arXiv:1903.04684v2 [math.ST] 15 Apr 2020

The limits of distribution-free conditional
predictive inference

Rina Foygel Barber*, Emmanuel J. Candes',
Aaditya Ramdas®®, Ryan J. Tibshirani®

April 16, 2020

Abstract

We consider the problem of distribution-free predictive inference, with
the goal of producing predictive coverage guarantees that hold conditionally
rather than marginally. Existing methods such as conformal prediction of-
fer marginal coverage guarantees, where predictive coverage holds on average
over all possible test points, but this is not sufficient for many practical appli-
cations where we would like to know that our predictions are valid for a given
individual, not merely on average over a population. On the other hand, exact
conditional inference guarantees are known to be impossible without imposing
assumptions on the underlying distribution. In this work we aim to explore
the space in between these two, and examine what types of relaxations of the
conditional coverage property would alleviate some of the practical concerns
with marginal coverage guarantees while still being possible to achieve in a
distribution-free setting.

1 Introduction

Consider a training data set (X1,Y7),...,(X,,Y,), and a test point (X, 41, Ys11),
with the training and test data all drawn i.i.d. from the same distribution. Here
each X; € R? is a feature vector, while Y; € R is a response variable. The problem
of predictive inference is the following: if we observe the n training data points, and
are given the feature vector X, for a new test data point, we would like construct
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a prediction interval for Y, .;—that is, a subset of R that we believe is likely to
contain the test point’s true response value Y, 1.

As a motivating example, suppose that each data point ¢ corresponds to a patient,
with X; encoding relevant covariates (age, family history, current symptoms, etc.),
while the response Y; measures a quantitative outcome (e.g., reduction in blood
pressure after treatment with a drug). When a new patient arrives at the doctor’s
office with covariate values X, 1, the doctor would like to be able to predict their
eventual outcome Y, 11 with a range, making a statement along the lines of: “Based
on your age, family history, and current symptoms, you can expect your blood
pressure to go down by 10-15mmHg”. In this paper, we will study the problem of
making accurate predictive statements of this sort. R

To study such questions, throughout this paper we will write C),(z) C R to de-
note the prediction interval] for Y,,; given a feature vector X,,;; = x. This interval
is a function of both the test point x and the training data (X1, Y1),..., (X,,Y,). We
will write C,, (without specifying a test point x) to refer to the algorithm that maps
the training data (X1,Y1),...,(X,,Y,) to the resulting prediction intervals Cl,(z)
indexed by # € R% (For convenience in writing our results, we assume that the X;,’s
lie in R?, although our results hold more generally for any probability space.)

For the algorithm C,, to be useful, we would like to be assured that the resulting
prediction interval is indeed likely to contain the true response value, i.e., that
Vi1 € Cn(Xyy1) with fairly high probability. When this event succeeds, we say
that the predictive interval C,, (X, 1) covers the true response value Y, ;. Defining
the coverage probability is not a trivial question—do we require that coverage holds
with high probability on average over the test feature vector X, 1, pointwise at any
value X, 11 = z, or something in between? In order to be robust to distributional
assumptions, we would also like to ensure that our algorithm C), has good coverage
properties without making any assumptions about the underlying distribution P—a
“distribution-free” guarantee.

To formalize these ideas, we will begin with a few definitions. Throughout, P
will denote a joint distribution on (X,Y) € R? x R, and we will write Py to denote
the inducgd marginal on X, and Py|x for the conditional distribution of Y|X. We
say that C, satisfies distribution-free marginal coverage at the level 1 — a, denoted
by (1 —a)-MC, if]

P {Yn+1 € @n(Xn+1)} > 1 — « for all distributions P. (1)

In other words, the probability that 5n covers the true test value Y,,.; is at least
1 — «, on average over a random draw of the training and test data from any

'Note that the set an(x) C R is not required to be an interval-—it may consist of a disjoint
union of multiple intervals. For simplicity we still refer to the C,(x)’s as “prediction intervals”.

2In these definitions, and throughout the remainder of the paper, all probabilities are taken with
respect to training data (X1, Y1), ..., (X,,Y,) and test point (X, 41, Y,41) all drawn i.i.d. from P,
unless specified otherwise.



distribution P. We say that én satisfies distribution-free conditional coverage at the
level 1 — «, denoted by (1 — «a)-CC, if

P {Yn+1 € én(XnH) } Xpg1 = x} >1—a for all P and almost all z,  (2)

where, fixing the distribution P, we write “almost all ” to mean that the set of
points € R? where the bound fails to hold must have measure zero under Px.
This means that the probability that C), covers, at a fized test point X, = x, is
at least 1 — «

Now, how should we interpret the difference between marginal and conditional
coverage? With a = 0.05, we expect that the doctor’s statement (“...you can expect
your blood pressure to go down by 10-15mmHg"”) should hold with 95% probability.
For marginal coverage, the probability is taken over both X, ,; and Y, ., while for
conditional coverage, X,.; is fixed and the probability is taken over Y, ,; only
(and over all the training data in both situations). This means that for marginal
coverage, the doctor’s statements have a 95% chance of being accurate on average
over all possible patients that might arrive at the clinic (marginalizing over X, 1),
but might for example have 0% chance of being accurate for patients under the
age of 25, as long as this is averaged out by a higher-than-95% chance of coverage
for patients older than 25. The stronger definition of conditional coverage, on the
other hand, removes this possibility, and requires that whatever statement the doctor
makes (different for each patient) has a 95% chance of being true for every individual
patient, regardless of the patient’s age, family history, etc.

For practical purposes, then, marginal coverage does not seem to be sufficient—
each patient would reasonably hope that the information they receive is accurate for
their specific circumstances, and is not comforted by knowing that the inaccurate
information they might be receiving will be balanced out by some other patient’s
highly precise prediction. On the other hand, the problem of conditional inference is
statistically very challenging, and is known to be incompatible with the distribution-
free setting (we will discuss this in more detail later on). Our goal in this paper is
therefore to explore the middle ground between marginal and conditional inference,
while working in the distribution-free setting in order to be robust to violations of
any modeling assumptions.

1.1 Summary of contributions

As mentioned above, it is known to be impossible for any finite-length prediction
interval to satisfy distribution-free conditional coverage in the sense of (2))—this is
because, without assuming smoothness of the underlying distribution P, we cannot

3VovK m also considers a notion of conditional coverage, where the guarantee is required
to hold after conditioning on the training data (X1,Y7),...,(X,,Y,) but without conditioning on
the test point X, 41, and thus is very different from the type of conditioning that we consider here.



exclude the possibility that there is some sort of discontinuity at X = x that leads
to a failure of coverage. (Background on this type of impossibility result is described
more formally in Section [2.2])

This impossibility motivates us to consider an approximate version of the condi-
tional coverage property. We will say that C,, satisfies distribution-free approximate
conditional coverage at level 1 — « and tolerance § > 0, denoted by (1 — «, §)-CC, if

P {YnH e C(Xns1) ‘ Xpi1 € X} > 1 — a for all distributions P
and all X C R? with Px(X) > 6. (3)

For example, at & = 0.05 and 6 = 0.1, the coverage probability has to be at least 95%
for any subgroup of patients that makes up at least 10% of the overall population.
If 6 > 0 is fairly small, then this approximate conditional coverage property is quite
a bit stronger than marginal coverage, and may be sufficient for many applications.

However, we find that it is inherently impossible to find non-trivial algorithms
that achieve even this relaxed notion of conditional coverage. Specifically, we com-
pare against a trivial solution: we show with a simple argument that any method
C,, that satisfies (1 — ad)-MC, will also satisfy (1 — «, §)-CC. In this sense, we can
trivially achieve approximate conditional coverage by way of marginal coverage, but
this solution is not satisfactory since, for small §, a (1 — «@d)-MC prediction interval
will be extremely wide. However, the main result of this paper, Theorem 2] (see Sec-
tion [3]), proves that any (1 —a, 0)-CC method is essentially no better than this kind
of trivial construction (in the sense of the expected length of the resulting intervals).

Perhaps, then, the definition (B]) of approximate conditional coverage may be
stronger than needed in practical applications. In a medical setting, for instance,
a patient would typically want to know that coverage is accurate on average over
a subgroup of patients similar to the individual, and would not be concerned about
arbitrary subgroups consisting of highly dissimilar patients. This motivates us to
consider alternatives to the approximate conditional coverage property (B)—in Sec-
tion [ we modify (B]) to consider only a restricted class of sets X, for instance, only
sets consisting of balls under some metric (to represent patients similar to the indi-
vidual of interest, in our example). We construct an example of an algorithm that
satisfies this type of property—a modification of the split conformal method—that
we analyze in Theorem Bl We also establish lower (Theorem M) and upper (The-
orem [B]) bounds on the efficiency of any predictive method satisfying this type of
property, as a function of the complexity (VC dimension) of the class of sets over
which coverage is required to hold.

