2021 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS) | 978-1-7281-8643-6/21/$31.00 ©2021 IEEE | DOI: 10.1109/ISPASS51385.2021.00035

2021 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS)

Enabling Reproducible and Agile Full-System
Simulation

Bobby R. Bruce*, Ayaz Akram*, Hoa Nguyen*, Kyle Roarty’, Mahyar Samani*, Marjan Friborz*,
Trivikram Reddy*, Matthew D. Sinclair”, and Jason Lowe-Power*

*University of California, Davis
Davis, California
{bbruce, yazakram, hoanguyen, msamani,
mfariborz, tvreddy, jlowepower } @ucdavis.edu

TUniversity of Wisconsin, Madison
Madison, Wisconsin
kroarty @wisc.edu, sinclair@cs.wisc.edu

fAMD Research

Abstract—Running experiments in modern computer archi-
tecture simulators can be a difficult and error-prone endeavor.
Users must track many configurations, components and outputs
between simulation runs. The gem5 simulator is no exception
to this, requiring researchers to gather, organize, and create a
significant number of components for a single simulation.

In this paper, we present the GEM5ART framework, a tool to
aid gem5 users in better structuring and running architecture
simulations, and GEM5 RESOURCES, a suite of resources with
known compatibility with the simulator. These new additions to
the gem5 project make full system simulation easier, allowing
researchers to concentrate more so on their architectural inno-
vations over setting up the simulation framework. The GEM5ART
framework carefully logs the resources used in a gemS5 simulation
and places the results obtained within a database, thus enabling
simple reproduction of experiments. The pre-built resources allow
researchers to jump straight into running simulations rather
than having to spend valuable time creating them. GEM5SART has
been released with a permissive, open source license allowing
the broader computer architecture community to contribute as
workloads and workflows evolve.

An archive of the data, an related materials, presented in
this paper can be found at https://doi.org/10.6084/m9.figshare.
14176802.

Index Terms—computer architecture, simulation

I. INTRODUCTION

As Moore’s law comes to its end, there is a growing
understanding that future gains in computer performance will
come from new architectural designs. For this to materialize,
more sophisticated tooling is required, particularly in the
domain of architecture simulators. However, the complexity
of these tools is growing alongside their sophistication. At
present, this complexity already burdens end users, leading to
frustration and occasional errors in experimental results. We
need a solution to help reign in this complexity to enable future
architectural innovations.

The burden of complexity is particularly noticeable in full-
system simulators, such as gem5 [1], 21! Full-system simu-
lators have enough fidelity to boot (mostly) unmodified oper-
ating systems, emulate I/O devices, and execute unmodified
applications. Today’s full system simulators are unlike prior
simulators (e.g., SimpleScalar [3]) which required relatively
little setup where the only inputs were the simulator binary
and a statically compiled executable. Today’s full system
simulators, like gem5, require many more inputs, such as
an OS kernel, benchmarks (which themselves depend on a
compiler, runtimes, and more), static and dynamic parameters,
a disk image, etc. Figure 1 shows an example of this complex
workflow.

It is important to use up-to-date versions of all items utilized
in any experiment as runtimes, compilers, kernels, and other
components are changing frequently. It is also important to
record the exact versions used and, preferably, compare how
new versions of these components impact performance. This
is particularly important as computer architecture research
increasingly requires cross-stack studies that investigate how
changes in any and all levels, from hardware, through the
kernel, wider OS, and up to the level of applications, impact
the computer systems. These studies require methods to easily
track and update each of the resources required for simulation.

In this paper, we focus on providing support for the gem5
architectural simulator; one of the most popular simulators
currently used in academia and industry. While some other
simulators come pre-packaged with default designs and config-
urations, gem5 focuses on flexibility. This makes it powerful,
but puts the onus on the user to provide and configure
components themselves. It is a hurdle to initiating architecture
simulations, and the iterative nature of research means keeping

Uhttp://www.gem5.org

978-1-7281-8643-6/21/$31.00 ©2021 IEEE 183
DOI 10.1109/ISPASS51385.2021.00035

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on June 29,2021 at 16:21:39 UTC from IEEE Xplore. Restrictions apply.

track of each gem5 run’s unique setup; a non-trivial task.
Tracking all information (e.g., the gemS5 version, the hardware
configuration, the boot configuration, the benchmark, etc.)
used to produce each output is error prone, and ripe for
automation. It is for this reason we developed GEMSART.

The gem5 Artifact, Reproducibility, and Testing framework,
which we refer to as “GEMS5SART”, is a set of Python libraries
which can be used to run gem5 experiments in a clear and
structured manner, and facilitates the storing of results and
configuration information in a database for future reference
and reproduction. Our overarching goal with GEMS5ART is to
improve the reproducibility and agility of full-system simula-
tion, which should ultimately increase end-user productivity.
The GEMSART framework is open source and distributed via
the Python Packaging Index (PyPI)?>. This enables simple
installation with pip the Python package installer. GEM5ART
is an open source, freely available project’.

The GEMSART framework is only one component for per-
forming full system simulation. Users must obtain all of
the resources required for their experiments. For instance, a
benchmark suite, such as PARSEC [4], must be downloaded,
compiled, and then stored in an appropriate disk image be-
fore being loaded in a gem5 configuration. In an effort to
reduce the complexity of obtaining such components, we
have developed GEM5 RESOURCES, a repository containing
commonly used gem5 simulation components such as kernels,
tests, and benchmarks. While neither is dependent on another,
we believe GEMSART and GEMS5 RESOURCES function best
when working in tandem, with GEM5 RESOURCES providing
commonly used components and GEMSART recording which
of these components are used, and the results obtained from
gem5 experiments.

GEMSART enforces a well-documented protocol for running
gem5 experiments. This documented protocol allows the re-
sults of gem5 experiments to be portable and reproducible.
By storing all inputs and results in a database, these artifacts
may be made as public as the end-user desires, and freely
available tools may be used to process this data to create rich
data visualizations.

The main contribution of this paper is the GEMS5SART
tool which simplifies running gem5 experiments and GEMS5
RESOURCES which contains 16 benchmark suites, tested OS
kernels, applications, as well as a selection of gem5 specific
tests. Both of these contributions are open source and under
active development. Similar to a new benchmark suite, this
work enables new computer architecture research.

To demonstrate the efficacy of GEM5SART, we present three
use cases. (1) We show the importance of using up-to-date
operating systems by comparing the results from the PARSEC
benchmark suite on two different long-term service releases
of Ubuntu. (2) We show the flexibility and ease of use of
GEMSART by testing an extensive cross product of system
configurations and Linux kernels. The results of this test

Zhttps://pypi.org/project/pip
3Distributed within the gem5 source repository: https://gem5.googlesource.
com/public/gems5.

184

Input Simulation! Output

static configuration
(e.g., x86, Two_Level coherence)\
simulator executable

simulator source /

Simulator (e.g., gem5 20.1)

system configuration’
(python script) benchmark
parameters to configuration yf output

(e.g., # of cores, memory \ech.)\st N
= SImu‘amm\‘m\croarchltectural

statistics

\

kernel (e.g., Linux)

Environment operating system _—»"UMtiMe ——— gy ifage

(e.g., Ubuntu 20.04)——compiler /

N
benchmark source — executables

Fig. 1: An example workflow for full-system simulation with

gemS.

visualizations

Workload

can help the gem5 developers concentrate their effort on
bugs in gem5 which affect only a specific configuration or
workload. (3) We show how the performance of different
GPU applications is affected by the use of different register
allocators.

