering of adaptive sampling, as described above.
Simulations were deployed using a simulation core based on either GROMACS
5.0.4 or OpenMM 7.4.1 (refs. ©7%).

Estimating the aggregate compute power of Folding@home is non-trivial
due to factors like hardware heterogeneity, measures to maintain volunteers’
anonymity and the fact that volunteers can turn their machines on and off at
will. Furthermore, volunteers’ machines only communicate with the Folding@
home servers at the beginning and end of a work unit, with the intervening time
taking anywhere from tens of minutes to a few days depending on the volunteer’s
hardware and the protein being simulated. Therefore, we chose to estimate the
performance by counting the number of GPUs and CPUs that participated in
Folding@home during a three-day window and making a conservative assumption
about the computational performance of each device. We note that a larger
time window has been used on our website for historical reasons. We make the
conservative assumption that each CPU core performs at 0.0127 TFLOPS and each
GPU at 1.672 native TFLOPS (or 3.53 x86-equivalent TFLOPS), as explained in
our long-standing performance estimate (https://stats.foldingathome.org/os). For
reference, a GTX 980 (which was released in 2014) can achieve 5 native TFLOPS
(or 10.56 x86-equivalent TFLOPS). An Intel Core i7 4770K (released in 2013) can
achieve 0.046 TELOPS per core. We report x86-equivalent FLOPS.

MSMs. An MSM is a network representation of a free-energy landscape and is

a key tool for making sense of molecular dynamics simulations*””. All MSMs

were built using our python package, enspara (https://github.com/bowman-lab/
enspara)®. Each system was clustered with the combined FAST and Folding@
home datasets. In the case of spike proteins, states were defined geometrically based
on the root-mean-square deviation between backbone C-a coordinates. States

were generated as the top 3,000 centres from a k-centres clustering algorithm.

All other proteins were clustered based on the Euclidean distance between the

solvent-accessible surface area of residues, as has been described previously™.
Systems generated either 2,500, 5,000, 7,500 or 10,000 cluster centres from a k-centres
clustering algorithm. Select systems were refined with 1-10 k-medoid sweeps.
Transition probability matrices were produced by counting transitions between states,
adding a prior count of 1/n (where n is the number of states) and row-normalizing,

as has been described previously*'. Equilibrium populations were calculated as the
eigenvector of the transition probability matrix with an eigenvalue of one.

Spike-ACE2 binding competency. To determine spike protein binding
competency to ACE2, the following structures of the RBD bound to ACE2 were
used for SARS-CoV-1, SARS-CoV-2 and HCoV-NL63, respectively: 3D0G, 6MO0]J
and 3KBH. The RBD of the bound complex was superimposed onto each RBD of
the structures in our MSM. Steric clashes were then determined between backbone
atoms on the ACE2 molecule and the rest of the spike protein. If any of the
structures had a superposition that resulted in no clashes, it was deemed binding
competent. The final population of binding-competent states was determined as
the sum of state populations that were deemed binding competent. Error bars were
obtained from bootstrapping the MSM equilibrium populations, as implemented
in enspara.

Cryptic pockets and solvent-accessible surface area. For ease of detecting
cryptic pockets and other functional motions, we employed our exposon
analysis method*. This method correlates the solvent exposure between residues
to find concerted motions that tend to represent cryptic pocket openings.
Solvent-accessible surface area calculations were computed using the Shrake—
Rupley algorithm as implemented in the python package MDTraj (ref. *2). For all
proteins and complexes, a solvent probe radius of 0.28 nm was used, which has
been shown to produce a reasonable clustering and exposon map™.

Spike protein solvent-accessible surface areas for SARS-CoV-2 were computed
with glycan chains modelled onto each cluster centre. Multiple glycan rotamers
were sampled for each state, and accessible surface areas for each residue were
weighted based on MSM equilibrium populations.

Sequence conservation. Sequence conservation of spike proteins was calculated
using the Uniprot database®. Sequences between 30 and 90% were pulled and
aligned with the Muscle algorithm®. The entropy at each position was calculated
to quantify variability of amino acids. Conservation was defined as one minus
the entropy.

Data availability

Data supporting the findings of this study are available within the article and its
Supplementary Information. The datasets generated and/or analysed during the
current study are available at https://covid.molssi.org/ and https://osf.io/fs2yv/.

Code availability

GROMACS (https://github.com/gromacs/gromacs), OpenMM (https://github.
com/openmm/openmm), our FAST adaptive sampling method (https://github.
com/bowman-lab/fast), mdtraj (https://github.com/mdtraj/mdtraj) and our
enspara code (https://github.com/bowman-lab/enspara) are all open source.
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