1.2 Notation

Before proceeding, we establish some notation and terminology that will be used
throughout the paper. All sets and functions are implicitly assumed to be measur-

4



able (e.g., “for all X C R in (@) should be interpreted to mean all measurable
subsets of R?). The function leb() denotes Lebesgue measure on R or on R¢. Pre-
diction intervals are allowed to be either fixed or randomized. Specifically, a non-
data-dependent prediction interval C' = C(z) may either be fixed (i.e., a function
mapping points z € R to subsets C(x) C R) or random (i.e., a function mapping
points z € R? to a random variable C(z) taking values in the set of subsets of R).
Analogously, for a data-dependent prediction interval C, = an(a:), fixing the train-
ing data (X1,Y1),...,(X,,Y,) and the vector x € RY, this interval may be either a
fixed or random subset of R.

2 Background

In this section, we give background on the split conformal prediction method, which
achieves distribution-free marginal coverage, and review results in the literature
establishing that distribution-free conditional coverage is not possible.

2.1 Split conformal prediction

The split conformal prediction algorithm, introduced in &mﬁmb&‘mﬂ m
Vovk et all

| (under the name “inductive conformal prediction”) and stud-
ied further by [Papadopoulos [2008], Vovk [2012], [Lei et all [2018], is a well known
method that achieves distribution-free marginal coverage guarantees. This method
makes no assumptions at all on the distribution of the data aside from requiring that
the training data and the test point are exchangeable. (Of course, assuming that
the training and test data are i.i.d. is simply a special case of the exchangeability
assumption. )

The split conformal prediction method begins by partitioning the sample size n
into two portions, n = ng + nq, e.g., split in half. We will use the first ny many
training points to fit an estimated regression function i, (), and the remaining n; =
n—ng many training points to determine the width of the prediction interval around
no (). The estimated model fi,, can be fitted from (X1,Y7),..., (X, Yn,) using
any algorithm—for example, we might fit a linear model, fi,,(z) = xTB\ where B\ €
R? is fitted on the data points (X1,Y1), ..., (X, Yn,) using least squares regression
or any other regression method.

Next, fix a desired predictive coverage level 1 — «, for instance 95%. We then
compute residuals

R, = ‘Yi—ﬁno(Xi)‘ fori=ng+1,...,n,



and defind]
Gn, = the [(1 — «)(ny + 1)]-smallest value of the list R, 41, ..., Ry.

The predictive interval is then defined as

~

Cn(x) = [ﬁno(x) - ZJ\m’ //Zno(x) + Z]\m] (4)

This method can also be generalized to include a local variance/scale estimate, or to
allow for an asymmetric construction treating the right and left tails of the residuals
separately.

The split conformal algorithm is a variant of conformal prediction, which has a
rich literature dating back many years (see, e.g., Vovk et all [2005],Shafer and Vovk

| for background). Conformal prediction similarly relies on the exchangeability

of the training and test data, but rather than splitting the training data to separate
the tasks of model fitting and calibrating the quantiles, conformal prediction uses
the full training sample for both tasks, thus paying a higher computational cost.
Here, for simplicity, we do not describe conformal prediction, but focus on the split
conformal algorithm, which we generalize in our own proposed methods later on.

Using the assumption that the data points are i.i.d., the proof that the split
conformal prediction method satisfies (1 —«)-MC is very intuitive. For completeness
we state this known result here.

Theorem 1 (Papadopoulos et al. m, Proposition 1]). The split conformal pre-

diction method defined in (@) satisfies the (1 — «)-MC property ().

Importantly, the above guarantee holds irrespective of the regression algorithm
used to fit ji,,. Furthermore, Lei et all HQJM] show that, in some settings, this
distribution-free construction may result in an interval that is asymptotically no
wider than the best possible “oracle” interval—in other words, it is possible to
provide marginal distribution-free prediction without incurring a cost in terms of
overly wide intervals. (The intuition behind the proof of Theorem [l will be discussed
in Section [4.1] as a special case of our new results; |Lei et al. [!M]’S guarantee of
optimal length will be discussed in more detail in Section 1.2.3])

2.2 Impossibility of distribution-free conditional coverage

While the split conformal method satisfies distribution-free marginal coverage (II), as
mentioned earlier, this property may not be sufficient for practical prediction tasks,
as it leaves open the possibility that entire regions of test points (e.g., subgroups of
patients) are receiving inaccurate predictions. To avoid this problem, we may wish

4Formally, when we write “the k-th smallest value of the list ...” for a list that has m elements,
this will denote +o00 in the case that £ > m.



to construct én to guarantee coverage conditional on X, ., rather than on average
over X, ;1. Is it possible to achieve distribution-free conditional coverage (2), while
still constructing predictive intervals that are not too much larger than needed?
Unfortunately, it is well known that, if we do not place any assumptions on P,
then estimation and inference on various functionals of P are impossible to carry

out; see, e.g., Bahadur and Savagd [1956], [Donoha [1988] for background. More

specifically, for the current problem of distribution-free conditional prediction inter-
vals, [Vovkl [2012)], Mj&m@ 12014 prove that the (1 —«)-CC property (2)
is impossible for any algorithm C),, unless C),, has the property that it produces
intervals with infinite expected length under any non-discrete distribution P, which
is not a meaningful procedure.

Proposition 1. [Rephrased from Vouk [2014], |Lei and Wasserman [2014]] Suppose

that C,, satisfies (1 — «a)-CC (). Then for all distributions P, it holds that

E [1eb(6n(x))} ~

at almost all points x aside from the atoms of Px.

In other words, at almost all nonatomic points z, the prediction interval has infinite
expected length. This means that distribution-free conditional coverage in the sense
of (2) is impossible to attain in any meaningful sense.

Asymptotic conditional coverage. There is an extensive literature examining
this problem in a setting where P is assumed to satisfy some type of smoothness
condition, and conditional coverage can then be achieved asymptotically by letting
the sample size n tend to infinity and using a vanishing bandwidth to compute
local smoothed estimators of the conditional distribution of Y'|X. Works in this line
of the literature include (Cai et all [2014], [Lei and Wasserman [2014], among many
others. In this present work, however, we are interested in obtaining distribution-
free guarantees that hold at any finite sample size n, and therefore we aim to avoid
relying on assumptions such as smoothness of P or on asymptotic arguments.

3 Approximate conditional coverage

While the results of Vovk [2012] and [Lei and Wasserman [2014] prove that distribution-

free methods cannot achieve conditional predictive guarantees, in practice it may
be sufficient to obtain “approximately conditional” inference. In our doctor/patient
example, we would certainly want to make sure that there is no entire subgroup
of patients that are all receiving poor predictions—as in our earlier example where
the predictive intervals had poor coverage for all patients below the age of 25—but




we may be willing to accept that some rare groups of patients might be receiving
inaccurate information.

We therefore try to relax our requirement of conditional coverage to an approxi-
mate version—recall from Section [Tl that C,, satisfies distribution-free approzimate
conditional coverage at level 1 — « and tolerance 6 > 0, denoted by (1 — «a, 9)-CC,
if ([B) holds. We can easily verify that approximate conditional coverage limits to
conditional coverage by taking 0 to zero:

C,, satisfies (1—-a)-CC <= C,, satisfies (1 —«,§)-CC for all 6 > 0.
At the other extreme, marginal coverage is recovered by taking 6 = 1:
C,, satisfies (1 — a)-MC <«  C, satisfies (1 — o, §)-CC for § = 1.

While we have seen that exact conditional coverage is impossible to meaningfully
attain, does this relaxation allow us to move towards a meaningful solution? To
answer this question, it is useful to first consider a simple solution obtained by way
of a marginal coverage method.

3.1 The inadequacy of reducing to marginal coverage

The following lemma suggests that our approximate conditional coverage can be
naively obtained via marginal coverage at a more stringent level.

Lemma 1. Let én be any method that attains distribution-free marginal coverage @
with miscoverage rate ad in place of a, that is, C,, satisfies the (1—ad)-MC property.
Then C,, also satisfies (1 — «,0)-CC.