We outline how gem5 works and is used by researchers in
Section II. We discuss any related work in Section III, then
the technical design of GEM5SART and how it addresses the
pain-points present in the usual workflow in Section IV. In
Section V we describe GEMS5 RESOURCES, and, in Section VI,
we demonstrate GEM5ART and GEMS5 RESOURCES on three
use-cases. In Section VII we conclude the paper and discuss
the potential impact of our work.

II. BACKGROUND

To understand why GEMSART is necessary, we should
understand the current workflow of gem5 and the various
components and resources needed to run a simulation.

A typical gem5 full-system workflow is shown in Figure 1.
The user compiles the gem5 source with a static configuration
(e.g., targeting the x86 ISA with a two level cache hierarchy)
which then generates the gem5 simulator executable. From this
the user compiles a kernel binary given the Linux kernel source
code and a kernel configuration file. An operating system is
then installed on a disk image, and a benchmark is compiled
from a source on the disk image. The simulation can then be
run with a given system configuration in the form of a Python
script. A simulation will produce the benchmark output and
a variety of microarchitectual statistics for evaluation of the
configuration on the benchmark.

As is shown in this example, there are many different
components required or created for a single run of gem5. The
gemS executable, for example, is compiled from the gem5
source via the project’s git repository*. This executable will
vary between versions of gem5, which are released roughly
three times a year. Furthermore, gem5 may be compiled
with different static configurations to simulate different ISAs
and evaluate different cache hierarchy setups. It is therefore
important to keep track of these components, and correctly
document then link them to a particular simulation run. It is
for this reason GEM5ART was created.

“https://gemS.googlesource.com

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on June 29,2021 at 16:21:39 UTC from IEEE Xplore. Restrictions apply.

There is also the question of where a user is to obtain
additional resources, such as benchmarks. We provide these
in an ‘“out-of-the-box‘* manner via GEM5 RESOURCES; a set
of freely-available resources with known compatibility with
gemS. GEMS RESOURCES is discussed in more detail in
Section V.

III. RELATED WORK

Few of the existing frameworks available to perform ex-
periments in a systematic way are compatible with complex
simulators such as gem5. FEX [5], Occam [6], and Collective
knowledge [7], for example, are far too general to incorporate
into the gem5 simulation workflow. FEX [5] is a Docker con-
tainer based evaluation framework for general software sys-
tems which allows reproducible experiments and customized
workflows. Occam [6] is an active curation platform, which
allows sharing of artifacts and workflows. It allows to artifacts
to be complex tools/software like architectural simulators.
Collective knowledge [7] is a cross-platform framework to
automate repetitive tasks, but mainly focuses on machine
learning frameworks. In comparison to these tools, GEM5SART
is a customized framework to run experiments with gemS and
as a result requires less effort by the user to achieve the same
goals in comparison to other tools. Moreover, GEM5ART is
focused more on documenting the experiments to enable repro-
ducibility and less on automation in contrast to the previously
mentioned tools. Another important and novel contribution is
GEMS RESOURCES which provides a wide set of benchmarks,
tests and other required dependencies ready to be used with
gemS.

There also exist some gem5 specific tools or methodolo-
gies [8], [9], which do not have the same goals as GEM5ART,
but regulate gem5 usage in some way. Walker et al. [8]
proposed a methodology for finding sources of error in CPU
performance models and suggested a validation methodology
based on clustering and correlation analysis. DiagSim, pro-
posed by Jo et al. [9], is a tool to diagnose hidden details
(which can have major effect on simulation results) of different
simulators including gem5. GEMSART is not a tool to find
inaccuracies in gem5 but provides necessary infrastructure
to bring structured approach to gem5 validation experiments
which otherwise can be very hard to manage (evident by our
own experience with such studies).

IV. GEM5ART

The high-level goal of GEM5SART is to provide a structured
and documented protocol for conducting computer architecture
experiments. The GEMSART framework requires researchers
to document every input required for a particular experiment,
which increases the reproducibility and understandability of
these experiments.

A. Components of the Framework

GEMSART is composed of three interrelated Python pack-
ages.

185

i}

o
~0

task-manager

gemb5art-artifact

gemb5art-run

Al

gemb5art-tasks 76

o
K

Fig. 2: User interaction with GEM5ART

a) Artifacts: Artifacts are the objects and/or components
used in a gem5 run, or produced via a gem5 execution.
Examples include the gem5 binary, the gem5 configuration
files, a GEM5 RESOURCES resource utilized, the statistics
output, and anything else which may vary between executions.

b) Runs: Within the GEMSART library, a run object
is a special artifact which contains all the information, and
references all the main artifacts, required to execute a single
gemS experiment.

c) Tasks: A task is a gem5 job. Tasks are generated from
the run objects and execute using an external job scheduler
(e.g. Celery [10]) or a process management library (e.g.
Python multiprocessing library).

Overall, GEMSART interacts with the following exter-
nal components: Celery [10], a job scheduler; Python
multiprocessing library, a simpler task management li-
brary; MongoDB [11], a NoSQL database we use to store
gem5 run information and their corresponding artifacts; and
Packer [12], a tool to automate the process of disk creation.

Figure 2 depicts how a user would interact with GEMSART
to run their experiment. The user first registers all artifacts
using GEMSART (@), any associated files are stored in the
database as well (@). The GEMSART run objects are then
created using GEMSART run library (9), passed to GEM5SART
tasks library (@) and executed using an external task manager
(6). Finally, results are stored in the database as well (@ and
0). The user can query the database at any time to access
artifacts and results (@).

B. Artifacts

The first stage of a user interacting with GEMSART is via
the artifact module. Through this module, the user registers
the created artifacts of all the components needed to run
an experiment. Since, some artifacts serve as input to other
artifacts (for example, Linux kernel source repository artifact
is an input to the Linux kernel binary artifact), the artifact
module is also used to declare the dependencies that exist
among different artifacts. Figure 3 shows an example of how
a user can register a gemS binary as an artifact. In this example
six attributes are specified:

o command: The command which must be executed to
create the resource. In this case, the gem5 binary. Note
the checkout at a specific revision. This ensures anyone
else using this artifact will obtain the the correct version
of gemS5,

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on June 29,2021 at 16:21:39 UTC from IEEE Xplore. Restrictions apply.

gem5_binary = Artifact.registerArtifact(
command = '''cd gem5;
git checkout 440f0bc579fb8b10da7181;
scons build/X86/gem5.opt -3j8

v

typ = 'gem5 binary',

name = 'gem5',

cwd = 'gem5/'

path = 'gem5/build/X86/gem5.opt’,
inputs = [gem5_repo,],
documentation = 'gem5 binary...')

Fig. 3: Example registration of an Artifact

o typ: The artifact type. In this case, a gem5 binary.

« name: The name of the resource.

e cwd: The directory in which the command should be
run.

« path: The path of the artifact (gem5 binary).

« inputs: Other resources dependency. In this example, the
gem5 repository artifact must already be present before
the gem5 binary artifact may be obtained.

o documentation: The artifact’s documentation to store any
user specified useful information about the artifact.