Proof of Lemmall. Since C,, satisfies (1 — ad)-MC, for any distribution P we have

ad > P {YnH ¢ én(XnH)} > P {YnH Z Co(Xns1), X1 € X}
> 6-P {Yn-i-l € én(Xn-i-l) ’ Xn+1 € X} 5

where the last step holds for any X with P{X,;; € X} = Px(X) > 0. Rearranging
yields the lemma. O

To interpret this lemma, we might apply the split conformal prediction algorithm ()
at the miscoverage level ad, which ensures marginal coverage at this level and,
therefore, ensures (1 — a, 0)-CC. However, we would typically choose § to be quite
small, as we would like to be able to condition on small sets X (to ensure that there
aren’t any large subgroups of patients all receiving poor information). This means
that any prediction intervals satisfying (1 — «d)-MC must generally be extremely
wide, e.g., 99.5%-coverage intervals instead of 95%-coverage intervals when o« = 0.05
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and 0 = 0.1. Therefore, the naive solution of using marginal coverage to ensure
approximate conditional coverage is not satisfactory.

Before moving on, we extend Lemma [Il to generalize the naive solution given by
(1 — «d)-MC:

Lemma 2. Let C,, be any method that satisfies (1—cad)-MC (), for some c € [0, 1].

Let 67/1 be defined as follows: at a test point x, with probability 11__—00;, we define
C'(z) = Cnl(x), or otherwise, we define C'(x) = @ (the empty set), where we
assume that this decision is carried out independently of x and of the training data.

Then C', also satisfies (1 — ., 8)-CC.

Proofs for this lemma and for all subsequent theoretical results are given in the
Appendix.

To understand the role of the parameter ¢ in this lemma, we can consider the two
extremes—setting ¢ = 1, we would simply output the interval C, (z) that satisfies
(1—ad)-MC, i.e., we return to the naive solution of Lemmal[ll At the other extreme,
if we set ¢ = 0, at any test point X,,;; = z the resulting prediction interval would be
given by R with probability 1—«, or @ otherwise—this clearly satisfies (1—«, §)-CC
(and, in fact, (1 — «)-CC) but is of course meaningless as it reveals no information
about the data.

3.2 Hardness of approximate conditional coverage

We now introduce our main result, which proves that, as in the exact conditional
coverage setting, the relaxation to (1 — «, d)-conditional coverage is still impossible
to attain meaningfully. In particular, the naive solution—obtaining (1 —a, 0)-CC by
way of marginal coverage, as in Lemmas [Il and [2—is in some sense the best possible
method, in terms of the lengths of the resulting prediction intervals.

To quantify this, for any P and any marginal coverage level 1 — «, consider
finding the prediction interval C'p(z) with the shortest possible length, subject to
requiring marginal coverage to be at least 1 — a under the distribution P. As the
notation suggests, the coverage properties of Cp(x) are specific to P and are not
distribution-free in any sense. Formally, we define the set of intervals with marginal
coverage under P as

Cr(l—a) = {cp Pp{Y € Cp(X)} > 1— a},

where Cp(x) may denote a fixed or random interval (that is, Cp is a function
mapping points z € R? to fixed or random subsets of R). We can then define the
minimum possible length as

Le(l—a)= inf {EPX [leb(C’p(X))]}. (5)

CpeCp(l—a)
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If Cp is random rather than fixed, then we should interpret the expectation as
being taken with respect to the random draw of X and the randomization in the
construction of Cp(X).

With these definitions in place, we present our main result, which proves a lower
bound on the prediction interval width of any method that attains distribution-free
approximate conditional coverage.

Theorem 2. Suppose that C,, satisfies (1—«,8)-CC @). Then for all distributions
P where the marginal distribution Px has no atoms,

11—«

Lp(1— caé)} .

ce,1] | 1 — ca

E leb(@n(XnH))] > inf {

How should we interpret this lower bound? Based on Lemma [I, we can achieve
(1—ca, 0)-CC trivially by running split conformal prediction at the marginal coverage
level 1—ad. What would be the average width from such a procedure? As mentioned
in Section 2.1 under certain assumptions on P, |[Lei et all LM] prove that the split
conformal method run at coverage level 1 —ad with a consistent regression algorithm
1 will, with high probability, output a prediction interval with width that is only
o(1) larger than the oracle interval, which has width Lp(1 — ad). More generally,
for any ¢ € [0, 1], we can use the construction suggested in Lemma 2l combined with
the split conformal method, now run at level 1 — cad, to instead produce expected
length ~ =% . Lp(1 — cad).

Since Theorem 2] demonstrates that any method satisfying (1 — «, §)-CC cannot
beat this lower bound, this means that the (1 — «,d)-CC property is impossible
to attain beyond the trivial solution, i.e., by applying a method that guarantees
(1 — ad)-marginal coverage, which then yields (1 — «,)-CC as a byproduct (or
choosing some ¢ € [0,1] for the more general construction). Since typically we
would choose 0 to be a small constant, this lower bound is indeed a substantial
issue, since Lp(1— ad) will generally be much larger than the length we would need

if the distribution P were known.

4 Restricted conditional coverage

Our main result, Theorem [, shows that our definition of approximate conditional
coverage in () is too strong; it is impossible to construct a meaningful procedure
satisfying this definition. One way to weaken this condition is to restrict which sets
X we consider, yielding a less stringent notion of approximate conditional coverage.

For example, we can require that the coverage guarantee holds “locally”, by con-
ditioning only on any ball with sufficient probability o, rather than on an arbitrary
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subset X C R?. More concretely, we might require that

P {Yn+1 € én(XnH) Xn1 € ]B%(:):,T)} > 1 — « for all distributions P
and all z € R% r > 0 with Pp, {X € B(z,7)} > 6. (6)

Here B(x,r) is the closed ¢y ball centered at x with radius r. In the doctor/patient
example, we can think of this as requiring 95% predictive accuracy on average
over the subgroup of population consisting of patients similar to a given patient z,
where similarity is defined with the £, norm (of course, we can also generalize this
to different metrics). As another example, [Vovk [2012], [Lei and Wasserman [2014]
consider a version of conformal prediction that guarantees coverage within each one
of a finite number of subgroups, i.e.

P {YnH e Co(Xs1) ‘ Xpi1 € Xk} > 1 — a for all distributions P
and forall k=1,..., K, (7)

for some fixed partition R? = X, U---U X of the feature space. Here we may think
of predefining subgroups of patients (males below age 25, males age 25-35, etc.) and
requiring 95% predictive accuracy on average over each predefined subgroup.

More generally, suppose we are given a collection X of measurable subsets of R4,
We say that (), satisfies distribution-free approximate conditional coverage at level
1 — a and tolerance § > 0 relative to the collection X, denoted by (1 — «, §, X)-CC,
if

P {Yn+1 e Co(Xnir) ) Xpu1 € X} > 1 — a for all distributions P
and all X € X with Px(X) >4. (8)

To avoid degenerate scenarios, we will assume that we always have R? € X, meaning
that requiring (1 — «, 6, X)-CC is always at least as strong as requiring (1 — a)-MC.
Of course, this definition yields the original (1 — «, §)-CC condition if we take X to
be the collection of all measurable sets. If the class X is too rich, then, our main
result in Theorem 2] proves that (1 — «,d, X)-CC is impossible to achieve beyond
trivial solutions. We may ask then whether it’s possible to construct meaningful
prediction intervals when X is sufficiently restricted.

In the following, we will first construct a concrete algorithm, based on the split
conformal prediction method, that attains (1 — «,d, X)-CC. Afterwards, we will
attempt to determine how the complexity of the class X determines whether this
algorithm provides meaningful prediction intervals (i.e., narrower intervals than the
lower bound of Theorem [2]), and indeed if this is possible to attain with any algo-
rithm.
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4.1 Split conformal for restricted conditional coverage

As a concrete example, we will construct a variant of the split conformal predic-
tion method, and will generalize |Lei et all ﬂZD.lﬁ]’s results on the efficiency of split
conformal prediction to establish conditions under which the resulting prediction
intervals are asymptotically efficient.

Let fin,(x) be some fitted regression function, which estimates the conditional
mean of Y given X = x. As before, we require that fi,, is fitted on the first ng
training samples, (X1,Y1),..., (X, Yn,)- Next, define the residual

Ri = ‘Y; - ﬁno(Xl)‘

on the remaining training samples ¢ = ng+1,...,n and on the test point ¢ = n+ 1.
(As for the original split conformal method, this procedure can be generalized to
include a local scale estimate, 7,,(X;), or to allow for an asymmetric interval that
treats the right and left tails of the residuals differently, but we do not include these
generalizations here.)