These attributes are mainly used for documentation purposes
and should provide enough information to reproduce the
experiment at a later time. Via the GEM5SART artifacts library,
this information is uploaded to the database, along with the
following which are automatically generated by GEMSART:

« hash: An MDS5 hash of the resources or the git revision
hash if the artifact is a repository.

o id: A unique ID (UUID) generated for each artifact.

o git: A dictionary containing two keys: git url and
hash, which values specify the git repo and the revision
hash of the artifact. If the target attribute is not a git
repository, the dictionary is left blank. As most of the
artifacts used in any gem5 simulation are source code
repositories (version controlled by git), we leverage
git url and hash to indirectly store useful information
about the artifact version. This, in turn, also allows us to
easily communicate the status of an artifact used in an
experiment (via git hash) to others who do not have
access to the user’s database.

These generated attributes are used by the GEMSART arti-
fact library to maintain a uniqueness of the resource in the
database. The artifact is assumed to be present at the user-
specified path. If there is any file associated with the artifact,
that is stored in the database as well unless it already exists
there. The hash attribute is used as a safety net to ensure a
resource has not been altered between runs. If this changes,
even if all other attributes remain the same, a new artifact is
generated. Duplicate artifacts are not permitted in the database.
This allows a user to see clearly which objects were used in
that gem5 run.

186

def createFSRun(cls,
gem5_binary: str,
run_script: str,
output: str,
gem5_artifact:
gem5_git_artifact:

Artifact,
Artifact,

run_script_git_artifact: Artifact,
linux_binary: str,

disk_image: str,
linux_binary_artifact: Artifact,
dist_image_artifact: Artifact,
*params: str,

timeout: int = 60%15) -> 'gem5Run':

Fig. 4: GEM5ART run method for full-system simulation

C. Runs

Once the artifacts have been specified, the user then cre-
ates the run objects using the GEMSART run library. The
“GEMSART run” object is a special artifact which stores all
the information about a run and a pointer to its results. The
“GEMSART run” also references the GEMSART artifacts used
in a gemS5 run.

Figure 4 shows an example of a function, provided by the
run library to create a gem5 full-system run object. To run a
full-system simulation the user must provide a gem5 binary, a
kernel, a disk image, and a gem5 run script. These are all pro-
vided as parameters to the createFSRun method, so that the
eventual gem5 run command can be constructed and executed
by GEMSART. The previously registered artifacts needed for
the gem5 run are passed to this function as well. For instance,
gem5_artifact for the gem5 binary, gem5_git_artifact
for its repository, run_script_git_artifact for the gem5
run script, linux_binary_artifact for the Linux kernel
binary, and disk_image_artifact for the disk image as
shown in Figure 4. Any other arguments needed for the gem5
run script are passed as parameters to the function in Figure 4,
and a timeout is provided (after which the gem5 job is termi-
nated by GEMSART if not already finished). gem5_binary,
run_script, linux_binary, and disk_image in Figure 4
specify the location of each artifact in the host system, and
output specifies the output directory. It should be noted
that all of this information fed to the createFSRun method
specifies one unique experiment (a single data point).

The results of an experiment are archived as an artifact
inside the database instance. GEMSART also stores a summary
of useful information (like run status and execution time) in
the database. The database can then be queried to access this
information, and generate plots to visualize results for further
analysis. Additionally, by tracking all of the artifacts used
for each gem5 execution, any resources (disk images, kernels,
results, etc.) related to a particular gem5 run can be recovered
for reproduction purposes.

D. Executing Tasks

The run object, such as that created via the createFSRun
function in Figure 4, is then passed to the GEMSART

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on June 29,2021 at 16:21:39 UTC from IEEE Xplore. Restrictions apply.

gem5_git_repo = registerArtifact('gem5/')

gem5_binary = registerArtifact(
gem5_git_repo,
'build/X86/gem5.0opt ')

linux_git_repo = registerArtifact(
'linux-stable/"')

vmlinux_binary = registerArtifact(
linux_git_repo,
'linux-stable/vmlinux"')

parsec_repo = registerArtifact(
'parsec/")

disk_image = registerArtifact(
parsec_repo,
'disks/parsec.img')

function main():
cpus = ['kvm', 'simple']
benchmarks = ['blackscholes', ...]

for each combination P\

in [cpus, benchmarks, ...]:
run_object = gem5Run.createFSRun(
artifacts, P)

apply_async(run_object)

Fig. 5: A typical GEMSART full-system experiment involves
gem5 artifacts, Linux kernel artifacts, disk image artifacts,
and the experiment artifacts. After declaring the artifacts, the
main function asynchronously launches the cross product of
all parameters.

tasks library. This library uses Celery, or python
multiprocessing library, or no job scheduler at all, to
run a gem5 job. There is no limit to how many tasks
may be passed to Celery or the python multiprocessing
library. They will run the tasks in accordance to the job
objects given, and schedule them as the host system allows.
Celery is more complicated (but feature rich) job manager
in comparison to the python multiprocessing library and
may be used to manage tasks over multiple machines if
needed. The GEM5SART task package can be extended to other
job schedulers and distributed computing environments (e.g.,
Condor) in the future.

E. An end-to-end example

The entire user interaction with GEMS5ART takes place via
Python scripts called launch scripts. Figure 5 provides an
example of such a script.

This example launch script is responsible for run-
ning PARSEC benchmarks using different gem5 configu-
rations. The first portion of this script registers all the
artifacts needed to run PARSEC experiments in this ex-
ample gem5_git_repo, gem5_binary, linux_git_repo,
vmlinux_binary, parsec_repo, and the disk_image. In
the second portion of this script (inside the main() function),
the GEMS5ART run objects are created for each combination of
a PARSEC benchmark and a gem5 configuration (for example
different CPU models). These runs are setup to be executed
asynchronously in the last 3 lines of this script.

Through this one Python script, the entire experiment and
the details required to run the experiment are documented in

187

one place. This script, in addition to the database, can be used
to communicate to others (e.g., in a reproducibility report) all
necessary inputs, how they were obtained, and how they were
run for a particular experiment.

V. GEM5 RESOURCES

A key contribution of this work is providing a set of known-
good resources for simulating workloads. While GEM5ART
will keep track of artifacts for a particular run of gemS5,
there is the question of where someone using gem5 obtains
these artifacts. For example, to evaluate the performance of
a new and novel architectural design, a researcher will likely
use a benchmark suite for evaluation. Previously it was the
responsibility of the researcher to obtain for themselves this
benchmark suite (and whatever else they required).

GEMS5 RESOURCES’ contains components which are not
strictly needed to build and run gem5 but may be utilized in the
running of a gem5 simulation. At present, GEM5 RESOURCES
contains disk images pre-loaded with commonly used bench-
mark suites, scripts to run these benchmarks, kernels, and
tests. GEMS5 RESOURCES is under continual development and
expansion, and will remain compatible with the latest gem5
changes. Table I contains a list of the resources presently
available in GEMS5 RESOURCES. We demonstrate using a
selection of these resources in Section VI.

Each resources in GEMS RESOURCES provides the original
source code so researchers can understand how each was
constructed and reproduce the pre-build resource if required.
In keeping with gem5’s free and open-source ethos, these
resources may be modified to meet the needs of experimenters.
We also encourage contributions of new benchmarks, useful
tests, etc. to help expand the set of gem5 compatible materials
which may be useful to others.