The original split conformal method operates by observing that the test point
residual, R, 1, is equally likely to occur anywhere in the ranked list of residuals
Rig+1y- -+, R, Ryta, 1.e., the test residual is exchangeable with the n; many residuals
from the held-out portion of the training data. The split conformal prediction
interval () is then constructed as

o~

Cn(x) = [ﬁno(x) - Z]\nla ﬁno(x) + Z]\n1]a

where @y, is the [(1 — «)(n; + 1)]-smallest value amongst R,,+1, . .., R,. The width
of this prediction interval is determined by this residual quantile g,,, which is calcu-
lated by pooling all residuals from the holdout set ¢ = ng+1,...,n and is therefore
calibrated to give the appropriate coverage level on average over the distribution P.

We now need to modify this construction to guarantee a stronger notion of
coverage—we need to ensure coverage on average over any X € X with Px(X') > 4.
We will need to modify the width of the prediction interval-—for example, for a set
X where residuals tend to be large (i.e., |Y — [i,,(X)] is likely to be large if we
condition on X € X), the split conformal interval constructed above is too narrow
to achieve 1 — « coverage on average over this set. We will therefore construct a
new interval,

Col@) = [Jing (¥) = Gy (%), Fing (%) + oy ()] (9)

The width of the interval is now defined locally by the quantity @,,(z), which we
will address next. Intuitively, if  belongs to a set X within which residuals tend to
be large, we will need ¢, () to be large in order to achieve the right coverage level
on average over X.
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We now construct g, (z). First, we will narrow down the class of subsets to

consider. Define
n

No(X)= Y 1{X; € x},
i=no+1
the number of holdout points that lie in X'. Next, let

2log(m)

X, =4 XX N, (X)>6bny [1-
5n1

C X

This definition ensures that, if a given subset X has probability > ¢ under P, then
we will include & € X,,; with high probability. Next let

1 .
0n, (X) = the [(1 —a+ —) (N () + 1)—‘-th smallest value

ni

Of{Rlno—FlSZSn,XZGX}

Finally, we set
Gy (€) = sup G, (X). (10)

Xe/}\:nl ZEEX

(Recall that R? € X by assumption, and thus R? € %nl, so there is always at least
one set X in this supremum.)

Our next result proves that this construction achieves the desired approximate
conditional coverage property.

Theorem 3. For any class X of measurable subsets of R, the prediction interval

defined in @) satisfies (1 — a, 0, X)-CC (8)).

Of course, the supremum defined in (I0) may be impossible to compute efficiently—
this will naturally depend on the structure of the class X. (We expect that for simple
cases, such as taking X to be the set of all ¢y balls as for the “local” conditional
coverage discussed earlier, we may be able to compute or approximate (I) more
efficiently; we leave this as an open question for future work.) Furthermore, this
guarantee does not yet establish that this method provides a meaningful prediction
interval—it may be the case that the intervals are too wide. We will examine this
question next.

4.2 Characterizing hardness with the VC dimension

For a class X of subsets of R?, we write VC(X) to denote the Vapnik—Chervonenkis
dimension of the class X. This measure of complexity is defined as follows. For any
finite set A of points in R? we say that A is shattered by X if, for every subset of
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points B C A, there exists some X € X with X N.A = B. The VC dimension is then
defined as
VC(X) = max {|A| : A is shattered by X},

i.e., the largest cardinality of any set shattered by X. Well known examples include:
o If X is the set of all £, balls in R, then VC(X) =d + 1.
e If X is the set of all half-spaces in R?, then VO(X) = d + 1.

e If X is the set of all intersections of k different half-spaces in R, then VC(X) =

O(kdlog(k)) [Blumer et all, 1989, Lemma 3.2.3].

While a large VC dimension of X ensures that there is some set of points A that
is shattered by X, we need a stronger formulation to establish a hardness result for
restricted conditional coverage. We will consider an “almost everywhere” version of
the VC dimension, defined as follows:

the class of sets A = {a1,...,a,} C R?
VC,e(X) =max<m >0: such that X does not shatter A,
has Lebesgue measure zero in (R%)™

In other words, instead of searching for a single set A of size m that is shattered by
X, we require that almost all sets A of size m are shattered by X. It is trivial that
VC(X) > VC,..(X), but in fact, the two may coincide—for example,

o If X is the set of all £, balls in R, then VC, . (X) = VC(X) =d + 1.
e If X is the set of all half-spaces in RY, then VC, . (X) = VC(X) =d + 1.

In order to obtain a tight bound, we also need to define a slightly stronger notion
of predictive coverage. Our previous definitions (for marginal, conditional, and ap-
proximate conditional coverage) all calculated probabilities with respect to P"™! for
some distribution P, in other words, with the data points (X1, Y1), ..., (Xni1, Yne1)
drawn i.i.d. from an arbitrary distribution. A more general setting is where these
n + 1 data points are instead assumed to be exchangeable (which includes i.i.d. as
a special case). We thus define a notion of approximate conditional coverage un-
der exchangeability, rather than the i.i.d. assumption. We say that a procedure
C,, satisfies (1 — a, d, X)-conditional coverage under exchangeability, denoted by

(1 - a,6,%)-CCE, if

P, {Yn+1 e C(Xns1) ) X1 € X} >1—a

for all exchangeable distributions P on (X1, Y1),y (Xog1, Yoi1)
and all X € X with Ps {X,,;; € X} > 0. (11)
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Clearly, a procedure C, satisfying (1 —a, 0, X)-CCE will also satisfy (1 —a;, 6, X)-CC
by definition. It is worth noting that all proofs of predictive coverage guarantees
for conformal and split conformal prediction methods do not require the i.i.d. as-
sumption but rather only need to assume exchangeability—that is, results such as
Theorem [3] continue to hold, meaning that our split conformal method proposed in
Section L] satisfies this stronger coverage property ([IT).

We will now see how the VC dimension relates to the conditional coverage prob-
lem. We will show that:

o If VC,.(X) > 2n+2, then the (1 —a,d, X)-CCE property cannot be obtained
beyond the trivial lower bound given in Theorem [2

e On the other hand, if VC(X) < én/log?(n), then the split conformal method
described in Section ], which is guaranteed to satisfy (1 — a,d, X)-CCE,
produces prediction intervals of nearly optimal length under a location-family
model.

An equivalent perspective is that with sufficiently many points n, the CCE property
can be meaningfully attained. We now formalize these results.

4.2.1 A lower bound

First, we will examine the setting where VC, . (X) > 2n+ 2. In this setting, we will
see that (1 — «, 0, X)-conditional coverage (in its stronger form, with exchangeable
rather than i.i.d. data points) is incompatible with meaningful predictive intervals.

Theorem 4. Suppose that C, satisfies (1 — a, 0, X)-CCE as defined in (), where
X satisfies VCuo (X) > 2n + 2. Then for all distributions P where the marginal
distribution Px is continuous with respect to Lebesque measure, we have

E leb(@n(XnH))] > inf { Lo - Lp(1— ca5)}.

T ee0,1] | 1 — co

In other words, if VC, . (X) > 2n + 2, the lower bound proved here is identical to
that of Theorem [2, which is the trivial lower bound that can be obtained by simply
requiring marginal coverage at a far stricter level. (For example, if we take X to be
the collection of all balls or all half-spaces in R for d > 2n + 1, then this condition
on VC, . (X) will hold.) We remark that it is possible to prove a similar result for
the (1—a, d, X)-CC condition (rather than the stronger (1—q, ¢, X)-CCE condition),
but in that case we are only able to show this result when VC,. (X) > n?.

4.2.2 An upper bound

Next, we prove that efficient prediction is possible when the VC dimension is low.
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Since our construction given in (g) uses a symmetric interval around an initial
model 7i,,,, with the width of the interval selected to cover the worst-case scenario
in terms of the choice of X', we can only hope for efficiency as compared to the best
“oracle” interval of this form. For a fixed function p : R? — R and for any X € X
with nonzero probability under Py, define

qp.0(X) = the (1 — a)-quantile of |V — pu(X)],
under the distribution (X,Y’) ~ P conditional on X € X.

Next, for any € R?, define

q}g,u,a,é(x) = sup Q}g,u,a (X)>
XeXweX,Px(X)>6

the maximum quantile over any set X containing the point . We will then consider
the “oracle” prediction interval

C;,u,a,é(x> = [ILL(I) - qz,ﬁno,a,é(x)u :u(x) + qg,ﬁno,aﬁ(m)] . (12)
We can easily verify that Cp , , 5() satisfies
Pp{Y € Cpos(X) | XX} >1—a

for all X € X with Px(X) > 0.

Our main result proves that, if the collection X has sufficiently small VC di-
mension, then with high probability the prediction interval C,, constructed in (3]
above is essentially the same as the “oracle” interval defined in (I2), when con-
structed around the pre-trained model p = ji,,,. To formalize this, we show that C,

is bounded above and below by oracle intervals with slightly perturbed values of «
and 9.

Theorem 5. Assume that VC(X) > 1 and ny > 2. Then for every x € R?, if
VC(X) < c- 10;2’811), then the split conformal prediction interval C,, defined in (@)
satisfies

* ~ * 1
Por { Chpr. (1) € ColXun) € g a5 (1)} 21—
where
log? log?
ay =a+ Ca\/VC(%;nog (nl), a =q — Ca\/vc(%;n‘)g (n1)
1 1
and

ny ny

5, = 5+Cé\/VC(3€) logz(nl)’ 55 05\/\/0(%) log?(n1)

where ¢, ¢y, cs are universal constants.
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4.2.3 Special case: the location family with i.i.d. noise

While the result given in Theorem [l is quite general (we do not assume anything
about the distribution P), we can consider a special case where, given strong con-
ditions on P, the prediction interval én(XnH) nearly matches a much stronger
oracle—namely, the narrowest possible valid prediction interval.

Our discussion for this setting will closely follow the work of Lei et all M], for
the split conformal method. We first describe their results. Their work assumes a
location-family model:

The distribution of Y| X is given by YV; = up(X;) + €,
where pp(z) is a fixed function, and the ¢;’s are i.i.d. with density f., (13)
where f.(t) is symmetric around ¢ = 0, and nonincreasing for ¢ > 0.

Lei et all [2018] additionally assume that the estimator Jin,(z) of the true mean
function pp(z) is consistent—Assumption A4 in their work requires that

P {E [(ﬁno(X) - IUP(X))2 ‘ ﬂno} < nno} >1- Pngs (14)

where we should think of the quantities 7,,, p,, as small or vanishing. To interpret
this assumption, the probability on the outside is taken with respect to the train-
ing data (X1,Y1),...,(Xn, Yn,) used to fit the model i,,, while the conditional
expectation on the inside is taken with respect to a new draw X ~ Px.

Under conditions ([3) and (), [Lei et al! [2018] prove that the split conformal

method (4)) is asymptotically efficient as ng, n; — oo, satisfying bounds of the form

leb(Cr(Xp11) A Cp(Xps1)) = 0p(1), (15)

where A denotes the symmetric set difference, and where C'}(x) denotes the “oracle”
prediction interval that we would build if we knew the distribution P—under the
simple model (I3)) for P above, this interval has the form

Cp(x) = pr(r) £ ¢ 4,

where ¢?,, denotes the (1 — «/2) quantile of f. (i.e., the (I — a)-quantile of the
distribution of |e|).

We now extend this result to the setting of approximate conditional coverage.
Specifically, working under the same assumptions, we will prove that our proposed
algorithm ([)), which is constructed to satisfy the (1 —«, 0, X)-CC property, will also
return an interval that is asymptotically equivalent to the oracle interval C} as long
as VC(X) is not too large.

Corollary 1. Under the conditions of Theorem [Q together with assumptions (I]ZA{I)

and ([I4), if VC(X) < ¢ - 10;2’&1), then the split conformal prediction interval C,,
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defined in Q) satisfies

O, 2 n
leb (5 (Xni1) ACH(X )) </c Urlu/)s + mllés " VC(x%iug =
n\An+l1 P\Antl)) = 5172 fﬁ(q:a/2>

with probability at least 1 — n—ll — 2pp, — 777%3, where ¢, c are universal constants.

In other words, for a location-family model with a consistent estimate of the true
mean function (7., pn, — 0), the interval C,, defined in (@) is able to satisfy re-
stricted conditional coverage in the distribution-free setting, while matching the best
possible “oracle” prediction interval length asymptotically as ng, n; — oo.

5 Discussion

In this work, we have explored the possible definitions of approximate conditional
coverage for distribution-free predictive inference, with the goal of finding meaning-
ful definitions that are strong enough to achieve some of the practical benefits of
conditional coverage (i.e., patients feel assured that their personalized predictions
have some level of accuracy), but weak enough to still allow for the possibility of
meaningful distribution-free procedures. We find that requiring (1—c, §)-conditional
coverage to hold, i.e., coverage at level 1 —«a over every subgroup with probability at
least ¢ within the overall population, is too strong of a condition—our main result
establishes a lower bound on the resulting prediction interval length, and demon-
strates that meaningful procedures cannot be constructed with this property. By
relaxing the desired property to (1 — «, d, X)-conditional coverage, i.e., coverage at
level 1 — a over every subgroup X € X that has probability at least 9, we see that
sufficiently restricting the class X does allow for nontrivial prediction intervals.

Many open questions remain after our preliminary findings. In particular, what
types of classes X are most meaningful for defining this restricted form of approx-
imate conditional coverage? Furthermore, for nearly any class X, computation for
the split conformal method constructed in Section [4.Ilmay pose a serious challenge—
how can we efficiently compute predictive intervals for this problem?

Another direction for relaxing (1 — a,0)-CC property is to require it to hold
only over some distributions P (rather than restricting to a class X of sets that we
condition on). Is it possible to ensure that conditional coverage at level 1 — « holds,
not at some uniform tolerance level d, but at an adaptive tolerance level §( P) that is
low for “well-behaved” distributions P but may be as large as 1 (i.e., only ensuring
marginal coverage) for degenerate distributions P? We leave these questions for
future work.
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A Proof of main impossibility result (Theorem [2))

A.1 A preliminary lemma

In order to prove our main theorem, we rely on a key lemma:

Lemma 3. Suppose that C, satisfies (1 — «,8)-CC' as defined in @). Then for
all distributions P where the marginal distribution Px has no atoms, and for all
measurable sets B C R? x R with P(B) > §, we have

P {Ym € Co(Xnp1) | (Xoir, Yorr) € B} >1—a.

Comparing this lemma to the definition of (1 — «, §)-CC, we see that the definition
of approximate conditional coverage requires that the result of the lemma must hold
for any set of the form B = X x R, i.e., conditioning on an event X, ;; € X (with
probability at least ). The lemma extends the property to condition also on events
that are defined jointly in (X,Y).

While this may initially appear to be a simple extension of the definition of
(1 — «,6)-CC, the proof is not trivial, and the implications of this result are very
significant. To see why, suppose that we construct B to consist only of points
(x,y) such that Y, ;1 = y is in the extreme tail of its conditional distribution given
X,+1 = x—specifically, outside the range given by the §/2 and 1 — §/2 conditional
quantiles (so that the overall probability of B is large enough, i.e., > 9). The lemma
claims that, even when (X1, Y,.1) lands in this set, i.e., Y41 is in the extreme
tails ofA its conditional distribution gAiven X1, this value Y, is still quite likely to
lie in C},(X,41). This implies that C,,(X,41) must indeed be very wide.

We will next formalize this intuition to prove our theorem.

A.2 Proof of Theorem

First, for each € R? and each s € [0, 1], define
Cps(x) = {y P {y € én(x)} > s} ,
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where the probability is taken with respect to the training data. Note that Cp () is
fixed, since it is defined as a function of the distribution of C, (), not of the random
interval C),(x) itself.

Next, for any fixed x, in expectation over the training data we have

E [leb(@n(z))] —E UyER 1 {y e én(z)} dy] - /yERIP’ {y c én(x)} dy,

by Fubini’s theorem. Now, we can rewrite

P{y € 6n(x)} = /;0 1 {IP’ {y € én(:c)} > s} ds = /;0 1{y € Cps(x)} ds,

and so plugging this in and applying Fubini’s theorem again,

E [leb(én(:v))] = /;0 /yE]R 1{y € Cps(x)} dyds= /;0 leb(Cp(z)) ds.

Next, plugging in the test point X, .1, and applying Fubini’s theorem an addi-
tional time,

E [1eb(Ca(Xns1)) | = E [E [1eb(Cu(Xos1)) | Xoia|| = E l / ; leh (Cpa(Xosa)) ds
:/sl E[leb(CP,s(Xn_H))} ds:/sioEpX [leb(C’pvs(X))} ds, (16)

=0

where the last step holds since marginally X, .1 ~ Px.
Next we define

g = PP {Y g CP,S(X>}7

the marginal miscoverage rate of the sets Cps(x) (that is, we think of Cps(z) as a
deterministic prediction interval). Then

Epy [leb(Cps(X))] > Lp(1 — ay) (17)

by the definition of the minimal prediction interval length Lp given in (B). Since
s — «a is nondecreasing and right-continuous, and satisfies ar; = 1, we can define

s, =min{s € [0,1] : a; > 6}.
Define also

B, = {(:c,y) :P{y € @L(:c)} < S*} and B_ = {(m,y) : P{y € an(:c)} < s*}.