When providing a disk image GEMS5 RESOURCES utilizes
Packer®. Packer is an open-source disk image building tool
available on most modern desktop operating systems to build
disk images for various Linux distributions. Packer is capable
of automating the disk image building process given necessary
inputs. For each provided disk image GEMS RESOURCES pro-
vides such inputs: the corresponding Packer script, a Ubuntu
preseed configuration, a benchmark installation script and
other resources required for building the desired benchmarks.
The Packer scripts do not only provide necessary documen-
tation to reproduce the disk image, but they also serve as
a simple template to facilitate the contributions of new full
system benchmarks.

For proprietary benchmarks, we don’t distribute the disk
images, but we do distribute all of the scripts needed to build
the disk images. For instance, if the user has a SPEC license
with a disk image (.iso) file they can execute the scripts
provided by GEMS5 RESOURCES and the disk image will be
created.

Shttps://gemS5.googlesource.com/public/gem5-resources
Shttps://www.packer.io

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on June 29,2021 at 16:21:39 UTC from IEEE Xplore. Restrictions apply.

TABLE I: The GEM5 RESOURCES

Name

Type

Description |

boot-exit

Benchmark / Test

A collection of gem5 scripts and binaries capable of completing and exiting the booting process of a Linux
kernel with a Ubuntu 18.04 Server user-land with gem5 full system mode (FS mode). The documentation
details the creation process of the Linux kernel and the disk image, as well as providing pre-made binaries.
This resource serves as a test suite for gem5 FS mode.

gapbs

Benchmark

A collection of gem5 scripts, binaries, and documentation that are capable of running GAP Benchmark
Suite (GABPS) with a Linux kernel and a Ubuntu 18.04 Server user-land with gem5 full system mode.
This resource also details the creation process of the Linux kernel and the disk image, as well as providing
pre-made binaries.

hack-back

Benchmark

A collection of gem5 scripts and binaries capable of creating a checkpoint after the booting process and
then executing a script provided by the host in a gem5 full system simulation. The documentation details the
creation process of the Linux kernel and the disk image containing a Ubuntu 18.04 Server user-land, as well
as providing pre-made binaries.

linux-kernel

Kernel

A set of Linux kernel configurations and documentation of compiling a Linux kernel.

npb

Benchmark

A collection of gem5 scripts, binaries, and documentation that are capable of running NAS Parallel Benchmark
(NPB) with a Linux kernel and a Ubuntu 18.04 Server user-land with gem5 full system mode. The
documentation details the creation process of the Linux kernel and the disk image, as well as providing
pre-made binaries.

parsec

Benchmark

A collection of gem5 scripts, binaries, and documentation that are capable of running Princeton Application
Repository for Shared-Memory Computers (PARSEC) benchmark suite with a Linux kernel and a Ubuntu
18.04 Server user-land with gem5 full system mode. The documentation details the creation process of the
Linux kernel and the disk image, as well as providing pre-made binaries.

riscv-fs

Test

A collection of gem5 scripts, and documentation to build riscv bbl (berkeley boot loader) with linux kernel
payload and a disk image to run full system simulation for a riscv target.

spec-2006

Benchmark

A collection of gem5 scripts, binaries, and documentation that are capable of running SPEC CPU 2006
benchmark suite with a Linux kernel and a Ubuntu 18.04 Server user-land with gem5 full system mode. The
documentation details the creation process of the Linux kernel and the disk image. Licensing forbids us from
providing pre-made disk images.

spec-2017

Benchmark

A collection of gem5 scripts, binaries, and documentation that are capable of running SPEC CPU 2017
benchmark suite with a Linux kernel and a Ubuntu 18.04 Server user-land with gem5 full system mode. The
documentation details the creation process of the Linux kernel and the disk image. Licensing forbids us from
providing pre-made disk images.

GCN-docker

Environment

A docker image with ROCm 1.6 and GCC 5.4 installed to simulate GPU applications on AMD GCN3
simulated GPUs. These applications include workloads such as DNNMark, HACC, HIP sample applications,
HeteroSync, LULESH, and PENNANT. This docker image is used to build and run the GCN3_X86 gem5
variant.

HeteroSync [13]

Benchmark

A benchmark suite used to test the performance of various types of fine-grained synchronizations on tightly-
coupled GPUs. This resource works with the GCN3_X86 gem5 variant.

DNNMark [14]

Benchmark

A benchmark framework used to characterize the performance of primitive deep neutral network workloads.
This resource works with the GCN3_X86 gem5 variant.

halo-finder [15]

Application

Part of the HACC code base, a DoE application designed to simulate the evolution of the universe. The
halo-finder code can be GPU accelerated. This resource works with the GCN3_X86 gem5 variant.

Pennant [16]

Application

A GPU application designed for advanced architecture research. This resource works with the GCN3_X86
gem5 variant.

LULESH [17], [18]

Application

A DOE proxy application that is used as an example of hydrodynamics modeling. This resource works with
the GCN3_X86 gemS5 variant.

hip-samples

Application

A set of applications that introduce various GPU programming concepts usable in ROCm HIP. This resource
works with the GCN3_X86 gem5 variant.

gem5 tests

Test

asmtest: a collection of RISC-V tests for instructions and syscalls. insttest: tests for SPARC instructions.
riscv-tests: RISC-V processor unit tests. simple: tests for m5ops and ARM semi-hosting. square: test for
squaring a vector of floats on AMD GPU.

In an ongoing effort to improve the gem5 framework, we
provide a working status of the GEM5 RESOURCES on gem5
releases at http://resources.gem5.org.

A. Environment Resources

As an example of how GEM5 RESOURCES can be used to
ease the burden end-users face when setting up simulations,
we look at simulating GPUs. One of the gem5 GPU models
is based on AMD’s GCN3 architecture [19], [20]. In order
for users to compile and run GPU applications on this GPU
model, they must have the proper ROCm stack (version 1.6)
installed [21]. Moreover, the libraries are also needed to in-
terface with the kernel-space driver, which is emulated within
gem). Installing these libraries correctly is difficult: even with

188

existing documents explaining what should be installed, there
are many posts on the gem5 forum from frustrated users unable
to get things installed properly.

Due to this complexity, we created a Docker image as part
of GEM5 RESOURCES which automatically sets up the correct
environment to build and run GPU applications on the simu-
lated AMD GPU [22]. This Docker image completely removes
the frustration of trying to correctly setup the environment on
a host machine. Instead, users who want to run their GPU
application in gem5 can simply pull the image and run it with
no setup required. In GEM5 RESOURCES we also provide a
dockerfile that can serve as step-by-step instructions for users
who want to install the libraries on their machine to avoid any

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on June 29,2021 at 16:21:39 UTC from IEEE Xplore. Restrictions apply.

docker overheads, or as a starting point for users who want to
modify the libraries as part of their GPU experiments. Thus,
thanks to GEM5 RESOURCES, users can easily compile GPU
applications and simulate them within gems5.

Additionally, in GEM5 RESOURCES we provide a wide
range of GPU applications, from HIP sample applications [23]
which showcase various GPU features and primitives, to Het-
eroSync [13], an open-source GPU synchronization primitives
library, to DNNMark [14], a benchmark suite with various
DNN layers, as well as DOE Proxy Applications such as
HACC [15], LULESH [18], [17], and PENNANT [16].

VI. USE CASES

To demonstrate the usefulness of GEMSART and GEMS
RESOURCES we demonstrate three resources. First, we show
the impact of using up-to-date resources with the PARSEC
benchmark suite. We show that when used with Ubuntu 18.04
(released in April of 2018) and Ubuntu 20.04 (released two
years later in April 2020) there are differences in the simulated
results. Second, we demonstrate that GEMSART enables large
cross-product studies by running “Linux boot tests” for a
variety of systems and Linux kernel versions. Finally, we show
how register allocation scheme affects the performance of a
GPU applications, and identify future GPU model contribution
opportunities.

To run these use cases and other work for this paper, we
used GEMSART and stored all results in a centralized database.
We provide a complete archive of the experiment data and
scripts at https://doi.org/10.6084/m9.figshare.14176802.

A. Use-Case 1: PARSEC

The PARSEC [4] is a popular benchmark suite composed
of multi-threaded applications. The suite contains 13 appli-
cations, each of which focus on a particular problem domain
such as image processing or option pricing. In this use-case we
envisioned a scenario where a researcher wishes to observe the
performance of the PARSEC benchmark suite across different
LTS Ubuntu OS releases. We settled on evaluating the two
latest LTS released, Ubuntu 18.04 and 20.4. Table II details the
system under simulation. Due to runtime issues in the x264,
facesim and canneal applications, they have been removed
from our analysis. We ran these problematic workloads in
QEMU instead of gem5 and found they experienced similar
errors as when they ran in gem5. Thus, we conclude that there
are bugs with the benchmarks themselves. By enabling the
simple reproduction and use of these workloads in an open-
source manner, we hope that others who use these workloads
will contribute fixes which can be used by the rest of the
community.

To run the 10 remaining applications in the PARSEC bench-
mark suite, we executed a series of full system simulations.
To do so we used the GEM5SART createFSRun method, as
outlined in Figure 4. The gem5_git_artifact was set to
the gem5 git source repository’, version 20.1.0.4, with the

7https://gem5.googlesource.com/public/gems.

189

TABLE II: Configuration Parameters for Use-Case 1

Component Options

CPU TimingSimpleCPU

Number of CPUs 1,2, 8

Memory 1 channel, DDR3_1600_8x8

oS Ubuntu 20.04 (kernel version: 5.4.51),
Ubuntu 18.04 (kernel version: 4.15.18)

Workloads Blackscholes, Bodytrack, Dedup, Ferret, Flu-
idanimate, Freqmine, Raytrace, Streamcluster,
Swaptions, Vips

Input sizes simmedium

gem5_artifact as a gem5S binary compiled from the source
using the GCC 7.5 compiler. The dist_image_artifact
varies between an image of the PARSEC benchmark suite
running atop Ubuntu 18.04, and another with PARSEC bench-
mark suite running atop Ubuntu 20.04; both available as part
of GEMS5 RESOURCES [24]. All the artifacts used in this series
of runs are available from GEM5 RESOURCES.

We wused the Linux v4.15.18 kernel for Ubuntu
18.04 and the v5.4.51 kernel for Ubuntu 20.04, as the
linux_binary_artifact. These, again, are available from
GEMS5 RESOURCES [25]. Finally, we use the run script from
the PARSEC benchmark suite resource [24]. This script takes
in the disk image, the kernel, the CPU type, the number of
CPUs, the PARSEC application to run, and the application
input as parameters. In our experiments we run using the
TimingSimpleCPU, with 10 parsec applications, utilizing the
SimMedium inputs, using both a single CPU, 2 CPUs, and 8
CPUs.

Though this setup, at a surface level, seems like a basic
experiment, there are a lot of runs and components to keep
track of. Using two OS’s (each with a different kernel), 10
applications, run on a single CPU, 2 CPUs, and again on
8 CPU simulation, gives a cross product of 60 gem5 runs.
Though, using GEMSART, we only needed to outline the
artifacts then execute the run functions. The job scheduler then
runs gem5, with all the results and artifacts stored carefully
in the database.

To improve the extracting of data from our MongoDB
instance, we created a Jupyter Notebook instance [26], to
analyze data and automatically created graphs using Python’s
Matplotlib library [27].

Figure 6 was generated from the database. The graph
shows the absolute execution time difference of each PARSEC
benchmark suite application in 20.04, compared to Ubuntu
18.04, for 1, 2, and 8 cores. The applications typically take
longer to execute in Ubuntu 18.04, though the difference
becomes less so as more CPU cores are utilized. We found
upon further analysis that PARSEC running in Ubuntu 20.04
was executing significantly more instructions, but at a higher
CPU utilization rate. We suspect the reason for this is Ubuntu
20.04 coming bundled with a different, newer version of GCC
(version 9.3 in contract to Ubuntu 18.04’s 7.4). Differences
arising form using different Linux kernels in Ubuntu 20.04
18.04 could also be playing a role.

Figure 7 shows the rate of speed-up of using 8 CPUS for the

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on June 29,2021 at 16:21:39 UTC from IEEE Xplore. Restrictions apply.

num_cpus
N 1 core

2 cores
BN 8 cores

simulated time (s)
o

Difference of absolute

blackscholes 4
bodytrack
dedup 4

ferret
fluidanimate
freqmine -
raytrace -
streamcluster 4
swaptions
vips

Fig. 6: The absolute execution time difference of the PARSEC
benchmark suite in Ubuntu 18.04, compared to Ubuntu 20.04.

OS + kernels
B Ubuntu 18.04 + kernel 4.15.18
Ubuntu 20.04 + kernel 5.4.51

Speedup of 8-core over 1-core

blackscholes
bodytrack
dedup

ferret
fluidanimate
fregmine
raytrace
streamcluster
swaptions
vips

Fig. 7: The PARSEC suite execution time speedup between 1
and 8 cores across Ubuntu 18.04 and Ubuntu 20.04.

PARSEC workloads compared to using 1 CPU as a baseline,
on both Ubuntu 18.04 and 20.04. The data shows that the
rate of speedup is relatively consistent between the two OSs,
though, on average Ubuntu 20.04 achieves a greater speedup
particularly in the case of blackscholes and ferret. This
suggests the Ubuntu 20.04 disk image is achieving greater
CPU utilization.

Using GEM5SART and GEMS5 RESOURCES, this experiment
was trivial to setup, ran automatically, and stored the results
in a database to query and visualize later. If required, this
experiment may be run again, or with slightly altered parame-
ters, quickly and easily. Furthermore, we are free to make this
database publicly available for others to analyze and reproduce
our results as they see fit.

B. Use-Case 2: Linux Boot Tests

As our second use-case study, we carry out Linux boot
checks. Checking the Linux kernel boots for a particular
architecture design is a standard procedure. Historically, the
state of support of the latest Linux kernel versions on gem5
has remained hard to discover, and has led researchers to use
archaic Linux kernel versions for their evaluations. The test
inevitably validates many components due to the complexity
of modern OSes, and is normally a “must have” check for
many designs. In this use-case, we outline a scenario of
testing a simple configuration cross five different variables.
In essence, we are testing gem5’s viability at booting Linux

190

under certain configurations. The variables are CPU count,
CPU type, memory system, Linux kernel, and boot type (more
details in Figure 8). The boot-exit disk image resource,
comes with a simple gem5 run script [28] which we utilize
for this work.