Pp{(X,Y)e B} =a, >dand Pp{(X,Y) € B_} = supa, <.

S§<S«
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Now, since P is assumed to have no atoms (inheriting this property from the

marginal Px), by Dudley and Norvaisal [2011, Proposition A.1] we can find a mea-

surable set B such that

B_CBC B, and Pp{(X,Y) € B} = 0.

By definition of B, we have

(x,y) € B = Py e Cylz) > s (18)
Next, we can calculate
/S:)asds:s*—/;;(l—as) ds
s / Pp{Y € Cpy(X)) ds
s=0
:s*—/;lpp{ {velux ‘XY}>s}ds
:s*—/;OIP’p{IP{Yean(X) ‘ X,Y}/\s*>s} ds
:s*—IEP[IP{YE@ X) ’XY}/\S*}
— 5 — (EP[ {YEC ) X, Y} 1{(X,Y) eB}] Y Epls, - 1{(X,Y) 918}])

=s5,—P {Yn+1 € an( n+1>v (Xn—i-lu n+1) € B} — s.Pp {(Xv Y) ¢ B}
—5 (s* _p {Yn+1 € Co(Xnat) | (Xpir, Yorr) € B})

where the last step holds since Pp{(X,Y) € B} = P{(X,41,Yns1) € B} = 0 by
construction. Next, by applying Lemma [3] to the set B, we have

]P){Yn-i-l € é\n(Xn+1) ‘ (Xng1, Yog1) € B} >1—-a

and therefore .
/ s ds < 5 (s, — (1—a). (19)
s=0
In particular, since the left-hand side is nonnegative, this proves that we must have
s, > 1 —a > 0 (we can assume that a < 1 since otherwise the theorem holds
trivially).
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Now, returning to (I€) and (I7)), we have

1

Sx

E[leb(én(xnﬂ))} 2/ Lp(1 - ay) dsz/ Le(1—ay) ds

s=0 s=0

Sx 1 Sx ]_
— s*/ —Lp(1 — o) ds > s, Lp (1 - / s ds) , (20)
s=0 Sx 5=0 5x

where the last step uses Jensen’s inequality, together with the fact that oo +— Lp(1—
«) is convex. (To verify this, let Cp € Cp(1 — ) and C'» € Cp(1l — ), and then
define C%(x) as the random interval that outputs Cp(z) with probability (1 — t)
and C(x) with probability ¢. Then it is easy to verify that C% € Cp(1 — o)
where o' = (1 — t)a + ta/, and that Ep, [leb(CE(X))] = (1 —t)Ep, [leb(Cp(X))] +
tEp, [leb(C%(X))]. This is sufficient to establish convexity.)

Combining (I9) and (20), we obtain

E [1eb(Co(Xn11))| = s.Le (1 — (1 - a)) :

Sx

since Lp is nondecreasing. Finally, define

1 l—«
c=— — .
«Q S,

Since we have verified that 1 — a < s, < 1, this means that ¢ € [0, 1], and plugging
in this choice of ¢, we obtain

11—«

E [leb(@n(XnH))} > Lp(1 — cad),

1 —ca

which proves the theorem.

A.3 Proof of Lemma

Let ¢ = Pp{(X,Y)e B} > 6. We will assume that ¢’ < 1 (since the case
§ = 1 is trivial). Fix a large integer M > n + 1. First, draw M data points
Xy, (MY MY fid. from (X,Y) ~ P conditional on (X,Y) ¢ B,
and M additional data points (X, VM), ..., (XM y*)) iid. from (X,Y) ~ P
conditional on (X,Y) € B. Let £ denote this draw of the 2 data points. Since
Pyx has no atoms, with probability 1 all the Xéi)’s and Xl(i)’s are distinct, so from
this point on we assume that this is true.

Next suppose that we draw indices my, ..., m,y; without replacement from the
set {1,..., M}. Independently for each i = 1,...,n + 1, set

(X5™)¥,™),  with probability 1 -,

(Xl(mz)’ Y*l(ml))’ with probability 0. ( )

(Xz',Yz‘) = {
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We can clearly see that, after marginalizing over £, this is equivalent to drawing the
data points (X;,Y;) i.i.d. from P. Therefore, we have

P {Yn+l ¢ én(Xn-i-l)a (Xn-l—la Yn-‘,—l) € B}

=K [P {Yn+1 ¢ an(Xn-l—l)v (Xn+17Yn+1) €B ‘ E}} )

where, on the right-hand side, after conditioning on £, the data points (X;,Y;) are
drawn according to (21]).

Next consider an alternate distribution where we draw the n + 1 data points
(X;,Y;) from £ but now drawing with replacement. Specifically, fixing £, let Q(L)

be the discrete distribution that places probability £ on each point (Xém), Y})(m)),
and probability % on each point (Xl(m),Ylm)), for m = 1,...,M. The product
distribution (Q(E))n+1 is therefore equivalent to sampling indices my, ..., m, 1 with
replacement from the set {1,..., M}, and then defining (X;,Y;) again according

to (210).

Now, if M is very large relative to n, it is extremely unlikely that we would
have m; = my for any i # i/, when drawing from (Q(E))nH. Specifically, we can
easily check that this probability is bounded by "Mz, and so for any fixed L, the total
variation distance between the distribution given in (21]) (i.e., sampling without

replacement) and the distribution (Q(L£))"™ (i.e., sampling with replacement) is
bounded by "MQ Therefore,

P {Ynﬂ ¢ Coi(Xns1), (Xos1, Yos1) € B ‘ L}

2

< Prauy {Yn+1 ¢ Cn(Xns1), (Xnt1, Yorr) € B} + 15

where on the left-hand side, after conditioning on £, the data points (X;,Y;) are
drawn according to (2I]).
Next, for any L, define the set

x(L)={x{", .. x{"My.

Note that, for (X,Y) ~ Q(L), by construction we have X € X (L) if and only if
(X,Y) € B (since we have assumed that £ is chosen so that Xél), e XéM), Xl(l), e XI(M)
are all distinct), and

Py {X € X(L)} =Poipy {(X,Y) e B} =¢" > 0.

Therefore, since én satisfies (1 — a, 0)-CC with respect to any distribution, we must
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have

Poeeyn {Yn+1 & Cn(Xni1), (Xns1, Yos) € B}
= Pyt {Yn+1 & Co(Xni1), Xns1 € X(L)}
= Py {Yn+1 ¢ Co(Xos1) ‘ X1 € X(E)} 5 < ad

for every fixed £ where X(gl), e ,XéM), Xl(l), e ,Xl(M) are distinct. Combining ev-
erything, therefore,

P {Yn-i-l ¢ én(Xn-i-l)a (Xn-i-la Yn-i-l) € B}
2

~ n? n
<E {P(Q(ﬁ))”ﬂ {Yn—l—l ¢ Cn(Xng1), (Xny1, Yaq1) € B} + M] < ad + e

where the expectation is taken with respect to the random draw of £. Since M can
be taken to be arbitrarily large, we therefore have

P {Yn—l—l ¢ 6n()(n—l—l)v (Xn—l—la Yn—l—l) € B} S 055, = - P{(Xn—l—la Yn—l—l) € B} )

which concludes the proof of the lemma.