Testing the complex cross product of all these options, under
most circumstances, would be a daunting prospect. There are
480 different runs of gem5 to obtain and keep track of. As can
be imagined, the room for mistakes and confusion is large.
A single misconfigured run, exposing a “bug” which does
not exist, could result in considerable misplaced engineering
effort. It is for this reason GEMSART was developed.

As with any other usage of GEM5ART, we simply needed
to specify all the artifacts needed for these experiments in
a GEMSART launch script. In this case, the gem5 binary
(v20.1.0.4) and repository, the boot-exit disk image, the linux
kernels, and the gem5 run script are the artifacts. The appro-
priate run methods are then called in the GEMSART launch
script, with the correct artifacts, and the parameters to be
passed to the gem5 run script (the Memory System, CPU Type,
Number of CPUs, and the Boot Type). Though a considerable
workload, each gem5 run can function independently, meaning
parallelization is possible. The external job scheduler interacts
with GEM5ART and completely automates this task.

Figure 8 shows the results of these gem5 runs using
GEMSART. The out-of-order CPU, and the TimingSimpleCPU
cannot handle more than one core when running on the
Classic memory system, and the AtomicTimingCPU cannot
function on the Ruby memory system as of gem5 v20.1.0.4.
For the remainder of the data, kvmCPU works in all cases.
AtomicSimpleCPU works in all supported cases i.e., with
Classic memory system. TimingSimpleCPU also works for
all supported cases i.e., except more than 1 CPU for Classic
memory system.

As shown in Figure 8, O3CPU runs have mixed results
with approximately 40% of them running successfully. For
O3CPU, there are 27 cases where the kernel went into panic
during simulation and 31 cases where gem5 failed to simulate
Linux boot because of other reasons. Out of these 31 cases,
gem) crashes because of a segmentation fault in 11 cases (the
issue has been recorded on the gemS5 bug tracking tool®).
gem5 crashes in 4 cases because of a “possible deadlock
detected" error (all in MI_example runs). For the rest of the
O3CPU runs, gem5 fails to finish successfully in a reasonable
amount of time (24 hours, most successful runs finish in a
12 hour timeout) without any explicit errors. These are all
likely bugs within gem5; however, GEMSART will give the
gem5 developers a useful tool to help effectively direct their
debugging efforts.

C. Use-Case 3: GPUs

As a third use case, we illustrate using gem55 and GEMS
RESOURCES to investigate GPU architecture design-space
analysis on a variety of workloads. For modern GPUs, register

8https://gem5.atlassian.net/browse/GEMS5-782.

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on June 29,2021 at 16:21:39 UTC from IEEE Xplore. Restrictions apply.

N Success gem5 Failure EEE Kernel Panic WM Unsupported
classic (Linux only) MI_example (Linux only) MESI_Two_Level (Linux only)
4.4.186 4.9.186 4.14.134 4.19.83 5.4.49 4.4.186 4.9.186 4.14.134 4.19.83 5.4.49 4.9.186 4.14.134 4.19.83 4.4
|] H EEEE EEEE || [| 1] |] [|

Cores
=N B0

classic (full Ubuntu)

MI_example (full Ubuntu)

MESI_Two_Level (full Ubuntu)

4.9.186 4.14.134 4.19.83
|| |

Cores
=N A

4.9.186 4.14.134
|]

4.19.83 5.4.49 4.9.186 4.14.134 4.19.83
[|| L] ENEE ENEE EEEE

Fig. 8: Results from testing a cross product of kernels, CPU models, memory systems, and CPU cores. The top plots show
the results when booting only the Linux kernel. The bottom plots show results when booting to runlevel 5 (multi-user) in
Ubuntu. CPU Type: kvmCPU (simulates code using hosts’ hardware), AtomicSimpleCPU (uses atomic memory accesses and
no timing simulation), TimingSimpleCPU (uses timing simulation only for memory accesses), O3CPU (an out-of-order CPU,
uses timing for both CPU and memory). Memory System: Classic (fast but lacks coherence fidelity), Ruby (slower but models
detailed memory with cache coherence flexibility; MI_Example and MESI_Two_Level are used in this experiment). Linux
Kernel: five different LTS (long term support) Linux kernels.

shfl
unroll

=
<
)
kel
o~

dynamic_shared
inline_asm
MatrixTranspose
sharedMemory
stream

faMutex
faMutexUniq
IfTreeBarrUniq
sleepMutex
sleepMutexUniq

IfTreeBarrUniq_LocalExch

spinMutexUniq

B Static register allocation
B Dynamic register allocation

&
o n < < c (%) s el x c n Tl el x
8 = ¢ w» & 5§ w ¢ 88 © 45 »w L 38 @
< [i} c] © B e e 1 © 7 S £
w =] o g - o o a - o o aQ
x 5 & 3 S E (=} S € (=
[} - 2 ° = o°
£ o 3 5 Iz 3 = 9 oz 2
=) w o ° n
] kel el | kel had |
= x o 9 ° b ©°
c 9 = E 3 2 & 3 2
a ; L g_ o g_ =
"
£ 8 g
& | I
o kel
2 3
3 &

Fig. 9: The speedup of the gem5 GCN3 GPU model using simple and dynamic register allocators, normalized to the simple

register allocator.

TABLE III: Key Configuration Parameters for Use-Case 3

Component Value

Number of CUs 4

SIMD16s (vector ALUs) 4 per CU

GPU Frequency 1 GHz

Max Wavefronts 10 per SIMD16 (40 per CU)
Vector Registers 8K per CU

Scalar Registers 8K per CU

LDS 64 KB per CU

L1 instruction cache 32 KB shared between every 4 CUs
L1 data caches (1 per CU) 16 KB per CU
Unified L2 cache 256 KB

Main Memory 1 channel, DDR3_1600_8x8

usage is often a critical component that must be tuned properly
to enable high performance [35], [36]. Thus, examining ways
to tune GPU register allocation can significantly affect an ap-
plication’s performance [37], [38]. To examine how gem55 and
GEMS RESOURCES enables rapid study of GPU configurations,
we study how GPU performance varies for the two available
GPU register allocation schemes: a simple allocation scheme

191

that allocates 1 wavefront per SIMD16 [19] in a compute
unit (CU) at a time to limit stalls and a dynamic allocation
scheme that always allows up to the max wavefronts per CU
at a time by monitoring per wavefront register requirements
compared to the number of available registers per CU. In
theory, the dynamic scheme should outperform the simple
one when there are more work groups (WGs) than can be
scheduled initially,” because it enables this additional work
to be overlapped. However, GPUs have very simple pipelines
with limited mechanisms for tracking dependencies [20]; thus
this additional parallelism may cause additional stalls that hurt
performance. Table III details the other key system parameters
for our simulated system, which models a tightly coupled
CPU-GPU system with coherent caches and a unified address
space.

We evaluate the simple and dynamic register allocation
policies across a number of GPU workloads, all of which are

9WGs contain one or more wavefronts, each of which has up to 64 threads.

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on June 29,2021 at 16:21:39 UTC from IEEE Xplore. Restrictions apply.

TABLE IV: Benchmarks & Input Sizes for Use-Case 3 (WG
= Work Groups, CU = Compute Units, CS = critical section).

Application Input Size
2dshfl [23], [29] 4x4
dynamic_shared [23], [29] 16x16
inline_asm [23], [29] 1024x1024
MatrixTranspose [23], [29] 1024x1024
sharedMemory [23], [29] 64x64
shfl [23], [29] 4x4
stream [23], [29] 32x32
unroll [23], [29] 4x4

SpinMutexEBO [13], [30]
FAMutex [13], [30]

SleepMutex [13], [30]
SpinMutexEBOUniq [13], [30]
FAMutexUniq [13], [30]
SleepMutexUniq [13], [30]
LFTreeBarrUniq [13], [30]
LFTreeBarrUniqLocalExch [13], [30]
bwd_bypass [14], [31]

bwd_bn [14], [31]
bwd_composed_model [14], [31]
bwd_pool [14], [31]
bwd_softmax [14], [31]
fwd_bypass [14], [31]

fwd_bn [14], [31]
fwd_composed_model [14], [31]
fwd_pool [14], [31]
fwd_softmax [14], [31]

HACC [15], [32] (forceTreeTest)
LULESH [18], [17], [33]
PENNANT [16], [34]

10 Ld/St/thr/CS,
8 WGs/CU, 2 iters

10 Ld/St/thr/barrier,

8 WGs/CU, 2 iters
NCHW =100,1000,1,1
NCHW =100,1000,1,1

NCHW =32,32,3,1
NCHW =100, 3,256, 256
NCHW = 100,1000,1,1
NCHW =100,1000,1,1
NCHW =100,1000,1,1

NCHW =32,32,3,1
NCHW =100, 3, 256, 256
NCHW =100,1000,1,1
0.5 0.1 64 0.1 100 N 12 rcb

1 iteration
noh

available in GEM5 RESOURCES. For the DNNMark applica-
tions and PENNANT GEM5 RESOURCES includes input files.
Table IV summarizes these applications and their input sizes.
The applications represent a number of different use cases and
application sizes, and thus provide a wide set of data points to
evaluate the efficacy of the register allocators. All applications
run on AMD ROCm 1.6, and use the corresponding HIP,
MIOpen, and rocBLAS library versions. Moreover, for all
applications we utilize our docker support that automatically
builds the correct ROCm stack (Section V-A). Thus, to conduct
similar experiments, a researcher would need to checkout the
appropriate version of gem5 (gem5 v21.0) and the correspond-
ing GEM5 RESOURCES, compile gem5 with the GCN3_X86
configuration, compile GEMS RESOURCES or download them,
and then run each application using our docker, the same sys-
tem configuration (Table III), and the same inputs (Table IV).

Figure 9 shows how the GPU execution time (in shader
ticks) varies for the simple and dynamic register allocation
policies. Surprisingly, overall the dynamic register allocator is
actually outperformed by the simple register allocator: on av-
erage the simple register allocator improves GPU performance
by 8% compared to the dynamic register allocator. The largest
contributor to this surprising result is the overly simplistic
dependence tracking information in the publicly available GPU
model. The HeteroSync applications, bwd_pool, and fwd_pool
in particular suffer (e.g., the dynamic register allocator is 61%
and 22% worse for FAMutex and fwd_pool, respectively). This
highlights how optimizing the register allocator in isolation is
insufficient, and how future contributions to gemS5 that improve

192

the dependence tracking could pay significant dividends. By
enabling a broad variety of workloads, we were able quickly
and easily find the modeling inaccuracies in gem55.

Other applications with small kernels (e.g., 2dshfl, dy-
namic_shared) or limited additional work to schedule (e.g.,
HACC and LULESH) are less affected by running more
wavefronts per CU. Thus, they show little or no difference
between the register allocators. However, the remaining ap-
plications (inline_asm, MatrixTransponse, PENNANT, stream,
and some of the DNNMark ML layers) having a dynamic
register allocator significantly improves performance. Unlike
the other applications, these applications have more work than
can be scheduled initially, fully utilize the GPU, or are very
compute intensive. Thus, the dynamic register allocator allows
them to overlap additional computation and helps hide the
latency of accessing memory. More broadly, this work shows
how GPU researchers can easily configure and utilize our work
to examine other interesting research questions.

VII. CONCLUSIONS AND POTENTIAL IMPACT

GEMSART and GEM5 RESOURCES will enable novel com-
puter architecture research. With these tools, computer ar-
chitecture researchers will be able to concentrate on novel
computer architecture designs instead of wasting time getting
the simulation framework up and running.

We will be releasing both GEM5ART and GEMS5 RESOURCES
as open source community-driven projects and encourage the
entire computer architecture community to contribute new
resources and we will host them in a centralized repository
for the rest of the community to use. As the gem5 project
continues to improve and adapt to meet the demands of
researchers, so will our framework. The new framework here,
GEMSART is he latest addition to the project, and we hope,
will bring great benefits to the community.

Using the GEMS5ART framework, we could potentially even
host simulation results from the broader computer architecture
community in a centralized repository. With a consistent
schema for representing both inputs and output of simulations,
this repository would significantly improve the reproducibility
of computer architecture research.

REFERENCES

N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti et al., “The gem5
simulator,” ACM SIGARCH computer architecture news, vol. 39, no. 2,
pp. 1-7, 2011.

J. Lowe-Power et al., “The gem5 Simulator: Version 20.0+,” 2020.

T. Austin, E. Larson, and D. Ernst, “SimpleScalar: An infrastructure for
computer system modeling,” Computer, vol. 35, no. 2, pp. 59-67, 2002.
C. Bienia, “Benchmarking Modern Multiprocessors,” Ph.D. dissertation,
Princeton University, January 2011.

0. Oleksenko, D. Kuvaiskii, P. Bhatotia, and C. Fetzer, “Fex: A software
systems evaluator,” in Proceedings of the 47th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks — DSN
’17. IEEE, 2017, pp. 543-550.

L. Oliveira, D. Wilkinson, D. Mossé, and B. R. Childers, “Occam: Soft-
ware environment for creating reproducible research,” in Proccedings of
the IEEE 14th International Conference on e-Science — e-Science ’18.
IEEE, 2018, pp. 394-395.

“Collective Knowledge,” Accessed 2020-10-30. [Online]. Available:
https://cknowledge.org/

[1]

[2]
[3]

[4]
[5

—

[6]

[7

—

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on June 29,2021 at 16:21:39 UTC from IEEE Xplore. Restrictions apply.

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

M. Walker, S. Bischoff, S. Diestelhorst, G. Merrett, and B. Al-Hashimi,
“Hardware-Validated CPU Performance and Energy Modelling,” in
Proceedings of the 2018 IEEE International Symposium on Performance
Analysis of Systems and Software — ISPASS ’18. 1EEE, 2018, pp. 44—
53.

J.-E. Jo, G.-H. Lee, H. Jang, J. Lee, M. Ajdari, and J. Kim, “DiagSim:
Systematically diagnosing simulators for healthy simulations,” ACM
Transactions on Architecture and Code Optimization — TACO 18,
vol. 15, no. 1, pp. 1-27, 2018.