B Additional proofs

B.1 Proof of Lemma

Let A ~ Bernoulli (1=%) be the Bernoulli variable indicating whether ég(x) is
defined as C,(z) (if A = 1) or as the empty set (if A = 0). Then, for any X with
Px(X) > §, we have

P{Ynﬂ S @L(Xnﬂ) ’ Xnt1 € X} = P{A =1,Y,41 € an(XnH) ’ Xnq1 € X}
11—« ~ 11—«
- P{Yus1 € CulXor) | Xnn € X} 2

1= ca

(I—ca)=1-a,

1 — ca

where the inequality holds since @n satisfies (1 — ca, §)-CC by Lemma [Tl

B.2 Proof of Theorem
Fix any distribution P and any X € X with Px(X) > 4. Let

Rn—i—l - ‘Yn—i-l - ,ano(Xn—i-l)}
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be the residual of the test point. By definition of the procedure, we can see that

P{Yon & Col(Xns1) | Xoit € X} = P{Russ > Gy (Xo) | Xor € &)

gP{ng?em

X1 € X} FP{Rp1 > G (X) | X1 € XV

The first probability depends only on the held-out portion of the training data, i.e.,
data points ¢ = ng + 1,...,n. We have

2log ()

XgX, = > L{X;eX}<on |1- i

i=ng+1

Since each X; has probability at least ¢ of lying in X', therefore this probability is
bounded by

2log(m)

IP < Binomial(ny,d) < dng | 1 — ony

1
S R
m

where the inequality holds by the multiplicative Chernoff bound. Therefore, what
we have so far is

~ 1 ~
P{Yoer # CulXon)) | Ko € X} € =+ P{Russ > G0y (X) | X1 € X}
1

Next let [ = {i :ng+1<i<n,X; €X}). Then |I| = N, (X), and by defini-
tion of g, (X), we see that R,y > @, (X) if and only if R, is not one of the
Kl —a+ n%) (] + 1)—‘ smallest values of {R; : i € T U{n + 1}}. Now, after
conditioning on [ and on the event X,y € X, by distribution of the data we see
that these residuals are exchangeable. Therefore this event has probability exactly

{(1—a+nil)-(u|+1>] )

1-— <a——

after conditioning on I and on the event that X, ,; € . This bound is therefore

true also after marginalizing over I, and so P{R, 11 > Gn,(X) | Xp11 € X} <a—=+

which concludes the proof. '

B.3 Proof of Theorem {4

First, we need to show that Lemma [3 holds in this setting.

25



Lemma 4. Suppose that C, satisfies (1 — a,0,X)-CCE as defined in (1), where
X satisfies VC,0(X) > 2n + 2. Then for all distributions P where the marginal

distribution Px is continuous with respect to Lebesque measure, for all B C R? x R
with Pp{(X,Y) € B} >4,

P {Yn+1 € Co(Xnp1) | (Xoir, Yor) € B} >1—a.

With this lemma in place, the proof of Theorem [ follows exactly as the proof
of our initial result, Theorem 2l We now turn to proving the lemma.

Proof of Lemma[l The proof of this lemma is similar to that of Lemma [B] except
that instead of taking M samples from B and from B¢ for an arbitrarily large integer
M, we only need to take n 4+ 1 from each set.

Let o' = Pp {(X,Y) € B} > §. We can assume that ¢’ < 1 (otherwise, the bound
claimed in the lemma is trivial). Draw n-+1 data points (X", Y\"), ..., (X", v ™)
i.i.d. from (X,Y) ~ P conditional on (X,Y) ¢ B, and n + 1 additional data points
(XD y My x Yy Y i, from (X,Y) ~ P conditional on (X,Y) € B.
Let £ denote this draw of the 2n 4+ 2 data points.

Next, we draw a permutation 7 of the set {1,...,n + 1} uniformly at random,
and draw By, ..., By s Bernoulli(¢’) independently of all other random variables.
Define

(X v, it B =0,
XZ',Y; - T T . .
(%, %) {(Xl( DYy, By = 1.

We can clearly see that, after marginalizing over £, this is equivalent to drawing the
data points (X;,Y;) i.i.d. from P. Therefore, we have

P {Yn-i-l € én(Xn-i-l)a (Xn-i-la Yn-i-l) S B}
_E [P {Yn+1 ¢ Cr(Xoir)s (Xns1, Yor1) € B ‘ c}] . (22)

where, on the right-hand side, after conditioning on L, the data points (X;,Y;) are
defined by the permutation 7 and the Bernoulli variables By, ..., B, 1.

Next consider the distribution of the data conditional on £, which we denote
by P(L). Since the permutation 7 is drawn uniformly at random, and the B;’s are
i.i.d., it is clear that the n+1 data points (X1, Y7), ..., (X,11, Y,11) are exchangeable
under the distribution P(£). Therefore for any fixed £ and for any set X € X with
Ppe) {Xp11 € X} > 6, the (1 — «, §, X)-CCE property ensures that

]P)P(ﬁ) {Y"‘H € én()(n-i-l) ‘ Xnt1 € X} >1—a.
Now, fixing £, define the set X (L) to be any element of X such that

X(L:) > Xl(l)" .. ’Xl(n+1)> X(L:) 3 Xél),. - ’Xén—i-l).
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(Since we have assumed that VC,, (X) > 2n + 2, and that Py is continuous with
respect to Lebesgue measure, such a set X'(L£) € X exists with probability one for any
random draw of £.) Note that, under the distribution P(L£), we have X,,; € X (L)
if and only if (X1, Y,41) € B, and

IED1!5(5) {(Xnt1, Vi) € B} = Pﬁ(c) {Xp1 € X(L)} =P{Br1 =1} =0 >0

Returning to the above, we therefore have

Pﬁ(c) {Yn+1 € an(XTH-l)? (X1, Yai) € B}
=Pp {Yn+1 € Co(Xnt1), Xnp1 € X(ﬁ)}
— Py {Ynﬂ € Co(Xns1) | Xnp1 € X(L)} S >(1—a) 4.

Then, returning to (22]),

P {Yn+1 € Cn(Xoir), (Xns1, Yos1) € B}
[IP {Yn+1 € Cr(Xnsr), (Xpsr, Yorr) € B ‘ cH

[Pﬁ(c) {Yn+1 S an(XTH-l)a (Xnt1,Yni1) €B
>E[(l1—a)-0]=01-a«a)-0"

E
E

H—/
| S

Therefore,
~ 1—a)-¢
P{Vos1 € CuXo1) | (X1, Yor) € B 2 % —1-aq,
which proves the lemma. O

B.4 Proof of Theorem

Let p = Jin,. Throughout this proof, we will condition on the data (X1, Y1), ..., (Xu,, Yao),
and will therefore treat this model as fixed—the probability bound will hold with
respect to the distribution of the n; holdout points (and therefore, the bound also
holds after marginalizing over the initial ny training points).
We will first see that it is sufficient to prove that, with high probability, the
following two bounds hold: R
%x,-‘r g }:nl g }:x,—a (23)

where we define X, . ={X¥ eX:2 € X, Px(X)>d,}and X, ={X¥eX:z €
Xv PX(X) > 6—}7 and

q}u’w(é\f) <, (&) < q}%ai(k') forall X € X, _. (24)



If these two statements hold, then we have

q}g,,u,,a+,5+ (.Z’) = Sup un oy (X) S SU'Ap q}g,u,cu (X) S Sl%\p Z]\nl (X) = Z]\nl (I)7
XE€Xa 4 X€Xn, XEXn,

and similarly

Tpya_ 5 (T) = SUD qpq (X) > sup qp,, (X) > sup G, (X) = G, (2).
XEXy,— XeXn, XEXn,

By construction of the intervals, we therefore see that C}
P s (), which is the claim in the theorem.
Now we Verlfy that ([23) and (24) both hold with high probability. First, by
, Section 2.3 (Bousquet bound) + Theorem 3.9], we can Verlfy the
following concentratlon result

P{‘M_pm

() C Cp(x) C

uu'7a+76+ - -

ni ni

< Awope(X) for all X € 35} >1— 3i (25)

where

Acone(X) = c\/m. \/Vc(x);(l)g2(n1) n clog(nl)’

ny

for a universal constant c.
Next, for any X € X, define

X={(z,y) eER'xR:z € X and |y — u(@)| > qp . (X)}.

Lemma [l below will verify that

VO({&: X € X}) < VO(x) +1

Therefore, again applying [Koltchinskii [2011, Bousquet bound (Section 2.3) + The-
orem 3.9] as above, if the universal constant ¢ is chosen appropriately then it holds
that

|

To obtain this bound, we need to apply Koltchinskii [2011, Theorems 2.5+3.9] O(log(n1))
many times, once for each class X; = {X € X : Px(X) <277}, for j = 1,...,0(log(n1)) (ie., a
peeling argument).

Ly 1{<Xi,m>e»%}—Pp{<XaY>ef}\
1

< Aeone(X) VXeX,_r>1——.
- ( ) < 7} 3711
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Plugging in the definition of X and of 4P 0 (X), this means that

P{i ST L{Xi € X, Y~ u(X)] > Gy (X))

n
1 i=ng+1
1

< a_Px(X) + Aeone(X) ¥ X € aexv_} >1-2—. (26)
1

An analogous argument can be used to prove that

n

P{— Yo L{Xi € X, Y = ul(Xi) = Gy, (X))}

n
L imno+1

> Py(X) = Awne(X) VX € xxv_} > 1 % (27)
1

Now from this point on, we will assume that the events in (28), (26]), and (217)
all hold, which will occur with probability at least 1 — n% We now need to verify
that this implies ([23]) and (24]).

First we verify 3). For any X € X,,,, by definition of X,,, we have

2log(m) | _ 1 i 1{X; € X} < Px(X) + Acone(X),

on n
1 L imno+1

ol1—

Examining the definition of 0_, we see that this implies Px(X) > 0_ when the uni-
versal constant c¢; is chosen appropriately. This proves that X,,, C X, _. Conversely,
for any X € X, 4, again assuming c; is chosen appropriately, we have

ni i L{X; € X} > Px(X) = Aconc(X)

L imno+1

2
- _C\/vc(ae) log’(m) _ clog(m) _ [, |2log(m)

nq 1 - 5n1

and so X € X,,,. This proves that X,, D X, +, and therefore, (23) holds whenever
the event in (28] occurs.
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Next we verify ([24)). Fix any X € X, _. By the events in (25]) and (26)), we have

n

ST L{Xie X, Y- p(X0)] > gy (X))

i=ng+1
Ny, (X)
ny

. 2 cone (X) . N 20 cone(X)
< Ny, (X) (a- NS ey )> < N, () ( e Amm) |

S nla—PX(X> + nlAconc(X> S nio— ( + Av:onc(‘)c‘)> + nlAconc(X>

Furthermore, by definition of o_, it holds that

~

S (0 5 =) < W= (1o ) (@ 41|

ni

as long as the constants c,, c¢s are chosen appropriately. Combining these calcula-
tions, we see that

S 1{X € Y- p(X)| < gha (X)) > Kuwi) - (N,Ll(»c)ﬂ)]

n
i=no+1 1

Since @, (X)) is defined as the [(1 —a+ n%) - (Np, (X) +1)]-th smallest value in the
list {Ri ng+1<i<n X, eX }, the above bound immediately verifies that
Z]\nl (X) S qjlg,u,a, (X)
We can similarly show that, if the events in (28] and (27) both hold, then

n

S X € X, Y- p(X)] 2 G, (X))

i=ng+1

> N, (X) (a+_ 2 cone (X)) ) ~

Ny, (X) -«
PX(X>_Aconc(X> - 1( ) “
and by definition of g,, (X') this is sufficient to establish that

Z]\nl (X) 2 Q.}k:),u,a+ (X)

Therefore, combining everything, we have shown that (23] and (24]) both hold
whenever the events in (25]), (20), and [27) all hold, which occurs with probability
at least 1 — n% This completes the proof of the theorem.
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B.4.1 Supporting lemma

Lemma 5. Let X be any collection of measurable subsets of R, and let ¢ : X — R
be any function. Fiz any function f : RY x R — R, and for each X € X define

X ={(z,y) eR*xR:2 € X and f(z,y) > c(X)}.

Then
vc(@%:Afex}>g\Kxx)+1

Proof. To see this, suppose VC({X : X € X}) = m. If m = 1 then the result is
trivial, so assume m > 2. We can then find m points (z;,7;) € R? x R, for i =
1,...,m, which are shattered by {X : X € X}. Without loss of generality assume
that f(xp, Ym) = min, 1, f(x;, v;). We will now show that the set {z1,..., 21}
is shattered by X. Fix any subset I C {1,. — 1}, and let I = T U {m}. Then
since {X : X € X} shatters (z1,91), . (SL’m, ym) there must be some X € X such
that (z;,1;) € X fori € I and (x;,y;) §Z X fori ¢ I. In particular, taking i = m € I,
we have

Ty ym) €EX = f(@myym) > c(X) = flzs,y:) > c(X) for all 4.
Now, for all i € I,
icl = (:)si,y,-)e?e = x,€X,
and for all i € {1,...,m — 1}\I, we know that f(x;,y;) > ¢(X) and therefore
il = x5 ¢X.

Since we can find such a set X for each subset I C {1,...,m — 1}, this means that
X shatters {z1,..., 2,1}, and therefore VC(X) > m — 1, completing the proof. [

B.5 Proof of Corollary [l

Recall that the oracle interval is given by

CJ*D(Xn+1) = :U’P(Xn+1) + q:,a
where g7, is the (1 — o/2)-quantile of f.. By Theorem [ for every = € R? we have

* ~ * 1
P{Ch s (@) € Cal@) € C a5 (@)} 2 1= —,

ny
where a,a_,0,,0_ are defined as in the statement of that theorem. Therefore, it
must also hold that
* ~ * 1
P{Chycrss (Xns1) € Cul(Xns1) € Cy a5 (o)} 2 1= —,

ni
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and so with probability at least 1 — nil, we have

leb (Co(Xni1) A Cp(Xnp1)) <
1eb(079,ﬁno,a,,6, (Xn+1)\C;(Xn+1)) + leb(C;(Xn+1)\0;,ﬁno,a+,6+ (Xn+1)) :

Now we bound these two terms. We can calculate deterministically that
leb (C}S,ﬁno,a,,a, (Xn+1)\C}3(Xn+1)) <
g (Xn1) = pp(Xns1)| +2max {apz, o s (Xnt1) — 0. 0}
and
leb(Cp(Xnt1)\Ch, ar sy (Xnt1)) <
[1ng (Xnt1) — pop(Xng1)| + 2 max {q:,a - q;,ﬁno,mr,&r (Xnt1), O}-

Therefore, with probability at least 1 — n—ll, we have

leb (én(Xn—l—l) A C;(Xn-l—l)) < 2|ﬁno(Xn+1) - NP(Xn+1)‘
+ 2 max {q:,a - q;,ﬁno,a+,5+ (Xpn+41),0} + 2 max {q;,ﬁno s (Xng1) = @ 0},

so we now need to bound these remaining terms with high probability.
First we bound |fin, (Xn41) — pp(Xnt1)|. Define

~

Ny = E [(fing (X) = pp(X))* | Fino] »

which satisfies P {ﬁno < nno} > 1— py, by (). We have

P {mno(Xn+1) — pp(Xny1)| > 771/3} E [P {|:U’TL0 Xng1) = pp(Xpg1)| > 77%3 } ﬁno}}

E [(7iny (X X, " _JA, !
- { (g (Xn41) = pp(Xoin)? mo]’l} - { . }] < i
Tno Tlno

1/3

<E 2/3
Therefore, with probability at least 1 — n_11 — Png — Ty » We have

=E

Tno

leb(Co(Xni1) A Cp(Xpp1)) < 20173
+ 2 max {q:,oc - q;,ﬁ7lo,a+,6+ (Xn-i-l)’ O} + 2max {q;;,ﬁno NO (Xn+1) - q:,oa’ O}

Next, by definition we have

* . * * d *
qP,ﬁno NRIN R (Xn+1) - Sup qP,ﬁno YOt (X) Z quﬁno YO (R ) Z q€7a+ ?
XeX: X,1€X,Px (X)26+
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where the last step uses the location family assumption (I3]). Therefore, with prob-

ability at least 1 — n% — Py — 777%3, we have

leb (Cr(Xi1) A Cp(Xnsr)) < 200 +2(q0 0 — @',
+ 2max {q},ﬁno o (Xns1) = @ g O}'

We now address the last term. By definition we have

Qfﬂ,ﬁno a5 (Xn+1) = sup Qfﬂ,ﬁno L (X) < sup C.I}ko,ﬁno L (X)
XEX: X 1€X, Py (X)>6_ XEX: Py (X)>5_

By the location family assumption ([I3]) we can see that, for any X,

{q* L the (1 — )-quantile of |, (X) — up(X)] }

* = < : A
ap ’”"070‘*()() T conditional on i,, and on X € X

T 0<a/<a—

And, for any X with Px(X) > §_, this last quantile is bounded by

\/E [(ﬁno(X) — ,U/P(*X))2 | ﬁnon < X] < 3no
% - \/ alo_’

Therefore, choosing o/ = nrll(/)g,

Kn 1/35—1/2
Ty (Xnt) S Qo T4 S0, s 0
ng 0—

where the last bound holds with probability at least 1 — p,, by ([[4). Combining
everything, with probability at least 1 — n% — 20ny — 77,%3, we have

leb (Cr(Xpi1) A Cp(Xprn)) < 203 +2(q )+ 2nt/367 12,

:,a,—n,ll{)a B q:705+
Finally, by our assumptions (I3) on the density f. and the definition of ¢}, for any
o < a” €10,1] we have

1 qe’al * * *
5(0// - O/) - / fE(t) dt Z fE(qe,a’) ' (qs,a’ - qe,a”)'
t:qs,a”
Therefore,
1/3
L e—fa )
1/3 7 Yeayp = *
€0 = o 2]"‘6(([6 1s)

yO— _77710

)

which completes the proof for constants ¢, ¢’ chosen appropriately.
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