“The celery project,” Accessed 2020-10-26.
https://docs.celeryproject.org

“MongoDB,” Accessed 2020-10-26. [Online]. Available: https://www.
mongodb.com

[Online]. Available:

“Packer,” Accessed 2020-10-26. [Online]. Available: https://www.
packer.io
M. D. Sinclair, J. Alsop, and S. V. Adve, “HeteroSync: A bench-

mark suite for fine-grained synchronization on tightly coupled gpus,”
in Proccedings of the IEEE International Symposium on Workload
Characterization — IISWC ’17. 1EEE, 2017, pp. 239-249.

S. Dong and D. Kaeli, “DNNMark: A deep neural network benchmark
suite for gpus,” in Proceedings of the General Purpose GPUs, 2017, pp.
63-72.

S. Habib, A. Pope, H. Finkel, N. Frontiere, K. Heitmann, D. Daniel,
P. Fasel, V. Morozov, G. Zagaris, T. Peterka et al., “HACC: Simulat-
ing sky surveys on state-of-the-art supercomputing architectures,” New
Astronomy, vol. 42, pp. 49-65, 2016.

C. R. Ferenbaugh, “PENNANT: An unstructured mesh mini-app for ad-
vanced architecture research,” Concurrency and Computation: Practice
and Experience, vol. 27, no. 17, pp. 4555-4572, 2015.

I. Karlin, A. Bhatele, B. L. Chamberlain, J. Cohen, Z. Devito,
M. Gokhale, R. Haque, R. Hornung, J. Keasler, D. Laney, E. Luke,
S. Lloyd, J. McGraw, R. Neely, D. Richards, M. Schulz, C. H. Still,
F. Wang, and D. Wong, “LULESH Programming Model and Perfor-
mance Ports Overview,” Lawrence Livermore National Labs, Tech. Rep.
LLNL-TR-608824, December 2012.

I. Karlin, A. Bhatele, J. Keasler, B. L. Chamberlain, J. Cohen, Z. DeVito,
R. Haque, D. Laney, E. Luke, F. Wang, D. Richards, M. Schulz,
and C. Still, “Exploring traditional and emerging parallel programming
models using a proxy application,” in 27th IEEE International Parallel &
Distributed Processing Symposium (IEEE IPDPS 2013), Boston, USA,
May 2013.

“Graphics Core Next Architecture, Generation 3,” Accessed 2020-
10-30. [Online]. Available: http://developer.amd.com/wordpress/media/
2013/12/AMD_GCN?3_Instruction_Set_Architecture_rev1.1.pdf

A. Gutierrez, B. M. Beckmann, A. Dutu, J. Gross, M. LeBeane,
J. Kalamatianos, O. Kayiran, M. Poremba, B. Potter, S. Puthoor, M. D.
Sinclair, M. Wyse, J. Yin, X. Zhang, A. Jain, and T. Rogers, “Lost in
Abstraction: Pitfalls of Analyzing GPUs at the Intermediate Language
Level,” in Proceedings of the 24th IEEE International Symposium on
High Performance Computer Architecture — HPCA 21, ser. HPCA,
2018, pp. 608-619.

“ROCm Device Libraries,” Accessed 2020-10-30. [Online]. Available:
https://github.com/RadeonOpenCompute/ROCm-Device-Libs

“gem) Resources. Resource: GNC3 GPU Docker,”
git repository at revision ’2a4357b’. [On-
line]. Available: https://gem5.googlesource.com/public/gemS5/+/

2a4357bfd0c688a19cfdob1c600bb2d2d6fa6151/util/dockerfiles/gen-gpu
AMD, “HIP Sample Apps,” 2020. [Online]. Available: https://github.
com/ROCm-Developer-Tools/HIP/tree/master/samples/2_Cookbook
“gem5 Resources. Resource: PARSEC,” git repository at revision
’31924b6’. [Online]. Available: https://gem5.googlesource.com/public/
gem5-resources/+/c5£5¢70d0291e105444£534cf538ea40e4ddcb96/src/
parsec

“gem5 Resources. Resource: linux-kernel,” git repository at revision
’c5f5¢70°. [Online]. Available: https://gemS.googlesource.com/public/
gem5-resources/+/c5f5¢70d0291e105444f534cf538ea40e4ddcb96/src/
linux-kernel

“Project Jupyter,” Accessed 2020-10-19. [Online]. Available: https:
/ljupyter.org/

“Matplotlib,” Accessed 2020-10-28. [Online]. Available: https:/
matplotlib.org

“gem5 Resources. Resource: boot-exit run script,”
git repository at revision ’c5£5¢70°. [Online].

193

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

Available: https://gemS5.googlesource.com/public/gem5-resources/+/
¢5£5¢70d0291e105444£534cf538ea40e4ddcb96/src/boot-exit/configs

“gem5 Resources. Resource: HIP Samples,” git
repository at revision ’8a8193a’. [Online]. Avail-
able: https://gemS5.googlesource.com/public/gem5-resources/+/

8a8193a69075b7baaldb438a41ef56a6bf2d4dSb/src/hip-samples

“gem5 Resources. Resource: HeteroSync,” git repository at revision
’8a8193a’. [Online]. Available: https://gem5.googlesource.com/public/
gem5-resources/+/8a8193a69075b7baaldb438a41ef56a6bf2d4dSb/src/

heterosync

“gem5 Resources. Resource: DNNMark,” git repository at revision
’8a8193a’. [Online]. Available: https://gem5.googlesource.com/public/
gem5-resources/+/8a8193a69075b7baaldb438a41ef56a6bf2d4dSb/src/

DNNMark

“gem5 Resources. Resource: Halo-Finder,” git repository at revision
’8a8193a’. [Online]. Available: https://gem5.googlesource.com/public/
gem5-resources/+/8a8193a69075b7baaldb438a41ef56a6bf2d4dSb/src/

halo-finder

“gem5 Resources. Resource: LULESH,” git repository at revision
’8a8193a’. [Online]. Available: https://gem5.googlesource.com/public/
gem5-resources/+/8a8193a69075b7baaldb438a41ef56a6bf2d4dSb/src/

lulesh

“gem5 Resources. Resource: PENNANT,” git repository at revision
’9dda943’. [Online]. Available: https://gem5.googlesource.com/public/
gem5-resources/+/9dda943b120666fd44b53674a142a747¢c1e86892/src/
pennant

M. Gebhart, S. W. Keckler, B. Khailany, R. Krashinsky, and W. J.
Dally, “Unifying primary cache, scratch, and register file memories in
a throughput processor,” in Proceedings of the 45th Annual IEEE/ACM
International Symposium on Microarchitecture — MICRO 12, 2012, pp.
96-106.

B. Pourghassemi, C. Zhang, J. H. Lee, and A. Chandramowlishwaran,
“On the Limits of Parallelizing Convolutional Neural Networks on
GPUs,” in Proceedings of the 32nd ACM Symposium on Parallelism in
Algorithms and Architectures, ser. SPAA, 2020, p. 567-569. [Online].
Available: https://doi.org/10.1145/3350755.3400266

D. Sampaio, “GPU Divergence: Analysis and Register Allocation,” Tech.
Rep., 2017.

Y. You and S. Chen, “Vector-aware Register Allocation for GPU
Shader Processors,” in Proceedings of the International Conference on
Compilers, Architecture and Synthesis for Embedded Systems — CASES
’15, 2015, pp. 99-108.

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on June 29,2021 at 16:21:39 UTC from IEEE Xplore. Restrictions apply.

